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Abstract

The role of nonlinearity in complexity science is discussed, and some nonlin-
ear research problems in Complexity Science are sketched in the contexts of the
buzzwords “emergence, interacting agents and swarms”.
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1 Introduction

Complexity Science is experiencing a new vogue. The doubts of the previous decade
(e.g. [Ho]) seem to have lost their force. Stephen Hawking declared that the 21st cen-
tury “will be the century of complexity” [Ha]. Complexity Science is receiving serious
funding from the European Commission, UK Engineering and Physical Sciences Research
Council, and other agencies.

There are many interpretations of the term “complexity science”, e.g. [Man]. I use it
to mean the study of systems with many interdependent components, cf. [BY]. I think
most “complexity scientists” would accept this definition, though some would wish to
add words like “adaptive” or “emergent phenomena”.

How does “nonlinearity” enter Complexity Science? For some (mainly philosophers
and social scientists), “nonlinearity” means that the causal links of the system form
something more complicated than a single chain, for example a system with feedback
loops. A complex system is then one with an intricate graph of causal links, thus highly
nonlinear in this sense.

For others, however (including I think the founding editors and most authors and
readers of this journal), “nonlinearity” means that the superposition principle does not
apply. A system is linear if one can add any two solutions and obtain another, and
multiply any solution by any factor and obtain another. Otherwise, it is nonlinear.

According to many, the core of Complexity Science is Nonlinear Dynamics (with non-
linearity understood in the sense of failure of the superposition principle), e.g. Fritzhof
Capra in his plenary lecture at the Complexity, Science and Society conference in Liv-
erpool (Sept 2005), and several textbooks (e.g. [BY, BV, Er]). This view requires some
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caveats, however, so I don’t regard it is the primary role of nonlinearity in complexity
science. Firstly, there are many complexity science problems that are about statics,
e.g. complex structures, complex materials, equilibrium statistical mechanics and perco-
lation. Secondly, my definition of complexity science excludes low-dimensional dynamical
systems (unless one thinks of the states at successive moments of time as many interde-
pendent components) and therefore low-dimensional chaos, a central topic in nonlinear
dynamics. Thirdly, there are dynamical complex systems which would not normally
be covered by the term “nonlinear dynamics”: stochastic, game-theoretic and quantum
dynamics; what constitutes nonlinearity needs careful formulation for these. Fourthly,
there are linear complexity science problems, e.g. random matrix theory and the linear
response of a network.

I consider stochastic models as taking centre stage in complexity science. At the level
of probability distributions, however, stochastic models are linear: any convex combina-
tion of allowed probability distributions for a problem is also allowed (and that makes
the problem essentially linear). Thus it might seem that there is no nonlinearity for
this important class of complex systems. Yet there is a sense in which a superposition
principle may still fail. It is easiest to see for systems that conserve some quantity, let’s
call it number of particles. Then I propose to call the system linear if one can “super-
pose” solutions for n1 and n2 particles and obtain a solution for n1 + n2 particles, and
nonlinear if this is not always true. Here, superposition means that the joint probabil-
ity distribution is a product, that is the particles behave independently. Thus in this
view, nonlinearity corresponds precisely to the word “interdependent” of the definition
of complexity science.

A similar view of nonlinearity can be formulated for quantum systems conserving
particle number or amount of action (cf. [M02], where I focussed on “anharmonicity”
as an expression of the latter). Similarly, game-theoretic models can be considered
nonlinear if one doesn’t always obtain solutions for N players by superposition (as is
the case in all non-trivial models). Again nonlinearity in this sense corresponds to
dependence (between the players).

Thus I propose that “nonlinearity” in complexity science means “dependence”.
Sometimes, some or all dependence can be removed by a relatively simple change of

view. For example, a linear (in the standard sense) dynamical network can be analysed
into normal modes which evolve independently; if the eigenvector problem is relatively
straightforward, I’d say this system is not complex.

