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Abstract. In this note we obtain estimates on the relative growth of normal

subgroups of non-elementary hyperbolic groups, particularly those with free
abelian quotient. As a corollary, we deduce that the associated relative growth

series fail to be rational.

1. Introduction and Results

Let G be a non-elementary hyperbolic group equipped with a finite symmetric
generating set. Write Wn = {g ∈ G : |g| = n} for the collection of elements of word
length n. By a result of Coornaert [6], the growth rate of its cardinality #Wn is
purely exponential, i.e. there exist constants λ > 1 and C1, C2 > 0 such that

C1λ
n ≤ #Wn ≤ C2λ

n

for all n ≥ 1. Now suppose that N is a subgroup of G. An interesting question to
ask is how #(Wn∩N), which we call the relative growth of N , grows in comparison
to #Wn. A result of Gouëzel, Matheus and Maucourant [11] states that if N has
infinite index in G then

lim
n→∞

#(Wn ∩N)

#Wn
= 0. (1.1)

This is a subtle result that relies strongly on the hyperbolicity of G. If we suppose
further that N is normal and the quotient G/N is isomorphic to Zν for some ν ≥ 1,
then we have access to more structure. With this additional information it seems
reasonable to expect that we can describe the relative growth of N more precisely.

Pollicott and Sharp [18] studied this problem when G is the fundamental groups
of a compact orientable surface of genus at least two and N is the commutator
subgroup. Sharp [19] extended this to cover hyperbolic groups G that may be
realised as convex cocompact groups of isometries of real hyperbolic space whose
fundamental domain can be chosen to be a finite sided polyhedron R such that⋃
g∈G ∂R is a union of geodesic hyperplanes, with generators given by the side

pairings. The fundamental groups of compact surfaces were shown to satisfy this
condition by Bowen and Series [2]. In addition, this class includes free groups on at
least two generators and certain higher dimensional examples (see Bourdon’s thesis
[1]). In these cases, it was shown that there exists an integer D ≥ 1 such that,
along the subsequence Dn, the relative growth #(WDn ∩N) grows asymptotically
like λDn/(Dn)ν/2, as n→∞. The aim of this note is to extend this result so that
it applies all non-elementary hyperbolic groups.

Before we state our main result, we recall the following standard definitions.
Given two real valued sequences an and bn, we say that an ∼ bn if an/bn → 1, as
n → ∞. Furthermore, if bn is positive, we say that an = O(bn) if there exists a
constant C > 0 such that |an| ≤ Cbn, for all n ≥ 1.

Theorem 1.1. Let G be a non-elementary hyperbolic group equipped with a finite
symmetric generating set and let N / G be a normal subgroup with G/N ∼= Zν for
some ν ≥ 1. Then

#(Wn ∩N) = O

(
λn

nν/2

)
1
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as n→∞. Furthermore, there exists D ∈ Z≥0 and C > 0 such that

#(WDn ∩N) ∼ CλDn

(Dn)ν/2

as n→∞.

This theorem has the following immediate corollary.

Corollary 1.2. Let G be a non-elementary hyperbolic group equipped with a fi-
nite symmetric generating set and let N / G be a normal subgroup such that the
abelianisation of G/N has rank ν ≥ 1. Then

#(Wn ∩N) = O

(
λn

nν/2

)
as n→∞.

Proof. Write the abelianisation of G/N as Zν × F , where F is finite. There are
then natural surjective homomorphisms φ : G → G/N and ψ : G/N → Zν . Set
φ0 = ψ ◦ φ and N0 = kerφ0. Then N ⊂ N0. Furthermore, by Theorem 1.1,
#(Wn ∩N0) = O(λnn−ν/2), giving the required estimate. �

Remark 1.3. The relative growth in Corollary 1.2 may occur at a slower exponen-
tial rate. Indeed, Coulon, Dal’Bo and Sambusetti recently showed that #(Wn∩N) =
O(λn0 ), for some 0 < λ0 < λ precisely when G/N is not amenable [7]. In fact, their
result does not require normality of the subgroup, in which case amenability is re-
placed by co-amenability of N in G, i.e. that the G-action on the coset space G/N
is amenable.

