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DESCRIPTIONS OF
COMPACT SETS IN C

Adrien Douady

Introduction

The study of the dynamics of complex polynomials requires the descrip-
tion of various sets in C or C": for instance, the set of points having a
certain dynamical property for a given polynomial f: C — C, or the set of
polynomials of degree d having a certain global property (a polynomial is
represented by its coefficients, which define a point in C4*!).

What do we mean by “describing” a set? Personally, [am mainly interested
inlooking for a topological description, even though other aspects (measure
theory, Hausdorff dimension) are of great interest. As a tool, I sometimes
need the use of potential theoretic properties.

We are able to tell what we mean by a topological description of a set K when
it has the following four properties:

(D0) X isa compact subset of C;

(D1) K isfull (i.e., C — K is connected);
(D2) KX is connected;

(D3) KX islocally connected.

For such a set K, we shall present here two different strategies for obtain-
ing a topological model of X, i.e., for constructing, from some combinato-
rial data, a topological space homeomorphic to the given set.

The first one will describe K as a pinched disc, i.e., as a quotient of a closed
disc by some equivalence relation: using Caratheodory’s theorem we obtain
a continuous map yx of T = R/Z onto the boundary of K; this map defines
an equivalence relation on T and this relation is extended in a natural way
to the closed unit disc D.

The second strategy will describe K as a projective limit of a sequence of
finite disked trees K, which are also subspaces of K; each K, is obtained
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by adding some topological closed discs to a tree H,, and H, is obtained
by adding to H,_, some arcs, called wveins, which lead to points having an
external argument of the form p/2”.

To a given polynomial f: C — C of degree d > 2, one can associate its
filled Julia set K(f): this is the set of points whose orbit under f is bounded
(the actual Julia set J ( f) is the boundary of K(f)). The set K( f) always has
properties (D0) and (D1); for (D2) and (D3), it depends on the polynomial.

The set of degree d polynomials a;z% + - -- 4 ap can be identified with
C?+1, but any polynomial can be affinely conjugated to a monic centered
polynomial (i.e., one with a4 = 1, ag—1 = 0), so we can restrict our study to
these, and their set can be identified with C/~!.

In the parameter space C?~!, one can consider the connectedness locus €,:
this is the set of polynomials f such that K(f) is connected, or, equivalently,
such that each critical point of f has a bounded orbit under f.

The quadratic connectedness locus M = €, is known as the Mandelbrot
set (though it was first introduced by Brooks and Matelski). It satisfies
properties (D0), (D1), (D2), and it is conjectured that it satisfies (D3): that
is the (MLC) conjecture.

For d > 2, the space €, is a subset of C4~1 50 it does not satisfies (DO),
and if we want to get a description along these lines, we have to restrict to
subfamilies. Milnor has observed that 4 is not locally connected for d > 2.

One can try to apply the above mentioned strategies to M, assuming
(MLC). This boils down to establishing certain combinatorial statements.
Actually these can be stated and proved without the use of (MLC) ([DH])
and it is possible to construct an abstract model Mg of M, together with
a natural map x: M — M ([Th]). In order to do this we have to make
use of specific properties of M listed in section IV. The space M, can be
obtained either as a pinched disc or as a projective limit of disked trees. It is
compact, connected and locally connected. The map x is continuous and
surjective, and (MLC) is equivalent to its injectivity. The generic hyperbolicity
conjecture (that hyperbolic quadratic polynomials form a dense open set) is
equivalent to the weaker statement that the pre-image in M of any point in
Mps is a set with empty interior.

Important progress has been achieved recently towards (MLC), mainly
by Jean-Christophe Yoccoz.

He first proved some years ago that a point which is on the boundary of a
hyperbolic component of M is alone in its fiber for the map x: M — Maps.
For each ¢o € M such that 0 is periodic under f,, there is a topological
copy cg L M of M in M (in which ¢ corresponds to 0). We call it the
tuning copy centered at co. A point ¢ € M is said to be tuned or renormalizable
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if it belongs to a tuning copy of M in M other than M itself. Recently,
J-C. Yoccoz has proved that any point ¢ € M which is not tuned is alone in
its fiber. The method consists in constructing a sequence of disjoint annuli
around ¢, and proving that the sum of their moduli is infinite (a procedure
inaugurated in [BH], whose context we shall describe). Yoccoz’ proofs
are unpublished, but the reader will find a detailed sketch in Hubbard’s
paper in these Proceedings. The proof extends to all points which are not
infinitely tuned, i.e., which are not in the intersection of a strictly decreasing
sequence of tuning copies of M in M (there is also a sketch of this extension
in Hubbard’s paper). So that now, in order to prove (MLC), it would suffice
to prove that the intersection of such a sequence is reduced to a point.

In the setting of the second strategy, the following question arises nat-
urally: without knowing (MLC), can we show that the disked trees which
appear in the description of M, can be imbedded in M? In essence: can
we realize the veins of Mgy as arcs in M?

In [BD], we proved this for the vein leading to the point yum(1/4),
using “holomorphic surgery”. The proof has a combinatorial part and
an analytical part. It seemed that most of the difficulty was in the analytical
part. However we have not been able to adapt the combinatorial part so
as to reach any point of the form yp(p/2"). Very recently Jeremy Kahn, a
student of McMullen, has proposed a sketch of a proof which should lead
to this result by a different route: he uses the method of Yoccoz.

I. The pinched disc model

I.1 External arguments. Let K be a space satisfying (D0), (D1), (D2),
i.e.,, a compact set in C, connected and full. By the Riemann mapping
theorem applied to C — K, one can find in a unique way a radius rg > 0 and
a C-analytic isomorphism ggx: C — K — C — D(r), such that pg(2)/z — 1
as z — 00. The function Gg = Log |¢k| is the potential of K: it is harmonic
on C — K, and can be extended into a continuous function on C by making
it constant with value Log(rgx) on K.

The level lines of G are called the equipotentials, and we call the lines
orthogonal to the equipotentials the external rays. For t € T, the external
ray R(K, t) of argument  is w}l({r - €(f)}rg <r<oo). (We denote by e the map
t = €’ from T to C, and we use the convention that angles are measured
taking the whole turn, not the radian, as a unit).

We suppose now that K satisfies also (D3), i.e., that it is moreover locally
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connected. Then by a theorem of Caratheodory the map ¥x = (pk)™!
admits a continuous extension C — D(rg) —» C — I% , still denoted by k.

This induces a continuous map ykx: ¢t +— Yk (rg - e(t)) of T onto the
boundary 0K of K. We call this map the Caratheodory loop of K. For z € 0K,
we call the points of y; 1(z) in T the external arguments of z.

We define the equivalence ~x¢ on T byt ~x ' = yk(t) = yx ().
This equivalence relation is closed and unlinked with totally disconnected
classes, i.e., it satisfies:

(E1) the graphisaclosedsetin T x T;

(E2) if t; ~ 1 # 13 ~ 14, then the cross ratio S(e(f;), e(t2); e(t3), e(fs))
is positive;

(E3) each class is totally disconnected.

I.2 Pinched discs. If ~ is an equivalence relation on T closed and
unlinked (i.e., satisfying (E1) and (E2)), we define its natural extension =~
to D in the following way: a class of = is either the convex hull (for the
Poincaré metric) of a class of ~ (transported to S lcC by e), or a point of
D — L, where L is the union of the convex hulls of classes of ~.

We extend ~ to an equivalence relation ~ on C or C by declaring that a
point in C — D is equivalent only to itself.

