Regularity diagnostics applied to a turbulent boundary layer

By H. J. Bae, J. D. Gibbon†, R. M. Kerr‡ and A. Lozano-Durán

Regularity diagnostics for the Navier-Stokes equations based on rescaled high-order vorticity moments are applied to direct numerical simulation (DNS) of plane turbulent channel flow and calculations of high-Reynolds-number vortex reconnection. At the wall-normal height typical of the tips of hairpin vortices, the temporal evolution of the vorticity moments is qualitatively similar to that of controlled high-Reynolds-number vortex reconnection in the absence of walls. Both the channel flow and vortex reconnection data exhibit higher measure of vorticity than previous results from decaying and forced isotropic turbulence. This allows for future analysis of vortex dynamics based on new results detailing the vorticity and helicity dynamics of reconnection events.

1. Introduction

In analysis of numerical turbulence, the maximum vorticity, $\omega_p = \|\omega\|_\infty$, and enstrophy, $Z = \|\omega\|_2^2/V$, have historically been the main quantities of interest, where ω is vorticity and V is the volume of the computational domain. Although enstrophy is physically meaningful given its proportionality to the energy dissipation rate, for many years, the best bound for singular growth was provided by ω_p, with the caveat that the bound has a large prefactor that is dependent on the size of the periodic computational box (Kerr 2018b). By extending the analysis to the strain and production terms of the Cayley-Hamilton framework (Ashurst et al. 1987), a more complete description in terms of the reduced Vieillefosse/restricted Euler equations can be made. However, this reduced model neglects pressure effects. Indeed, it has been observed numerically that the Euler equations do not display singular behaviors (see Kerr 2013a, and references therein).

An approach that avoids the direct accounting of pressure is to use the rescaled vorticity moment hierarchy given by

$$\Omega_m(t) = \left(V^{-1} \int_V |\omega|^{2m} dV\right)^{1/(2m)},$$

for which (kinematically) $\Omega_{m+1} \geq \Omega_m$ always holds due to Hölder’s inequality.

To address the dynamics of the Navier-Stokes equations using time inequalities, a more convenient rescaling is given by

$$D_m(t) = \left[\overline{\omega}_0^{-1}\Omega_m(t) + 1\right]^{\alpha_m}, \quad \alpha_m = \frac{2m}{4m - 3},$$

where $\overline{\omega}_0$ is a relevant frequency as defined by Gibbon et al. (2014). From a variety of numeric experiments with periodic boundary conditions, it has been observed that the D_m are almost always ordered on a descending scale such that $D_{m+1} < D_m$ for $m \geq 1$.

† Department of Mathematics, Imperial College, UK
‡ School of Engineering, Warwick University, UK
This property derives from the fact that D_m can be parametrically written in terms of D_1 such that

$$D_m = D_1^{\lambda_{m,\lambda}}, \quad A_{m,\lambda} = \frac{[\lambda_m(t) - 1](m - 1) + m}{4m - 3}, \quad (1.3)$$

where $1 \leq \lambda_m \leq 4$ is a set of time-dependent parameters (Gibbon et al. 2014). Eq. (1.3) can be interpreted in the following manner: instead of considering the magnitude of members of the sequence $\{D_1, D_2, D_3, \ldots, D_m\}$ as functions of time, the magnitude of D_m with respect to D_1 is measured using the parameters $\lambda_m(t)$. Thus, we have the sequence $\{D_1, \lambda_2, \lambda_3, \ldots, \lambda_m\}$, which is parameterized by the relative logarithmic ratio

$$\lambda_m = \frac{(4m - 3) \log D_m / \log D_1 - 1}{m - 1}, \quad (1.4)$$

as illustrated in Figure 1. Regime I ($1 \leq \lambda_m \leq 2$) is regular, whereas solutions in Regime II ($2 \leq \lambda_m \leq 4$) are potentially singular. In Gibbon et al. (2014), $\lambda_m \leq 1.2$ is observed for almost all of the times in periodic forced and decaying turbulent flows. Exceptions were found for decaying turbulence when enstrophy had its maximum growth with $\lambda_m \approx 1.25$ and a low Reynolds number version of the reconnection calculation here when there was a brief spurt with $\lambda_m \approx 1.3$.