It is less clear how to define “nonlinearity” for quantum or stochastic systems with
no conserved quantity, but I suggest that the basic criterion should be that there is no
simple change of view to independent entities. Thus if there is no concept of conserved
entity then a fortiori the system is nonlinear.

On the basis that nonlinearity means dependence, I present here a personal selection
of nonlinear mathematical problems in Complexity Science, around some of the key
buzzwords: emergence, interacting agents, and swarms, concluding with a miscellany.
Space and time limit me from listing all the relevant references, so I apologise for the
incompleteness.
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2 Emergence

One of the most seductive buzzwords of complexity science is “emergence”. Arguments
rage about what it means. To me, emergence means non-unique statistical behaviour
without any topological reason. I came to this point of view when my PhD student
David Sanders asked in October 2000 for a project on emergence.

Note that emergence is very different from chaos, in which sensitive dependence
produces highly non-unique trajectories according to their initial conditions. Indeed, the
nicest forms of chaos produce unique statistical behaviour in the basin of an attractor.
The distinction is like that between the weather and the climate. For weather we care
about individual realisations; for climate we care about statistical averages.

A way to make the concept of statistical behaviour mathematically precise is the
notion of “space-time Gibbs phase”. This is most easily introduced in the context of
probabilistic cellular automata (PCA). A PCA is a discrete-time Markov process on
a product space X =

∏
s∈S Xs, where S is a countable metric space (often Z or Z2

in examples, but there is no requirement for S to be translation invariant nor even
infinite), each Xs is a finite set, the states x′s ∈ Xs at the next time are conditionally
independent for different s ∈ S given the current state x = (xr)r∈S , and x′s is independent
of (xr)r∈S\N(s) for some bounded neighbourhood N(s) of s ∈ S. Thus it can be specified
by the transition probabilities p(x′s|(xr)r∈N(s)).

The space-time Gibbs phases for a PCA are the probability distributions one can
expect to see for the state of arbitrary bounded pieces of space-time S × Z, given that
the process was started in the infinite past. They are determined by the self-consistency
conditions that for any bounded Λ ⊂ S × Z, the probability distribution of the state on
Λ given the state on the domain B ⊂ S×Z influencing Λ (excluding Λ itself) is given by
multiplying the transition probabilities to make up the state on Λ from that on B. It is
convenient to write the product as exp(−

∑
st∈Λ φst(x)) where φst(x) = − log p(xt

s|xt−1
Ns

),
which makes it resemble the concept of Gibbs phase in equilibrium statistical mechanics.

For finite S then X is finite, so if the Markov chain is irreducible (or more generally
if it has a unique communicating component) then there is a unique space-time Gibbs
phase and it is the one generated by iterating the unique stationary probability measure
on X for the chain.

Just as in equilibrium statistical mechanics, however, the idealisation of spatially
infinite systems is useful, and then there can be more than one space-time Gibbs phase
even if the process is irreducible. A nice example is Toom’s NEC majority voter model
[To+], in which the underlying network S is Z2, the local state spaces Xs are {+,−} and
at each time step the state at each site is updated to the majority state of its north-east-
centre neighbourhood with probability 1 − ε. For ε small enough, it exhibits at least
two space-time Gibbs phases, corresponding to two stationary probability measures.
The set of space-time Gibbs phases is always convex, so when we count them we really
refer to extremal ones (those which are not convex combinations of others). Even more
interesting, moving ε near to 1 produces an “anti-majority voter” model which again
exhibits at least two phases, neither of which corresponds to a stationary measure [GM].
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Instead they correspond to two “phases”, in the sense of phase of an oscillator, of a
space-time probability distribution with period two in time. Thus non-trivial collective
behaviour “emerges”.

A catch with this view of emergence is that it applies only to spatially infinite systems.
But just as in equilibrium statistical mechanics, it has finite system analogues. The basic
one is that non-unique phase corresponds to long-range correlations. A quantitative
measure of emergence has been proposed in terms of mutual information [BlM].

