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Abstract—Isostatic mounts are used in applications like tele-
scopes and robotics to move and hold part of a structure in a
desired pose relative to the rest, by driving some controls rather
than driving the subsystem directly. To achieve this successfully
requires an understanding of the coupled space of configurations
and controls, and of the singularities of the mapping from the
coupled space to the space of controls. It is crucial to avoid such
singularities because generically they lead to large constraint
forces and internal stresses which can cause distortion. In this
paper we outline design principles for isostatic mount systems
for dynamic structures, with particular emphasis on robots.

Index Terms—Configuration space, linkage, singularity, con-
straint

I. OUTLINE

Our aim is to characterise how to hold and move a linkage
consisting of rods and joints in a unique and smoothly control-
lable configuration without high constraint forces or internal
stresses, via coupling to a set of control variables.

We call such mechanisms “isostatic mounts". The term
seems to be used mainly for vibration isolation (e.g. to hold
mirrors on spacecraft or telescopes for astronomy), but we
consider the constraints to be stiff, leaving to the end some
questions about the effects of compliance. We are primarily
motivated by robotics, for example six-axis robot arms.

The general class of systems under consideration can be
described by:
• a “configuration space" X for the subsystem to be moved

and held; we take X to be a manifold (in simple terms,
this means that for every configuration the set of all
nearby configurations can be described by some number
of local Cartesian coordinates, called the dimension of X ,
denoted dimX); the case of manifold with boundary is
also valid, but to avoid technicalities it is easier to ignore
the boundaries.

• a “control space" Y for the variables under immediate
control; we take Y to be a manifold too.

• a system of constraints that couple the subsystem to the
controls; these limit the full system to a “coupled space"
Z ⊂ X × Y .

The natural maps πX : Z → X and πY : Z → Y take a
configuration of the coupled system to the configuration of
the subsystem and the state of the controls, respectively. See
Fig. 1.

Here are some examples of the types of linkage we consider,
cf. [1], [2], [3]:
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Figure 1. Sketch of the relations between the coupled space Z, control space
Y and subsystem configuration space X , also indicating a singular point z†
of the coupled space (where two branches of Z cross) and a singularity zs of
the map πY (where infinitesimal changes to z ∈ Z do not explore as many
dimensions in Y ).

1) End effector on a 6-axis arm. Then the configuration
space X = R3 × SO(3), representing the position in 3-
space R3 of a marked point on the end effector and the
rotation (SO(3) denotes the set of rotations in 3D) about
the marked point required to bring the end effector into
its orientation from a reference orientation. The control
space Y = T6, a 6-dimensional torus representing the
joint angles of the 6-axis arm, or a subset of T6 to
take into account limits on some of the joint angles or
combinations of them. The coupled space Z is the subset
of X×Y corresponding to the forward kinematics from
Y to X given by assuming the end of the first axis is
fixed to a reference point. Z is a 6-torus, because each
y ∈ Y determines a unique x ∈ X and it varies smoothly
with y.

2) Stewart platform, in which the pose of a hexagonal
platform is controlled by the lengths of 6 legs to its
corners from the corners of a hexagonal base plate,
with universal joints at both ends of each leg. It has
X = R3 × SO(3) again, Y =

∏
i=1...6(`i, Li) corre-

sponding to the allowed range of lengths of the legs,
and Z is the subset of X × Y corresponding to the leg-
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length constraints of Y on X .
3) Two-rod linkage in a vertical plane with one end pivoted

about a fixed point, the other end controlled to move in
the vertical plane; see Fig. 2. The configuration space
X is the set of angles (x1, x2) (forming a 2-torus) and
the control space Y is the set of positions (y1, y2) in the
vertical plane.
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Figure 2. A two-rod linkage in a vertical plane controlled by its free end
(Example 3).

