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An observer field in a space-time is a time-like unit vector field. It is natural if
the integral curves (field lines) are geodesic and the perpendicular 3–plane field is
integrable (giving normal space slices). It then follows that the field determines a
coherent notion of time: a time coordinate that is constant on the perpendicular
space slices and whose difference between two space slices is the proper time along
any field line.

A natural observer field is flat if the normal space slices are metrically flat. We find
a dual pair of spherically-symmetric natural flat observer fields for a large family of
spherically-symmetric space-times including Schwarzschild and Schwarzschild-de-
Sitter space-time. In these cases one of these observer fields is expanding and the
other contracting and it is natural to describe the expanding field as the “escape”
field and the dual contracting field as the “capture” field. Observer fields are a
useful setting for understanding redshift and the fields described here are used in a
possible explanation of redshift explored in [5].

83C20; 83C15, 83C40, 83C57, 83F05

Introduction

A pseudo-Riemannian manifold L is a manifold equipped with non-degenerate quadratic
form g on its tangent bundle called the metric. A space-time is a pseudo-Riemannian
4–manifold equipped with a metric of signature (−,+,+,+). The metric is often
written as ds2 , a symmetric quadratic expression in differential 1–forms. A tangent
vector v is time-like if g(v) < 0, space-like if g(v) > 0 and null if g(v) = 0. The set of
null vectors at a point form the light-cone at that point and this is a cone on two copies
of S2 . A choice of one of these determines the future at that point and we assume time
orientability, ie a global choice of future pointing light cones. An observer field on a
space-time L is a smooth future-oriented time-like unit vector field on L .

http://www.ams.org/mathscinet/search/mscdoc.html?code=83C20,(83C15, 83C40, 83C57, 83F05)
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We consider space-times which admit metrics of the form:

(1) ds2 = −Q dt2 + P dr2 + r2 dΩ2

where P and Q are positive functions of r and t on a suitable domain. Here t is
thought of as time, r as radius and dΩ2 , the standard metric on the 2–sphere, is an
abbreviation for dθ2 + sin2 θ dφ2 (or more symmetrically for

∑3
j=1 dz2

j restricted to∑3
j=1 z2

j = 1). These metrics are all spherically-symmetric and represent locally the
general spherically-symmetric space-time.

A significant subclass is when P and Q are functions of t alone. In this case the metric is
“static” in the sense that time generates a Killing vector field.1 An important special case
is when in addition P = 1/Q. Included in this special case are the Schwarzschild metric
defined (where positive) by Q = 1−2M/r and the de Sitter metric Q = 1− (r/a)2 , and
also the combined Schwarzschild de Sitter metric defined by Q = 1− 2M/r − (r/a)2

(for M/a < 1/
√

27). Here M is mass (half the Schwarzschild radius) and a is the
“radius of the visible universe”. The de Sitter metric is one of the standard metrics
on (part of) de Sitter space, see for example Moschella [4]. The Schwarzschild de
Sitter metric is appropriate for the exterior of a massive body in de Sitter space. It
satisfies Einstein’s equation for a vacuum with cosmological constant 3/a2 and it can
be naturally extended past the cosmological horizon where Q = 0 at approximately
r = a (see [2, 5]).

We will show that all metrics of the form (1) admit precisely two spherically-symmetric
foliations by flat space slices on the open set U defined by Q > 0 and P > 1. In the
case P = 1/Q this open set is defined by 0 < Q < 1 (which in the special case of the
Schwarzschild de Sitter metric, for M/a small, is the region between the event horizon
near r = 2M and the cosmological horizon near r = a).

We are interested in the normal vector field to these foliations and, in particular, when
the integral curves are geodesic and therefore form a natural observer field. For the
static case (when P and Q are both functions of t only) we shall find the precise
condition for this to happen, namely iff PQ is constant. If this is the case we can make
a simple change of coordinates (multiply t by a constant) to get P = 1/Q, the special
case mentioned earlier.