To prove Theorem 1.1, we would like to employ the strategy used by the second
author in [19]. However, there are significant technical obstacles which we need to
overcome in order to use this method. We summarise these below.
(i) Firstly, as mentioned above, in [19] there are strong restrictions on the hyper-
bolic groups and their generating sets. This makes it much easier to study the
relative growth quantity #(Wn ∩ N). In the current paper we need to find a new
approach that works for general non-elementary hyperbolic groups, that will allow
us to express #(Wn ∩N) in terms of quantities which we can analyse. To achieve
this we appeal to ideas and techniques used in [5].
(ii) Secondly, we need a good understanding of how real valued group homomor-
phisms on hyperbolic groups grow as we increase the word length of the input.
Again, recent work of the first author [5] allows us to deduce the required proper-
ties of these homomorphisms.

We end this section with a discussion of relative growth series. We define the
relative growth series for N in G (with respect to the given generators) to be the
power series

∞∑
n=0

#(Wn ∩N)zn.

When N = G, this is the standard growth series and, for hyperbolic groups, is well-
known to be the series of a rational function [4], [10]. The requirement that a power
series be rational imposes a strong constraint on the coefficients: if

∑∞
n=0 anz

n is
rational then there are complex numbers ξ1, . . . , ξm and polynomials P1, . . . , Pm
such that

an =

m∑
j=1

Pj(n)ξnj

(Theorem IV.9 of [8]). Comparing with the asymptotic in Theorem 1.1, we see that
#(Wn ∩N) does not satisfy this constraint. Thus we obtain the following.
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Corollary 1.4. Suppose G is a non-elementary hyperbolic group equipped with a
finite symmetric generating set. Let N / G be a normal subgroup with G/N ∼= Zν ,
for some ν ≥ 1. Then, the relative growth series

∞∑
n=1

#(Wn ∩N)zn

is not the series of a rational function.

Remark 1.5. (i) The first result of this type is due to Grigorchuk, who showed that
the relative growth series is not rational when G is the free group on two generators
and N is the commutator subgroup (see [13]). A similar result was obtained for the
fundamental groups of compact surfaces of genus ≥ 2 in [18] and this was extended
to a wider class of hyperbolic groups in [19].
(ii) We note that, as Corollary 1.4 requires the asymptototic along a subsequence
in Theorem 1.1, it does not apply to general infinite index subgroups of hyperbolic
groups. In fact, Grigorchuk showed that if N is a finite index subgroup of a free
group than its relative growth series is rational [12].

2. Preliminaries

We first recall the definition of a hyperbolic group. A metric space is hyperbolic
if there exist δ ≥ 0 for which every geodesic triangle is δ-thin, i.e. given any geodesic
triangle, the union of the δ neighbourhoods of any two sides of this triangle contain
the third side. A finitely generated group G is said to be hyperbolic, if given any
finite generating set S, the Cayley graph of G with respect to S is a hyperbolic
metric space when equipped with the word metric. We say that a hyperbolic group
is elementary if it contains a cyclic subgroup of finite index. We will be exclusively
concerned with non-elementary hyperbolic groups.

Hyperbolic groups have nice combinatorial properties that arise due to their
strongly Markov structure.

Definition 2.1. A finitely generated group G is strongly Markov if given any
generating set S there exists a finite directed graph G with vertex set V , edge set E
(with at most one directed edge between an ordered pair of vertices) and a labeling
map ρ : E → S such that:

(1) there exists an initial vertex ∗ ∈ V such that no directed edge ends at ∗;
(2) the map taking finite paths in G starting at ∗ to G that sends a path with

concurrent edges (∗, x1), . . . , (xn−1, xn) to ρ(∗, x1)ρ(x1, x2) · · · ρ(xn−1, xn),
is a bijection;

(3) the word length of ρ(∗, x1) · · · ρ(xn−1, xn) is n.

