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1. Introduction

The forthcoming call from EC Future and Emerging Technologies – Proactive on
“Dynamics of Multi-level Complex Systems” aims to develop “new mathematical and
computational formalism on dynamics of multi-level systems developed and validated on
real-world applications involving large and heterogeneous data sets”.

One important strand of investigation that fits this objective is that of hierarchical
aggregation procedures for complex systems. It is a theme that goes back to Herbert
Simon [SA], but which has great potential for further development now.

I consider a “complex system” to be a large collection of interdependent units. Given
a description at the level of individual units it can be fruitful to partition the collection
into groups of units that can be considered as “super-units” and to derive effective
interactions between them. Thus one obtains a description at a higher level.

The description at the higher level need not preserve all the information at the lower
level, but ideally the effective interactions at the higher level produce exactly the same
effect as that of observing the aggregated units for the original system. If a record is kept
of the aggregation procedure then it may be possible to infer the lower level description
from the higher level one.

Aggregation can be iterated, producing a hierarchy of levels of description. Going
from the bottom to the top achieves the “micro to macro” transition.

2. Contexts

There are many contexts to which such aggregation ideas can be applied, and varieties
of ways in which the procedure can be implemented.

The oldest application is probably to equilibrium statistical mechanics, in which ag-
gregation is known as “real-space renormalisation”. For some types of such system, the
approach leads to deep understanding (the case I know best is Frenkel-Kontorova mod-
els, e.g. [CM] for the last in a series). For others, it appears to be a dead end [E], though
I’m not convinced of this. Physicists believe in its applicability way beyond where math-
ematicians can justify it, and I think the right response is for the mathematicians to try
harder.

Another application is to finding shortest paths in a graph. This is something that
satellite navigation designers want to be able to do efficiently in order to be able to
respond in real-time to traffic updates. A hierarchical representation could also facilitate
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dealing with such updates, as only the parts containing the updated roads would need
updating.

A step beyond that is to computing selfish traffic flows. This is a problem that traffic
planners face when they wish to find the effects of proposed changes to the road network.
Again it can be treated by hierarchical aggregation. One thing to note is that if one
starts with a model of costs on edges only then aggregating will in general produce a
systems with junction costs, not just edge costs. Edge costs can be trivially absorbed
into junction costs. But aggregating systems with junction costs produces only junction
costs again.

The context in which Herbert Simon proposed aggregation schemes is Markov pro-
cesses. The approach was to lump states of a Markov process together in groups and
propose a Markov process on the set of groups which has the aggregated stationary
probability. This can be extended to the question of computing mean first passage time
between two states or sets of states. Advances have been made on the latter problem by
Wales [W] but I have proposed what I believe are some further improvements. It is not
possible in general to aggregate in such a way as to respect the general dynamics, but
one can do this by working in the Laplace-transform of time.

Multi-agent games is an excellent context for aggregation. If the interests of a group
of individuals are sufficiently aligned it could make sense to replace them by one super-
agent with an effective preference order. A key thing to notice here is that in general
if each agent has a complete preference order the aggregated agent will in general have
only an incomplete preference order. But aggregating agents with incomplete preference
order produces ones of the same type.

Lastly, for something that really is dynamics I mention oscillator networks. By an
oscillator let us understand a continuous-time dynamical system with an attracting limit
cycle. In a network of oscillators there may be some a group of n oscillators which
synchronise together. By this I mean that in their joint state space there is not just
an attracting n-torus but the dynamics on this n-torus has an attracting periodic orbit.
Or there could be partial synchronisation, meaning that the dynamics on the n-torus
has an attracting m-torus for some 1 < m < n. This does not suffice as an aggregation
procedure, however, because the group of oscillators in general has inputs from others.
Thus the way I look at an oscillator is in extended state space, with the addition of
time to take into account input functions of time. Instead of being a limit cycle, an
oscillator is an attracting cylinder for each set of input functions of time. A group of n
oscillators subject to input functions of time produces an attracting n-torus cross time.
The dynamics on this n-torus cross time may possess an attracting m-torus cross time
for some 0 ≤ m < n, in which case we say the group synchronises (partially if m > 1).
In the case m = 0 I say the group synchronises to its inputs. Aggregation consists in
recognising groups of oscillators that are likely to synchronise in the presence of inputs in
some expected class, making a rigorous verification that they do have a lower dimensional
attracting submanifold, using normal hyperbolicity theory, and then replacing them by
the lower-dimensional submanifold (which depends of course on the input functions).

The same ideas could apply to more general dynamics than oscillators, where some
dimension reduction can occur.
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3. Potential outcomes

There are at least two potential outcomes from such aggregation procedures.
The first is efficient ways to compute desired quantities for complex systems. “Divide

and conquer” strategies have been extremely effective in for example computing Fourier
transforms, multiplying large numbers, and testing conditions in a parameter space. The
same is probably true for complex systems, and hierarchical aggregation is the essence
of divide and conquer strategies.

The second is to provide insight into the macroscopic behaviour. This is the main
success of the renormalisation group. Some asymptotically universal features may take
hold at the high levels, which depend on only a few aspects of the low level system.
Perhaps the scope for this is more limited in complex systems than equilibrium statistical
mechanics, because the range of scales may not be so wide (whereas from Angstroms
to millimetres is a factor of 107) and there may not be such a domination of local
interactions. But there may still be some scope. For example, waves of activity are seen
in the brain, despite its having a very complex network of short and long connections.

4. Challenges

There are many challenges for such a programme of research.
One is the choice of which units to aggregate. An a priori promising looking partition

is required, but to choose it needs some rationale. It is somewhat easier to generate a
hierarchical partition top-down, because one can do “community detection” iteratively.

Also one should not think purely in terms of partitions. There are successful schemes
that are based instead on elimination. This approach is used in several of the above
examples. Eliminated sites are not directly aggregated with any other particular sites,
but their effects are absorbed into all sites that were linked to it.

Similarly, it may be appropriate to consider higher level units which are based mainly
on some group of units but are affected by some effect of others. For example in the
theory of uniformly hyperbolic dynamics in discrete time, a small perturbation of a
product of uniformly hyperbolic systems is topologically conjugate to the uncoupled
case. Thus a partition of the original system into groups is preserved under perturbation
with a weaker sense of groups, where a homeomorphism is applied to the whole system.
Another example is a representation of some condensed matter systems by quasiparticles.

The biggest challenges are probably those of practical implementation. The ideas may
sound nice, but only those that can be implemented without too much trouble will have
much effect.
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