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Abstract. In this article we prove a large deviation result for the pre-images of a

point in the Julia set of a rational mapping of the Riemann sphere. As a corollary,

we deduce a convergence result for certain weighted averages of orbital measures,
generalizing a result of Lyubich.

0. Introduction

Let Ĉ denote the Riemann sphere and let T : Ĉ → Ĉ be a rational map of degree
d ≥ 2, say. Every point has d pre-images (counted according to their multiplicities).
There is a well-known result of Lyubich which shows that for a point x ∈ J in the
Julia set an evenly distributed weight on the set of dn pre-images

Sn(x) = {y ∈ Ĉ : Tny = x}

converges (in the weak* topology) to a measure µ0 as n → +∞ [4], [8]. The measure
µ0 is precisely the unique measure of maximal entropy for the map T [2], [5].

Since T : J → J is a continuous map on a compact metric space we can define
the pressure of a continuous function f : J → R by

P (f) = sup
{

h(ν) +
∫

fdν : ν is a T -invariant probability
}

,

where h(ν) denotes the entropy of T with respect to ν. An equilibrium state for f
is a T -invariant probability µ realising this supremum.

Let M denote the set of all probability measures on J. We shall show the
following stronger “large deviation” result on the pre-images of a point x ∈ J.

Theorem 1. Let f : J → R be a Hölder continuous function such that P (f) >
sup f and let µ be the unique equilibrium state for f . Let x ∈ J. Then for any
weak* open neighbourhood U ⊂M of µ we have that the weighted proportion of the
measures

µy,n =
1
n

(
δy + δTy + . . . + δT n−1y

)
6∈ U
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tends to zero exponentially fast, in the sense that there exists C > 0 and 0 < η < 1
such that ∑

T ny=x
µy,n 6∈U

efn(y)∑
T ny=x efn(y)

≤ Cηn, for n ≥ 0,

where we denote fn(y) = f(y) + f(Ty) + . . . + f(Tn−1y).

Remark. The condition P (f) > sup f was first introduced by Urbanski in [9]. In
the present article, as well as being required as a hypothesis for Lemmas 2 and 3,
it is also used to give the lower bound required in establishing Lemma 6.

In the special case that f = 0 then µ becomes the measure of maximal entropy
µ0 for T : J → J. The theorem then reduces to the following.

Corollary 1. Let x ∈ J. For any weak* open neighborhood U ⊂ M of µ0 the
proportion of the points y ∈ Sn(x) such that

µy,n =
1
n

(
δy + δTy + . . . + δT n−1y

)
6∈ U

tends to zero exponentially fast, i.e., there exists C > 0 and 0 < η < 1 such that

1
dn

#{y ∈ Sn(x) : µy,n 6∈ U} ≤ Cηn, for n ≥ 0.

A second corollary to the theorem is given by the following convergence result.

Corollary 2. Let x ∈ J. Let f : J → R be a Hölder continuous function such that
P (f) > sup f and let µ be the unique equilibrium state for f . Then the averages∑

T ny=x efn(y)µy,n∑
T ny=x efn(y)

converges to µ in the weak* topology as n → +∞.

These two corollaries provide two different generalizations of the following well-
known result of Lyubich.

Lyubich’s Theorem ([4], [8], [2]). Let x ∈ J. Then the averages

1
dn

∑
T ny=x

µy,n

converge to µ0 in the weak* topology as n → +∞.

Remark. Strictly speaking, Lyubich established that the averages 1
dn

∑
T ny=x µy,n

converge to a non-atomic T -invariant probability measure supported on J. This
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measure was subsequently shown to maximise the entropy in [2] and it was shown
that there is a unique measure of maximal entropy in [5]. Whereas Lyubich’s
Theorem can be established using normality of sequences of functions and the
Montel-Carathéodory theorem [8], these stronger results (Corollaries 1 and 2) seem
to require a different argument.

Previous applications of large deviation ideas to rational maps include the re-
sult of Lopes dealing with almost everywhere convergence of Birkhoff averages [3].
(Lopes restricted himself to the case of hyperbolic Julia sets but, as Przytycki
observed [7] this is unnecessary provided we assume P (f) > sup f .)