In [10] Ghys and de le Harpe extended Cannon’s work on Kleinian groups [4] and
proved that hyperbolic groups are strongly Markov.

Proposition 2.2 ([10], Chapitre 9, Théorème 13). Any hyperbolic group is strongly
Markov.

Suppose that G = (E, V ) is a directed graph associated to G satisfying the
properties in Definition 2.1. We define a transition matrix A, indexed by V ×V , by

A(v1, v2) =

{
1 if (v1, v2) ∈ E
0 otherwise.

Using A we define a space

ΣA = {(xn)∞n=0 : xn ∈ V and A(xn, xn+1) = 1 for all n ∈ Z≥0}
and σ : ΣA → ΣA by σ((xn)∞n=0) = (xn+1)∞n=0. The system (ΣA, σ) is known as a
subshift of finite type.
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Recall that a matrix M with zero-one entries is called irreducible if for each i, j
there exists n(i, j) for which Mn(i,j)(i, j) > 0. This is equivalent to the directed
graph G being connected. We call M aperiodic if there exists n such that every
entry of Mn is strictly positive. Due to the ∗ vertex, which forms its own connected
component in G, A is never irreducible. However, it is possible that, after removing
from A the row and column corresponding to the ∗ state, the resulting matrix is
aperiodic. In fact, for the hyperbolic groups and generating sets considered by Sharp
in [19], it is always possible to find a corresponding directed graph described by an
aperiodic matrix (after removing ∗). This is not true in general and to improve upon
the results in [19], we need to exploit geometrical and combinatorial properties of
hyperbolic groups to obtain additional structural information about the directed
graph G. Throughout the rest of this section we introduce the preliminaries that
will allow us to analyse #(Wn ∩N) for general hyperbolic groups.

As mentioned above, in general, the graph G may have several connected com-
ponents. By relabeling the vertex set V , we may assume that A has the form

A =


A1,1 0 . . . 0
A2,1 A2,2 . . . 0

...
...

. . .
...

Am,1 Am,2 . . . Am,m

 ,

where each Aj,j is irreducible for j = 1, ...,m. We call the Aj,j the irreducible
components of A.

Let λ > 1 denote the exponential growth rate of Wn. It is easy to see by Property
(2) and (3) in Definition 2.1, that all of the Aj,j must have spectral radius at most λ.
Furthermore there must be at least one Aj,j with spectral radius exactly λ. We call
an irreducible component maximal if it has spectral radius λ. We label the maximal
components Bj for j = 1, . . . ,m and define ΣBj , j = 1, . . . ,m analogously to ΣA.
For each ΣBj there exists pj ≥ 1 such that ΣBj admits a cyclic decomposition into
pj disjoint sets,

ΣBj =

pj−1⊔
k=0

Σjk.

We call pj the cyclic period of ΣBj . The shift map σ sends Σjk into Σjk+1 where

k, k + 1 are taken modulo pj . Hence each Σjk is σpj -invariant. In fact, each system

σpj : Σjk → Σjk is a subshift of finite type with aperiodic transition matrix.
The following key result, that relies on Coornaert’s estimates for #Wn, shows

that the maximal components Bj do not interact with each other. This result allows
us to gain a better understanding of the structure of G.

Proposition 2.3 ([3], Lemma 4.10). The maximal components of A are disjoint.
There does not exist a path in G that begins in one maximal component and ends in
another.

Proof. For the convenience of the reader, we include a sketch of the proof. Suppose
there is a path of length l between maximal components that starts at a vertex x in
Bj and end at vertex y in Bk. Then for large n, the number of length n paths that
begin in Bj , traverse m < n − l edges in Bj to x, then follow our path to y in Bk
and traverse n−m− l edges in Bk, is growing like λn. Since we can vary m between
1 and n − l, this implies there are at least Cnλn paths from Bj to Bk for some
C > 0. This would imply #Wn grows at least like nλn, contradicting Coornaert’s
estimates for #Wn [6]. �
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This fact will be useful when counting certain quantities related to relative
growth. To further facilitate these counting arguments, we define the following
matrices.