In the Schwarzschild case one of these fields points outwards and reaches ∞ with
outward velocity zero. In the Schwarzschild de Sitter metric, the outward pointing field
can be extended across the coordinate singularity near r = a and tends asymptotically

1This should not be confused with coherence as defined in the abstract: the rate of proper
time along t–lines varies according to the function Q(t).
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to fit with the time lines in the standard expansive coordinates on de Sitter space. Thus
in these cases it is natural to think of this outward pointing field as the “escape field”.
The other field is the dual “capture field”. The escape field is expansive in the sense that,
flowing along the escape field, the volume on space slices is expanded and dually the
capture field is contractive. The expansive field is a candidate for part of the observer
field in a redshifted universe. For more detail here see [5].

Notes The existence of flat space slices for the Schwarzschild and de Sitter metrics
is well known and this is also known for more general metrics (see eg [3] and its
bibliography). However, to our knowledge, the normal geodesic field and coherent time
have not been observed before.

1 Flat space slices

We look for spherically-symmetric flat space slices for the metric (1). Consider a
connected Riemannian 3–manifold V foliated by scaled copies of the 2–sphere S2 such
that SO(3) acts by isometries preserving this foliation. Let v be the vector field defined
by a choice of non-zero vector normal to the leaves of the foliation and let dv be the
corresponding line element of unit length (ie dv is the 1–form such that dv(v) = ||v||
and dv(u) = 0 for vectors u lying in leaves of the foliation). Let x =

∫
dv be length

measured along v, then x can be regarded (locally) as a parameter for the family. Then
S2

x is isometric to a Euclidean 2–sphere of some well-defined radius which we denote
r(x). The metric on V can now be written dv2 + r(x)2dΩ2 . We claim that this metric is
flat iff dr/dx = ±1. This can be checked by calculating curvature (not hard because
the relevant tensors have many zero entries) but is much more easily seen by thinking
geometrically. A flat 3–manifold is locally isometric to R3 . Futher 2–spheres are rigid;
they only embed smoothly and isometrically in R3 as round spheres and the same is
true for any open subset (this is a classical result due to Liebman, see Alexandrov [1]
for a proof). So the local isometry carries each leaf of the foliation to part of a round
2–sphere. These pack together in only one way – like concentric spheres – and it follows
that the radii vary exactly as they do for concentric spheres in R3 which is what we
want.

Now suppose that we have a spherically-symmetric space slice of the metric (1). This
is determined by a curve γ in the (r, t)–plane. Let ds be the metric restricted to γ then
from (1) we have

(2) ds2 = −Q dt2 + P dr2
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along γ . At each point of γ we have a 2–sphere of radius r and by the result just
proved, the slice is flat iff ds2/dr2 = 1. Substituting in (2) we find that

1 = −Q
dt2

dr2 + P

which gives

(3)
dt
dr

= ε

√
P− 1

Q
where ε = ±1 .

This has real roots on the open set U defined by P > 1. (Note that we have already
assumed that Q is positive.) Thus on U there are precisely two flat space slices through
each point. The positive square root, ε = +1, gives a positive slope and then the
corresponding normal vectors also have positive slope, ie moving outwards. In the
Schwarzschild and Schwarzschild de Sitter cases we shall see that this is the “escape”
field. The negative square root gives the dual “capture” field.

In general we refer to the flat slices with outward normals as the outward slices and by
continuity the outward slices fit together to foliate U . Dually there is another foliation
given by inward slices.

2 Radial geodesic vector fields in the static case

By symmetry the normal vectors to the foliations described above all lie in the (r, t)–
plane, in other words they are radial. We shall determine the radial geodesic vector fields
in the metric (1). We shall do this in the static case (where P and Q are independent of
t) using the conservation law method given in [6]. The static case is sufficiently simple
that we shall be able to find the exact condition for the geodesic field to be normal.
Furthermore, in this case, translation by t is an isometry and each of the two families of
flat slices we found above can be described simply as comprising all t–translates of one
particular slice.