The framework of space-time Gibbs phases allows one to develop general questions,
e.g.
Problem: Determine classes of system for which the set of space-time Gibbs phases
moves continuously with parameters. A start has been made in [M07a] for some cases
where this set is a single point; it is shown to move smoothly with respect to parameters
with respect to a suitable metric on the space of probability measures on a product
space.
Problem: Understand how to steer the set of space-time Gibbs phases for a system
towards a desired one, e.g. to make artificial models of small-scale weather for use in
climate prediction.
Problem: Develop bifurcation theory for space-time Gibbs phases.
Problem: Understand the effects of controls on space-time Gibbs phases; determine
conditions under which local control has only local effect or can have long-range effect;
consider the effects of boundaries (open systems).
Problem: Develop renormalisation theory for space-time Gibbs phases, and the result-
ing concept of universality class. Despite its having become a standard part of theoretical
physics, it is not clear to me that this is really worked out even in equilibrium statistical
mechanics (but see [Br], and [M95] for an example and [CM] for its quantum version),
or percolation.
Problem: Devise methods to fit space-time Gibbs phases to data, cf. [CFL]. A sub-
stantial issue is the lack of uniqueness in the Gibbs potential, so one should develop a
concept of a simplest potential modulo co-boundaries.

The concept of space-time Gibbs phase can be extended to some classes of determin-
istic spatially extended dynamical system. The simplest such class is expanding coupled
map lattices f : X → X with a Markov partition. Then the space-time solutions corre-
spond (up to ambiguities at the boundaries of partition elements) to space-time symbol
tables with finite symbol set Σs for each site and the space-time Gibbs phases are given
by the consistency condition for φst(σ) = tr(log Df(xt(σ)))ss, σ ∈ (

∏
s∈S Σs)Z [BrKu] (I

proposed this formula independently in Feb 95; see remark in [M96]). This allowed us
to make a coupled map lattice exhibiting the same results as Toom’s voter PCA [GM].
The Gibbs potential generalises to invertible CML with Markov partition by restricting
Df to its backward contracting subspace. A way to make our CML example invertible
was given in [M05] but it is not uniformly hyperbolic (nor even continuous), so lacks the
robustness (structural stability) that uniform hyperbolicity would confer. The example
of [GM] was modified to a continuous (even C∞) example in [BaKe] but the effect of
their coupling is not surjective, which raises the following
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Problem: Make a smooth invertible spatially extended indecomposable deterministic
dynamical system exhibiting non-unique space-time Gibbs phase.

The above examples have spatially asymmetric coupling, because they are based on
Toom’s NEC voter PCA, but many would prefer a spatially symmetric example, so
Problem: Solve the previous problem with spatially symmetric coupling (possibly by
making a spatially symmetric version of Toom’s PCA).

It would also be good to extend to continuous-time deterministic systems, e.g.
Problem: Make arbitrarily high dimensional mechanical systems with Anosov dynamics
on each energy level. I think this could be achieved by a generalisation of the triple
linkage [HM] to an array of rotating disks coupled by rods. Even more interesting would
be to make a spatially infinite array with non-unique space-time Gibbs phase!

There are many interesting phenomena for deterministic spatially extended dynam-
ical systems which to me should be interpreted as space-time Gibbs phases, e.g.
Problem: Explain collective oscillations in large Hamiltonian systems, such as [MK]
(and earlier references).
Problem: Explain stable chaos [PLOK].

Here are some final questions for this section:
Problem: Derive rigorous results for self-organised criticality (for background, see [Je]).
Problem: Develop the concept of hierarchical emergence, i.e. a sequence of levels of
emergence, cf. [An].

There are complex systems which perhaps never settle down, e.g. biological evolution
or gravitational systems, or where the interest is in the long-time relaxation, e.g. aggre-
gation and coarsening models. For such systems space-time Gibbs phases are not such
a useful concept.
Problem: Find some models for which you can prove there are no space-time Gibbs
phases.

