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Abstract. In this note we give a short proof of a pointwise ergodic theorem for
measure preserving actions of word hyperbolic groups, also obtained recently by

Bufetov, Khristoforov and Klimenko. Our approach also applies to infinite measure

spaces and one application is to linear actions of discrete groups on the plane.

0. Introduction

The well-known Birkhoff ergodic theorem for ergodic transformations T : X → X
on a probability space (X,B, µ) gives that the averages of an L1 function along
almost every orbit is equal to the integral of the function. If we view the transfor-
mation as a Z-action, then it is natural to ask about pointwise ergodic theorems
for other group actions.

For Zd, or nilpotent groups, pointwise ergodic theorems for L1 functions are
described in the books of Krengel [19] and Templeman [26]. For groups with expo-
nential growth, results are considerably harder to obtain. For free groups, a mean
ergodic theorem for L2 functions was proved by Guivarc’h in the 1960s [16] but it
was not until the work of Grigorchuk [14] (see also [15]) in the 1980s and Nevo and
Stein [22] in the 1990s that pointwise ergodic theorems were obtained. Nevo and
Stein proved pointwise ergodic theorems for spherical averages of Lp functions with
p > 1, and for Cesàro averages of spherical averages of Lp functions with p ≥ 1.
Grigorchuk [14], [15], and subsequently Bufetov [4], introduced a simpler method
based on Markov operators to obtain a pointwise ergodic theorem for Cesàro aver-
ages of spherical averages of L1 functions. (This approach was recently extended
to the fundamental groups of compact surfaces with negative Euler characteristic
by Bufetov and Series [7].) Bufetov also obtained pointwise ergodic theorems for
spherical averages of functions in the space L logL [5]. The extension of pointwise
theorems to more general word hyperbolic groups for L2 functions was carried out
by Fujiwara and Nevo, under strong mixing assumptions on the action [12]. Very
recently, Bufetov, Khristoforov and Klimenko [6] showed that, independent of any
mixing condition, there is pointwise convergence of appropriate Cesàro averages for
L∞ functions. (They also establish Lp convergence for any p ≥ 1.) In this note,
we give a short proof of the almost everywhere convergence of (slightly modified)
Cesàro averages for L∞ functions. A key ingredient of our approach is an observa-
tion of Calegari and Fujiwara [8] on the structure of the Markov matrix encoding
a word hyperbolic group.
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Let Γ be a finitely generated group and let Γ0 be a finite generating set. (For
convenience, we always assume our generating set is symmetric, i.e. γ ∈ Γ0 implies
that γ−1 ∈ Γ0.)

Definition. We define the word length |γ| of an element γ ∈ Γ− {e}, with respect
to the generators Γ0, by

|γ| = inf {k ≥ 1 : γ = γ1 . . . γk where γi ∈ Γ0, 1 ≤ i ≤ k} .

Definition. We say that Γ is word hyperbolic (or Gromov hyperbolic) if, for some
finite generating set Γ0, the following holds. Let |·| denote word length with respect
to Γ0 and define a metric by d(g, h) = |g−1h|. Then there exists δ ≥ 0 such that
every geodesic triangle in this metric is δ-thin, i.e., every point on one side of the
triangle is within δ of the other two sides.

We say that a word hyperbolic group is non-elementary if it does not contain a
finite index cyclic subgroup.

For n ≥ 1, let N(n) = #{γ : |γ| = n} denote the word length counting function.
We let ρ denote the exponential growth rate with respect to word length, i.e.,
ρ = limn→+∞N(n)1/n. This limit always exists for word hyperbolic groups and,
by [10], one has the stronger estimate

C1ρ
n ≤ N(n) ≤ C2ρ

n,

for some C2 > C1 > 0.
Let (X,B, µ) be a probability space and let Γ × X → X be an action with

preserves µ. We then have the following general result.