4) Two-axis arm with a rod coming off the second axis
whose intersection with a sphere v21 + v22 + v23 = R2

centred near the top of the first axis can be moved
over the sphere minus a neighbourhood of the downward
axis 1. Then X = T1 × (x−2 , x

+
2 ) where T1 is a circle

representing the angle x1 of joint 1 and x±2 denote the
minimum and maximum angles for joint 2. Y is the
sphere S2 of radius R, minus a neighbourhood of its
lowest point; it can be coordinatised by stereographic
projection from the lowest point onto a plane tangent to
the highest point, or perhaps preferably by (y1, y2) in
the unit disk via vj = 2Ryj

√
1− |y|2 for j = 1, 2 and

v3 = (1− 2|y|2)R. Z is the subset of X × Y satisfying
the constraint that the rod passes through the centre of
the ring; see Fig 3.
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Figure 3. A 2-axis arm controlled by the intersection of a rod from axis 2
with a sphere, showing the use of stereographic projection to coordinatise the
sphere minus the lowest point (Example 4).

5) Two-axis arm contained inside a hollow 2-axis arm,
coupled by a ring fixed in a tube from the second
outer axis through which a rod from the inner second
axis is constrained to pass. Then X = T1 × (x−2 , x

+
2 ),

Y = T1 × (y−2 , y
+
2 ) representing the joint angles of the

outer arm, and Z is the subset of X × Y satisfying the
constraint. See Fig. 4.

Figure 4. A two-axis arm inside a 2-axis exoskeleton, coupled by a rod from
the inner arm passing through a ring in a tube from the outer arm (Example
5).

6) The triple linkage of [4]. It consists of three disks free
to rotate in the horizontal plane about the vertices of
an equilateral triangle, each having a rod attached at
an off-centre pivot, the free ends of the rods being
constrained by attachment together at a floating pivot.
If considered as controlled by the position of the central
floating pivot, then Y = R2. The configuration space
X without the constraint of the central pivot is T6. For
length parameters in the interior of the region I∪G∪M
of Fig. 2 of [4], the coupled space Z is an oriented
surface of genus 3.

We consider only holonomic constraints, meaning restrictions
on configurations, not just on velocities. Thus we exclude
examples like controlling a track ball by rolling a plane over
it.

The design problems to be solved are:
• to achieve a given configuration of the subsystem repeat-

ably by moving the controls,
• to make the configuration depend smoothly on the con-

trols, and
• to ensure that the stresses resulting from the constraints

and external fields like gravity are not excessive.
Mathematically, we would like πY to be a local diffeomor-
phism, so that π−1Y is a locally defined smooth map, and
we would like πX to be smooth, so that the composition
πX ◦π−1Y : Y → X from controls to subsystem configurations
(locally) is smooth.

Two obstructions to the desired behaviour are:
• “singular points" of the coupled space Z: these are

the points of Z which do not have a neighbourhood



3

diffeomorphic to a ball (e.g. z† in Fig. 1). Let Z∗ be the
non-singular points of Z; then each connected component
of Z∗ is a manifold, typically each of the same dimension.
A recent paper on singular points for linkages is [5].

• “singularities" of the map πY : these are the points of
Z∗ at which the rank of the derivative DπY is less than
full, meaning min(dimZ∗,dimY ) (e.g. zs in Fig. 1). We
denote the set of singularities of πY by Σ, and its image
by πY (Σ).

It is important to distinguish these two types of singularity;
to aid in this, we use the term “singular point" for the
first and “singularity" for the second. They should also be
distinguished from “coordinate singularities", points where
a coordinate system is not locally Cartesian, like latitude-
longitude coordinates at the poles.

The main content of the paper is five design principles
for isostatic mount systems for dynamic structures. This is
followed by sections addressing the questions of how to live
with singularities if they can not be avoided, how vibration
frequencies behave near singularities, and some concluding
remarks. The paper is a mix of elementary pedagogy and we
believe original observations.

II. FIVE DESIGN PRINCIPLES

A. Equality constraints

The first design principle is that the constraints should be
equality constraints, not one-sided inequality constraints. Else
πY is typically locally many-to-one and the motion of the
subsystem is typically non-smooth and non-repeatable. Thus
constraints with backlash, for example, are not a good idea.
One-sided constraints might be used in addition to equality
constraints, as safety measures to prevent undesired outcomes
which in principle ought not to happen, but they should not
be expected to achieve reproducible let alone smooth control
if they are ever invoked.