1. Some properties of rational maps

In this section we shall recall some of the basic properties of rational maps which
we shall need later. Let T : Ĉ → Ĉ be a rational map of degree d ≥ 2. i.e.

T (z) =
anzn + an−1z

n−1 + . . . + a1z + a0

bmzm + bm−1zm−1 + . . . + b1z + b0

where an, . . . , a0, bm, . . . , b0 ∈ C (with an, bm 6= 0) and d = max{n, m} ≥ 2.
Counted according to multiplicity, every point x ∈ Ĉ will have d-pre-images.

If we consider the n-th iterate Tn : Ĉ → Ĉ then the set of pre-images Sn(x) =
{y : Tny = x} of a point x ∈ Ĉ will have cardinality dn.

Definition. The Julia set J ⊂ C is defined to be the closure of the set of all periodic
points Tnx = x for which |(Tn)′(x)| > 1.

Clearly J is closed T -invariant set and we shall be interested in the restriction
T : J → J of the map T . We shall write C0(J) for the space of real valued continuous
functions on J. We denote by MT the space of all T -invariant probability measures
on J.

Definition. For any continuous function f : J → R we can define the pressure by

P (f) = sup{h(ν) +
∫

fdν : ν ∈MT },

where h(ν) denotes the entropy of T with respect to the measure ν.

We let h(T ) = P (0) denote the topological entropy of T : J → J.

The following results about entropy will be useful to us.

Lemma 1 [2], [4].
(i) h(T ) = log d.
(ii) The map ν → h(ν) is upper semi-continuous in the weak star topology.
(iii) There is a unique measure of maximal entropy µ0 for T : J → J.

Statement (iii) of Lemma 1 has the following generalization.
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Lemma 2 (Denker and Urbanski [1]). If f : J → R is a Hölder continuous
function such that P (f) > sup f them f has a unique equilibrium state µ.

The following lemma gives us some information about the relationship between
pressure and the pre-images of a point.

Lemma 3 (Przytycki [6]). Let x ∈ J. Let f be a Hölder continuous fuction on
the Julia set J such that P (f) > sup f and let g be a continuous function on J.
Then

(i)

lim
n→+∞

1
n

log
∑

T ny=x

efn(y) = P (f);

(ii)

lim sup
n→+∞

1
n

log
∑

T ny=x

efn(y)+gn(y) ≤ P (f + g).

Finally, the following lemma gives us an alternative characterisation of the en-
tropy.

Lemma 4.
(i) If ν ∈MT then

h(ν) = inf{P (g)−
∫

gdν : g ∈ C0(J)}.

(ii) If ν ∈M−MT then

0 ≥ inf{P (g)−
∫

gdν : g ∈ C0(J)}.

Proof. In fact, these two results hold for any continuous mapping T of a compact
metric space for which h(T ) < +∞ and, in the case of (i), the map ν → h(ν) is
upper semi-continuous (cf. [10,pp. 221-222]).

2. Proof of Theorem 1

In this section we will give the proof of Theorem 1, using the results from the
previous section. As before f : J → R is a Hölder continuous function satisfying
P (f) > sup f . We can define a map Q : C0(J) → R by Q(g) = P (f + g) − P (f).
For ν ∈M, we then denote the Legendre transform of Q(g) by

I(ν) = sup
g∈C0(J)

(
∫

gdν −Q(g)).

Given any weak* closed (and hence compact) subset K ⊂M we define ρ = ρK :=
infν∈K I(ν).

Our proof will be based upon the following estimate.
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Lemma 5.

lim sup
n→+∞

1
n

log


∑

T ny=x
µy,n∈K

efn(y)∑
T ny=x efn(y)

 ≤ −ρ (1)

Proof. Fix a choice of ε > 0. From the definition of ρ, for every ν ∈ K, there exists
g ∈ C0(J) such that ∫

gdν −Q(g) > ρ− ε.

Thus we have that

K ⊂
⋃

g∈C0(J)

{
ν ∈M :

∫
gdν −Q(g) > ρ− ε

}

and by weak* compactness we can choose a finite subcover

K ⊂
k⋃

i=1

{
ν ∈M :

∫
gidν −Q(gi) > ρ− ε

}
.

