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ABSTRACT. In this article we prove a large deviation result for the pre-images of a
point in the Julia set of a rational mapping of the Riemann sphere. As a corollary,
we deduce a convergence result for certain weighted averages of orbital measures,
generalizing a result of Lyubich.

0. INTRODUCTION

Let C denote the Riemann sphere and let 7' : C — C be a rational map of degree
d > 2, say. Every point has d pre-images (counted according to their multiplicities).
There is a well-known result of Lyubich which shows that for a point x € J in the
Julia set an evenly distributed weight on the set of d"™ pre-images

Sp(z)={yeC: Ty =z}

converges (in the weak™ topology) to a measure po as n — +oo [4], [8]. The measure
po is precisely the unique measure of maximal entropy for the map T [2], [5].

Since T : J — J is a continuous map on a compact metric space we can define
the pressure of a continuous function f : J — R by

P(f) =sup {h(l/) + /fdv : v is a T-invariant probability} ,

where h(v) denotes the entropy of T" with respect to v. An equilibrium state for f
is a T-invariant probability u realising this supremum.

Let M denote the set of all probability measures on J. We shall show the
following stronger “large deviation” result on the pre-images of a point x € J.

Theorem 1. Let f : J — R be a Holder continuous function such that P(f) >
sup f and let p be the unique equilibrium state for f. Let x € J. Then for any
weak* open neighbourhood U C M of p we have that the weighted proportion of the
measures

1
(6y + 0y + ... 4 Opu-1y) €U

Hy,n = n
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tends to zero exponentially fast, in the sense that there exists C' >0 and 0 <n < 1

such that
Spry—g el W)

My, nEU n
E Try=x €f"(y) - ¢ ’ fO?" nz 07

where we denote f"(y) = f(y) + f(Ty) + ...+ fF(T" y).

Remark. The condition P(f) > sup f was first introduced by Urbanski in [9]. In
the present article, as well as being required as a hypothesis for Lemmas 2 and 3,
it is also used to give the lower bound required in establishing Lemma 6.

In the special case that f = 0 then p becomes the measure of maximal entropy
po for T': J — J. The theorem then reduces to the following.

Corollary 1. Let x € J. For any weak™ open neighborhood U C M of ug the
proportion of the points y € Sy, (x) such that

1
(5y+5Ty—|—...—|—5Tn—1y) Q’U

Hy,n = n

tends to zero exponentially fast, i.e., there exists C' > 0 and 0 < n < 1 such that

1
%#{y € Sp(x) : pyn €U < CY", for n > 0.

A second corollary to the theorem is given by the following convergence result.

Corollary 2. Letx € J. Let f : J — R be a Hélder continuous function such that
P(f) > sup f and let u be the unique equilibrium state for f. Then the averages

ZT”y:m efn(y):uy:n
ZT”y:x ef"(y)

converges to p in the weak™ topology as n — +o0.

These two corollaries provide two different generalizations of the following well-
known result of Lyubich.

Lyubich’s Theorem ([4], [8], [2]). Let x € J. Then the averages

1
d_n Z Hy,n

Try=x
converge to po in the weak* topology as n — —+oo.
Remark. Strictly speaking, Lyubich established that the averages din Y opn —

converge to a non-atomic T-invariant probability measure supported on J. This
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measure was subsequently shown to maximise the entropy in [2] and it was shown
that there is a unique measure of maximal entropy in [5]. Whereas Lyubich’s
Theorem can be established using normality of sequences of functions and the
Montel-Carathéodory theorem [8], these stronger results (Corollaries 1 and 2) seem
to require a different argument.

Previous applications of large deviation ideas to rational maps include the re-
sult of Lopes dealing with almost everywhere convergence of Birkhoff averages [3].
(Lopes restricted himself to the case of hyperbolic Julia sets but, as Przytycki
observed [7] this is unnecessary provided we assume P(f) > sup f.)