The quotient space D/~ is the pinched disc defined by ~. It is imbedded
in the pinched plane C/~; we call the pair (C/=, 5/:) a pinched pair.

Remarks: (1) In this construction, it is not important to take convex hulls
for the Poincaré metric: the space we would obtain taking convex hulls for
the euclidean metric would be homeomorphic.

(2) According to a theorem of Moore, the pinched plane C/~ is homeo-
morphic to R%. But we shall not make use of this fact.

(3) The condition (E2) implies that there are only countably many classes
of ~ with more than 2 points. Indeed such a class defines a class of >~ with
non-empty interior, and these classes are disjoint.

Let X = B/: be a pinched disc; denote by xx the natural map D X,
and by L the union of the convex hulls of the classes of ~ (Fig. 1.1). Then
xx(@D) = xx(L) is the boundary X of X in C/~, and xx induces a

homeomorphism of D — L onto the interior )% of X.

432



DESCRIPTIONS OF COMPACT SETSIN C

Figure I.1. A pinched disk.

If K is a compact set in C satisfying (D0) to (D3), we call D/~k the
pinched disc model of K, and (C/~k, D/~) the pinched pair model of (C, K)
(Fig. 1.2).

Under these hypotheses, the space K is homeomorphic to its pinched
disc model. Even better:

THEOREM 1. If K satisfies (D0) to (D3), there is a homeomorphism of
the pair (C, K) onto its pinched pair model which induces gx on C — K.

This result is more or less classical. The proof involves the following steps:

PROPOSITION 1. LetU be a connected component of K. Thenits closure
U is a topological disc.

This makes use of the following lemma:

LEMMA. The quotient of D by a closed equivalence relation whose classes
are points in D or closed arcs in S! is homeomorphic to D.
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Figure 1.2a. The “Rabbit™ filled Julia set of a quadratic polynomial f.: z —
z? 4 ¢ such that 0 is periodic of period 3 and Im(c) > 0.

PROPOSITION 2. Let us equip the pinched disc X with any metric com-
patible with its topology. Then, for any € > 0, there are only finitely many

connected components U; of )? such that diam(U;) > e.

1.3 Remarks and questions.

(1) It is not true that any equivalence re-

lation on T satisfying (E1) to (E3) is of the form ~g with K satisfying (D0)

to (D3):
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Figure 1.2b. The equivalence relation defined by the Rabbit.

Example. Consider in C = R? the quadruple comb (Fig. 1.3) & =
(I=1,+11 x {0}) U (A x [—1,+1]), where A contains 1/n and —1/n for
n € N, and 0. This set is compact, full and connected, but not locally con-
nected. However every external ray lands, so it defines a map y= (which
is not continuous) and an equivalence relation ~g on T. This equivalence
relation is not closed: the external rays of argument 1/4 and 3/4 land at dif-
ferent points. One can show that its closure (obtained by adding 1/4 ~ 3/4)
cannot be realized by a compact set satisfying (D0) to (D3).
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Figure 1.3. The quadruple comb E. Here we have 1/4 g 3/4,
but1/4 —¢, ~g 3/4 + ¢, for some sequence (¢€,) tending to 0.

I know no characterization of the equivalence relations which are realiz-
able by such a compact set.

(2) A compact set K in C is called holomorphically removable iff any home-
omorphism C — C which is holomorphic on C — K is holomorphic on C
(and thus affine).

Suppose that K satisfies (D0) to (D3). Then K is holomorphically re-
movable iff any compact set K’ satisfying (D0) to (D3) and ~g =~ is of
the form A(K), where A is an affine map with real positive coefficient.

It follows from the Measurable Riemann Mapping Theorem of Morrey-
Ahlfors-Bers that, if K has positive measure, then K is not removable. This
holds in particular if K has a non-empty interior.

Question: Take a compact set K satisfying (D0) to (D3), with positive
measure. Then the set of quasi-conformal imbeddings of K in C compatible
with a fixed Caratheodory loop can be identified with the open unit ball
in L*°(K; C) (this makes use of a lemma by Rickman). Is it true that, for
a non-holomorphically removable set K satisfying (D0) to (D3), the set of
all topological imbeddings of K in C compatible with a fixed Caratheodory
loop is always connected? Contractible?
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(3) Question: For any equivalence relation ~ on T satisfying (E1) to
(E3), can one find a homeomorphism g: T — T transforming ~ into an
equivalence of the form ~g?

II. The vein description

The pinched disc model of a compact K satisfying (D0) to (D3) gives
a description of it “from outside”. We shall now explore it “from inside”,
drawing many arcs in it. The new description starts from the pinched disc
description. It can actually be achieved in two settings: we can do it for a
compact set K in C satisfying (DO0) to (D3), or slightly more generally for a
pinched disc X = D/=, not necessarily coming from an actual compact set.

We shall work in this more general setting, because we have in view
the “abstract Mandelbrot set”, which is defined only as a pinched disc so
long as we don’t know that M satisfies (D3). We denote by yx the map
xx ce: T — 90X, and we say that ¢ is an external argument of x if yx(f) = x.
Weset 3X = yx(T) and X =X-8X (they are the boundary and the interior
of Xin C/x).

IL1 Legalarcs. LetX = D/~ be a pinched disc, denote by x the natu-
ral map D — X and by yx the loop t — x(e(t)). The space X is compact,
metrizable, connected and locally connected, and therefore arcwise con-

nected. It is also simply connected. If )? = P, given two points xp, x; in X,
there is a unique arc [xp, x;]x in X with extremities xp, x; (we use the con-
vention that a single point is an arc). If X # @, there may be several; we
shall give a rule to select one.

We equip X with the following structure: for each connected component
U of X, we chose a homeomorphism ¢y : U — D. The point <p51(0) is the
center of U. A ray of U is the inverse image by ¢y of a ray of D, i.e., of a
segment [0, e(?)].

Definition. An arc n in X is called a legal arc iff, for any connected com-
ponent U of X, the set n N U is contained in the union of two rays of U.

Given two points xp, x1 in X, there is a unique legal arc in X having xo, x,
as its extremities; we denote it by [xo, x1]x.

Remark: In the case of a compact set K in C, it would be more natural
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to cross a connected component U of K along the Poincaré geodesic, but
then we would not get trees, and trees are essential in the sequel.

Given n points xy, ... x, in X, the union of the arcs [x;, x;]x is a finite
topological tree that we denote by [x, ..., x,]x and that we call the legal hull
of {x1,...,xn}. Asetobtained this way is a legal tree. If Y C X is a legal tree
and x € X, there is a unique y € Y such that [x, y]x NY = {y}. We call y
the legal projection of x onto Y and denote it by my (x).

The root point of a component U of X with center x is the unique point y
in U N[yx(0), x]x. It is often convenient to adjust ¢y so that <p51(1) is the
root point of U.

IL2 Veins. Let usset A, = {p/2"},=1,..2». We define the n™ approxi-
mating tree T, of X as the legal hull in X of yx(A,).

The tree T, is the union of T,_; with the legal arcs N; = [o¢, yx()]x
with T = p/2", p odd, where a; = n7,_ (yx(r)). The arc N; is called the
vein of X of argument t; its origin is a;, and yx (v) is its extremity.

Remark: The above choice of A, is adapted to compact sets arising in the
study of quadratic polynomials. For polynomials of degree d, it would be
more convenient to take A, = {p/d"}. Then it would no longer be true
that there is only one point of A, between two consecutive points of A,_;.
As a consequence, two different veins might have more than one point in
common.