3 Interacting agents

This buzzword is central to Complexity Science. I tend to restrict its use to cases where
an agent’s behaviour is the result of optimisation for himself, at least approximately,
based on limited knowledge of his surroundings and the past. Even for a single agent
with deterministic environment, results can be quite intricate, e.g. [MSS].

The behaviour of interacting agents can involve “learning” or “adaptation”. The mi-
nority game [Coo] is an example. Some people regard adaptation as an essential feature
for a complex system, but I regard it simply as adding a longer time-scale component
to the dynamics, so not a fundamental change.

The concept of an agent as a maximiser of its utility function (a function of their own
and other agents’ actions) is central to economics. I think, however, it is too idealised
(probably most economists would agree). One way to relax the ideal is to suppose that
agents make imperfect optimisation according to some probabilistic rule. For example,
one can make imperfect optimisation according to a logit (Glauber) or Metropolis choice,
which then reduces a many-agent dynamic game to a PCA (or similar in continuous time)
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and hence to the context of section 2. With this view, a utility function reduces to the
exponential of a transition probability (up to normalisation).
Problem: Develop space-time Gibbs phases for such interacting agents.

A fundamental question for interacting agent systems is whether their selfish opti-
misation produces a socially desirable result. Fans of the free market claim the answer
is yes, but there are many examples that show this is false, cf. [Ro]. To address the
question thoroughly, one has to decide what constitutes a desirable result. One point
of view is an optimum of some collective aggregate. Another is a phase from which
any change reduces the utility for at least one agent (Pareto optimum). But neither is
guaranteed by selfish optimisation.
Problem: Study how far space-time Gibbs phases might be from a social optimum or
even from a Pareto optimum.

Another way in which to relax the economist’s ideal is to endow an agent with only
a partial order on his actions, rather than a utility function. For example, he may
simultaneously wish to maximise wealth and being liked by others: if he can make an
improvement in either without reduction in the other then he’ll do so. In general this
leads to non-unique outcomes. It also leads to inertia if there is an inhibition to making
large changes.
Problem: Study the effects of partial-order agents.

The big challenge under this topic is to find “Newton’s laws of society”. This dream
was born not long after Newton’s laws of mechanics (see [Ba]) but remains open.
Problem: Find out how humans make decisions, and analyse the consequences for
society.

4 Swarms

Much of the mathematical work on complex systems is for systems on a prescribed
network, but there are many complex systems which do not fit this set-up. The links in
the network may themselves evolve, or coupling may be via proximity in space. A prime
example is swarms, e.g. [BDT]. The agents move through space and their interactions
are principally with those which are nearby in space. A similar class of examples is
spread of infections between mobile agents.
Problem: Develop the theory of space-time Gibbs phases for systems without a fixed
network.
Problem: Prove existence of a liquid crystal phase for Sumpter’s model of locusts [Su];
this is likely to be hard, because as far as I am aware there is not even a proved model
of a liquid crystal phase in equilibrium statistical mechanics.
Problem: Study contact processes for swarms, e.g. spread of infections between mobile
agents.
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5 Miscellaneous

Problem: Quantify the complexity of a multivariate probability distribution; a prod-
uct distribution should have zero complexity. This could develop from the notion of
“statistical complexity” for time series [FC].
Problem: Understand conditions for synchronisation in networks of dissimilar units
via renormalisation and percolation; more generally mode-locking [M94]. Apply to the
generators of breathing rhythm [FDN], and the millenium bridge [S+] (but use more
general models of walkers, as I proposed to a student back in 2001).
Problem: Find conditions for robustness of network dynamics, e.g. build on [M96, MS,
BM97, BiM].
Problem: Extend results on coherent structures, e.g. discrete breathers [M00a] and
their movement/interaction [M04] (but construction of higher order slow manifolds is
more complicated than suggested there [BM08]); break away from 1D spatial dynamics
approach, e.g. [JM].
Problem: Develop general results on model reduction, e.g. derive Langevin equations
for slow degrees of freedom of Hamiltonian systems, as sketched in [M07b], and develop
applications e.g. [MM].
Problem: Develop models of nonlinear conductivity by nucleation of kink/antikink
pairs and their opposite propagation, building on [BM04].
Problem: Study complex statics problems, e.g. complex materials, configurations of
alloys (cf. [M00b]), radiation damaged steel.
Problem: Prove persistence of spectral projections for many-body quantum problems
as sketched in [M00a], but cf. Yarotsky [Ya].
Problem: Understand nonlinear Anderson localisation, in both classical and quantum
contexts.
Problem: Study complex systems from an information-processing view; for example,
gene expression, neuronal networks.
Problem: Explain the arrow of time as a result of non-unique phase for some model of
quantum gravity (probably need to link to matter/anti-matter balance too).