Theorem 1. Let Γ be a non-elementary word hyperbolic group and let Γ0 be a
symmetric set of generators. For f ∈ L∞(X,µ) we have that

1
N

N∑
n=1

ρ−n ∑
|γ|=n

f(γx)


converges for µ-a.e. x ∈ X as N → +∞.

Remark. In the general spirit of subsequence ergodic theorems, we observe that
similar results hold if we average over elements with word length indexed by squares
or by primes (by adapting the proof to use [17]).

Definition. For f ∈ L1(X,B, µ) and x ∈ X we can then define the spherical averages

σnf(x) =
1

N(n)

∑
|γ|=n

f(γx),

for the average over elements γ ∈ Γ of word length |γ| = n.

In particular, if A ∈ B satisfies µ(A) > 0 then with f = χA we can write

σnχA(x) =
1

N(n)
#{γ ∈ Γ : γx ∈ A and |γ| = n}.

It is now natural to consider the Cesàro averages of these terms.

Definition. We will say that Γ with a symmetric set of generators Γ0 has purely
exponential growth if there exists C > 0 such that N(n) ∼ Cρn, as n→ +∞. (Here,
a(n) ∼ b(n), as n→ +∞, means that limn→+∞ a(n)/b(n) = 1.)

We have the following results on spherical averages.
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Theorem 2.
(1) Let Γ be a non-elementary word hyperbolic group and let Γ0 be a symmetric

set of generators. There exists p ≥ 1 such that for any f ∈ L∞(X,B, µ), we
have 1

N

∑N
n=1 σpnf(x) converges as N → +∞ for µ-a.e. x ∈ X.

(2) Let Γ be a non-elementary word hyperbolic group and let Γ0 be a symmetric
set of generators with purely exponential growth. Suppose that Γ×X → X
is a measure preserving action of Γ on a probability space (X,B, µ). Then,
for any f ∈ L∞(X,B, µ), we have 1

N

∑N
n=1 σnf(x) converges as N → +∞

for µ-a.e. x ∈ X.

In the case of fundamental groups of compact surfaces with negative Euler char-
acteristic the result follows from [7]. The same methods can probably be applied
to noncommutative spaces [2].

The method of proof is based on the natural association to these groups of
directed graphs (section 2). This then allows the reduction of the statements of the
ergodic theorems to those of known results for Markov operators (section 3).

2. Hyperbolic Groups and Strongly Markov Groups

Let Γ be a (non-elementary) word hyperbolic group and let Γ0 be a finite symm-
teric generating set. An essential feature of these groups is that their elements can
be described in terms of a suitable directed graph. More precisely, we shall use the
notion of strongly Markov groups introduced by Cannon [9]. A good reference is
[13].

Definition. A finitely generated group Γ is strongly Markov if for every symmetric
set of generators Γ0 we can find a directed graph G = (V, E) and an edge labelling
λ : E → Γ0 such that:

(a) there exists a distinguished vertex ∗ ∈ V with no edge terminating at ∗;
(b) the map from the set of paths starting at ∗ to Γ−{e} given by multiplying

the edge labels of the path is a bijection, i.e, we associate to a path ∗,
v1, . . . , vn such that we may write the element γ = λ(∗, v1) · · ·λ(vn−1, vn);

(c) the word length of γ = λ(∗, v1) · · ·λ(vn−1, vn) is n.

Proposition 1 [13, Chapitre 9, Théorème 13]. Any word hyperbolic group is
strongly Markov.

We can associate to the graph G a transition matrix A indexed by V × V i.e.,
A(v, v′) = 1 if (v, v′) ∈ E , and 0 otherwise.

Definition. A non-negative square matrix M is called irreducible if for all i, j there
exists n ≥ 1 such that Mn(i, j) > 0. It is called aperiodic if there exists n ≥ 1 such
that, for all i, j, Mn(i, j) > 0.

