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Abstract

Existence of an invariant circle for any orientation-preserving 2D map whose
orbit under renormalisation remains forever in a certain bounded subset is proved.
The construction dates back to 1984. It was stimulated by a preprint by David
Rand doing the same for the dissipative case. To include the general case, notably
area-preserving, required a variation on his idea.

1 Background

This paper is based on notes that I wrote in April 1984. They were inspired by a preprint
by David Rand (eventually published as [R]) in which he proved the analogous result for
dissipative annulus maps.

My notes were the starting point for one chapter of the PhD thesis of Nicolai Hoidn
whom I supervised from April to September 1984 (eventually published in [H], under his
pseudonym), but the idea ended up somewhat obscured under technical analysis there.

The idea was reinvented by Andreas Stirnemann [S], who presented it in the frame-
work of iterated function systems. This made the argument very clear. I was not
familiar with the concept back in 1984, but with hindsight one can see it was the right
tool, from Fig. 4.4.2.2 of my (1982) PhD thesis (reprinted in [M]), Rand’s preprint, and
the construction of my notes.

I publish this exposition of my notes now, firstly to put on the record that I had
obtained this general existence result back then and secondly to acknowledge David
Rand’s great influence.

2 Setting

Let (U, T ) be a pair of orientation-preserving diffeomorphisms of domains in R2 to ranges
in R2, which commute on the subset for which both compositions UT, TU are defined.
The basic example is (FR,F ) where F is a lift to R2 of an orientation-preserving degree-
one map of a cylinder T×R to itself (with T = R/Z) (i.e. F (x + 1, y) = F (x, y) + (1, 0))
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and R(x, y) = (x−1, y) is a deck transformation. The maps U, T do not have to preserve
area, nor have twist, but the case with both is the main motivation.

Assumptions

A1. The domains of U and T are assumed to contain a vertical line segment L, without
loss of generality in x = 0, where both compositions UT, TU are defined and such
that U(L) is to the left of L, T (L) to the right of L. The domain of U is assumed
to connect L to T (L). The domain of T is assumed to connect L to U(L). See
Fig. 1.

A2. The horizontal is scaled so that some notion of the horizontal width of the union
of the domains of U and T is 1.

U(L) T(L)domT L domU
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Figure 1: Domains and ranges of U, T .

The map UT−1 takes T (L) to U(L) so the union of the domains of U and T can be
considered to be an annulus cut along this line, and the pair (U, T ) can be considered as
a map of this annulus to an annulus with the same cut, by applying U to points between
L and T (L) and T to points between U(L) and L. For points on L we apply both U and
T , obtaining two different points, but which are identified under UT−1; their images are
the same. Thus we can talk about an orbit segment of a point under (U, T ).
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3 Invariant circles

Say a curve γ is an invariant circle for (U, T ) if it joins U(L) to T (L), crosses L once,
the image by T of its segment from U(L) to L is defined and contained in γ and the
image by U of its segment from L to T (L) is defined and contained in γ. See Fig. 2.
It is called a “circle” because it becomes a circle under the identification of T (L) with
U(L) via UT−1.

T

U
Figure 2: An invariant circle for (U, T ).

An invariant circle has a rotation number ω ∈ [0, 1], which is the fraction of iterations
when U is used.

In my April 1984 notes I restricted attention to the case of golden circles, ω =
√

5−1
2 ,

but I add a section to this paper on the extension to other rotation numbers.

4 Renormalisation

If L has a subinterval L′ and restrictions of the domains for T and TU can be chosen so
that the conditions A1 apply to the pair (TU, T ) then choose a map B of the form

B(x, y) =
(

x

α
,
y

β
− f(x)

)
,

with α, β < 0, taking L to L′ with reversed orientation (thus determining β and f(0)),
and with −1/α chosen to be the horizontal width of the union of the new domains. Then
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the pair
D(U, T ) := (B−1TB,B−1TUB)

satisfies the conditions A1 and A2. Note that B preserves the foliation by verticals. The
function f is chosen to try to keep the domains for D(U, T ) “horizontal”. There are
various recipes for this, e.g. [M], but the choice will not be important here.

Note that γ is a golden circle for (U, T ) iff B−1γ is a golden circle for D(U, T ).
The operator D is called a renormalisation.

5 Construction

Theorem: If (Un, Tn) := Dn(U0, T0) are defined for all n ≥ 0 and lie in the set of (U, T )
satisfying A1, A2 and B1–B6:

B1. |β| ≥ βm > 1;

B2. |α| ≥ αm > 1;

B3. For all y ∈ L, the slopes of the lines from y to U(0, y) and T (0, y) are at most sm

in absolute value;

B4. The derivatives of B and UB map vectors of slope at most sm to vectors of slope
at most sm. For example, the first condition is α

β sm + |αf ′(x)| ≤ sm;

B5. The xx-components of the derivatives of U and T are positive;

B6. The derivative of T multiplies the horizontal component of tangent vectors with
slope less than sm by at least κ > 1/αm;

then (U0, T0) has a golden circle.

Actually, we get in addition that it is an sm-Lipschitz graph and that the dynamics
on it preserves horizontal order and is conjugate to rotation.

The proof requires the following definition (see Fig. 3).