B. Matching the numbers of constraints and degrees of free-
dom

The second design principle is that the number N of
constraints should equal the number of degrees of freedom of
the subsystem (dimX). If there are n fewer constraints than
degrees of freedom (i.e. N = dimX − n) then in general
the set of compatible configurations for fixed control state
is a manifold of dimension n, so the configuration is not
locally uniquely determined by the controls. If there are n
more constraints than degrees of freedom (i.e. N = dimX+n)
then in general there are no compatible configurations, except
on a submanifold of the control space of codimension n,
which means that the span of n directions of control can
not be used; in reality compatible configurations may also be
attained outside this subset but at the expense of imposing
strains, deforming components which are in principle rigid;
the space of deformation modes generated has dimension n
and to such strains will correspond large stresses and large
constraint forces.

The way to count constraints may require some elaboration.
When counted correctly, the number N of constraints governs

dimZ∗ by dimZ∗ = max(dimX + dimY − N, 0) (recall
Z∗ is the non-singular part of Z). Some constraints are two-
dimensional, e.g. that an axis pass through a given point in
3-space, or three-dimensional, e.g. that a point on an axis be a
given point in 3-space. It might also be that some constraints
are not independent of the others, so they should not be
counted. For example, a ring that makes an axis pass through
a given point adds nothing to the count if the axis is clamped
to a fixed base and the given point is on the axis; but if the
given point fails to be exactly on the axis then the effect of
the ring has to be added to the count. Clamping an axis to a
fixed base can itself be regarded as a constraint (of dimension
5 since a point on the axis is fixed in 3-space and the direction
of the axis is fixed on a 2-sphere) and this view would allow
one to compute the forces on the clamp, but for simplicity we
will treat it as fixed.

One might also wish to match the number of constraints
to the number of controls. This is not crucial, however. If
there are more controls than constraints then one can typically
realise a given configuration of the subsystem by a manifold
of control states; there is some redundancy, e.g. if a 7-axis
arm is used to control the (6-dimensional) pose of an end
effector. If there are n more constraints than controls then the
set of configurations of the subsystem that can be realised is
typically a submanifold of X of codimension n, which would
be bad if one wanted to explore all directions in X , but such
a restriction might have a valid purpose, so we do not rule it
out.

C. Coupled space a manifold

The third design principle is that the coupled space Z
for the whole system should be a manifold. Equivalently, it
should have no singular points. Examples of manifolds include
spheres and tori. Examples of topological spaces that are not
manifolds include figure of eight curves, the union of two
intersecting planes, and cones. For theory of manifolds, see
[6]. The problems with a coupled space that is not a manifold
are that:
• from a singular point there may be more than one

direction the subsystem can move for given direction of
controls, and

• the coupled space is likely to undergo qualitative changes
for arbitrarily small changes in design parameters, e.g. a
figure of eight curve can deform into a closed loop or two
closed loops, if thought of as a level curve of a height
function above two dimensions; it is not robust to design
a coupled space with singular points.

In contrast, if the coupled space is defined by a level set of
N smooth functions from X × Y to R whose derivatives
are linearly independent on the whole level set, then it is a
manifold and any C1-small1 change in the functions makes
no qualitative change to it.

One might think that singular points would arise in only
pathological examples of coupled spaces, but they occur in
many idealised linkages, e.g. in Example 5 if no offsets are