In the case of surface groups or even corners Kleinian groups, we have the fol-
lowing result. (A Kleinian group Γ is said to satisfy the even corners condition if Γ
admits a fundamental domain R which is a finite sided polyhedron, possibly with
infinite volume, such that

⋃
γ∈Γ γ∂R is a union of hyperplanes.)

Proposition 2. If Γ is the fundamental group of a compact surface with negative
Euler characteristic, or, more generally, a convex co-compact Kleinian group sat-
isfying the even corners condition then the matrix obtained from A by deleting the
row and column indexed by the vertex ∗ is aperiodic.
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This follows from the existence, in these cases, of a Markov mapping on the ideal
boundary originally introduced to code geodesics. In the case of surface groups,
this follows from the work of Series [25] and Adler and Flatto [1], while the higher
dimensional case was discussed by Bourdon [3]. With the exception of the vertex
∗, the vertices of the graph G correspond to the regions of continuity of the map.
We join two vertices with an edge if the image of the region corresponding to the
first vertex contains the region corresponding to the second vertex. The important
property of the Markov map is that it is locally eventually onto, which immediately
implies the aperiodicity of the required matrix.

Remark (Extension to L1 functions). Under the additional hypothesis that A is
aperiodic then the conclusions of Theorem 1 and Theorem 2 hold for any f ∈
L1(X,B, µ), as is apparent from the proofs in the next section.

3. Markov operators and ergodic theorems

Let (Y,A, ν) be a probability space. Let P(y,A) be a transition probability
function, where y ∈ Y and A ∈ A, such that

(1) y 7→ P(y,A) is measurable, for each A ∈ A;
(2) P(y, ·) : A → R is a probability measure for each y ∈ Y .

Let P : L1(Y,A, ν)→ L1(Y,A, ν) be the positive linear operator defined by

Pf(y) =
∫
f(ξ) dP(ξ, .)

In particular, P is a Markov operator, i.e., P1 = 1.

Definition. Let I ⊂ A be the sigma algebra of sets A such that y ∈ A iff

P(y,A) =
{

1 if y ∈ A
0 if y 6∈ A

The following version of the Birkhoff ergodic theorem for Markov operators ap-
pears in Rosenblatt’s book [23, p. 93] (cf. also [11]).

Proposition 3. For f ∈ L1(Y,A, ν) we have that

1
N

N−1∑
n=0

Pnf → E(f |I), ν-a.e., as N → +∞.

In order to apply this abstract theorem, we require the following result.

Lemma 1. For non-elementary hyperbolic groups we can write

A =


B1 0 · · · 0
C12 B2 · · · 0

... · · ·
. . .

...
C1l C2l · · · Bl


where

(1) the diagonal blocks B1, · · · , Bl are irreducible matrices;
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(2) a subcollection Bi1 , · · · , Bil have spectral radius ρ(Bij ) = ρ; and
(3) for any ir, is, for any n ≥ 1 and any j1, · · · , jn−1 we have that

Ci1,j1Cj1,j2 · · ·Cjn−1,is = 0,

i.e., there is no transition from the component represented by Bir to the
component represented by Bis .

Remark. Parts (1) and (2) of Lemma 1 are standard results for non-negative ma-
trices [24]. As observed in [8], part (3) is based on the fact that there always exists
C1, C2 > 0 such that C1ρ

n ≤ N(n) ≤ C2ρ
n, for n ≥ 0 [10]. In particular, if the con-

clusion of the lemma was not true then N(n) would have an additional polynomial
factor.

We recall the following lemma (cf. [18, Theorem 1.3.5], [24, Theorem 1.5]).

Lemma 2. There is an eigenvector wir with strictly positive entries such that
Birwir = ρwir .

Let Vij ⊂ V be the indices corresponding to the block Bij . Let X̂ij = X × Vij
and µ̂ij = µ×

{
1
|Vij
| , · · · ,

1
|Vij
|

}
.