Definition 2.4. For each j = 1, ...,m, define a matrix Cj by,

Cj(u, v) =

{
0 if u or v belong to a maximal component that is not Bj ,
A(u, v) otherwise.

Now suppose that N / G is a normal subgroup for which G/N ∼= Zν and let ϕ :
G→ G/N ∼= Zν be the quotient homomorphism. We define a function f : ΣA → Zν
by

f((xn)∞n=0) = ϕ(ρ(x0, x1)),

where ρ is the labeling map from Definition 2.1. Since f((xn)∞n=0) depends only on
the first two coordinates of (xn)∞n=0, we can consider f as a map from the directed
edge set of G to R. We then have that ϕ(g) = f(∗, x1)+f(x1, x2)+· · ·+f(x|g|−1, x|g|)
where (∗, x1), ..., (x|g|−1, x|g|) is the unique path associated to g by Property (2) of
Definition 2.1. Using f , we weight the matrices Cj componentwise and define, for
t ∈ Rν ,

Cj(t)(u, v) = e2πi〈t,f(u,v)〉Cj(u, v).

We define the matrices Bj(t) analogously.

3. Proof of Theorem 1.1

Suppose G is a non-elementary hyperbolic group and N a normal subgroup sat-
isfying the hypothesis of Theorem 1.1. Let ϕ : G→ Zν denote the quotient homo-
morphism. To study the relative growth of N , we would like to express #(Wn ∩N)
in terms of the matrices Cj(t). Using the orthogonality identity∫

Rν/Zν
e2πi〈t,ϕ(g)〉 dt =

{
1 if ϕ(g) = 0

0 otherwise

we can write

#(Wn ∩N) =
∑
|g|=n

∫
Rν/Zν

e2πi〈t,ϕ(g)〉 dt =

∫
Rν/Zν

∑
|g|=n

e2πi〈t,ϕ(g)〉 dt.

The following result will allow us to rewrite #(Wn ∩N) in terms of the matrices
Cj . Let v∗ be the vector in RV with a one in the coordinate corresponding to the
∗ vertex and zeros elsewhere. Also, let 1 ∈ Rν be the vector with a 1 in each
coordinate.

Lemma 3.1. There exists ε > 0 such that for all t ∈ Rν/Zν∑
|g|=n

e2πi〈t,ϕ(g)〉 =

m∑
j=1

〈Cnj (t)v∗,1〉+O((λ− ε)n)

as n→∞. The implied constant is independent of t.

Proof. Using the correspondence between G and ΣA, we can write∣∣∣∣∣∣
∑
|g|=n

e2πi〈t,ϕ(g)〉 −
m∑
j=1

〈Cnj (t)v∗,1〉

∣∣∣∣∣∣ = (m− 1)

∣∣∣∣∣∣
∑
g∈Mn

e2πi〈t,ϕ(g)〉

∣∣∣∣∣∣ ≤ (m− 1) #Mn,

where Mn consists of the elements in G of word length n whose corresponding path
in G does not enter a maximal component. It is clear that #Mn = O((λ− ε)n) for
some ε > 0 and so the result follows. �
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Using this lemma, we see that

#(Wn ∩N) =

m∑
j=1

∫
Rν/Zν

〈Cnj (t)v∗,1〉 dt+O((λ− ε)n).

Hence to study the relative growth of N would like to understand the spectral
behaviour of the Cj(t) for t ∈ Rν/Zν . From their definitions, it is clear that the
matrices Cj each have pj simple maximal eigenvalues of modulus λ and the rest of
the spectrum is contained in a disk of radius strictly smaller than λ − ε, for some
ε > 0. We shall be interested in the values of t for which the operators Cj(t) have
spectral radius λ. These values of t are characterised by the following lemma.