In the sequel, we shall stick to the choice A, = {p/2"}.

Let x be a point in 3X. We can detect if x is on a given vein N; in the
following way:

If I is an arc in T, or an arc in R of length < 1, define the leading point
of I as the dyadic point p/2* in I with the smallest possible k.

Then x € N; iff there are two external arguments ¢, t’ of x in [0, 1] such
that 7 is the leading point of [¢, ¢'].

Suppose now that x is the center of a connected component U of X.
Set V = xyx LUy, We say that ¢ is an external argument associated to x (or
to U) iff e(r) € 9V. This is equivalent to the condition that y = yx(¢) € oU
and ¢ is adjacent to U in y;I (y), i.e,, t is one of the boundary points of the
connected component of T — y5 ' (y’) which contains y5 ' (y’) for y’ € 8U,
y' # y. The root arguments of U are the two arguments of the root point
of U associated to U. '

Example. In Fig. 1.2, there is a Cantor set C of arguments associated to
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the central component U. The end points of a component of T — C are

I3 are associated to Up; % is not. The

equivalent. The arguments 1—?5 and 135

root arguments of Uy are ﬁ and %.

With these definitions, x € N. iff there are two external arguments
t,t' € [0, 1] associated to x, such that t is the leading point of [¢,¢'] (the
closed interval [¢, '] should be replaced by I¢,¢'], [¢,t'[ or It £'[ if ¢, ¢’ or
both is a root argument).

In both cases, we can also detect if x is the origin of the vein N;: The
point x is the origin of N iff x € N; and x € N for some dyadic angle
T’ # 1 of smaller order.

Every point having > 3 external arguments, and every center of a com-
ponent, is the origin of some vein (cf. Remark in I1.3 below).

II.3 The approximating disked trees. The set 710()? ) of connected com-
ponents of X is countable (i.e., finite or infinite countable). Let (B,) be an
increasing sequence of finite subsets of 710()? ) having the following proper-
ties:

(1.1) forU € B,, UNT, #0;
(1.2) a component of )? containing a branch point of T, is in B,.

o]
For instance one can take for B, the set of components of X which
contain a branch point of T,.

Remark: Condition (1.2) implies that | | B, = 710()? ). Indeed, let U be a
component of X, take six points a;, ... ,a6 on 93U, let sy, ... , s be external
arguments for them respectively, let 7, 75, 73 be three dyadic numbers such
thatt; 11,5 ,8,72,4, 15, T3, t are in this cyclic order on T, and let 2" be a

common denominator for 71, 72, 73. Then the center of U is a branch point
of T, and U € B,.

We now define the n™ approximating disked tree X, by

X, =T, U U U.
UeB,

One can check that it is actually a disked tree. The union of these disked

(o]
trees i1s dense in X. Indeed this union contains X because of the above
remark, and it contains yx (A ) which is dense in 3X.
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Figure II.1. The disked tree X3(K) for the rabbit. a = a4 is
the origin of Ny/4; @' = a3/4 is the origin of Nj/4; 0 is the origin
of Ny/3 and Nss.

Each disked tree X, is an object which can be described topologically with
a finite amount of information. In case X comes from a compact set K in C
satisfying (DO) to (D3), the disked trees X, can be identified with subsets K,
of K, thus of C, and each pair (C, K,,) is also, topologically, a combinatorial
object admitting a finite description.

The space X can be viewed as the closure, or, if you prefer, as the com-
pletion of | J X,,. That makes it also the limit of the sets X, for the Gibbs-
Hausdorff distance. But this is actually rather poor information concerning
the structure of X: remember that any compact set in C is the limit of an
increasing sequence of finite sets.

We shall see now that X can be viewed also as a projective limit of the
sets X,, and that carries much more information.
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II.4 The projective limit theorem. For each n, there is a continuous
retraction p,: X, — X,_;. For an appropriate choice of these retractions,
we have:

THEOREM 2. The space X can be identified with the projective limit of

the system

Pn
o= X, > Xy >

The proof makes use of the following lemma. For x € X, define the
projection x, = mx,(x) by: [X, U {x}]x = X, U [xn, x]x and X, N [x,, x]x =
{xn}.

LEMMA. For any choice of x in X, the sequence (x,) converges to x.

Remarks: (1) Let (Y., fn: Y, — Y,_;) beaprojective system of topological
spaces, and let Y, be the projective limit. If each ¥, is compact, connected
and locally connected, and if moreover the maps f, have connected fibers,
then Y is compact, connected and locally connected.

(2) The above theorem is a big improvement over the description of X
as a closure of a union of well-described sets, but still it does not provide
a complete description of X. Let (¥,, f,) and (Z,, g,) be two projective
systems of disked trees with continuous retractions. Suppose one can find
for each n a homeomorphism 4,: ¥, — Z, in such a way that g, o h, is
isotopic to h,_; o f, for each n (if we want to restrict ourself to combinatorial
information, we cannot require more). Does this imply that the projective
limits Yo and Z,, are homeomorphic?

The answer is: No!

For a counterexample, consider the standard Cantor set C in I = [0, 1],
and the compact set K which is the union of / with all the closed discs
having as a diameter a connected component of I — C (Fig. 11.2). A point
a in C divides K into two compact sets K;, K». Take ! > 0 and set K’ =

e@e@a@ee@e@e—@e

Figure 11.2.
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K1Ula, a+11U7(K>), where 1, is the translation by I. Take for ¥, (resp., Z,)
the union in K (resp., K’) of the interval with the discs of diameter > 37",
III. Description of filled Julia sets

III.1 Critically finite polynomials. A polynomial f: C — C is said to
be critically finite iff it satisfies the Thurston condition:

(CF) Each critical point of f has a finite orbit under f .

We consider here monic centered quadratic polynomials f = f.: z —
z% + ¢ which are critically finite. There is one critical point xy = 0; let us set
Xxn = f™(xp). There are two cases:

e 0 is periodic—its orbit has k points xo = x¢, x1, ..., Xk—1;
e 0 is strictly preperiodic—its orbits has [ 4+ k points xo, ..., x—1,x =
Xi4ks s Xi4k—1 (With [ > 2 since x; has only one pre-image).

In both cases K. = K (f;) satisfies (D0) to (D3) . If Oisstrictly preperiodic,
the interior of K. is empty. If 0 is fixed, i.e., if ¢ = 0, the set K is a closed
disc. If 0 is periodic with period k > 1, the interior of K, has infinitely many
connected components, and xp, ..., Xx—1 belong to distinct components
Uo, ..., Ui—1. There is a unique homeomorphism ¢y: Uy —»> D conjugat-
ing f* to z — z2. For each connected component U of the interior of K,
there is a unique 7 such that f” induces a homeomorphism U — Uy. We
choose gy = ¢p o f" in the definition of legal arcs (section I1.1). Then the
image by f of a legal arc avoiding 0 or having 0 as an extremity is again a
legal arc.

II1.2 Hubbard trees and variants. In order to obtain the vein descrip-
tion of K., we need a finite amount of information. This information is
concentrated in the Hubbard tree. 'We first define the Hubbard tree and
its variants. We use the notation (xop, ..., x/, ..., x;+k—1) in both cases, with
I = 0 in the periodic case.