Definition. We can define an operator Qij : L1(X̂ij , µ̂ij )→ L1(X̂ij , µ̂ij ) by

QijF (x, v) =
∑
v′

Bij (v, v′)F (λ(v, v′)x, v′).

To keep track of the transitions between the rest of the vertices, we let A0 be
the matrix derived from A by setting to zero the entries corresponding the maximal
components.

Let X̂ = X × V equipped with the product σ-algebra B̂ and a measure µ̂ =
µ× {1/|V|, . . . , 1/|V|} on X̂.

Definition. We define an operator R : L1(X̂, µ̂)→ L1(X̂, µ̂) by

RF (x, v) =
∑
v′

A0(v, v′)F (λ(v, v′)x, v′).

The following lemma is immediate.

Lemma 3. The operator R has spectral radius ρ(R) < ρ.

Let V0 = {v ∈ V : A(∗, v) = 1} be the set of vertices which can be reached in
one step from ∗. We require the following observation.

Lemma 4. If we let F (x, v) = f(x) then for n ≥ 0,

∑
|γ|=n+1

f(γx) =
∑
v∈V0

k∑
j=1

n∑
l=0

∑
d0+d1=n−l

Rd1QlijR
d0F (x, v) (1)

This follows from a simple enumeration of the possible words that can occur,
in light of Lemma 1. In particular, the words can have at most one subword in
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a maximal component (of length l), preceded by a subword of length d0 ≥ 0 and
followed by a subword of length d1 ≥ 0 outside of the maximal components.

Define a stochastic matrix Pij by Pij (v, v′) = ρ−1Bij (v, v′)w(v′)/w(v) for v, v′ ∈
Vij .

Definition. We define a normalized operator Pij : L1(X̂ij , µ̂ij )→ L1(X̂ij , µ̂ij ) by

PijF (x, v) =
∑
v′

Pij (v, v′)F (λ(v, v′)x, v′).

The operator Pij is Markov.

Let ∆(wij ) : L1(X̂ij , µ̂ij )→ L1(X̂ij , µ̂ij ) denote multiplication by wij . We then
have the following.

Lemma 5. For l ≥ 0,

Qlij = ρl∆(wij )P lij ∆(wij )−1. (2)

Proof. We can write

ρnwij (v1)Pij (v1, v2) · · ·Pij (vk−1, vk)w−1
ij

(vk) = Bij (v1, v2) · · ·Bij (vk−1, vk).

Thus we have

QlijF (x, v)

=
∑

v1,··· ,vl

Bij (v1, v2) · · ·Bij (vl−1, vl)F (λ(v1, v2) · · ·λ(vl−1, vl)x)

=
∑

v1,··· ,vl

wij (v)Pij (v1, v2) · · ·Pij (vl−1, vl)wij (vl)−1F (λ(v1, v2) · · ·λ(vl−1, vl)x)

= ρlwij (v)P lij
(
F (·, ·)/wij (·)

)
(x, v),

where the summation is over all strings of indices such that

Bij (v, v1) = Bij (v1, v2) = · · · = Bij (vn−1, vn) = 1.

This completes the proof. �

Proof of Theorem 1. Assume that f ∈ L∞(X,µ). It is clear that Theorem 1 is
equivalent to the µ-a.e. convergence of

AN (x) :=
1
N

N∑
n=1

ρ−n

 ∑
|γ|=n+1

f(γx)

 .

Using Lemma 4, we have that

AN (x) =
1
N

N−1∑
n=0

(
n∑
l=0

∑
d0+d1=n−l

(ρ−1R)d1∆(wij )P lij ∆(wij )−1(ρ−1R)d0F (x, v)

)
.
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Fix m ≥ 1. Then, for n > m, we can split this summation as

1
N

N−1∑
n=0

(
m∑
r=0

∑
d0+d1=r

(ρ−1R)d1∆(wij )Pn−rij
∆(wij )−1(ρ−1R)d0F (x, v)

)

+
1
N

N−1∑
n=0

(
n−m−1∑
l=0

∑
d0+d1=n−l

(ρ−1R)d1∆(wij )P lij ∆(wij )−1(ρ−1R)d0F (x, v)

)
.