1. SOME PROPERTIES OF RATIONAL MAPS

In this section we shall recall some of the basic properties of rational maps which
we shall need later. Let T': C — C be a rational map of degree d > 2. i.e.

an2" + ap_12" V.. a1z +ao
by 2™ + byy_12m L+ ..+ b1z + by

T(z) =

where ay,, ... ,a0,bm,... by € C (with ay,,b,, # 0) and d = max{n,m} > 2.

Counted according to multiplicity, every point =z € C will have d-pre-images.
If we consider the n-th iterate 7" : C — C then the set of pre-images Sp(x) =
{y : T"y =z} of a point z € C will have cardinality d".

Definition. The Julia set ] C C is defined to be the closure of the set of all periodic
points 7"z = x for which [(T™)(z)| > 1.

Clearly J is closed T-invariant set and we shall be interested in the restriction
T : J — J of the map T. We shall write C°(J) for the space of real valued continuous
functions on J. We denote by M the space of all T-invariant probability measures
on J.

Definition. For any continuous function f :J — R we can define the pressure by

P(f) = sup{h(v) + / fdv: v e Mo},

where h(v) denotes the entropy of T with respect to the measure v.

We let h(T) = P(0) denote the topological entropy of T : J — J.

The following results about entropy will be useful to us.

Lemma 1 [2], [4].
(i) h(T) = logd.
(ii) The map v — h(v) is upper semi-continuous in the weak star topology.
(iii) There is a unique measure of maximal entropy po for T : J — J.

Statement (iii) of Lemma 1 has the following generalization.



Lemma 2 (Denker and Urbanski [1]). If f : J — R is a Hélder continuous
function such that P(f) > sup f them f has a unique equilibrium state .

The following lemma gives us some information about the relationship between
pressure and the pre-images of a point.

Lemma 3 (Przytycki [6]). Let x € J. Let f be a Hélder continuous fuction on
the Julia set J such that P(f) > sup f and let g be a continuous function on J.
Then

(i)
lim llog Z ef"W = p(f);

n—4+oo n
Try=x

(i)
1 n n
lim sup — log Z ef"W+9" (W) < P(f+g).

n
n—-+o0o Try—z

Finally, the following lemma gives us an alternative characterisation of the en-
tropy.

Lemma 4.
(i) If v € My then

h(v) = inf{P(g) — / gdv : g€ COI)).

(ii) If v € M — My then

0 > inf{P(g) — /gdi/ s ge ().

Proof. In fact, these two results hold for any continuous mapping 1" of a compact
metric space for which h(T) < 400 and, in the case of (i), the map v — h(v) is
upper semi-continuous (cf. [10,pp. 221-222)).

2. PrROOF OF THEOREM 1

In this section we will give the proof of Theorem 1, using the results from the
previous section. As before f : J — R is a Holder continuous function satisfying
P(f) > sup f. We can define a map Q : C°(J) — R by Q(g9) = P(f + g) — P(f).
For v € M, we then denote the Legendre transform of Q(g) by

)= sup ( / gdv — Q(9)).

geCc’ ()

Given any weak* closed (and hence compact) subset K C M we define p = px :=
inf,exc I(v).
Our proof will be based upon the following estimate.
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Lemma 5. N
ZT”y:x el (W)

: K
lim sup — log Hyn€F < -p (1)

Proof. Fix a choice of € > 0. From the definition of p, for every v € IC, there exists
g € C°(J) such that

/ng—Q(g) >p—e
Thus we have that
K cC U {VEM:/ng—Q(g)>p—e}
geC ()
and by weak™ compactness we can choose a finite subcover
k
K C U {VEM : /gidV—Q(gi) >p—e}.
i=1

Therefore we have the inequality

-

3 "W < 3 ")

T y=x =1 T y=x
Py m €K =97 (y)—Q(gi)>p—e
k
< Ze—n(Q(Qi)+(P_€)) Z eI W)+l (v)
=1 Try=x

Taking limits we get that

S rry—e el W)

limsup — log Hy m €L —
n——4oo M ZT"y:m ef (v)

1 n n ]_ n
< su — ) — p+ e+ limsup — lo g el W W | _ Jiminf = lo g el W)
1§¢2k Qo) = p n_,+o£ n & n oo 1 g

Try=z Try=x
< sup {=Q(g:) —p+e+P(f+g)—P(f)}
1<i<k
= —p—+—€’

where the second inequality uses Lemma 3. Since € > 0 can be chosen arbitrarily
small this completes the proof of the lemma.