References

[An] Anderson PW, More is different, Science 177 (1972) 393–6.

[Ba] Ball P, Critical mass (Heinemann, 2004).

[BlM] Ball RC, MacKay RS, in preparation

[BaKe] Bardet J-B, Keller G, Phase transitions in a piecewise expanding coupled map
lattice with linear nearest neighbour coupling, Nonlinearity 19 (2006) 2193–2210
(plus erratum at http:// )

[BY] Bar-Yam Y, Dynamics of complex systems (Westview, 1997).

[BM97] Baesens C, MacKay RS, Exponential localisation of linear response in networks
with exponentially decaying coupling, Nonlinearity 10 (1997) 931–940.

7



[BM04] Baesens C, MacKay RS, A novel preserved partial order for cooperative net-
works of overdamped second order units, and application to tilted Frenkel-
Kontorova chains, Nonlinearity 17 (2004) 567–80.

[BM08] Baesens C, MacKay RS, Hamiltonian slow manifolds of high order and with
internal oscillation, in preparation

[BV] Bertuglia CS, Vaio F, Nonlinearity, Chaos and Complexity (Oxford, 2005).

[BiM] Bishnani Z, MacKay RS, Safety criteria for aperiodically forced systems, Dyn
Sys 18 (2003) 107–29.

[BDT] Bonabeau E, Dorigo M, Theaulaz G, Swarm intelligence (Oxford, 1999).

[BrKu] Bricmont J, Kupiainen A, High temperature expansions and dynamical systems,
Commun Math Phys 178 (1996) 703–32.

[Br] Brydges DC, Lectures on the renormalisation group, Park City (Am Math Soc,
2007).

[CM] Catarino NR, MacKay RS, Renormalization and quantum scaling of Frenkel-
Kontorova models, J Stat Phys 121 (2005) 995–1014.

[CFL] Chazottes J-R, Floriani E, Lima R, Relative Entropy and Identification of Gibbs
Measures in Dynamical Systems, J Stat Phys 90 (1998) 697-725.

[Coo] Coolen AAC, The mathematical theory of minority games (Oxford, 2005).

[Er] Erdi P, Complexity Explained (Springer, 2008).

[FC] Feldman D, Crutchfield JP, Measures of statistical complexity: why? Phys Lett
A 238 (1998) 244–252.

[FDN] Feldman JL, Del Negro CA, Looking for inspiration: new perspectives on res-
piratory rhythm, Nature Rev Neuro 7 (2006) 232–241.

[GM] Gielis G, MacKay RS, Coupled map lattices with phase transition, Nonlinearity
13 (2000) 867–88.

[Ha] Hawking S, San Jose Mercury News (23 Jan 2000).

[Ho] Horgan J, From complexity to perplexity, Sci Am (June 1995) 74–9.

[HM] Hunt TJ, MacKay RS, Anosov parameter values for the triple linkage and a
physical systems with a uniformly chaotic attractor, Nonlinearity 16 (2003)
1499–1510.

[JM] James G, MacKay RS, Amplitude equations for time-periodic solutions of
infinite-dimensional reversible systems, with application to 2D Klein-Gordon
lattices, in preparation

[Je] Jensen HJ, Self-organized criticality (Cambridge, 1998).