(3)
For the first term in (3) we have that

lim
N→+∞

1
N

N−1∑
n=0

(
m∑
r=0

∑
d0+d1=r

(ρ−1R)d1∆(wij )Pn−rij
∆(wij )−1(ρ−1R)d0F (x, v)

)

= lim
N→+∞

m∑
r=0

∑
d0+d1=r

(ρ−1R)d1∆(wij )

(
1
N

N−1∑
n=0

Pn−rij

)
∆(wij )−1(ρ−1R)d0F (x, v)

= Gm(x) :=
m∑
r=0

∑
d0+d1=r

(ρ−1R)d1∆(wij )E
(

∆(wij )−1(ρ−1R)d0F |Î
)

(x, v),

by Proposition 3. Noticing that

Gm(x) = O

(
m∑
r=0

∑
d0+d1=r

‖ρ−1R‖r‖F‖∞

)
= O

(
m∑
r=0

rθr

)
,

for µ-a.e. x ∈ X, where ‖R/ρ‖ < θ < 1, we see that Gm(x) converges µ-a.e., as
m→ +∞.

We can bound the second term in (3) using

1
N

N−1∑
n=0

(
n−m−1∑
l=0

∑
d0+d1=n−l

(ρ−1R)d1∆(wij )P lij ∆(wij )−1(ρ−1R)d0F (x, v))

)

= O

(
n−m−1∑
l=0

∑
d0+d1=n−l

‖ρ−1R‖d0+d1‖F‖∞

)
= O (mθm) .

(4)

Given ε > 0 we can choose m sufficiently large such that that expression in (4) is
strictly smaller than ε for µ-a.e. x ∈ X. �

Proof of Theorem 2. We can prove part (1) of Theorem 2 by studying the proof of
Theorem 1. We choose p such that Bpij > 0 for each j = 1, · · · , k. In particular,
the matrix Ap can be used to model strings whose lengths are multiples of p.

We can deduce part (2) of Theorem 2 from Theorem 1 and the definition of
purely exponential growth.

Remark (Sigma Finite Measure Spaces). Modified “ratio” versions of our results
apply for the actions of a non-elementary word hyperbolic group on spaces with
infinite measure. More precisely, suppose that Γ×X → X is a measure preserving
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action on a σ-finite measure space (X,B, µ). The analogue of Theorem 1 is that,
for any f, g ∈ L1(X,B, µ) with g > 0,∑N−1

n=0 ρ
−n∑

|γ|=n f(γx)∑N−1
n=0 ρ

−n∑
|γ|=n g(γx)

converges for µ-a.e. x ∈ X, as N → +∞. In the particular case of the fundamental
group of a compact surface group of genus g ≥ 2 with the standard presentation
and an ergodic action the limit is

∫
f dµ/

∫
g dµ. The analogue of Theorem 2 also

holds.

Application to Linear actions. Consider a discrete co-compact subgroup Γ of the
group SL(2,C). There is a natural linear action of Γ on C2 given by

γ : (x1, x2) 7→ (ax1 + bx2, cx1 + dx2), where γ =
(
a b

c d

)
.

In [21] it was shown that orbits ordered by word length are distributed according
to the measure dλ/‖(x1, x2)‖2, where λ denotes Lebesgue measure on the plane (cf.
also [20]). For any point (x1, x2) ∈ C2−{(0, 0)}, and any functions f, g ∈ L1(C2, λ)
with g > 0, ∑N−1

n=0 ρ
−n∑

|γ|=n f(γ · (x1, x2))∑N−1
n=0 ρ

−n∑
|γ|=n g(γ · (x1, x2))

converges for λ-a.e. x ∈ C2, as N → +∞.
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