1A C1-small function is one whose values and first derivatives are small.
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introduced. Denoting the joint angles of the inner arm by
(x1, x2) and of the outer arm by (y1, y2), the coupled space
Z is {x1 = y1, x2 = y2}∪ {x1 = y1 +π, x2 = −y2}∪ {x2 =
y2 = 0} (we assume −π < x−2 < 0 < x+2 < π and
−π < y−2 < 0 < y+2 < π and so leave out the unphysical
possibility {x2 = y2 = π} because it represents the arms
folding back along themselves; we also assume x2 is not far
from y2, to exclude the unphysical possibility that x2 ≈ y2+π,
in which it is the backward extension of the rod that passes
through the ring). Each of these pieces is a manifold but the
third intersects the first along a circle, and the second along
another circle. These two circles form the set of singular points
of Z. Adding typical offsets, however, makes the coupled
space into a manifold. Examples for some choices of offsets
are shown in Fig. 5.
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Figure 5. Projections onto (δ1, y1, y2) of the coupled space for a 2-axis
arm inside a 2-axis arm with various choices of offsets (Example 5), where
δ1 = x1 − y1 and angles are measured in radians.

It can be seen that as the controls (y1, y2) are varied, x1
tracks y1 quite well (i.e. δ1 is close to 0) except near y2 = 0,

which is where the ideal case (free from offsets) has a curve
of singular points. Near y2 = 0, large excursions of δ1 from 0
occur, except for paths near two special choices of y1 in the
first figure.

Fig. 5 was computed by noting that the two components of
constraint can be written in the form

A+B sinx2 + C cosx2 = 0 (1)
a+ b sinx2 + c cosx2 = 0,

with the coefficients A,B,C, a, b, c being functions of
x1, y1, y2 and various length and offset parameters (in the
manner of Denavit-Hartenberg). Putting t = tan(x2/2), they
become quadratic equations in t:

A(1 + t2) + 2Bt+ C(1− t2) = 0 (2)
a(1 + t2) + 2bt+ c(1− t2) = 0.

One can eliminate t between the two equations, yielding the
single equation

(bC −Bc)2 = (bA−Ba)2 + (Ac− aC)2, (3)

but this includes unphysical configurations with x2 near y2+π
as well as the desired ones with x2 near y2. To select only the
desired ones, we instead solved the first of equations (1) for
the solution t near tan(y2/2):

t =
−B +

√
B2 + C2 −A2

A− C
, (4)

and substituted this into the second equation, obtaining

(bA−Ba+Bc− bC)(−B +
√
B2 + C2 −A2) (5)

= (A− C)(Ca− cA),

whose solution surface in the 3D space of (δ1, y1, y2) was
plotted using Mathematica’s ContourPlot3D command, where
δ1 = x1 − y1.

As another illustration of singular points in a coupled
space, for the triple linkage (Example 6) along the boundaries
between parameter region I ∪G and J or H ∪ F of [4], the
configuration space pinches at three conical points.

Coupled spaces with singular points often fall into a class
of topological spaces called “stratified manifolds". These are
topological spaces with a decomposition into manifolds of
various dimensions, called strata, such that the closure of each
is its union with some strata of lower dimension. Thus for
Example 5 with no offsets, the coupled space is a stratified
manifold, decomposing into 6 annuli and 2 circles, the closure
of each annulus including one or both of the circles. As we
choose to follow design principle 2, however, we have no need
to pursue stratified manifolds further.
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D. Avoid singularities of πY
The fourth design principle is that singularities of the map

πY from the coupled space to the control space should be
avoided. This is well known, e.g. [1], [2], [3], [7], but it is
important to spell it out.

It is not essential to design out singularities of πY , but
positioning and even slow motion control paths should be
chosen to avoid any singularities. This may not always be
possible, however, as the singularities typically separate Z into
pieces between which one might want to pass; how to live with
singularities will be discussed in section III.

We begin with the elementary Example 3. Then X is a
2-torus, which can be parametrised by the angles x1, x2 of
the two rods from the vertical. Y is the vertical plane, and
can be parametrised by horizontal coordinate y1 and vertical
coordinate y2, relative to the fixed pivot. Z can be considered
to be the same as X because each configuration x ∈ X
determines a unique y ∈ Y .

