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Abstract

A way is sketched to derive a Langevin equation for the slow degrees of freedom of a Hamiltonian
system whose fast ones are mixing Anosov. It uses the Anosov-Kasuga adiabatic invariant, martingale
theory, Ruelle’s formula for weakly non-autonomous SRB measures, and large deviation theory.

1 Introduction

Model reduction is a central theme in science. In particular, it is common to propose to replace “inessen-
tial” details of parts of dynamics by noise. This paper addresses the question of to what extent such
reduction may be justified if one starts from a deterministic Hamiltonian systems, the agreed foundation
for all classical mechanics.

Suppose a Hamiltonian system consists of some slow degrees of freedom coupled to a large number of
fast chaotic degrees of freedom. For example, consider the conformation change degrees of freedom of a
biomolecule coupled to its vibrations and movement of water molecules. It is standard to model the slow
degrees of freedom by a Langevin equation, that is a stochastic differential equation where the effects of
the fast degrees of freedom have been replaced by an effective Hamiltonian system, damping and noise.

Despite being in use now for 100 years [La], it seems to me there is not yet a satisfactory derivation
of a Langevin equation for the slow degrees of freedom. See the reviews [GKS, Ki] for the state of affairs.
An example system which has recently resurfaced is the “piston problem” [Li].

One precursor is [FKM] for the case of Hamiltonians which are quadratic in the fast degrees of freedom
and subject to a continuum approximation for the distribution of frequencies of their normal modes. This
approach was presented nicely by [Z], and treated more throughly in [So], but the crucial assumption (for
the analysis) of harmonic fast degrees of freedom seems unrealistic and overly restrictive to me.

A second precursor is the line of investigation of the sequence of papers [O, Wi, BR, J], which depends
on assuming ergodicity of the fast dynamics restricted to an energy level for frozen slow degrees of
freedom, but I don’t think these papers can be considered to make a mathematically complete derivation
of a Langevin equation. As a side-remark, ergodicity may be considered unrealistic and overly restrictive,
but perhaps true ergodicity is not really required.

This paper seeks to put more mathematical flesh on the ideas of the second approach, under the
stronger assumption that the fast dynamics is mixing Anosov on relevant energy levels for frozen slow
degrees of freedom. Although this is a yet more restrictive assumption than ergodicity, [GC] advocated
that it may be reasonable to assume that the dynamics of a large Hamiltonian system act as if mixing
Anosov on relevant energy levels (the “chaotic hypothesis”) and that results derived under this assumption
may apply more widely. It is worth noting that a two-degree of freedom physically relevant mixing Anosov
system has been constructed [HM] and I believe analogues can be made in higher degrees of freedom.
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Under the mixing Anosov assumption, some nice mathematical results can be applied, namely a
formula of Ruelle for the first-order effect of weak non-autonomy on the natural measure for a chaotic
system [Ru], and an almost sure invariance principle to approximate the integral of a zero-mean vector of
observables for a chaotic system by a multidimensional Brownian walk [MN]. With some work I believe
that these ingredients can be put together to derive a Langevin equation for the slow degrees of freedom.
The paper sketches the main lines of the proposal.

2 Assumptions

1. Suppose (M,ω) is a symplectic manifold of large dimension 2m andH : M → R is a smooth function
(the Hamiltonian). Together they define a Hamiltonian vector fieldXH onM , by ω(XH , ξ) = dH(ξ)
for all tangent vectors ξ. Equivalently, the symplectic form ω defines a Poisson bracket {F,G} =
ω(XF , XG) on smooth functions F,G : M → R, and then dF (XH) = XH(F ) = {F,H} for all
F : M → R. Let φt be the flow of XH .

2. Suppose N is a symplectic manifold of moderate dimension 2n, representing the slow degrees of
freedom. It will be enough to do local analysis inN , so without loss of generality it can be considered
to be a piece of R2n with local coordinate functions Zj . Suppose π : M → N is a Poisson map,
i.e. for all smooth functions F,G : N → R, {F ◦ π,G ◦ π}M = {F,G}N ◦ π.