Lemma 3.2. For any t ∈ Rν , the operator Cj(t) has spectral radius at most λ.
Furthermore, Cj(t) has spectral radius exactly λ if and only if it has pi simple

maximal eigenvalues of the form e2πiθe2πik/piλ for k = 0, . . . , pi − 1 and some
θ ∈ R. This occurs if and only if Bj(t) = e2πiθMBjM

−1 where M is a diagonal
matrix with modulus one diagonal entries. Furthermore, when Cj(t) has pi simple
maximal eigenvalues of modulus λ, the rest of the spectrum is contained in a disk
of radius strictly less than λ.

Proof. When Cj consists of a single component (ignoring the ∗ vertex) and so is the
same as Bj , this is Wielandt’s Theorem [9]. When this is not the case, we can write
the spectrum of Cj(t) as a union of the spectra of the irreducible components making
up Cj(t). By definition, each Cj has one component Bj with spectral radius λ and
all other components have spectral radius strictly less than λ. Therefore applying
Wielandt’s Theorem to each component gives the required result. �

We now follow the method presented in [19]. Let fj = f |ΣBi for j = 1, . . . ,m.

If a sequence γ = (x0, x1, ..., xn) is such that Bj(xi, xi+1) = 1 for i = 0, . . . , n and
x0 = xn, then we call γ a cycle and define its length as l(γ) = n. Let Cj be the
collection of all such cycles and note that the length of any cycle in Cj is a multiple
of pj . Given a cycle γ ∈ Cj , we define its fj-weight to be

wfj (γ) = fj(x0, x1) + · · ·+ fj(xn−1, xn).

Let Γj be the subgroup of Zν generated by {wfj (γ) : γ ∈ Cj}. We define ∆j to be
the following subgroup of Γfj ,

∆j = {wfj (γ)− wfj (γ′) : γ, γ′ ∈ Cj and l(γ) = l(γ′)}.

(This is a version of Krieger’s ∆-group [14]. For a proof that it is a group, see page
892 of [20].) We now choose two cycles γ, γ′ ∈ Cj such that l(γ)− l(γ′) = pj and set
cj = wfj (γ)−wfj (γ′). Applying the results of [15] to the aperiodic shift (ΣBj , σ

pj ),
we see that the group Γj/∆j is cyclic and is generated by the element cj + ∆j . Our
aim is to show that this group has finite order. To do so, we will use a result of
Marcus and Tuncel. For each j = 1, . . . ,m, let Ej denote the directed edge set for
the graph with transition matrix Bj . Write Vj for the analogously defined vertex
sets. We say that a function g : Ej → R is cohomologous to a constant if there
exists C ∈ R and h : Vj → R such that g(x, y) = C +h(y)−h(x) for all (x, y) ∈ Ej .

Lemma 3.3 ([15]). If 〈t, fpjj 〉 is not cohomologous to a constant for any non-zero

t ∈ Rν/Zν , then Γj/∆j has finite order.

It is clear that, for t ∈ Rν , 〈t, fpjj 〉 is cohomologous to a constant if and only

if 〈t, fj〉 is cohomologous to constant. Using ideas from [5], we will show that the
hypothesis of the above lemma is satisfied for each j = 1, . . . ,m.

Lemma 3.4. For non-zero t ∈ Rν/Zν and for all j = 1, . . . ,m, 〈t, fj〉 is not
cohomologous to a constant.
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Proof. We begin by noting that, since ϕ is surjective, for any t ∈ Rν\{0} the func-
tion ψt := 〈t, ϕ〉 : G → R is a non-trivial group homomorphism. Theorem 1.1 and
Proposition 7.2 of [5] imply that if 〈t, fj〉 (for any j ∈ {1, . . . ,m}) is cohomologous
to a constant, then that constant is given by

lim
n→∞

1

#Wn

∑
|g|=n

ψt(g)

n
.