Then the map πY : (x1, x2) 7→ (y1, y2) from the coupled
space to the control space is given by

y1 = `1 sinx1 + `2 sinx2, (6)
y2 = `1 cosx1 + `2 cosx2.

where `1, `2 are the lengths of the two rods (between the
appropriate points). So the derivative DπY is represented by
matrix [

`1 cosx1 `2 cosx2
−`1 sinx1 −`2 sinx2

]
, (7)

its determinant is `1`2 sin(x1 − x2), which is zero if and
only if x1 − x2 ∈ {0, π} modulo 2π. Thus the set Σ of
singularities of πY consists of two circles Σ0 = {x1 = x2}
and Σπ = {x1 = x2 +π} on Z, corresponding respectively to
the fully extended configurations and the doubled-back config-
urations. Σ separates Z into two parts where x1−x2 ∈ (0, π)
or (π, 2π). The image of Σ under πY consists of two circles in
Y bounding an annulus A of accessible control states. To each
interior point of A correspond two compatible configurations
in Z, which merge as the controls go to either boundary of
A. See Fig. 6.

Next we explain what goes wrong near singularities. A
consequence of the second design principle is that dimZ =
dimY , so the derivative DπY is represented by a square
matrix, and we will restrict attention to this case. A square
matrix has full rank if and only if it is invertible. Equivalent
formulations are that it has non-zero determinant or its kernel
is zero. Thus singularities of πY are the places where DπY is
not invertible. Away from singularities, DπY is invertible and
by the implicit function theorem this implies that the controls y
determine a locally unique configuration z(y) of the coupled
system. Furthermore, it depends smoothly on y, and using
the chain rule, the velocity ż of response of the system to a
velocity ẏ of controls is given by2

ż = Dπ−1Y ẏ. (8)

2Note that Dπ−1
Y can be interpreted as either (DπY (z))−1 or

D(π−1
Y )(y), since they are equal.
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πY (Σ0)
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l1 + l2

|l1 - l2|
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Figure 6. The singularities of the map πY from the coupled space Z to the
control space Y for the two-link example 3: (a) the set of singularities form
two circles Σ0,Σπ in Z, (b) the image of Z in Y is an annulus A bounded
by the images of Σ0 and Σπ ; the circle γ is the track of (y1, y2) as x2
makes one revolution at fixed x1 = π/2 (case `2 < `1).

We deduce also that the controls y determine a locally unique
configuration x = πXz(y) of the subsystem, depending
smoothly on y and with velocity

ẋ = DπXDπ
−1
Y ẏ. (9)

In contrast, at a singularity of πY the possible velocities
of control are limited to a subspace of lower dimension than
dimY , because ẏ = DπY ż and DπY does not have full rank.
Thus there is certainly not a smooth local map from controls
to configuration.

The typical situation, known as a “fold singularity", is that
in suitable local coordinate systems for Z and Y centred on
the singularity and its image, πY takes the form

y1 = z21 (10)
yj = zj , j > 1.

Thus locally, only a half-space {y1 ≥ 0} of controls is
accessible, and as y1 approaches 0, two compatible config-
urations with z1 = ±√y1 merge. For constant ẏ1 = −v < 0,
the velocities of these two configurations go to infinity like
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∓v/(2√y1), until y1 hits zero, when it has to stop or else
deform components of the system. Note that the whole set
{z1 = 0} in these coordinates consists of singularities of the
same form. It is called a “fold curve", thinking of the case
where Y and Z have two dimensions, but the same term is
used in higher dimensions too.

In control spaces of dimension greater than 1 one is likely
to come across more complicated types of singularity than just
folds. These are typically singularities at which several fold
curves meet in a non-trivial way. The simplest example is a
“cusp singularity", around which coordinates can be chosen
so that

y1 = z31 − z2z1 (11)
yj = zj , j > 1.

Then two fold curves z2 = 3z21 for z1 6= 0 join in a way that
their images in Y form a semi-cubic cusp y1 = −2z31 , y2 =
3z21 (parametrised by z1) or 27y21 = 4y32 . For controls in the
region between the images of the two fold curves there are
locally three compatible configurations; two of these merge at
the fold curve and annihilate each other, leaving just one on
the other side; all three configurations merge as the controls
approach the cusp point.