3. Suppose for each Z ∈ N , the “fibre” π−1(Z) is a symplectic submanifold of M , i.e. the restriction
of ω to its tangent space is everywhere non-degenerate. It follows that the restriction HZ of
H to π−1(Z) defines a Hamiltonian vector field XHZ

on π−1(Z) (the constrained vector field).
Furthermore, XHZ

preserves the 2(m− n)-dimensional volume form

ΩZ = ω∧(m−n)/(m− n)!

on π−1(Z), the level sets (H,π)−1(E,Z), and the (2m− 2n− 1)-dimensional volume form µZ,E on
(H,π)−1(E,Z) defined by µ ∧ dH = ΩZ . Denote its flow by ψt.

4. Suppose

WZ(E) :=
∫
{H≤E}

ΩZ

is finite for relevant Z,E and differentiable (actually, WZ(E) finite is not really necessary as long
as its derivative with respect to Z and E is definable). Its E-derivative can be written as

W ′
Z(E) =

∫
H−1(E)

µZ,E .

Then µZ,E induces an invariant probability measure

λZ,E(A) =
1

W ′
Z(E)

∫
A

µZ,E

for subsets A on the level set for XHZ
, which Boltzmann called an “ergode” and Gibbs a “micro-

canonical emsemble”.

5. Suppose
Vj = {Zj ◦ π,H}

are slow compared to XHZ
, in a sense to be made more precise in the next assumption.

6. Suppose XHZ
is mixing Anosov on the level sets for relevant E,Z. In particular, suppose the

autocorrelation of the deviation v(s) of V ◦ ψs from its mean decays in a short time ε � 1 on the
“slow” timescale, that for significant change in Z under the mean of V .
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7. Suppose the size of v (in units for the slow timescale) scales like
√
δ/ε for some δ.

8. Suppose the temperature T > 0 is significantly higher than a value determined by δ and the
symplectic form on N , to be made explicit in Section 4.3.

9. Finally, suppose the heat capacity per fast degree of freedom is positive and bounded.

3 Aim

The aim is to show that for ε small the distribution of paths π ◦ φt(Y ) for random Y with respect to
λZ0,E0 and for t in any order-one time interval, is close to that for the solutions of a system of stochastic
ordinary differential equations

dZi = (Jij − βDij)∇jF dt+ σik dWk, Z(0) = Z0, (1)

with∇jF a shorthand for ∂F
∂Zj

, J representing the Poisson bracket on N (i.e. {F,G} = ∇iFJij∇jG), β the
inverse temperature for the initial energy, F : N → R the free energy function at the given temperature,

Dij =
∫ 0

−∞
λ(vi(0)vj(s)) ds (2)

W a multidimensional Wiener process, σ any matrix function satisfying the Einstein-Sutherland relation
σσT = D +DT , and the Klimontovich interpretation of the stochastic differential equation.

Definitions of β, F and the Klimontovich interpretation will be recalled at the appropriate points.
Equation (1) with Klimontovich interpretation implies Klein-Fokker-Planck equation

∂ρ

∂t
= −div (ρ(J − βD)∇F − S∇ρ) (3)

for the evolution of probability densities ρ with respect to volume ∧dZj on N , where S = (D +DT )/2,
the symmetric part of D.

4 Strategy

The strategy of proof has six stages. First λ(V ) is evaluated in terms of the microcanonical free energy.
Secondly, the fluctuations v(t) of V from its mean are approximated by a multidimensional white noise
with covariance D+DT . Thirdly, a correction to the ergode is derived when Z is moving, which in general
yields damping. Fourthly, the effect of autonomous rather than externally imposed Z-motion is argued
to make no difference, to the order of approximation considered. Fifthly, the ergode is approximated
by the monode (canonical ensemble) for large number of degrees of freedom. Lastly, the Klimontovich
interpretation is shown to be necessary.