Since our generating set S is symmetric, |g| = |g−1| for all g ∈ G and so the above
limit is 0 by symmetry. Hence we need to show that 〈t, fj〉 is not cohomologous to
0. By Livsic’s criterion [16], 〈t, fj〉 is cohomologous to 0 if and only if 〈t, wfj (γ)〉 = 0
for all loops γ ∈ Cj .

Suppose for contradiction that 〈t, wfj (γ)〉 = 0 for all loops γ ∈ Cj . Now, for
γ = (x0, . . . , xn) ∈ Cj , gγ = ρ(x0, x1)ρ(x1, x2) . . . ρ(xn−1, xn) belongs to the kernel
of ψt. Furthermore, gγ has word length n. Also, Property (2) from Definition 2.1
implies that for any two distinct loops γ, γ′ ∈ Cj , we have gγ 6= gγ′ whenever γ and
γ′ have the same initial vertex. Since the number of loops of length npj in Cj is
growing like λnpj , this implies that there exists C > 0 such that

#(Wnpj ∩ ker(ψt)) ≥ Cλnpj

for n ≥ 1 and hence that

lim sup
n→∞

#(Wn ∩ ker(ψt))

#Wn
> 0.

Since ker(ψt) is an infinite index subgroup of G, this contradicts the result of
Gouëzel, Matheus and Maucourant [11] written above as (1.1). �

Remark 3.5. Since the above proof relies on the zero density result of Gouëzel,
Matheus and Maucourant [11], quantifying the decay rate in (1.1) requires a priori
knowledge of the convergence to zero.

Let Dj = |Γj/∆j | for j = 1, . . . ,m. From the above discussion, we know that
each Dj is finite. We also note that Lemma 3.4 shows that rankZ(Γj) = ν and so
|Zν/Γj | is finite for each j = 1, . . . ,m. Combining this with all of the above work,
allows us to state the following result that describes the spectral behaviour of the
Cj(t) as t varies. We use the notation %(M) to denote the spectral radius of a
matrix M .

Proposition 3.6. For t ∈ Rν/Zν , define χt ∈ Ẑν by χt(x) = e2πi〈t,x〉. Then we
have that

{χt : %(Cj(t)) = λ} = ∆⊥fj ,

where ∆⊥fj = {χ ∈ Ẑν : χ(∆fj ) = 1}. Furthermore, when χt ∈ ∆⊥fj , Cj(t) has

pj simple maximal eigenvalues of the form e2πiθe2πik/pjλ for some θ ∈ R and k =
0, . . . , pj − 1.

Proof. This is essentially Proposition 4 from [19] which is derived from work in
[17]. However, here we need to consider the non-aperiodic matrices Cj(t). To
deduce this more general statement, we can apply Proposition 4 from [19] to the
maximal component associated to the matrix C

pj
j (t). This is justified since this

maximal component is aperiodic. To conclude the proof, we note that the part
of the spectrum of Cj(t) coming from Bj(t) is invariant under the rotation z 7→
ze2πi/pj . �

Proposition 3.6 implies that there exist Dj <∞ values of t for which the spectral

radius of Cj(t) is maximal and equal to λ. Denote these values by t = 0, tj1 . . . , t
j
Dj−1.

When t takes one of these values, Cj(t) has pj simple maximal eigenvalues of the

form e2πiθe2πik/pjλ for k = 0, . . . , pj − 1 and for some θ ∈ R. We now choose,
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for each j = 1, . . . ,m, a neighbourhood U j0 of zero and define U jr = U j0 + tjk for
k = 0, . . . , Dj − 1. Results from perturbation theory guarantee that, as long as

each U j0 is sufficiently small, there exists ε > 0 such that the following hold for each
j = 1, . . . ,m.