The Hubbard tree H, is the legal hull of the orbit of the critical point 0:

HC = [X(), ceay X[+k_1]KC

The extended Hubbard tree is

ﬁc =H.U[B, ﬁ,]Kc = [B, ﬁl’xo’ oo Xitk-1]K,
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where 8 = yk,(0), B’ = yk.(1/2).
In the case 0 is periodic, we define also the disked Hubbard tree

A= H. UUpU---UUg_,

and the extended disked Hubbard tree AC = A; U [B,Blk,. If O is strictly
prepenodlc, i.e., if Il > 0, then K =) and we set A, = H,, A = I:I The
sets H,., Hc, Ag, A are forward invariant under f..

Denote by v(i) (resp., ¥(i)) the number of branches of H. (resp., of ﬁc)
at xj. One has v(i) < v(@+ 1) fori > 0, and v(0) < 2.v(1). If H, is not
reduced to xo, the tree H, has at least two extremal points, which are of the
form x;, and necessarily v(1) = 1. So v(0) = 1 or 2, and the point xq cuts H,
into two parts H' and H" (possibly reduced to xo).

II1.3 Abstract Hubbard trees. The tree H,;, with the structure we want
to consider, is an object H which satisfies:

(H1) the space H is a topological finite tree equipped with an embed-
ding class in C = R? (or equivalently a cyclic order on branches
at branch points) and with distinct marked points xo, ..., x/44—1;
(H2) each extremity of H is a marked point (branch points are not
. necessarily marked);
(H3) there are at most 2 branches at xp, so that H = H’' U H” with H’
and H” connected, H' N H” = {xo};
(H4) there exists a continuous map f: H — H, such that:
(@) f@xi) = Xigr, fOrri-1) = X55
(ii) flu and f|y~ are injective;
(iii) f preserves the cyclic order on branches at branch points.

Indeed one can take f = f. (I don’t want to consider f as part of the
structure, only its existence as an axiom). For the periodic case, the map
¢ > H_ defines a bijection between values of ¢ such that 0 is periodic
under f. and isomorphy classes of objects satisfying (H1) to (H4) with
I = 0. Considering f. only as a topological object, one gets also a bijection
between those values of ¢ and Thurston classes of maps R? — R? which
are degree 2 ramified coverings with periodic critical point (Thurston’s
equivalence relation is generated by conjugacy under orientation preserving
homeomorphisms and isotopy relative to postcritical points) ([Th], [SL]).

For the strictly preperiodic case, the corresponding map is injective. The
classes of trees which can be realized are those for which one can choose f
expanding for some metric on H.
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So, when we want to speak specifically of some critically finite polynomials,
itis often better to label them by their Hubbard trees than by the values of c.

II1.4 The vein description of K.. In this section we explain how we can
reconstruct the disked trees approximating the Julia set K, as combinatorial
objects, when we know the Hubbard tree H. with the structure described
above. See Fig. I11.1.

When we know H,, it is easy to construct ﬁc. Indeed B (resp., B') is
attached to the last x; which is an extremity of the tree H; (resp., to the one
before last). It is also easy to construct A, and AC in the periodic case: we
just have to add foreachi =0, ..., k—1a closed disc A; centered at x;. The
only question is: how far to extend them? The point x; is an extremity; leta
be the branch point or marked point closest to x in H.. If a is a periodic
branch point of period p with v branches, and p - v = k, then the disc A,
should be extended all the way to a and A; all the way to f i=l(a). If kis
even, say k = 2 -k, and a = xx'41, then A; and Apy; should touch each
otherfori =0,..., k" — 1. In all other cases, one can take a small disc for A;
(so small that taking a smaller disc would not change the space obtained).

Once we have AC_, it is easy to describe by induction on n the disked tree
Ac(n) = f(A.). Indeed Ac(n+1), together with the map f+!: Ac(n+1)
— Ac(n) induced by f, is a 2sheeted covering space ramified over x,. The
new xp is the ramification point, the new B and B’ are the two inverse
images of B, the new x; is the inverse image of x;+; which is on the side
of B or g’ dccordmg to the position of x; in Ac(n) One defines the maps

Jrt1: A cn+1) > Ac(n + 1) and ¢, : A c(n) - A c(n 4+ 1) so as to make the
diagram

Aen+1) I A+ 1)

f:+1J / ann+l

fn

Ac(n) —I"—— A.(n)

commutative.

So we get a combinatorial description of Ac(n) for each n, together with
ly: Ac(n) - Ac(n+ 1) up to isotopy. In order to get a topological description
of K., we have to imbed the spaces Ac(n) in C in an appropriate way, and
take their projective limit (cf. Remark 2 in section 11.4).

This description is adapted to the dynamic. It does not coincide with the
vein description defined in section II (in a “static” way). But the latter can
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be extracted from it: it may be given by

K = [{r(p/2)]x. v U 77 @0

i<n
Then K.(n) is a sub-disked-tree of Ac(n).

1.5 The pinched disc description of K.. In order to describe the
equivalence relation ~.=~,_, we need the following data:

e if 0 is strictly preperiodic: an external argument of ¢ = x;
e if 0 is periodic: one of the two root arguments of the connected

O
component U; of K. containing ¢ = x;

This information can be given when specifying the polynomial. It can
also be easily obtained when we know A by the following recipe:

Imbed AC in the plane C = R2, so that the spine B, ﬁl]ﬁc is a horizontal
segment, with 8 on the right. Then, if x is a remarkable point of A, (a
marked point, or a branch point, or a point of 3U N Ac, where U is a
connected component of the interior), choose an access § to x. Then one
can determine for each n the point f"(x) and the access f"(§). There is
one external ray of K. which lands at x in the access &, and its external
argument 6 has expansion in base 2:

0=.€¢16...6,...
with €, = 0 if f7~1(&) is above [8, 8], and 1 if it is below (Fig. II1.3).
Knowing the required datum, the equivalence relation ~, is determined
in the following way: Let x: R - T = R/Z be the canonical map. We first

define a partition $ = (Jo, J1) of T. If 0 is strictly preperiodic and 6 is an
external argument of c, let §* be the representative of 6 in [0, 1[, and set

I = 6* 6*+1 I 0*+1 6*42
I_X 2’ 2 ’ O_X 2 ’ 2

s (1E eI, L (]erL o2
1= X 2! ) ’ 0=X 9 ’ ) .

or
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X1
X1
= I3 ® o l ° o |
X2 Xo X4 ﬁ il ﬁ
X2 X0 =X4 X3
X3 .
H, H,

Tn
c Beo—@— &—— @B

A
io X2 Xo = X4 X3 01
7 x2 X1 1
B —@ C —@—e ve(3)
Ac(1) ® xo = x4
ve(3) ———0—0——5
3

i

v(3)  r@

Figure III.1. Example of the construction described in II1.4 (in
this case Ac(n) = K.(n+1)).
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ve(3)

‘,xl=C

Figure II1.2. The actual Julia set corresponding to the combinatorial model

in Fig. II1.1.
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X1
£ = f*¢)
fé)
ﬁ’v——@l 5@ -
Xo ﬁ:)@ ()C:;
@) @)

Figure I11.3. 6 = .0011 = = 1.

If 0 is periodic, let 6_ and 6 be the two root arguments of U}, labeled so
that they have representatives 8* and 67 satisfying 0 < 6* < 6} < 1. Then

set
I = 0* 6* +1 I 0*+1 6* +2
l_X 2’ 2 ) O_X 2 L3 2
0 9F+1 0 +1 0 4+2J
Ji = =+ , Jo= r =
! X([z 2 D ° X([ 2 2

(see Fig. 111.4).