4.1 Zeroth order mean velocity

Anosov and Kasuga (e.g. [LM]) proved that WZ(E) is an adiabatic invariant for XHZ
ergodic on energy

levels, with respect to slow external change of Z, i.e. for most trajectories the energy E(t) changes in
such a way to keep WZ(t)(E(t)) ≈ w0. Define the “microcanonical free energy” f : N → R for given w0

by
f(Z) = W−1

Z (w0). (4)

The following calculation shows that
λ(V ) = J∇f. (5)
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Firstly, WZ(f(Z)) = w0, so ∇W +W ′∇f = 0, i.e.

∇f = − 1
W ′∇W. (6)

Thus (J∇f)j = {Zj , f} = − 1
W ′ {Zj ,W}. Next, the flow χu of XZj◦π preserves Ω (because it is Hamil-

tonian) and the fibration π (because π is Poisson). Thus the change of WZ(E) =
∫
{H≤E} Ω from

Z(0) to Z(u) along the flow χu is the Ω-measure of the band in π−1(Z(u)) between H−1(E) and
χu((H,Z)−1(E,Z(0)). The rate of change of H along the flow χu is {H,Zj ◦ π} and we can write
Ω = µ ∧ dH in a fibre, so

{W,Zj} = −
∫
H−1(E)

{H,Zj ◦ π}µ.

Finally, λ(Vj) = 1
W ′

∫
H−1(E)

{Zj ◦ π,H}µ.

Remark: A similar calculation with respect to the canonical ensemble eβF e−βHΩ on π−1(Z) (Boltz-
mann’s “monode”) gives mean velocity J∇F , where the canonical free energy F is defined by

e−βF (Z) =
∫
π−1(Z)

e−βHΩZ . (7)

Nevertheless, the canonical ensemble is not ergodic (energy is conserved), so it is not clear how to proceed
further (unless we just ignore the mixing requirement for the next results).

Anosov’s averaging theorem (e.g. [LM]) proves that most trajectories follow the mean dynamics closely
on short enough timescales. Thus from (5) the zeroth order dynamics of the slow degrees of freedom is
Hamiltonian with Hamiltonian function the microcanonical free energy f . Note in particular that the
zeroth order dynamics preserves f , which is a restatement of the adiabatic invariance of WZ(E).

I am interested in capturing effects that go beyond zeroth order, however, in particular on longer
timescales where the invariance of WZ(E) breaks down.

4.2 Fluctuations

The fluctuations v(t) of V ◦ ψt from its mean for fixed Z produce an effect approximately equivalent to
white noise with covariance matrix R =

∫∞
−∞ C(t) dt, where Cij(t) = λ(vi(t)vj(0)), provided the integral

converges. This is well known but derivations vary in level of sophistication.
The simplest version is to let z(t) =

∫ t
0
v(s) ds (I denote it by z rather than Z because this expression

does not include the mean velocity of Z nor the fact that the distribution of v changes as Z moves) and
prove that

λ(zi(t)zj(t))/t→ Rij

as t→ +∞ (Green-Kubo formula).
Here is a proof. From the definitions of z and C, λ(zi(t)zj(t)) =

∫ t
−t(t− |u|)Cij(u) du. So

λ(zi(t)zj(t))/t =
∫ t

−t
(1− |u|

t
)Cij(u) du.

Tackle the positive and negative ranges of u separately. Convergence of the integral for R implies that
given ε > 0 there is a t0 such that |

∫ t
u
C(v) dv| ≤ ε for all t ≥ u ≥ t0. Then for t ≥ t0,∫ ∞

0

C(u) du−
∫ t

0

(1− u

t
)C(u) du =

∫ ∞

t

C(u) du+
1
t

∫ t0

0

uC(u) du+
1
t

∫ t

0

∫ t

max(u,t0)

C(v) dv du.