Suppose that we have a weightless test particle moving in the metric (1) with zero
angular velocity. It moves along a radial geodesic. The radial geodesics can be
considered as parametrised curves (t( ), r( )) satisfying the Euler–Lagrange equations
for the Lagrangian

L
(
t, r, ṫ, ṙ

)
=

1
2
(
−Q(r) ṫ2 + P(r) ṙ2)

where ˙ denotes differentiation wrt the parameter.
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t–translational symmetry implies

pt =
∂L
∂ ṫ

= −Q ṫ

is constant. This is negative for a positively oriented time-like geodesic so we have

−Q ṫ = −E ie

(4) ṫ =
E
Q

where E > 0 is constant.

“Energy” conservation implies

H(p, q̇) = 〈 p, q̇ 〉 − L =
1
2

(−p2
t

Q
+

p2
r

P
)

is conserved and wlog we can take its value to be respectively −1
2 , 0, 1

2 in the time-like,
null, space-like cases respectively, because all other values of H are related to one of
these by an affine reparametrisation of the geodesic; the choice −1

2 in the timelike case
makes the parameter into proper time. Here q is the pair (t, r), q̇ the pair (ṫ, ṙ) and p
the pair (

pt, pr
)

=

(
∂L
∂ ṫ
,
∂L
∂ṙ

)
=
(
−Q ṫ,P ṙ

)
.

Hence
1
2

(
−E2

Q
+ P ṙ2

)
= −1

2

since we are in the time-like case. This implies

ṙ2 =
1
P

(
E2

Q
− 1
)

=
E2

PQ
− 1

P

and then from (4) we have the general radial geodesic vector field given by

(5)
(
ṫ, ṙ
)

=

E
Q
, ε

√
E2

PQ
− 1

P


where E is a positive constant and ε = ±1.

3 Normality

The radial tangents to the flat slices given by (3) are up to scale

(δt, δr) = (ε
√

P− 1,
√

Q)
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and this is normal to (ṫ, ṙ) in the metric (1) iff

〈(ṫ, ṙ), (δt, δr)〉 = −Q ṫ δt + P ṙ δr = 0 .

Substituting from the last equation and (5) we have:

0 = −Q
(

E
Q

)(
ε
√

P− 1
)

+ P

ε√ E2

PQ
− 1

P

√Q

= −εE
√

P− 1 + ε
√

E2P− PQ

= −ε
√

E2P− E2 + ε
√

E2P− PQ

But this is zero iff PQ = E2 . As remarked earlier, if this is the case we can make
a change of coordinates (multiply t by a constant) to get P = 1/Q, the special case
mentioned earlier.

If P = 1/Q then the case E = 1 of the geodesic vector field (5) takes the simpler form:

(6)
(
ṫ, ṙ
)

=

(
1
Q
, ε
√

1− Q
)

4 Coherent time

Now assume we are in the static case and that P = 1/Q. Since the geodesic vector field
found above is natural, we know that it defines a coherent time. This fact is proved in
general in the next section. Here we give a direct proof which gives more information.

We want to compare proper time along the geodesics with t . To avoid confusion, we
will use coordinates (τ, ρ) on the geodesics and (t, r) on the space slices. We use σ as
distance parameter (proper time) along geodesics. For definiteness assume that ε = +1.
The calculation in the case ε = −1 is similar and the result is the same.

In terms of (τ, ρ) (6) becomes:

(7)
(

dτ
dσ
,

dρ
dσ

)
=

(
1
Q
,
√

1− Q
)

Suppose that a particle on a geodesic line moves a small distance σ increasing its r
coordinate by ρ say and its t coordinate by τ . It is now on a new space slice. The old
space slice contains a point (µ, ρ) and the t difference between the two slices is:

τ − µ = ρ
dτ
dρ
− ρ dt

dr
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t

r

σ

ρ

τ

µ

normal geodesic

flat space slice

But
dτ
dρ

=
1

Q
√

1− Q
and

dt
dr

=

√
1− Q
Q

from (7) and (3). Hence

τ − µ =
ρ

Q

(
1√

1− Q
−
√

1− Q
)

which simplifies to
ρ√

1− Q
.