Fort € T, the itinerary of t with respect to the partition ¥ is the sequence
5(t) = (Sn(t))nen defined by 2" -t € J;, (¢). In the periodic case, r ~ ¢’ iff
t and ¢’ have the same itinerary. In the strictly preperiodic case, t ~ ¢’ iff

6_/2 6,/2
S %
+1 6y +1

2 2
Figure 111.4.

or

0_.
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either they have the same itinerary, or their itineraries differ at one place no,
and Sp,+i (t) = Sno+i (t') = si—1(8) for every i > 1.

The equivalence relation ~, has the following properties:

(1) The classes are finite, and their cardinality is bounded. Any class with
more than 2 elements is contained in Q/R. Indeed, if a point x in K,
has > 3 external arguments, it is an iterated pre-image of a branch
point of H;, and it is preperiodic.

(2) The orbit of any point x € K. having at least 2 external arguments
contains a point on the spine [B, 'lk.. Indeed, if ¢ and ¢’ are two
arguments of x, choose n such that the n™ digit in the binary expan-
sion of f and ¢’ differ. Then f"~!(x) has an argument in [0, 1/2] and
onein [1/2,1].

IV. A model for the Mandelbrot set

IV.] External rays of points of M. Recall that the Mandelbrot set M
satisfies (D0), (D1), (D2), and that it is not known whether it satisfies
(D3), i.e., whether it is locally connected. In this chapter, we shall however
construct a pinched disk model for M, together with a map x from M to its
model which will be a homeomorphism iff M is locally connected. We must
first review a certain number of facts concerning M which can be found in
[DH].

The capacity radius ry of M is equal to 1. We say that the ray R(M, ¢)
lands at ¢ iff Yy (r - e(t)) tends to c when r tends to 1. In that case we also say
that ¢ is an external argument of ¢ with respect to M, and we write ¢ = yum (¢)
(it is not known whether the map yu is defined on all of T).

Propositions 1 and 2 below relate external arguments with respect to M,
i.e., in the parameter plane, to external arguments with respect to some
filled Julia set, i.e., in a dynamical plane. They are the key to all the combi-
natoric information we can geton M.

Let ¢y be a point such that 0 is periodic of some period k under fc0 The

point ¢p belongs to M denote by W the connected component of M con-
taining co. Then dW is a connected component of an R-algebraic curve, it is
smooth or has one cusp. For each ¢ € W, the map f; has a unique attractive
cycle; let us denote by gw(c) its multiplier. Then the map ¢y: W — Disa
conformal homeomorphism, and it extends to 2 homeomorphism W — D
still denoted by gw. In this situation we say that W is a hyperbolic component
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of M and that ¢ is its center. The point (pv_vl (e(r)) is called the point of dW
of inner argument ¢ and denoted by yw (¢). In particular yw(0) = (pv_vl (1) is
the root of W. .

It is conjectured that all connected components of M are hyperbolic: this
is the generic hyperbolicity conjecture for quadratic polynomials.

A point ¢ in M such that 0 is strictly preperiodic under f is usually called
a Misiurewicz point (even though it would be more appropriate to give this
name to all points ¢ such that 0 is non-recurrent).

Set MQ = By U D, U D,, where

e %, is the set of centers of hyperbolic components, i.e., of values of ¢
such that 0 is periodic under f;

e 9, is the set of roots of hyperbolic components, i.e., of values of ¢
such that f; has a rational indifferent cycle;

e &, is the set of Misiurewicz points, i.e., of values of ¢ such that 0 is
strictly preperiodic under f.

There is a bijection @y — D; which associates the root of a hyperbolic
component to its center.

PROPOSITION 1. Let ¢ € 9, be a Misiurewicz point. Then, in K., the
point x; = ¢ has a finite number v > 0 of external arguments 6y, ..., 6,.
The external rays R(M, 6), ..., R(M, 6,) of M land at c. No other external
ray of M lands at c.

PROPOSITION 2. Let ¢cg € 9 and ¢; € D, be the center and the root
of a hyperbolic component W of M. Let U; be the connected component
of K ¢, containing the critical value ¢y. The root point of U has two external
arguments 6_ and 6, with respect to K. They are periodic of period k
under t > 2-¢, i.e., they are rational with denominator dividing 2k _ 1. The
rays R(M, 6_) and R(M, 6,) land at ¢;. No other external ray of M lands
at C1.

If cp # 0, the curve Lo, = R(M,0-)N{ci}NR(M, 6;) separates 0 from co.

PROPOSITION 3. For 6 € Q/Z, the ray R(M,0) lands at a point ¢ =
ym(0) € M, which is the root of a hyperbolic component or a Misiurewicz
point.
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More precisely, for 6§ = p/ 202k — 1) € [0, 1] with p odd and & minimal,
we have the following: If / = 0, i.e., if 6 is rational with odd denominator,
¢ is the root of a hyperbolic component W of period k (i.e., for ¢’ € W,
fe has an attractive cycle of order k). If I > 0, the point ¢ is a Misiurewicz
point: f/+1(0) is periodic but f/(0) is not; k can be written as k' - k", where
k' is the period of f/*1(0) and £” the number of branches of the Hubbard
tree (extended or not) at that point.

The map 6 — yyu(6) maps Q/Z onto D; U D,. For ¢ € Dy, the set yﬂ;l(c)
contains two points, both with odd denominator (except for ¢ = 1/4 =
ym(0)). The involution o on the set of rationals with odd denominator
which interchanges them has been described by Lavaurs in [L] .

IV.2 Tuning. The following can be found in [D3], with a sketch of a
proof.

Let ¢p and ¢; be the center and the root ofa hyperbolic component W, and
let 6_ and 6, be the two arguments of c; with respect to M. There is a map
M — M called the tuning map x — co L x, which isa homeomorphism of M
onto its tuning copyco L M. Its effect on external arguments is the following:
Let x be either a root of a hyperbolic component or a Misiurewicz point,
and let ¢ be an external argument of x in M. Then to ¢ there corresponds
an external argument ¢’ of ¢y L x given by the following algorithm:

Expand 6_, 6 and ¢ in base 2 (the bar means that the sequence under it
is repeated indefinitely):

6_ =.ul...ul,

Or = .uy...uy,

= .851...8;...
Then ' = i ... u3'up .. uuy ...
(Note that if ¢ is a dyadic number, it has two dyadic expansions, and we
get two values of ¢: at such a point, the set M extends beyond the tuning
copy.)

For W a hyperbolic component and ¢t € Q/Z, there is a unique hyperbolic
component W(¢) with root yw(r). We call it the satellite of W of inner

argument f. Denote by Wy the main component of M , i.e., the one which
contains 0. For ¢ € ]0, 1[N Q, the root arguments of Wy(¢), i.e., the external
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arguments of yw, (¢) are ([DHO]):

1
0-= Z 249(s) _ 1

O<s<t

1
0+ = Z 296) _ 1

O<s<t

where the sum is over rational values of s, denoting by ¢(s) the denomi-
nator of s written as an irreducible fraction. For an arbitrary hyperbolic
component W, the root arguments of W(f) are then given by the tuning
algorithm,

IV.3 The Q-veinsof M. If ¢ is the center of a hyperbolic component W
of A?I , we define the arguments Q-associated to cp (or to W) to be the external
arguments of points yw (¢), t € Q/Z, i.e., the root arguments of the satellites
of W. For ¢ € @, N%,, the arguments associated to ¢ are simply the external
arguments of ¢ with respect to M.