The first and third terms are each at most ε in absolute value. The second is at most ε as soon as
t ≥ 1

ε

∫ t0
0
uC(u) du. Hence

∫ t
0
(1− u

t )C(u) du→
∫∞
0
C(u) du as t→∞. Similarly for u < 0 and hence the
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result. Note that in contrast to a statement in [Ga] it is not necessary to assume 1
T

∫ T
−T |t|C(t) dt→ 0 as

T →∞: it follows automatically from
∫∞
−∞ C(t) dt <∞.

As a corollary this shows the covariance matrix to be non-negative. The covariance matrix R can be
written as D + DT , with D as defined in (2). Thus it also follows that the symmetric part S of D is
non-negative.

More sophisticated results use the theory of martingales: stochastic processes on vector spaces such
that the expectation of the future value given the present one is just the present value. The best is to
prove a “vector-valued almost sure invariance principle”, in the sense that the paths z(T ) in R2n are
distributed within O(T δ) of the distribution for the corresponding Brownian paths, for some δ < 1/2.
This follows from a general result of [MN] provided the fast dynamics is sufficiently rapidly mixing
(exponential suffices).

To increase the accuracy of the approximation by white noise, it could be a good idea to iteratively
improve the choice of fibration π to make C decay as fast as possible, in particular to remove major
changes in sign.

4.3 Correction to ergode

If Z(t) is moved slowly along some path then the natural probability measure on the moving fast system
lags slightly behind the instantaneous ergode λZ,E for the given value of w0. If we assume that WZ(E)
is conserved exactly, the first order difference can be computed by a formula of [Ru] (extrapolating a bit
beyond his hypotheses, but see [EHL] for a statement of what should suffice).

Ruelle’s formula assumes a direction of time, in the sense that the probability distribution for the fast
system is assumed to be absolutely continuous along unstable manifolds, whereas one could have asked
for it along stable manifolds. Many people regard this as justified by a hypothesis of a low entropy initial
condition for the universe [Le], but hypotheses on initial conditions seem to me inadequate to explain
the direction of causality. I suspect a true explanation lies in quantum gravity: probably a consistent
theory of quantum gravity will exhibit two phases, differing in the direction of interaction of radiation
and matter. Our patch of space-time is in one of these phases and we choose to orient time accordingly.

For a slowly varying vector field Xt on a manifold M , which at each time t is mixing Anosov, Ruelle’s
formula specifies the first order change to the expectation 〈O(t)〉 of any smooth observable O : M → R
at time t from that for the frozen system Xt:

δ〈O(t)〉 =
∫ t

−∞
〈d(O ◦ ψts)(Xs −Xt)〉 ds, (8)

where ψts is the flow of Xt from time s to time t. The term Xt can be dropped since 〈d(O ◦ ψts)Xt〉
is the expectation of the rate of change of a function with respect to an invariant measure, so zero (it
was included to make clear that the result is first order in the change in the vector field). In our case,
the state space π−1(Z) also changes with time so evaluating Xs requires choosing some diffeomorphism
between the state spaces at times s and t, but the result does not depend on the choice.

Let us calculate the change in the mean of V due to slow motion of Z. For Xt we use XHZ(t) and
for the ensemble average we use λZ(t),E . Any motion of Z can be specified as the result of a (possibly
time-dependent) Hamiltonian flow on N , with some Hamiltonian G, so Ż = J∇G. The function G lifts
to G ◦ π on M and so induces a fibre-preserving flow χ on M , which we can use to identify points of
different fibres. In particular for Xs in Ruelle’s formula we can use χ∗tsXHZ(s), which can be written as
X(H◦χst)Z(t)