In the present work, we identify transient events with higher λ_m, indicative of stronger enstrophy growth, and provide comparisons suggesting that the tips of the boundary layer hairpin vortices are commensurable with vortex reconnection events. The paper is organized as follows. In Section 2, in order to isolate the dynamics of mutual interaction among vortical motions, we describe the anti-parallel reconnection event and apply the regularity diagnostics. Section 3 presents the turbulent channel flow simulations and the regularity diagnostics applied to the channel flow. Section 4 introduces the invariants of the velocity gradient tensor (R and Q), and regularity diagnostics results are conditioned to the (R, Q) phase plane. Section 5 focuses on the similarities between hairpins and reconnection events, concluding that the tips of the boundary layer hairpin vortices are consistent with reconnection events. The paper concludes with a summary in Section 6.
Regularity diagnostics applied to a turbulent boundary layer

2. Anti-parallel reconnection

The data obtained are from DNS of an anti-parallel vortex reconnection event with three periodic dimensions for kinematic viscosity, \(\nu \), ranging from \(2 \times 10^{-3} \) to \(9 \times 10^{-5} \) (Kerr 2018b). The initial vortices, aligned along the \(z \) axis with axial direction \(y \), are propagated in the \(x \) direction as in Kerr (2013b), where an internal vorticity profile and a symmetric perturbation of the trajectory are designed to avoid the internal instabilities. This allows the axial direction to be expanded in a manner such that the initial dynamics near \(y = 0 \) are not immediately affected. The simulation utilizes the symmetric filtered pseudo-spectral calculations, and Figure 2(a) shows the full symmetrized configuration at one time instance. The symmetric quadrants used for the calculations in Figure 2 are \((L_x, L_y, L_z) = (4\pi, 4\pi, 2\pi)\) for \(\nu = 2 \times 10^{-3} \) and \(1 \times 10^{-3} \), \((L_x, L_y, L_z) = (4\pi, 4\pi, 4\pi)\) for \(\nu = 5 \times 10^{-4} \) to \(1.25 \times 10^{-4} \) and \((L_x, L_y, L_z) = (4\pi, 4\pi, 6\pi)\) for \(\nu = 9 \times 10^{-5} \). The domain size is adjusted to maintain a \(\nu \)-independent convergence of the \(\sqrt{\nu}Z \) scaling regime at the end of the reconnection event, as first identified for trefoils in Kerr (2018a) and further discussed for the anti-parallel vortex reconnection cases in Kerr (2018b).

The reconnection in Kerr (2018b) approximately spans the period \(16 \leq t \leq 24 \), where the nonlinear timescale is \(t_f = \delta_z^2 / \Gamma \approx 3.2 \) with \(\Gamma \) being the initial circulation of the vortices and \(\delta_z \) their initial separation in \(z \). During the reconnection, the dissipation rate \(\varepsilon = \nu Z(t) \) grows linearly as shown in Figure 2(b), particularly for \(\nu \leq 5 \times 10^{-4} \). For \(\nu \leq 1.25 \times 10^{-4} \) there is a burst in the growth of \(\varepsilon \) up to \(t \approx 28 \). At \(t \approx 30 \), a roughly steady \(\nu \)-independent \(\varepsilon \) begins to appear. The dissipation rate \(\varepsilon \) rather than \(\sqrt{\nu}Z \) is plotted in Figure 2(b) to investigate whether a finite dissipation anomaly, that is, finite dissipation rate, is beginning to form. A collection of vortex rings propagating in \(x \) could be the structures responsible for the strong growth of dissipation that can be consistent with a dissipation anomaly, developing in a finite time \(T \), without evidence for singularities of any form.