For t a dyadic pointin T (or in [0, 1]), we define the Q-vein N? as the set
of points ¢ € M? for which there are two Q-associated arguments ¢, ¢’ such
that 7 is the leading point of [¢, ¢'].

This definition is coined in such a way that, if M is locally connected,
then N = N, N M2, (We have to make an exception in the case t is
one of the root arguments of a component W with center ¢, but then the
denominator must be an odd power of 2 and this occurs only for 7 = 0; we
set yu (0) = {1/4}).

We say that ¢ is the origin of N; if ¢ € N¢, and there is a dyadic angle 7’
of smaller order such that ¢ € N,-.

An important result is the following ([DH] II, Th 1g, p. 128):

PROPOSITION 4. For every t = p/2k € [0, 1], k > 0, the Q-vein N? has an
origin in @y U D,.

Let s_ and s; be the smallest and greatest arguments associated with
the roots of N¢, letx e M Q_ N? be a point with an associated argument
u€ls—,s4[and ¢ € N?. We say that ¢ is the projection of x on N? if ¢
has two associated arguments ¢, ¢’ such that 4 € ¢,¢'[ and t ¢ ]z, ¢[ (this
condition is independent of the choice of u).
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An adaptation of the proof of Proposition 4 gives the following variant:

PROPOSITION 5. With t and x as above, the point x has a projection
Q
on N

IV.4 A disked-tree model for M. The proof of Proposition 4 involves a
way of detecting whether the origin of N Qs in B orin @, and of computing
its associated arguments. In view of this, one can construct by induction
on n a tree T,,(M)—just an abstract tree provided with an imbedding class
in C: the tree T4, is obtained by adding to T, arcs supposed to be the veins
of order n 4 1 at the appropriate places.

If W is a hyperbolic component of order & > 1, its center belongs to a

vein N? of order < k, i.e.,witht = p/2k', k' < k. Indeed, let §_ = .u? e ug

and 64 = .uj...u; be the root arguments of W, with 0 < 6_ < 6, < 1. For
some k' < k, one has ug, =0, u,lc, =1, u? = u} for i < k’; then the leading

pointof 160_,60, [ist =. u? e ”(1:'—1 1. As a consequence, if for T = p/2k the

origin of N is the center of a component W, then the period of W is < k.
We can then define an n™ approximating disked tree M, of M by adding
to the tree T, the topological disc W for each hyperbolic component W of
period < n. Indeed conditions (1.1) and (1.2) of section II.3 will be fulfilled.

Up to now M, is just an abstract disked tree provided with an embedding
class in C (whether some disks should touch is decided by computing the
root arguments). We shall discuss at the end of this paper the question of
realizing M, as a subset of M.

On the other hand, as we have seen in section I1.4, the knowledge of all
the disked trees M, does not provide a complete knowledge of M, even
assuming the (MLC) conjecture.

If K is a compact set satisfying (D0) to (D3) or more generally a pinched
disc, and x € K, the legal arc [yx(0), x1g is of the form JoU --- U J; or
Uien Ji U {x}, where for each i, the set J; is an arc in a vein Ny, (K). We call
the finite or infinite sequence (t;) the address of x in K. One can transfer
this definition in the setting of MQ.

The following result by Lavaurs summarizes our knowledge of the com-
binatorics of MQ:

PROPOSITION 6 ({L]). Forc e M9, the address of ¢ in MQ is the same as
its address in K.

453



ADRIEN DOUADY

period 123 4 5 6

denominator
of root-argument 1 3 7 15 31 63

Figure IV.1. The 6™ approximating disked tree of the Mandelbrot set.
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IV.5 The equivalence relations N% and ~y. We define the equivalence

relation f\% on Q/Z by ¢ N% ! < yu({t) = yu(@’). It is unlinked

(condition (E2) of section 1.2), with finite classes.

For each hyperbolic component W of M , there is an open set V = Vy
of D such that 3V is the union of the geodesics joining the two arguments
of yw (u) for u € Q/Z, together with a Cantor set in 3D. The open set Vy is
disjoint from the convex hull of any class of f\%.

We consider the relation ~y on T whose graph is the closure of the graph

Q
of ~uM

THEOREM 3. (a) The relation ~y is an equivalence relation.
(b) Fort € Q/Z, the class of ¢ in ~ is just its class in ~2I.
(c) Every class of ~ with > 3 elements is a class of '\%.
(d) The relation ~ is the only closed unlinked equivalence relation on
T inducing "’21 on Q/Z, and whose classes have a convex hull disjoint

from the open sets Vyy.

It follows from Theorem 3 (d) that, if M is locally connected, then ~ y is
precisely the equivalence relation defined by the Caratheodory loop of M.

SKETCH OF PROOF OF THEOREM 3. Let us abstract from the situation
the hypotheses which are used in the proof of Theorem 3, and after that we
shall indicate the steps of the proof.

We start with an equivalence relation ~Q on Q/Z and a family (V;);cs of
open sets in D. We denote by LQ the union of convex hulls of classes of ~2.
We define an argument associated to V; as at € Q/Z such that e(f) is one
extremity of a geodesic contained in 9V;. If x is a class of ~Q an argument
associated to x is simply an element of x.

We assume the following properties:

(i) The equivalence ~Q js unlinked with finite classes.
(ii) The open sets (V;) are connected and disjoint.
(ii) Foreachi, VN LA =@and 8V; c LAU S
(iv) Fort = p/2k, k > 0, there is an «, which is either one of the open
sets V; or a class of ~Q, having two associated arguments ¢, ¢’ such
that t is the leading point of {t, t'], and two associated arguments ¢,
t; such that the leading point 7; of [#, £{] is of smaller order.
(v) Givens, s’ with0 <s <s’ < lands ~Qg, let 7 be the leading point
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of ]s, s’{. Suppose x is a class of ~Q contained in {s, { or ]z, s’]. Then
there is a ¢, which is either one of the open sets V; or a class of ~Q
such that ¢ has two associated arguments u, ¥’ with x C Ju, ¥'[ and
T ¢ [u, ¥'], and two associated arguments v, v’ with 7 € {v, v'].

We now consider the relation ~ on T whose graph is the closure of the
graph of ~Q (it is not obvious at this point that it is an equivalence relation).
We get the following lemmas:

LEMMA 1. Suppose that t; ~ ; and 3 ~ t4, and that the geodesics [¢, #,]
and [53, &4] crossin D. Then #; ~ ¢; for i, j in {1, 2, 3, 4}.

LEMMA 2. Lett, t’ and t” be three distinct points in T with ¢ ~ ¢’ and
t ~t”. Thent € Q/Z, and the class of ¢ in ~2 has > 3 elements.

Hint. Let 1y, 15, 73 be the leading points of the three components of T —
{t,t',t"}. Let T be the one of them with highest order. Apply property (iv)
toT.

LEMMA 3. Supposet € Q/Z and t ~ ' with ¢’ # ¢. Then ¢ is not alone in
its class for ~Q,

Hint: Supposing 0 < ¢t < t' < 1, let 7 be the leading point of J¢, '{. Apply
property (iv) to T to get s, s’, and then property (v) to T and ¢.

LEMMA 4. Suppose that t ~ ¢’ and that t € Q/Z. Then ¢’ € Q/Z and
Q 4/
t~E

Hint: Suppose t' ¢ Q/Z. Using Lemma 3, let ¢” be a point distinct from ¢
with ¢ ~Q ¢. Assume ¢ or ¢’ is one of the point of the class of ¢ in ~Q adjacent
to t. Then proceed as for Lemma 2 (consider several cases). If ¢’ € Q/Z,
proceed as for Lemma 3 .