But

σ = ρ
dσ
dρ

= ρ
1√

1− Q

using (7) which is the same.

Integrating, we deduce that proper time measured along any geodesic in the natural
observer field gives the same parametrisation of the set of flat space slices as the Killing
coordinate t . Further we can now define a coherent time in U by taking the flat space
slices to be slices of constant time and measuring time between them by using proper
time along the geodesics.

5 Natural coordinates

In this section we prove that a natural observer field gives a coherent time in general.
This reproves the result of the last section but without providing the connection with the
Killing cordinate t .
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We consider metrics with natural observer fields which are not necessarily spherically-
symmetric. Suppose that we have a space-time with an observer field which has normal
space slices (ie such that the normal plane field is integrable). Then we can use this
data to construct coordinates by measuring “time” along the observer field and “space”
in the normal slices, which we call natural coordinates. In these coodinates the metric
has the form:

(8) ds2 = −Q dt2 + P(dz)

where Q is a positive function and P = Pij is a positive definite quadratic form on
dz = (dz1, dz2, dz3) both being functions of t, zi . The condition that t–lines (ie curves
with z = const) are normal to z–slices (ie submanifolds with t = const) is precisely
that there are no terms involving products of dt with dzi .

Proposition A vector field parallel to t–lines in the metric (8) is geodesic iff t provides
a coherent time with the z–slices being the slices of constant time and in this case, the
metric has the same form as (8) but with Q a function of t alone.

We have have used the cumbersome terminology “a vector field parallel to t–lines” to
stress that we are not assuming that the parametrisation given by t is the correct one.

The proposition gives another proof of the result of the last section (though of course it
does not give the connection with the Killing coordinate t that we found there). This is
an appropriate point to make the warning that we are using t for a different coordinate
in this section than in previous ones (where we used σ for the coherent natural time
coordinate).

Proof We use Christoffel symbols. Let α∂0 be a vector field parallel to the t–lines
where we are indexing coordinates by 0 for t and i for zi . This is geodesic iff

0 = ∇0(α∂0)

= α̇∂0 + α∇0∂0

= α̇∂0 + α

(
3∑

i=0

Γi
0,0∂i

)
(9)

where ˙ is differentiation wrt t . But using the fact that gij = gij = 0 if one (but not
both) of i, j is zero we have

Γ0
0,0 = g00∂0g00 = Q̇/Q

Γi
0,0 = −1

2

3∑
j=1

gji∂jg00 = −1
2

∑
RjiQ′j
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where R is the inverse matrix to P and Q′j = ∂jQ Then from the ∂0 component of (9)
we have

(10) α̇+ αQ̇/Q = 0

and from the other components (and noting that R is symmetric) we deduce

RQ′ = 0

where Q′ is the column vector {Q′i}. But P is non-singular everywhere and hence so
is R and we deduce that all the partial derivatives of Q wrt the zi are zero. Thus Q
is a function of t alone and from (10) we deduce that α is also a function of t alone
and that αQ is constant. It is now clear that t gives a coherent time and indeed we can
reparametrise t to make Q = 1 if we wish.

The converse of this last part is obvious and we have the result.

6 Expansion and contraction

We now go back to spherically-symmetric metrics in the static case with PQ = 1 and
for definiteness assume ε = +1, ie consider the outward field and flat slices. The
notation reverts to the notation used in earlier sections. There is a natural choice for
coordinates in the slices. Since dr = ds we can use r for radial distance and then
Ω completes the coordinate system. Flowing along the normal geodesic field gives
a diffeomorphism between different space slices which is determined entirely by the
function of r used. This diffeomorphism expands or contracts uniformly in the two Ω

directions and by a possibly different scale factor in the r direction.