Definition: An orbit segment C for (U, T ) is a cycle if it forms an sm-Lipschitz graph,
considered as a function y over x, and decomposing it into subsets C−, C+ on the left
and right of L respectively (including a point on L in both) then U(C+) is to the left
of T (C−) (with possible overlap only on UT (L) = TU(L)) and U, T preserve horizontal
order applied to C+, C− (ignoring the point which is last in the orbit segment).

Uξ
UT2ξ TUξ=UTξ

ξ
T2Uξ Tξ

Figure 3: A cycle for (U, T ).
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Proof: The sequence of line segments B0 . . . Bn(L), n ∈ Z+, is nested. By B1, it con-
verges to a single point; call it ξ0.

The idea of the proof is that the closure of the orbit of ξ0 under (U0, T0) is the
desired golden circle. This conjecture was already clear to me in 1982, but to prove
it required ideas from David Rand’s preprint (building up ordered Lipschitz sets and
checking no gaps), plus a replacement for his dissipativity condition in the control of
Lipschitz constants.

Given n ≥ 0, let ξn = B−1
n−1 . . . B−1

0 ξ0. It is ξ0 in the n-th coordinate system.
Apply the map (Un, Tn) once to ξn, obtaining an orbit segment Cn

n consisting of the
three points Un(ξn), ξn, Tn(ξn) (by our convention about applying both U and T to
points of L), ordered from left to right. It is sm-Lipschitz by B3. Order-preservation is
trivial because in the definition we chose to ignore the last point (Un(ξn) and Tn(ξn) are
identified).

Thus Cn
n is a cycle for (Un, Tn). Next we use it to make a longer cycle for (Un−1, Tn−1)

and by induction down to (U0, T0).
If Cn

k is a cycle for (Uk, Tk) then we make one for (Uk−1, Tk−1) by taking Bk−1(Cn
k )

to be the rescaled cycle with reversed order of points, and concatenating Uk−1Bk−1(Cn
k ),

Bk−1(Cn
k ). The condition B4 guarantees that the points come in the right order and

form an sm-Lipschitz set. Call it Cn
k−1. Iterating k from n to 1 produces a cycle Cn

0 for
(U0, T0).

Now take n to infinity. The Cn
0 are a nested sequence (Cn

0 ⊂ Cn+1
0 ) so the closure

C∞
0 of their union is an sm-Lipschitz set, invariant under (U0, T0) and of golden rotation

number.
The only obstacle to C∞

0 being an invariant circle is that it might have gaps. If it
has a gap then it lies between a consecutive pair of U0(ξ0), T0U0(ξ0), ξ0, T (ξ0), because
these form a subcycle of C∞

0 . Call its horizontal length `0. If the chosen gap lies between
U0(ξ0), T0U0(ξ0) then take its image by T0 to obtain a gap between either T0U0(ξ0), ξ0 or
ξ0, T (ξ0). By condition B6, its horizontal length is at least κ times that of the first one.
Thus in any case, we have a gap of horizontal length at least κ`0. Now apply B−1

0 to it
to obtain a gap in C∞

1 between ξ1, T1(ξ1) or U1(ξ1), ξ1 respectively. By B2, this gap has
horizontal length `1 at least καm`0. By induction, C∞

n has a gap of horizontal length
at least (καm)n`0. Since καm > 1 this eventually exceeds 1, giving a contradiction,
because the horizontal length between Un(ξn) and Tn(ξn) is of order 1 so there is no
room between them for such a long gap. �

Remark: The sequence of pairs of maps Uk−1Bk−1, Bk−1 forms a (non-autonomous)
iterated function system, of which the invariant circle is the unique pull-back attractor.
Thus any seed suffices to construct it.

Remark: The hypotheses hold for F in an open C3+ε-neighbourhood of integrable area-
preserving twist maps, thus giving a KAM theorem. More importantly, they appear to
hold at the critical fixed point of D (whose existence has finally been proved [AK]), so if
they can be verified rigorously then all maps on its stable manifold under renormalisation
also have a golden circle. This was the main reason for me to develop the idea.
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6 Extension to other rotation numbers

For rotation number ω0 ∈ (0, 1), define its continued fraction sequence a0, a1, . . . by
an = [1/ωn], ωn+1 = 1

ωn
− an. Define renormalisation operators

Da(U, T ) = (B−1TB,B−1T aUB)

for a ≥ 1 on those pairs (U, T ) for which conditions A1 apply to (T aU, T ) (thus the
previous renormalisation D = D1). Then γ is an invariant circle of rotation number ω0

for (U, T ) iff B−1γ is one of rotation number ω1 for Da0(U, T ).
If condition B4 of the Theorem is extended to apply also to T a−1UB, a ≥ 1, then

the construction generalises to prove that if (Un+1, Tn+1) = Dan(Un, Tn) are defined for
all n ≥ 0 and lie in the set satisfying A1, A2 and B1–B6 then (U0, T0) has an invariant
circle of rotation number ω0.

If an grows too fast the hypotheses might fail to hold at the conjectured critical
points of renormalisation or even on a C∞-neighbourhood of integrable area-preserving
twist maps. Certainly there are Liouville numbers for which the latter occurs. But some
growth is permitted, because the B become much more contracting and flattening as a →
∞, compensating for the possible rotation effects of the subsequent composition T a−1U .
In particular, Hoidn showed that in high enough smoothness classes, the approach gives a
KAM theorem for all Diophantine rotation numbers [H], and by considering the effect of
the iterated function system on not just Lipschitz constants but also higher derivatives,
he deduced a high degree of smooth conjugacy to rotation for the invariant circles.
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