We next want to show that if K does not contain p then p > 0. This will follow
from the next lemma.
5



Lemma 6.

(i) If v # p then I(v) > 0.
(ii) The map v — I(v) is lower semi-continuous on My and I is bounded away

from 0 on M — M.

Proof. For part (i) we have that

1) = sup ( [ odv =Pt +9)+ P(f))

geCc°()

= sup ( [ta-piv—r)+ P(f))

geCc’()

" o ( [ v - P<g>) +P() - [ fav

= nf <P(g) - / gdu) + P(f) — / fdv.

If v € My then, by part (i) of Lemma 4, this is equal to —h(v) + P(f) — [ fdv ,
and, by the uniqueness of the equilibrium state p, —h(v) + P(f) — [ fdv > 0. On
the other hand, if v € M — M, then

inf (P(g) — /gdu) <0

geC()

by part (ii) of Lemma 4 and so

For the proof of (ii) we first notice that I(v) = —h(v) + P(f) — [ fdv. We
then complete the proof with the the lower bound in the proof of (i) above. This
completes the proof of the lemma.

Since K is compact, we can conclude that if u & IC then p > 0. Theorem 1 now
follows by setting K = M — U.

Proof of Corollary 2. We shall show that for any g € C%(J) we have that

1 nen 9" ()
IROLAC)) / d
e — gap, as n — +00,

where X(f,n) = > pn,_, ef" W),
Given € > 0, define an open neighbourhood U of i by

U={reM: |/gdv—/gdu|<e}.
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Then we may write

N o 9" )
n

- Loy ow g"(y) 1 3 w9 )
(o) 2 n S e n
Wy ,n €U My nEU
1
- 5> 0] g+ Batw) | + 00
E(f’ ) Tny:l'
Hy,n €U

where |E,,(y)| < € and 0 < n < 1 is given by Theorem 1.

Thus we conclude (by adding appropriate constants to g if necessary) that

. 1 iy 9" (W)
limsup ——— ef" W < [ gdp+e€

and

- 1 ny) 9" (W) /
liminf ——— S WL s gdp — e
n—+oo N(f,m) T%:—x n a

Since € > 0 is arbitrary, the result is proved.

REFERENCES

M. Denker and M. Urbanski, Ergodic theory of equilibrium states for rational maps, Nonlin-
earity 4 (1991), 103-134.

2. A. Freire, A. Lopes, and R. Mané, An invariant measure for rational maps, Bol. Bras. Mat.
Soc. 14 (1983), 45-62.
3. A. Lopes, Entropy and Large Deviations, Nonlinearity 3 (1990), 527-546.
4. M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic
Theory Dyn. Syst. 3 (1983), 351-385.
5. R. Mané, On the uniqueness of the maximising measure for rational maps, Bol. Bras. Mat.
Soc. 14 (1983), 27-43.
6. F. Przytycki, On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann
sphere and for Holder continuous functions, Bol. Bras. Math. Soc. 20 (1990), 95-125.
7. F. Przytycki, Review of “Entropy and Large Deviations” by A. Lopes, Mathemaical Reviews,
91m:58092.
8. N. Steinmetz, Rational Iteration, de Gruyter, Berlin-New York, 1993.
9. M. Urbanski, Invariant subsets of expanding mappings of the circle, Ergodic Theory Dyn.
Sys. 7, 627-645.
10. P. Walters, Ergodic Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
MARK PoLLICOTT RICHARD SHARP
DEPARTMENT OF M ATHEMATICS DEPARTMENT OF M ATHEMATICS
UNIVERSITY OF MANCHESTER UNIVERSITY OF MANCHESTER
OXxFORD ROAD OXFORD RoAD
MANCHESTER M13 9PL MANCHESTER M 13 9PL
ENGLAND ENGLAND
EMAIL: MP@QMA.MAN.AC.UK EMAIL: SHARP@MA.MAN.AC.UK