For an introduction to singularity theory, see [8] and for a
definitive survey, see [9].

A second problem with singularities of πY is that static
forces are typically infinite there. Let us start by considering
just the control forces. These are the forces F conjugate to
the control variables y, required to maintain the system in
equilibrium against all other forces G, like gravity and static
friction. The forces F are measured in units such that the work
they do by an infinitesimal displacement δy in the controls
is the scalar product FT δy (where superscript T denotes
transpose). Thus conjugate to a linear displacement is a linear
force, conjugate to an angular displacement is a torque, and so
on. Similarly for G with respect to changes in configuration δz.
Then the principle of virtual work leads to the force balance
equation:

GT = −FTDπY . (12)

It follows that away from singularities of πY , bounded forces
G can be balanced by bounded control forces F . At singular-
ities of πY , however, there are directions of forces G which
can not be balanced by any finite control force F , and as one
approaches a singularity, typically F goes to infinity.

The two-link system Example 3 provides a simple illustra-
tion. Under gravitational force given by the negative gradient
of the potential

V =
1

2
m1`1g cosx1 +m2g(`1 cosx1 +

1

2
`2 cosx2), (13)

the equilibrium control force has to be

F1 =
(m1 +m2)g sinx1 sinx2

2 sin(x1 − x2)
(14)

F2 =
( 1
2m1 +m2)g sinx1 cosx2 − 1

2m2g sinx2 cosx1

sin(x1 − x2)
,

for which the radial component goes to infinity as x1−x2 goes
to 0 or π (except at x1, x2 ∈ {0, π}). This is why washing
lines break if you try to pull them straight.

The problem with forces going to infinity is not only for
control forces but also most internal forces in the system,
in particular the forces on the constraints that couple the
controls to the subsystem. A simple way to extend the analysis
to compute the (equal and opposite) internal forces at some
location is to imagine disconnecting the system there, aug-
menting the control space Y by additional control variables
measuring the displacement between the disconnected parts
(which could be a linear displacement in 3D to find an internal
linear force or an angular displacement to find an internal
torque or bending force). Then Z is also augmented by the
effect of this displacement, and πY is augmented. The effect
on DπY at undisplaced configurations is to augment its matrix
by adding blocks in the following form:

DπY =

[
A A′

0 I

]
(15)

where A is the original matrix for DπY , A′ is a matrix
representing how the new displacements affect the configu-
ration, 0 is a matrix of zeroes, and I the identity matrix
of dimension corresponding to the new displacements. The
static force balance equation (12) with F,G augmented to
(F, F ′), (G,G′) gives G′T = −FTA′ − F ′T and hence

F ′
T

= −FTA′ −G′T . (16)

Thus as F goes to infinity at a singularity, so typically does
F ′, the only exception being if A′T happens to give zero in
the direction of F .

Thus most internal forces typically go to infinity at singular-
ities. As an illustration, we compute the linear force at the joint
between rods 1 and 2 of the 2-link example 3. In this case,
disconnecting the joint by a displacement (u1, u2) the matrix
A′ is the identity, and the potential energy is augmented by
m2gu2, so G′

T
= (0,−m2g) and F ′

T
= −FT + (0,m2g),

which goes to infinity at the singularities in the same way as
F .

A standard example of computation of singularities is for
the control of a 6-axis arm of “321 structure" by motion of its
end effector [10]. The first axis is assumed to be clamped to a
fixed base plate. The subsystem configuration space X is a 6-
torus representing the joint angles xj , j = 1 . . . 6 of the 6 axes
(or that part of the 6-torus that can be achieved without steric
hindrance). The control space Y is the set of accessible poses
(positions and attitudes) of an end-effector; it is 6-dimensional
(three coordinates for position of a reference point on the
end effector and three coordinates for its attitude) and can be
written as R3×SO(3). The coupled space Z is essentially the
same 6-torus as X , because the end effector is attached rigidly
to the sixth axis. The joint angles determine the end effector
pose, but not necessarily vice versa. For example, there are
end effector poses for which some of the axes can spin round
freely. The mapping πY from the coupled space to R3×SO(3)
has detDπY = −dhl2l3s3s5, where lj are arm lengths, sj are
the sines of the joint angles xj and dh = s2l2+sin(x2+x3)l3
is the horizontal distance in the arm plane from axis 1 to
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the wrist. Thus the singularities of πY correspond to three
situations:
• x3 = 0 “arm-extended singularity" (x3 = π is excluded