The regularity diagnostic, in particular the computation of \(\lambda_m \) from Eq. (1.4), is applied to the reconnection event (Figure 3a). In contrast to previous computations discussed in the introduction, the new high-Reynolds-number reconnection calculations (Kerr 2018b)
Figure 3. (a) Broad temporal peak of $\lambda_m(t)$ for $m = 2$ (solid), 3 (dashed), 4 (dot-dashed), 5 (dotted) during reconnection. Time $t = 24$ given by straight dashed line. (b) Comparison of λ_m, $m = 2, 3, 4, 5$ (gray lines) and $\log(\omega_p)/4$ (black solid line) as a function of x for $t = 20$ (bottom) and $t = 24$ (top).

display larger peak values of $\lambda_m > 1.45$. However, $\lambda_m < 2$ for all times, which is an indication of regularity.

The regularity diagnostic is repeated by integrating in the y, z direction only, such that

$$\Omega_m(x, t) = \left(\frac{1}{L_y L_z} \int \int |\omega|^{2m} dy dz \right)^{1/(2m)}$$

is a function of the propagation direction x and t. The quantities D_m and λ_m are computed analogously. Figure 3(b) illustrates the vorticity profiles in x using ω_p and λ_m. The profiles of other vorticity diagnostics, including the enstrophy and its production R_ω, are not shown here as they are similar to ω_p. Note that the leading edge location of the $\log(\omega_p)$ profile (scaled for better comparison with λ_m) coincides with the maxima of λ_m.

Figure 3 provides the specific footprint of reconnection events identified in periodic domains. In the next section, the nature of the vorticity and λ_m profiles extracted for hairpin vortices from a turbulent boundary layer is compared to those in Figure 3(b).

3. Turbulent channel flow

The data obtained are from DNS of a plane turbulent channel flow with two periodic directions and no-slip condition at the wall from Lozano-Durán & Jiménez (2014) and Lozano-Durán, Holzner & Jiménez (2016). In the following, the streamwise, wall-normal, and spanwise directions are denoted by x, y, and z, respectively. The friction Reynolds number of the simulation is $Re_\tau = u_\tau \delta/\nu \approx 950$, where u_τ is the friction velocity and δ is the channel half-height. Wall units are defined in terms of u_\ast and ν and are denoted by the superscript $(\cdot)^+$. The size of the computational domain is $2\pi\delta, 2\delta,$ and $\pi\delta$ in the streamwise, wall-normal, and spanwise directions, respectively. The simulation is time-resolved with a time step between stored flow fields of $\Delta t^+ \approx 4$.

As before, the regularity diagnostic is applied to channel flow data by integrating only
Regularity diagnostics applied to a turbulent boundary layer

Figure 4. Spatial evolution of (a) D_m and (b) λ_m as a function of wall-normal height for $m = 2$ (solid), 3 (dashed), 4 (dot-dashed), 5 (dotted) for a single time instance at $Re_\tau \approx 950$.

in the homogeneous directions such that

$$\Omega_m(y, t) = \left(\frac{1}{L_x L_z} \int \int |\omega|^2 m \, dx \, dz \right)^{1/(2m)},$$

(3.1)

where L_x and L_z are the streamwise and spanwise computational domain lengths, respectively. D_m and λ_m are analogously defined as functions of y and t. The results for a single time instance as a function of wall-normal height are shown in Figure 4. As in the triply periodic cases, the D_m hierarchy ($D_{m+1} < D_m$) still holds for all times. The resulting λ_m spans a similar range of values as the reconnection event from Figure 4(b), and its spatial evolution is qualitatively similar to the temporal evolution of the reconnection event from Figure 3(a). The sustained value of $\lambda_m \geq 1.3$ at $y^+ \approx 100$ suggests that strong reconnection events are also present at this wall-normal height, which coincides with the wall-normal distance of the tip of hairpin vortices (Adrian 2007).