Geodesic field lines are naturally parametrised by σ (proper time) and then from (7) we
have

dr
dσ

=
√

1− Q

where we have replaced ρ by r since there is no confusion here. Then the rate of
expansion in the Ω coordinates can be read off as

(11)
1
r

dr
dσ

=

√
1− Q

r

(r becomes r + δr so the expansion is δr/r per unit length) and in the r direction as

(12)
d
dr

dr
dσ

=
d
dr

(√
1− Q

)
=

−Q′

2
√

1− Q
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where ′ is differentiation wrt r . Notice that the expansion rate in the Ω coordinates
is always positive but in the r coordinate may be negative (ie contraction rather than
expansion). To be precise we have contraction in the r coordinate when Q′ > 0 and
expansion when Q′ < 0.

To get some idea of what this means for particular metrics let’s look in detail at the
special case of the Schwarzschild de Sitter metric where Q is 1− 2M/r − r2/a2 . The
graph of Q is sketched below. Q is zero when r is roughly 2M (the event horizon) and
again when r is roughly a (the cosmological horizon). Q′ is positive up to the critical
radius κ = a

2
3 M

1
3 and negative from there onwards.

1

0 ∼2M κ ∼a

Looking first at the region near the central mass (where r2/a2 << 2M/r) then we have
1− Q ∼ 2M/r and expansion rate in the Ω coordinates of approximately T where

T =
√

2Mr−3/2

and in the r direction of approximately

1
2

(
−2M

r2

)
1√

2M/r
= −1

2
T

which is contraction but at half the rate of the expansion in the other two directions.

We now have to decide what “expansion” should mean when we have both expansion
and contraction. Thinking of a box expanding, if the three coords expand by e1, e2, e3

(ie so that 1 unit becomes 1 + qe1 etc after a small time q) then the volume of the box
is multiplied by (1 + qe1)(1 + qe2)(1 + qe3) and we get a rate of volume expansion of
e1 + e2 + e3 . Applying this to the flat space slices we have rate of expansion (measured
in σ coordinates, ie distance along the geodesics) (3/2)T .

Dividing by the number of space dimensions we can interpret this as an average linear
expansion rate of T/2.

Looking next at the region near the cosmological horizon when the r2/a2 term dominates
we get expansion in all three directions of approximately 1/a which is the average
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expansion and corresponds to an FLRW metric with warping function exp(t/a). In
between these two, there is general interpolating volume expansion with the contraction
direction becoming inoperative at the critical radius.

As explained in detail in [5] following [2], the coordinate singularities where Q = 0 are
both removable and in particular the metric extends past the cosmological horizon and
tends asymptotically to the standard expansive metric on a small modification of de
Sitter space. Using the analysis of Section 1 the flat slices must merge into the unique
pair of spherically-symmetric flat slices for the expansive metric on de Sitter space with
core geodesic corresponding to the path of the central mass. Thus the normal geodesics
merge into the corresponding time-lines and this justifies calling this the “escape” field.

Dually the case ε = −1 gives the “capture” field.

In the Schwarzschild case, the expansion (and contraction) both tend to zero as r →∞
and the normal field tends to a field parallel to the t–axis, ie with outward velocity zero.
So again this is the “escape” field (and the dual field is the “capture” field).

7 Final remarks

As remarked in the introduction it is important not to confuse a static time coordinate
with one providing a coherent time. The Killing coord t in metric (1) does not provide a
coherent time. It provides a coherent coordinate but this IS NOT TIME for an observer
following it. The two are related by Q. An small interval δt in the Killing coord is
experienced as a proper time Q(δt) by an observer on a t–line. This is underlined by
the proposition. The t–coordinate provides a coherent time iff t–lines are geodesic.
This never happens in for example the Schwarzschild-de-Sitter metric.

You can have an observer field with coherent time without space slices being flat, again
by the proposition. All that is needed is that the field is geodesic. Further you can have
flat slices with normal observer field not geodesic and hence not providing a coherent
time. For example any of the metrics (1) with P and Q functions of t but with PQ
not constant. Thus “irrotational” ie having integral normal slices is NOT the same as
providing coherent time. For this you also need geodesic normal field again by the
proposition. This point is often confused in the literature.
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