With Lemmas 1 to 4, parts (a), (b) and (c) of Theorem 3 are immediate.
In order to prove part (d), we need the following:

LEMMA 5. Supposet 7 t'. Then either t and ¢’ belong to the boundary of
a common V;, or there is a class of ~2 whose convex hull separates t and t’.
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Hint: Suppose 0 <t < t' < 1. Let [f;, t{] be an interval contained in {t, ¢'],
satisfying f; ~ t{, and maximal for these properties. Let 7, 12, 73 be the
leading points of ¢, /[, 111, [ and J¢[, ¢'[, and let T be one of them with
greatest order as a dyadic point. Then apply property (iv) to 7.

IV.6 The map x: M — My,. Consider the pinched disc Xy = B/’:M
defined by ~». The connected components of X m correspond to the
hyperbolic components of M: this follows from Proposition 4 and the
Remark in section I11.3. .

For W ahyperbolic component of M, let usdenote by Yy the correspond-
ing component of X m. There is a natural homeomorphism nw: 0¥y —
0W; this homeomorphism can be extended to a homeomorphism Aw:
Yw — W, but there is no very natural way to choose hw. On the other
hand, there is a natural homeomorphism @y : WD (section IV.1, (2)).

As we have seen in section I, if M is locally connected, then it is home-
omorphic to Xy, but in order to get a homeomorphism 4: Xy — M we
have to choose for each hyperbolic component W an extension Ay of nw.

Without assuming that M is locally connected, we can define the space
M 45 as the pinched disc X y provided with a homeomorphism Ay : Y, w = 1'%
extending nw for each hyperbolic component W.

We can also get a definition which is more sophisticated but natural (i.e.,
not depending on any choice) by taking Xy and replacing each compo-
nent Yy of the interior by a copy of D attached using the homeomorphism
ow onw: 8Yy — S!. There is then a unique way of defining the topology
so as to obtain a compact space which is metrizable and locally connected.

The space Mg comes as a subspace of a space E, obtained in the same
way from C/>y

We can define a correspondence between C and E in the following way:
We define an allowed graph in C to be a finite union of topological arcs
which may be

e an arc of the closure of an external ray of M with rational argument;
e an arc of an equipotential of M;

e an arc of the form (p;f (J), where W is a hyperbolic component of M ,
and J is a segment in aray J{0, e(¢)] with r € Q/Z or an arc of a circle
of radius < 1 centered in Q.

If T is an allowed graph, the closures of the connected components
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of C — T form an allowed tessellation P = (P;);e; of C, and there is a corre-
sponding tessellation PE = (PE) of E = E U {o0).

We declare that a point x € E corresponds to a point ¢ € C iff, for any
allowed tessellation P = (P;);er of C, there isan { € [ such that ¢ € P; and
x € PE.

PROPOSITION 7. This correspondence is a continuous map C — E, which
inducesa map x: MJ — M.

PROOF. (1) The graph of the correspondence is closed, since it is

U P x PE.

P iEIg

(2) For ¢ € C, there is a unique x € E corresponding to ¢. This is

immediate if ¢ € C — M, or if ¢ is in a hyperbolic component of M in the
other cases the uniqueness follows from Lemma 5 above. The existence is
immediate for ¢ € MQ; for ¢ € 8M — MQ it is obtained by the following
compacity argument: For each allowed tessellation ®, denote by P (P, ¢) the
unique piece of ® containing x, and by PE(®, ¢) the corresponding piece
in E. This piece is compact and non-empty. Given two allowed tessellations,
there is an allowed tessellation finer than both. So the set of points x
corresponding to ¢, which is

(PE@. o)

»

is not empty.

(3) The map C — E is continuous because its graph is closed and E is
compact. A compacity argument analogous to the one above shows that it
is surjective. It induces a map x: M — My, which is surjective since M is
the inverse image of M 4.

IV.7 Reformulation of (MLC) and the generic hyperbolicity conjecture.
A polynomial f is said to be hyperbolicif every critical point of f is attracted to
an attracting cycle or to 0o. In the space C?~! of monic centered polynomials
of degree d, the hyperbolic ones form an open set ¥;. It is conjectured that
this open set is dense.

For quadratic polynomials, the set ¥, is the union of C — M and the hy-
perbolic components of M. In degree 2, the above conjecture is equivalent

O
to the statement that every connected component of M is hyperbolic.
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THEOREM 4. (a) The conjecture (MLC) is equivalent to the injectivity of
xm: M — M.

(b) The density of ¥, in C is equivalent to the statement that, for every
X € M, the set x ~!(x) has an empty interior.

PROOF. (a) The space Mg, is homeomorphic to X y, which is locally con-
nected as a quotient of D. If XM is injective, then it is a homeomorphism
since M is compact, and M is locally connected too.

If M is locally connected, then it follows from Theorem 1 that x is a
homeomorphism.

(b) If x~!(x) is not reduced to a point, we call it a queer set, and if its
interior is not empty we call a component of it a queer component.

If M has a connected component W which is not hyperbolic, then W
cannot intersect an allowed graph, so for each allowed tessellation W is
contained in one piece. Therefore x (W) is reduced to a point and W is a
queer component. .

Conversely if x ~!(x) has a nonempty interior W then W is in M and
is disjoint from all hyperbolic components, so there is a non-hyperbolic

component of M.

V. Work in progress

In the previous chapter we have shown how irritating it is not to have a
proof of the (MLC) conjecture. In this chapter we explain how close we are
to a proof with a theorem of Jean-Christophe Yoccoz (unpublished) which
will be described in detail in H. Hubbard’s paper in these Proceedings. We
also review some related results of B. Branner, J. H. Hubbard, J. Kahn and
the author.

V.1 A result on cubic polynomials. The starting point of Yoccoz’ the-
orem mentioned above is a result on cubic polynomials. In 1986, Bodil
Branner and John Hamal Hubbard studied complex cubic polynomials with
non-connected Julia sets, i.e., those for which at least one critical point es-
capes to infinity. In the space C? of monic centered cubic polynomials with
labeled critical points f,5: z +> z> — 3 -a? - z + b they form an open set &,
which can be written as Q4 U Q_, where Q2 (resp., 2_) corresponds to the
case where the critical point a (resp., —a) escapes at least as fast as the other.

The set Q is fibered onto C — D by H: (a, b) — lim(f;j,'l(a))l/y, the
fiber being a closed trefolil, i.e., the union of three closed disc with one point
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in common. In each of these discs L, there is a closed set E; which is the set
of points (a, b) such that the critical point —a does not escape. B. Branner
and H. Hubbard proved that E; has a noncountable infinity of connected
components, among which a countable infinity are copies of M, and the
others are points ([BH]; cf. also Branner’s paper in these Proceedings, in
which she describes the way these points waltz around each other when the
assigned value of H (a, b) turns thrice around D, and the solenoid they may
generate).

The delicate point in the proof of [BH] is the fact that components which
are expected to be points are actually points.

They first prove a result in the dynamic plane, namely that, for (a, b)
in such a component X, the set K(f; ) is a Cantor set. In order to show
that the components of K (f; ) are points, they look at the annuli between
two critical equipotentials. Whenever such an annulus A surrounds the
critical point —a, then f; 5: A — f55(A) is a covering map of degree 2, and
mod(A) = 3 mod(fz,5(A)).