4. The (R, Q) phase plane

To further investigate regularity diagnostics on turbulent channel flows, we analyze reconnection events conditioned to the invariants of the velocity gradients tensor for incompressible flows, namely, R and Q. The approach, first introduced by Chong et al. (1990), has proven to be a useful tool to study flows characterized by the wide range of scales encountered in turbulence.

We consider the characteristic equation for the velocity gradient tensor for the incompressible Navier-Stokes equations given by $\lambda^3 + Q \lambda + R = 0$, where $Q = 1/2(-S_{ij}S_{ij} + R_{ij}R_{ij})$ and $R = -1/3(S_{ij}S_{jk}S_{ki} + 3R_{ij}R_{jk}S_{ki})$, with S_{ij} and R_{ij} being the strain rate and rotation rate tensors, respectively. In the present study, R and Q are computed following the grid resolution requirements provided by Lozano-Durán et al. (2015). The discriminant of the characteristic equation $D = 27/4R^2 + Q^3 = 0$ and $R = 0$ is used to divide the $R-Q$ plane into four regions, as depicted in Figure 5(a). Data from different turbulent flows have shown that the joint probability density function of R and Q has a very particular skewed tear-drop shape (Martín et al. 1998; Ooi et al. 1999), with many points accumulated along the so-called Vieillefosse tail ($D = 0$ and $R > 0$).
Figure 5. (a) Phase plane of \((R, Q)\) invariants of the characteristic equation of the velocity gradient. Zero discriminant \(D = 27/4R^2 + Q^3 = 0\) given in solid lines. Quadrants of the \((R, Q)\) invariant plane \(S_1, S_2, S_3,\) and \(S_4\) are labeled. \(VT\) denotes the Vieillefosse characteristic (or tail). (b) Spatial evolution of \(\lambda_m\) conditionally sampled on the Vieillefosse characteristic (top) and \(S_4\) (bottom) for the turbulent channel flow at \(Re_T \approx 950\).

The dynamical evolution of the velocity gradient tensor has also been addressed in many statistical and reduced models. The restricted Euler equations, e.g., the time evolution of \(Q\) and \(R\) neglecting viscous and pressure effects, show that the fluid particles follow clock-wise trajectories in the \(R-Q\) plane around \(R = Q = 0\) and are attracted to the Vieillefosse tail. The fourth quadrant of the \((R, Q)\) plane \((S_4\) in Figure 5a) is also notorious because it is associated with sweep and ejection events that, in turn, relate to unstable-node saddle-saddle topologies and unstable-focus compression topologies (Wallace 2016) that generate hairpin vortices (Zhou et al. 1999; Adrian et al. 2000).

Noting the aforementioned relevance of the Vieillefosse tail and \(S_4\) quadrant for the flow dynamics, we compute \(\lambda_m\) conditionally sampled to each region. The results, included in Figure 5(b), are labeled as \(\lambda_{S_4}^m\) and \(\lambda_{VT}^m\) for \(\lambda_m\) conditionally sampled to the \(S_4\) quadrant and the Vieillefosse tail, respectively. Strong peaks are observed at \(y^+ \approx 100\), with the largest values located in the \(S_4\) quadrant starting at \(y^+ \approx 80\) with a maximum around \(y^+ \approx 150\). This range of heights covers roughly the positions of the tips of the boundary layer hairpin vortices. The peaks decrease at larger \(y^+\) as the hairpin vortices leave the boundary layer.
5. Space-time correlation

To demonstrate the evolution of coherent structures from the conditional regularity diagnostic on different \((R, Q)\) quadrants, the space-time correlation of \(\Omega_m(y, t), D_m(y, t), \lambda_m(y, t), \) and \(\lambda_m(y, t)\) conditionally sampled on the four quadrants and the Vieillefosse tail are computed for the channel flow. Similarly, the space-time correlation of \(\lambda_m(x, t), \Omega_m(x, t), \) and \(D_m(x, t)\) are studied for the reconnection event.