. Then
d(Vj ◦ ψts)Xs = {Vj ◦ ψts,H ◦ χst}Z(t), (9)

where {, }Z is the Poisson bracket on π−1(Z), defined via the restriction of the symplectic form to the
fibre. Thus Ruelle’s formula gives a time-integral of an energy-level average of a Poisson bracket on a
fibre.
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Lemma: For symplectic manifold K with volume form Ω, Hamiltonian H, energy level E, normalised
energy level volume λE and any smooth functions F,G : K → R for which the required integrals converge,∫

{F,G} dλE =
1

W ′(E)
∂

∂E

(
W ′(E)

∫
{F,H}G dλE

)
. (10)

Proof: For any smooth functions F,U : K → R for which the integral converges,∫
{F,U} dΩ =

∫
dF (XU ) dΩ = 0,

because it is the integral of the rate of change of F along orbits of XU with respect to an invariant
measure. Apply this to a product U = GA and use Leibniz’ rule and antisymmetry for Poisson brackets
to deduce that ∫

A{F,G} dΩ =
∫
{A,F}G dΩ. (11)

Now take A to be (a sequence of smooth approximations to) δ(E −H):∫
δ(E −H){F,G} dΩ =

∫
{δ(E −H), F}G dΩ = −

∫
δ′(E −H){H,F}G dΩ, (12)

since {., F} is a derivation. The right hand side can be written as

∂

∂E

∫
δ(E −H){F,H}G dΩ.

All that remains is to write δ(E −H) dΩ = W ′(E) dλ on both sides. �

Applying the lemma to (9) produces

δ〈Vj〉 =
1

W ′(E)
∂

∂E

(
W ′(E)

∫ t

−∞
ds〈{H,H ◦ χst}ZVj ◦ ψts〉

)
. (13)

Now
∂

∂s
H ◦ χst = −{H,G ◦ π}M ,

so for times s out to some decorrelation time, which we supposed to be ε � 1 (Assumption 6), we can
write to leading order

{H,H ◦ χst} = (t− s){H, {H,G ◦ π}M}Z .

Specialising to G = Zk gives {H,G ◦ π}M = −Vk. So the integral in (13) becomes∫ t

−∞
ds (t− s)〈{H,Vk}Z(s)Vj(t)〉.

To justify this approximation properly requires some hypothesis on the rate of decay of the correla-
tion function of v (probably

∫ 0

−∞ |tC(t)| dt < ∞ suffices). Now {H,Vk}Z = −dVk

ds along the flow of
XHZ

, so integration by parts (with again some assumption about sufficiently rapid convergence of the
autocorrelation integral) transforms the integral to

−
∫ t

−∞
ds〈(Vk(s)− 〈Vk〉)Vj(t)〉 = −Djk,

with D given by (2). Taking G to be an arbitrary linear combination of Zk yields

δ〈V (t)〉 = − (W ′D)′

W ′ J−1Ż. (14)

6



This result agrees with [BR], except that the term “f1” which they chose to neglect does not arise
here. Perhaps I lost it through making a constant Ż approximation, or perhaps it really gives nothing to
leading order.

The derivation requires Ż to be small, since Ruelle’s formula is first order. This is achieved for small
enough ε, because the relevant notion of smallness of Ż is on the fast timescale.

For k = m−n large, one can expectW ′ to vary much more rapidly thanD with energy E. In particular,
under the assumption of Section 4.5 to come, W ′(E) ∼ eks(E/k). Then (14) can be approximated by
−βDJ−1Ż with

β = (logW ′)′,

the inverse temperature. Thus we obtain

Ż = J∇f − βDJ−1Ż (15)

for the mean motion of Z.
Now invoke Assumption 8 of Section 2, which I’ll express explicitly as β‖DJ−1‖ � 1. Then (15) can

be rewritten as
Ż = (I + βDJ−1)−1J∇f ≈ (J − βD)∇f. (16)

So the result of the correction is to modify the matrix representing the Poisson bracket. D can have
an antisymmetric component, which just changes J to a different antisymmetric matrix (an effect called
“geometric magnetism” by [BR], though it is not clear to me whether the result automatically satisfies
the Jacobi identity). Assuming β > 0, the symmetric part of D, being non-negative, produces damping
because under (16), df(Z)/dt = −β∇ifDij∇jf ≤ 0 to first order.