[M94] MacKay RS, Mode-locking and rotational chaos for networks of oscillators: a
mathematical framework, J Nonlin Sci 4 (1994) 301–14.

8



[M95] MacKay RS, The classical statistical mechanics of Frenkel-Kontorova models,
J Stat Phys 80 (1995) 45–67.

[M96] MacKay RS, Dynamics of networks: features which persist from the uncoupled
limit, in: Stochastic and spatial structures of dynamical systems, eds Strien SJ
van, Verduyn Lunel SM (N Holland, 1996) 81–104.

[M00a] MacKay RS, Discrete breathers: classical and quantum, Physica A 288 (2000)
174–98.

[M00b] MacKay RS, Defects in solids, large molecules and space-structures, Proc Roy
Soc Lond A 456 (2000) 1883–95.

[M02] MacKay RS, Many-body quantum mechanics, in: Nonlinear dynamics and
chaos, where do we go from here? eds Hogan J, Champneys A, Krauskopf
B, Bernardo M di, Homer M, Wilson E, Osinga H (Inst of Phys, 2002) 21–54.

[M04] MacKay RS, Slow manifolds, in: Energy localisation and transfer, eds Dauxois
T, Litvak-Hinenzon A, MacKay RS, Spanoudaki A (World Sci, 2004) 149–92.

[M05] MacKay RS, Indecomposable coupled map lattices with non-unique phase, in:
Dynamics of coupled map lattices and of related spatially extended systems,
eds Chazottes J-R, Fernandez B, Lect Notes Phys 671 (Springer, 2005) 65–94.

[M07a] MacKay RS, Parameter dependence of Markov processes on large networks, in:
European Conference on Complex Systems 07 proceedings (2007), eds Jost J et
al, article p41

[M07b] MacKay RS, Langevin equation for slow degrees of freedom of a Hamiltonian
system, subm to proc. Mathematics of Model Reduction conference, Leicester,
2007

[MM] MacKay RS, MacKay DJC, Ergodic pumping: a mechanism to drive biomolec-
ular conformation changes, Physica D 216 (2006) 220–34.

[MS] MacKay RS, Sepulchre J-A, Multistability in networks of weakly coupled
bistable units, Physica D 82 (1995) 243–54.

[MSS] MacKay RS, Slijepcevic S, Stark J, Optimal scheduling in a periodic environ-
ment, Nonlinearity 13 (2000) 257–97.

[Man] Manson SM, Simplifying complexity: a review of complexity theory, Geoforum
32 (2001) 405–414.

[MK] Morita H, Kaneko K, Collective oscillation in a Hamiltonian dynamical system,
Phys Rev Lett 96 (2006) 050602.

[PLOK] Politi A, Livi R, Oppo G-L, Kapral R, Unpredictable behavior of stable systems,
Europhys Lett 22 (1993) 571–6.

[Ro] Roughgarden T, Selfish routing and the price of anarchy (MIT, 2005).

[RSV] Rybko A, Shlosman S, Vladimirov A, Spontaneous resonances and the coherent
states of the queuing networks, arXiv:0708.3073v1[math-ph] (2007).

9



[S+] Strogatz SH, Abrams DM, McRobie A, Eckhardt B, Ott E, Crowd synchrony
on the millenium bridge, Nature 438 (2005) 43–4.

[Su] Sumpter DJT, The principles of collective animal behaviour, Phil Trans Roy
Soc Lond B 361 (2006) 5–22.

[To+] Toom AL et al, Discrete local Markov systems, in: Stochastic cellular systems,
ergodicity, memory, morphogenesis, eds Dobrushin RL, Kryukov VI, Toom AL
(Manchester, 1990).

[Ya] Yarotsky DA, Quasiparticles in weak perturbations of non-interacting quantum
lattice systems, arXiv: math-ph/0411042.

10