They gather the relevant combinatorial information concerning those
annuliin a “tableau”, and eventually prove that, under the given hypotheses,
the sum of the moduli of the annuli surrounding a component of K(f;,5)
is infinite (which implies that this component is reduced to a point).

After that, they transfer this result to the parameter plane: they observe
that the annuli which surround the critical value f; 5(—a), for (a, b) € X are
reproduced holomorphically in the parameter plane as annuli surround-
ing X. The sum of the moduli is still infinite, and this forces X to be a
point.

Since the result of Branner and Hubbard shows that sets which are ex-
pected to be points are actually points, it was reasonable to imagine that
their method could be adapted to get results in the direction of (MLC),
which can be stated as an injectivity result. Actually, J.-C. Yoccoz had already
noticed some correspondence between the behavior of cubic polynomials
and quadratic ones, a similarity made very concrete in a specific case by
B. Branner in {BD]. However here there was a big difficulty which seemed
unsurmountable: the transfer of results to the parameter plane.

V.2 Local connectivity of M at untuned points. ].-C. Yoccoz proves that,
for a point ¢ € M which is not tuned and not in the closure of the main

(¢
component of M,

(*) x ' x(e) = {Jc},

where x: M — My, is the natural map.
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He first proves that, for ¢ untuned, the space K islocally connected. One
can define allowed graphs in the dynamical plane of f. as in section IV.6,
replacing M by K, (it is known that an external ray of K. with rational
argument always lands ([DH] I, VIII Prop. 2, p. 70)).

Yoccoz constructs for each z € K, a sequence of nested annuli A, =

P?,, — P, where P, and P, are closed topological discs bounded by allowed
graphs, with P, a neighborhood of x and P} N K. connected. He then
proves that the sum of their moduli is infinite, so () P, = {x}, and the P,
form a fundamental system of neighborhoods of x. (I am cheating a bit,
because there are some special cases which have to be treated separately).

Yoccoz formulates the combinatorial analysis which leads to the diver-
gence of the series of moduli in a language which is more general and
possibly more powerful than that of [BH]. But H. Hubbard checked (see
his paper in this Proceedings) that it can be formulated in the language of
tableaus, and then it is very similar to the analysis made in {BH] . The tuned
case for quadratic polynomials corresponds to the case which gives copies
of M for cubic polynomials.

The real difficulty starts when we try to transfer the results from the dy-
namical plane to the parameter plane. To each annulus A, in the dynamical
plane of £, corresponds an annulus AY in the parameter plane, but AY is
not just a copy of A,. We only have a holomorphic bijection between AY — M
and A, — K.; the sets M N A,’:” and K. N A, are not even homeomorphic
(the first one has interior points in C and the other doesn’t).

By an extremely fine analysis of the behavior of A, and A¥ at the neigh-
borhood of K, and M respectively, Yoccoz was able to get a bound indepen-
dent of r for the ratio of their moduli. It follows that the sum of the moduli
of the annuli A is infinite and this implies the theorem.

V.3 Local connectivity at other points. For ¢ in the main component
Wy of M, the relation () is immediate. For ¢ € 3W,, the reader will find a
sketch of a proof in Hubbard’s paper. There are two cases: ¢ with rational
(resp., irrational) inner argument.

Forc = y(t), t € Q/Z, there are two external rays R(M, 6_) and R(M, 6..)
of M landing at c. Denote by L. the curve R(M,0_) UR(M,0,) U {c}. The
component V. of C — L. which does not contain 0 is called the wake of c,
and M*(¢t) = V. N M is the strict limb of M with inner argument ¢ (the limb
M(t)is M*(t) U {c}).

The relation (*) for all points in d W with irrational inner argument is
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equivalent to the fact
M-Wo= | M.
teQ/Z

This fact can be deduced from an inequality of Yoccoz which gives a bound
for the diameter of the limbs of M (manuscript Orsay, see also Pom-
merenke [P]). But actually we only need the following result, a preliminary
result for the mentioned inequality.

LEMMA. Let f be a polynomial of degree d > 2 with K(f) connected,
and x a repelling periodic point of period & for f. Then there is a finite
number v > 0 of external rays of K(f) which land at x. Their arguments
are periodic of period dividing & - v for ¢ > d - ¢, i.e., they are rational with
denominator dividing d*¥ — 1

This lemma should also be enough for the case ¢ € dWj with rational
argument.

Once we know (%) for all untuned points, we can practically say that we
have it for all the points which are only finitely tuned. We can adapt the
proof—and it requires only slight modifications (see sketch in Hubbard’s
paper). We can also deduce the finitely tuned case from the untuned case:
For ¢y the center of a hyperbolic component, the tuning map x - ¢o L x
can be defined both as a map M — M and as a map Mups — M. We
then have to show that x(co 1 x) = ¢p L x(x) (which is easy), and that
x co L Mabs) = co L M (which is essentially one of Hubbard’s lemmas).

I do not think that a complete proof of this fact has ever been written
down in detail, up to this day.

V.4 Veins of M. For each n we have described in section IV.3 the n' ap-
proximating disked tree M, of M. The question arises naturally of whether
M, can be realized as a subset of M. More precisely, whether the veins can
be realized as subsets of M, since there is no problem with the hyperbolic
components.

In [BD] we proved it for the vein Ny, using holomorphic surgery. The
proof extends easily to the vein Ny, more generally to the main vein of
each limb (the vein N, where 7t is the leading point of {6_, 6.]). Actually
we could extend it to any individual vein we have tried, but we have not
found an algorithm telling us how to do the surgery for any vein N;.

Jeremy Kahn has proposed another approach: We can define the main
vein Ny (M) to be the segment [—2, 1/4] of R. Given a dyadic angle 7, we
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can consider the vein N;(Maps) of Maps, and the subset N. = x ~1(Ny (M,ps))
of M. If x € N; (M) is a finitely tuned point, then x " 1(x) is just a point by
Yoccoz’ theorem.

LEMMA. 1If the vein N;(M,,) enters a tuned copy cp L My at its root
point ¢y, then it contains co L Ny/2(Mps).

PROOF. Let6_=.u0... ug and 6, = .uj...u; be the external arguments
of ¢;. Then t is the leading point of [6_, 6.], so

t=.uy...ud1,
6_=.u9...u00...,
0
1

6+=.u ...ug;l...,

with ¥’ < k. The two arguments 6’ and 6/, of cp 1 (—2) are given by the
tuning algorithm applied to ¢ = % = .01 =.10, i.e.,

0 0

0’_=.u1...uku}...uk,
!’ 1 1.0 0
O, =.uj...ugy...u,

and the leading point of [0, 8] is again 7.

Now the topological arc N;(M,s) can be described as the union of a
Cantor set C made of finitely tuned points and a countable family of open
arcs ¢; 1 N*, where N* = x(]—2, 1/4[) C Mgy. Then N] contains the
set N;(M) = x~1(C) U U(c,- 1 ]1-2, 1/4[), which is the union of the same
Cantor set and a countable family of open arcs attached in the same way. So
N, (M) is again a topological arc.

V.5 Thelimits of themethod. The method of diverging series of moduli
of annuli seems to be powerful, but it has its limits. The computation
which leads from the combinatorial study to the divergence makes use
of specific properties of the situation. The proof of the Branner-Hubbard
theorem does not extend to polynomials of degree 4 with one double critical
point, even though this case seems very analogous. Similarly the proof of
Yoccoz does not extend to cubic polynomials of the form z  z* + ¢, which
otherwise behave very much like quadratic polynomials. In both cases there
are examples where the series converges, and for such examples one cannot
decide.
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