Therefore we have the inequality

∑
T ny=x
µy,n∈K

efn(y) ≤
k∑

i=1

 ∑
T ny=x

1
n gn

i (y)−Q(gi)>ρ−ε

efn(y)


≤

k∑
i=1

e−n(Q(gi)+(ρ−ε))

 ∑
T ny=x

efn(y)+gn
i (y)


Taking limits we get that

lim sup
n→+∞

1
n

log


∑

T ny=x
µy,n∈K

efn(y)∑
T ny=x efn(y)


≤ sup

1≤i≤k

−Q(gi)− ρ + ε + lim sup
n→+∞

1
n

log

 ∑
T ny=x

efn(y)+gn
i (y)

− lim inf
n→+∞

1
n

log

 ∑
T ny=x

efn(y)


≤ sup

1≤i≤k
{−Q(gi)− ρ + ε + P (f + gi)− P (f)}

= −ρ + ε,

where the second inequality uses Lemma 3. Since ε > 0 can be chosen arbitrarily
small this completes the proof of the lemma.

We next want to show that if K does not contain µ then ρ > 0. This will follow
from the next lemma.
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Lemma 6.

(i) If ν 6= µ then I(ν) > 0.
(ii) The map ν → I(ν) is lower semi-continuous on MT and I is bounded away

from 0 on M−MT .

Proof. For part (i) we have that

I(ν) = sup
g∈C0(J)

(∫
gdν − P (f + g) + P (f)

)
= sup

g∈C0(J)

(∫
(g − f)dν − P (g) + P (f)

)
= sup

g∈C0(J)

(∫
gdν − P (g)

)
+ P (f)−

∫
fdν

= − inf
g∈C0(J)

(
P (g)−

∫
gdν

)
+ P (f)−

∫
fdν.

If ν ∈ MT then, by part (i) of Lemma 4, this is equal to −h(ν) + P (f) −
∫

fdν ,
and, by the uniqueness of the equilibrium state µ, −h(ν) + P (f)−

∫
fdν > 0. On

the other hand, if ν ∈M−MT , then

inf
g∈C0(J)

(P (g)−
∫

gdν) < 0

by part (ii) of Lemma 4 and so

I(ν) > 0 + P (f)−
∫

fdν

≥ P (f)− sup f > 0.

For the proof of (ii) we first notice that I(ν) = −h(ν) + P (f) −
∫

fdν. We
then complete the proof with the the lower bound in the proof of (i) above. This
completes the proof of the lemma.

Since K is compact, we can conclude that if µ 6∈ K then ρ > 0. Theorem 1 now
follows by setting K = M−U .

Proof of Corollary 2. We shall show that for any g ∈ C0(J) we have that

1
Σ(f, n)

∑
T ny=x

efn(y) g
n(y)
n

→
∫

gdµ, as n → +∞,

where Σ(f, n) =
∑

T ny=x efn(y).
Given ε > 0, define an open neighbourhood U of µ by

U = {ν ∈M : |
∫

gdν −
∫

gdµ| < ε}.
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Then we may write

1
Σ(f, n)

∑
T ny=x

efn(y) g
n(y)
n

=
1

Σ(f, n)

∑
T ny=x
µy,n∈U

efn(y) g
n(y)
n

+
1

Σ(f, n)

∑
T ny=x
µy,n 6∈U

efn(y) g
n(y)
n

=
1

Σ(f, n)

∑
T ny=x
µy,n∈U

efn(y)

{∫
gdµ + En(y)

}
+ O(ηn),

where |En(y)| < ε and 0 < η < 1 is given by Theorem 1.
Thus we conclude (by adding appropriate constants to g if necessary) that

lim sup
n→+∞

1
Σ(f, n)

∑
T ny=x

efn(y) g
n(y)
n

≤
∫

gdµ + ε

and

lim inf
n→+∞

1
Σ(f, n)

∑
T ny=x

efn(y) g
n(y)
n

≥
∫

gdµ− ε.

Since ε > 0 is arbitrary, the result is proved.
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