by steric hindrance)
• x5 = 0 “wrist-extended singularity" (x5 = π is excluded)
• dh = 0 “wrist-above-shoulder singularity": the wrist

centre lies on the first axis
With offsets or other designs, the singularities move and are
in general more complicated to compute. Considerable energy
and ingenuity has gone into designs with smaller singularity
set. But some singularities are unavoidable: configurations of
maximum reach for a given point on the end effector are
always singularities, so there will always be a corresponding
5-dimensional singularity set.

The roles of X and Y are usually inverted in most treat-
ments of this example: the controls Y are taken to be the
6 joint angles and the end effector is the subsystem X to be
controlled (as in Example 1). Then there are no singularities of
πY , because Z is just the same 6-torus as Y with the implied
end effector poses added on. So what has singularities in that
interpretation is πX . They do not cause any infinite velocities
or forces, but they do restrict the range of achievable velocities
in X , by (9). A way they could be construed as giving infinite
velocities is if a desired motion of the end effector is specified
(e.g. to scan with a laser measurement head) and πX is singular
somewhere along the path then to attain the desired motion
will require infinite control velocity there (and typically the
motion will be unrealisable thereafter).

Example 4 provides an illuminating illustration where the
effects of all offsets can be analysed. Recall that it is a 2-
axis arm with control of the point at which an end-effector
(which we call axis 3, though no rotation takes place about it)
passes through a sphere. If all is “ideal" (rotational symmetry
of control sphere about axis 1, axes 1 and 3 perpendicular to
axis 2, all three axes intersecting in a common point), then
rank of DπY is lost if and only if x2 = 0 or π; let us ignore
the latter as unrealisable. The singularity set Σ is a circle
(parametrised by x1) and its image in the control space is
a single point (vertical). If one introduces offsets, the circle of
singularities moves a little, and its image in control space may
change qualitatively. The simplest form of offset, displacing
axis 3 by distance ` along axis 2 from axis 1 but keeping right
angles between axis 2 and the other two, preserves rotational
symmetry about axis 1 and turns πY (Σ) into a circle about
the vertical; the disc it surrounds has no preimages. This is
the case also for all choices of offset preserving rotational
symmetry about axis 1 (i.e. for which axis 1 passes through
the centre of the sphere), except those special combinations for
which the radius of the circle is zero. Breaking the rotational
symmetry a little deforms the circle but makes no qualitative
change. We had thought that breaking rotational symmetry
from cases where the image of Σ was just the vertical point
might produce more complicated image sets, like the 4-cusped
“astroid" of [11], but it appears not to.

E. Keep norm of inverse matrix moderate
The fifth principle is that the constraints should act in direc-

tions where the effects of configuration change are significant.

More formally, they should be chosen to make Dπ−1Y bounded
by a not too large constant (with respect to suitable norms on
tangent spaces to the control and coupled spaces), or operation
should be restricted to a domain where this holds. This is
because even if singularities of πY are avoided, many of the
bad things that happen at singularities also happen when Dπ−1Y
is large (large forces and velocities).

III. HOW TO LIVE WITH SINGULARITIES

Notwithstanding the above principles, there may be systems
for which it is infeasible to avoid singularities.

The set Σ of singularities is typically of codimension one
in the coupled space Z, so may separate Z into more than one
component. If applications of the device require to pass from
one component of Z \Σ (the set of points of Z which are not
in Σ) then one has to cross Σ (we suppose Z is connected).