Ruelle’s formula could also be used to determine the first order change to the covariance of the
fluctuations from the mean velocity, but since we are considering the fluctuations to already be first order
small it does not make sense to determine this second order effect on its own.

In principle, the effects of deviations from conservation of WZ(E) should also be analysed; indeed, in
the view of [O] they are responsible for the dissipation.

4.4 Effect of autonomous slow motion

In reality Z(t) does not move along a predetermined path but is driven by Ż = V , which depends on
the choice of initial condition from λZ0,E0 . The difficulties induced by back-reaction of the slow motion
on the fast variables have been addressed by Kifer in some contexts [Ki]. It seems reasonable to add the
fluctuations to the mean determined as above, but one ought to verify that correlations do not cause a
further change of the same order. This produces nearly the claimed result (1), but with ∇f instead of
∇F and the interpretation of “ = ” unspecified.

4.5 Ergode to monode

For large number of fast degrees of freedom, the microcanonical free energy can be approximated by the
canonical free energy (up to a possible constant), assuming a thermodynamic limit exists for the heat
capacity. Here is a derivation.

From (7), the canonical free energy for given β0 satisfies e−β0F (Z) =
∫
e−β0EW ′

Z(E) dE, so

−β0e
−β0F∇F =

∫
e−β0E∇W ′ dE.

Integrating this by parts yields
∫
β0e

−β0E∇W dE, which by (6) can be written as −β0

∫
e−β0EW ′∇f dE,

where the E-dependence of f is via w0 = WZ(E). Thus

∇F =
∫
e−β0EW ′∇f dE /

∫
e−β0EW ′ dE.
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For large k = m− n, assume the heat capacity per degree of freedom c(ε) = 1
kT ′(kε) as a function of the

energy ε per degree of freedom is positive and bounded uniformly in k (say for simplicity that the limit
as k →∞ exists). It follows by integration that β(E) = 1/T (E) is a function of ε nearly independent of
k, and by another integration the same for 1

k logW ′(E); write the latter as s(ε), the entropy per degree
of freedom. Then the function e−β0EW ′(E) of E is approximately e−k(β0ε−s(ε)), which is sharply peaked
around the ε0 such that s′(ε0) = β0 (because s′′(ε) = − β2

c(ε) < 0), i.e. β(E0) = β0 . Thus ∇F for β0 is
approximated by ∇f for this E0.

4.6 Klimontovich interpretation

The Klimontovich interpretation [Kl] of the stochastic differential equation is as the limit as τ decreases
to 0 of the discrete-time process

Zi((n+ 1)τ)− Zi(nτ) = τ(Jij − βDij)∇jF + σij(Z((n+ 1)τ))wj(n) (17)

with wj(n) independent random steps of zero mean and variance τ . The distinguishing feature is that σ
is evaluated at the end of a step rather than at the beginning (as for Ito) or averaged between the ends
(as for Stratonovich). More formally, the Klimontovich interpretation is defined as the Ito equation with
added drift ∇jSji where S is the symmetric part of D.

The differences between interpretations of the stochastic differential equation are probably beyond
first order, but there is a clear preference for Klimontovich interpretation, because it is the only one for
which the measure e−βFΩN (the marginal on N of the canonical ensemble) is stationary if S depends on
Z. This can be verified by substitution in (3). It was also understood by Hänggi [DH].