(1) If t ∈
⋃Dj−1
r=0 U jr , then the matrices Cj(t) each have pj simple, maximal

eigenvalues of the form λj(t)e
2πik/pj for k = 0, . . . , pj − 1, where t→ λj(t)

is analytic and independent of k = 0, . . . , pj − 1.
(2) Let Mν(C) denote the vector space of ν × ν complex matrices. For each

j = 1, . . . ,m and k = 0, . . . , pj − 1, there exists an analytic matrix-valued

function Qj,k :
⋃Dj−1
r=0 U jr → Mν(C), where Qj,k(t) is the eigenprojection

onto the eigenspace associated to the eigenvalue λj(t)e
2πik/pj of the matrix

Cj(t).

(3) If t ∈ (Rν/Zν)\
⋃Dj−1
r=0 U jr then the spectral radius of each Cj(t) is bounded

uniformly above by λ− ε.
Using this description of the spectrum, we can write

#(Wn ∩N) =

m∑
j=1

Dj−1∑
r=0

pj−1∑
k=0

∫
Ujr

λj(t)e
2πikn/pj 〈Qj,k(t)v∗,1〉 dt+O((λ− ε)n),

for some ε > 0. Hence there exists constants cjr,k = 〈Qj,k(tjr)v∗,1〉, for r =

0, . . . , Dj − 1 and k = 0, . . . , pj − 1, such that #(Wn ∩N) is equal to

m∑
j=1

Dj−1∑
r=0

pj−1∑
k=0

e2πin(r/Dj+k/pj)cjr,k

∫
Uj0

λj(t)
n (1 +O(‖t‖)) dt+O((λ− ε)n).

(3.1)
The asymptotics of each

ajn :=

∫
Uj0

λj(t)
n (1 +O(‖t‖)) dt

were studied in [17], where it was shown that, for each j = 1, . . . ,m, there exists
τj > 0 such that

ajn ∼
τjλ

n

nν/2
(3.2)

as n → ∞. Applying this along the subsequence Dn, where D is given by the
product of all the p1, . . . , pm and D1, . . . , Dm, we see that

#(WDn ∩N) =
C̃λDn

(Dn)ν/2
+ o

(
λDn

(Dn)ν/2

)
(3.3)

as n→∞, where

C̃ =

m∑
j=1

τj

Dj−1∑
r=0

pj−1∑
k=0

cjr,k

 .

It is clear that C̃ ∈ R≥0. However, for (3.3) to be a useful asymptotic expression,

we would like that C̃ is strictly positive. We now show that this is always the case.

Lemma 3.7. We necessarily have that C̃ > 0.

Proof. Fix j ∈ {1, . . . ,m} and recall that for any loop γ = (x0, . . . , xDn) ∈ Cj with
wfj (γ) = 0, the group element gγ = ρ(x0, x1)ρ(x1, x2) . . . ρ(xDn−1, xDn) belongs to
the kernel of ϕ (or, equivalently, to N) and furthermore, gγ has word length Dn.
Also, for any two distinct loops γ, γ′ ∈ Cj , we have gγ 6= gγ′ whenever γ and γ′ have
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the same initial vertex. Combining these observations and applying the pigeonhole
principle gives that

#(WDn ∩N) ≥ (#Vj)
−1#{γ ∈ Cj : l(γ) = Dn, wfj (γ) = 0}

for all n ≥ 1. Pollicott and Sharp proved in [17] that

#{γ ∈ Cj : l(γ) = Dn, wfj (γ) = 0} ∼ KλDn

(Dn)ν/2

as n→∞ for some K > 0. Hence

C̃ = lim sup
n→∞

(Dn)ν/2#(WDn ∩N)

λDn
≥ K(#Vj)

−1 > 0,

as required. �

We can now conclude the proof of our main result.

Proof of Theorem 1.1. Combining (3.1) and (3.2) implies that

#(Wn ∩N) = O

 m∑
j=1

∫
Uj0

λj(t)
n (1 +O(‖t‖)) dt

 = O

(
λn

nν/2

)
which proves the first part of Theorem 1.1. The second part follows from (3.3) and

the fact that C̃ > 0. �
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