The space-time correlation for two vorticity moments \(A\) and \(B\) for the channel flow is defined as

\[
C_{A,B}(\Delta y, \Delta t; y) = \frac{\langle A^-(y, t) \cdot B^-(y + \Delta y, t + \Delta t) \rangle_t}{\langle \langle A^- \rangle_t \rangle^1/2} \cdot \langle \langle B^- \rangle_t \rangle^1/2, \quad (5.1)
\]

where the superscript \((-)\) indicates quantities with the mean removed and \(\langle \cdot \rangle_t\) indicates average in time. The results for \(C_{\lambda_m, \lambda_m}\) are given in Figure 6(a), which shows a clear diagonal shape spanning the first and third quadrant of the \(\Delta y - \Delta t\) plane. The first quadrant events correspond to the ejections and the third quadrant to the sweeps, which is consistent with the fact that \(S4\) events are associated with such motions.

Similarly, the space-time correlation for vorticity moments \(A\) and \(B\) for the reconnection event is defined as

\[
C_{A,B}(\Delta x, \Delta t) = \frac{\langle A^-(x_{\text{max}}, t) \cdot B^-(x_{\text{max}} + \Delta x, t + \Delta t) \rangle_t}{\langle \langle A^- \rangle_t \rangle^1/2} \cdot \langle \langle B^- \rangle_t \rangle^1/2, \quad (5.2)
\]

where \(x_{\text{max}}\) is the \(x\)-location at which vorticity becomes significant \((\omega_p(x) > 0.3 \max(\omega_p))\). As demonstrated in Figure 2(b), there is a non-trivial correlation for \(C_{\lambda_m, \Omega_m}\) in the first quadrant of the \(\Delta x - \Delta t\) plane, illustrating how \(\lambda_m\) precedes \(\Omega_m\) both in time and space.

6. Summary

Regularity diagnostics using rescaled vorticity moments (Gibbon et al. 2014) are applied to high-Reynolds-number anti-parallel vortex reconnection and turbulent channel flow calculations. In both cases, we have identified events associated with values of \(\lambda_m\)
larger than previous computations of forced and decaying isotropic turbulence, which are indicative of stronger enstrophy growth. However, $1 \leq \lambda_m \leq 2$ (Regime I) is observed at all times. This suggests that, for both periodic domains and boundary layers, firstly, $D_{m+1} \leq D_m$ holds, where D_m is the rescaling of the Ω_m vorticity moments, and secondly, the events are regular for all times with $\lambda_m \leq 1.5$.

Application of regularity diagnostics to channel flow reveals strong peaks of λ_m at $y^+ \approx 100$. The result proves the viability of the present diagnostic for identifying intense vorticity behavior for both isolated vortex reconnection events as well as collective events characteristic of boundary layer bursts. Moreover, conditional sampling of events based on the quadrants of the (R, Q) invariant plane uncovers additional information related to the nature of the processes involved.

Future work will be devoted to conditionally sampling the space-time correlations of λ_m for different (R, Q) quadrants. The approach will help identify collective and recurring events and their associated spatio-temporal locations, as well as the details of the contributing structures. Connections with the observations reported in Kerr (2018a) regarding helicity will also be examined. To further investigate the relation between hairpin vortices and vortex reconnection events, DNS of a single time-evolving hairpin structure in wall-bounded flow will be considered (Zhou et al. 1999).

Acknowledgments

The authors acknowledge use of computational resources from the Certainty cluster awarded by the National Science Foundation to CTR, and the computing resources at the University of Warwick provided by its Centre for Scientific Computing, including use of the UK-EPSRC-funded Mid-Plus Consortium cluster.

REFERENCES

Regularity diagnostics applied to a turbulent boundary layer