5 Case of standard mechanical system

If N is a cotangent bundle T ∗L, the Hamiltonian has the form H(Q,P, z) = 1
2P

TM−1P + h(Q, z) for
slow degrees of freedom (Q,P ) ∈ T ∗L and positive definite mass matrix M(Q), and the symplectic form
is ω =

∑
j dQj ∧ dPj + ω̃ with ω̃ a symplectic form in z (possibly depending on Q and P ), then the

formulae simplify. In particular Q̇ = M−1P exactly, F takes the form F (Q,P ) = 1
2P

TM−1P + G(Q)
with G defined by e−βG(Q) =

∫
e−βh(Q,z)Ω, D is independent of P , and Dij = 0 if any index refers to a

component of Q. So for the rest of this section, D denotes just its PP -block. G is called the “potential
of mean force”. Hence

d(M(Q)Q̇) = −(∇G+ βDQ̇)dt+ σdW. (18)
Note that this can be derived even without making the approximation used in (16).

This simpler form of Langevin equation permits a further reduction in the “overdamped” case. Specif-
ically, if D is invertible and the maximal rate of change of M , D and G along solutions is slow compared
to the slowest damping rate β‖MD−1‖−1 then P relaxes onto a slow manifold and is thereafter slaved
to the motion of Q, resulting to a good approximation in

βDijdQj = −∇iG(Q) dt+ σijdWj(t), (19)

or equivalently (with T = 1/β and taking D symmetric for simplicity)

dQ = −TD−1∇G dt+ 2Tσ−T dW (20)

(using Klimontovich interpretation again). For a proof see Theorem 10.1 of [Ne]. This is the form
commonly used in biochemistry, e.g. [BEL, MB] and perhaps justifies the idea of reactions following
steepest descent curves on the free energy surface. Note that it produces Smoluchowski-Fokker-Planck
equation

∂ρ

∂t
= div

(
T (D−1∇G)ρ+ T 2D−1∇ρ

)
, (21)

with stationary measure e−βGdQ (dQ being volume on L).
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6 Quantum degrees of freedom

Quantum mechanics can be viewed as Hamiltonian. For Hermitian operator h on complex Hilbert space
U , take the state space to be the projectivisation P (U) of U (i.e. the set of 1D complex subspaces),
endowed with the Fubini-Study symplectic form [MS], and take H(ψ) = 〈ψ|hψ〉/〈ψ|ψ〉. The resulting
Hamiltonian vector field gives Schrödinger evolution idψdt = hψ.

Alternatively, take M to be the dual of the Lie algebra of Hermitian operators on U with inner product
〈A,B〉 = Tr AB and its Lie-Poisson bracket, and H(A) = Tr hA. This gives von Neumann evolution
idA/dt = [h,A].

Thus one can incorporate quantum degrees of freedom in the above framework, for example electronic
degrees of freedom involved in the conformation change of rhodopsin after absorbing a photon.

There is the problem however that the quantum dynamics is not Anosov, so after all perhaps the
approach of [FKM, Z] is more appropriate.

7 Kinetics out of chemical equilibrium

The slow state space N can be a covering space. For example, its base can represent the conformation
of myosin and associated momenta, and the decks differ by the number of ATP molecules. This is the
appropriate way to view a biomolecular system in thermal equilibrium but out of chemical equilibrium.
Indeed such problems motivated the present paper [MM].

8 Conclusion and Problems

A strategy has been sketched to derive a Langevin equation for slow degrees of freedom of a Hamiltonian
system, under suitable assumptions. It would be good to carry out this programme in full.

I conclude with a few related problems for the future:

• Obtain higher accuracy by slightly different well selected choice of Z(0).

• Determine the rank of S (degeneracies can arise only from coboundaries [CLB]), and conditions for
hypoellipticity.

• Attempt to extend the results beyond mixing Anosov fast dynamics.

• Try to use the theory of partial hyperbolicity, because it can lead to ergodicity under fairly general
circumstances.

• Adapt the approach for a constant pressure ensemble, e.g. by adding a heavy piston under gravity.

• Investigate what to do if there is no gap in timescales?

• Study ways in which the result fails. This would be more interesting than the whole programme.
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