First we address the question whether one really needs to
pass from one component of Z \ Σ to another. Take the two-
axis example 4. Z is a two-torus, generated by angles x1, x2,
and Σ consists of the sets x2 = 0 or π (corresponding to
the rod pointing vertically up or down). Thus if crossing
singularities is forbidden we are stuck in x2 ∈ (0, π) or
(−π, 0), whereas the upper management might wish to be able
to say one can use the device to go from positive to negative
values of x2. The same effect on (y1, y2) can be achieved,
however, by reducing x2 to a small positive value, rotating
x1 by π and then increasing x2 again. So apart from having
to program a more complicated path, nothing is lost here by
requiring singularities to be avoided.

Nevertheless, in more complicated devices it may indeed be
infeasible to avoid singularities, so we address the question of
how to traverse them safely.

To keep velocities bounded, it suffices to move the controls
tangentially to the image of the singularity set whenever it
is required to cross a singularity. This strategy requires the
controller to have a good knowledge of the singularity set or
some automatic detection system that feels where it is when
it gets close. Unfortunately, this strategy does not solve the
problem of infinite forces at singularities.

To solve the problems of infinite forces and velocities
simultaneously, one solution is to use inertia to take the system
across singularities. This has the defect that one can not stop
at (or near) a singularity, but at least allows one to explore all
components of Z \ Σ. The dynamics of a general system is
given by (e.g. [2])

Mij(z)z̈j + Γijkżj żk = Gi (17)

where Mij is the inertia matrix (in general configuration-
dependent) which gives the kinetic energy by the expression
1
2 ż
TMż, Γijk are the Christoffel symbols, expressions in the

derivatives of M which represent generalisations of centripetal
acceleration, and G represents all the tangential forces, in-
cluding the effects of control forces and frictional forces. The
inertia matrix M is assumed to be positive definite everywhere,
corresponding to the physically natural condition of positivity
of kinetic energy (else an additional type of singularity is
encountered: configurations at which M loses rank). At singu-
larities of πY , the contribution of some directions of control
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force F may go to zero (by the formula GT = −FTDπY ),
but if ż is transverse to Σ and M is non-degenerate then the
equation of motion carries the system from one side of Σ to
the other with no untoward effects.

There are two requirements to make this work. One is that
the transverse speed be large compared with the ratio of forces
to mass: then the acceleration term dominates the equation of
motion up to the scale of distances from Σ of order the ratio
of Γ to M and takes the system across Σ with small change
in velocity. The other is that one must apply control forces,
not attempt to control the state directly. This may be a major
change from standard engineering practice, where for example
it is hard to find a motor that produces a desired torque as a
function of time but easy to find one that produces a desired
angular speed as a function of time.

We propose that the first three design principles should still
be respected.

IV. VIBRATION FREQUENCIES

One important further question is how the natural frequen-
cies of vibration of the device vary if its parts are compliant
instead of perfectly rigid. In particular, it is important to
keep them above some lower limit, else all but the slowest
motion of the system may excite large vibrations (see the
theory of normally elliptic slow manifolds, e.g. [12]). To
compute the natural frequencies of vibration about a given
configuration does not require the full dynamics. It is enough
(in the frictionless case) to know the kinetic energy K for
all velocities (but now of all flexible degrees of freedom,
including compliance of the controls) and the second variation
δ2V of the potential energy with respect to all infinitesimal
deformations q. Then the square of the minimum frequency
ωmin of vibration is given by minimising δ2V (q) subject to
K(q) = 1. Really friction should be included and then the
eigenvalues of the linearised motion have negative real parts
as well.

The aspect we address here is how the frequencies might
vary near singularities. In particular, any lack of stiffness
in the controls has an exaggerated effect on the system
near singularities. The control forces F induce an effective
tangential force FTA to Z, where A = DπY . We deduce that
a stiffness matrix −∂Fi

∂yj
= kij contributes the terms

−Fj
∂2yj
∂zi∂zk

+ kjmAmkAji. (18)

to the stiffness matrix −∂Gi

∂zk
for the full tangential forces.

So the effect of k, which a priori was large, is softened
in the null direction of A, leaving only a residual stiffness
from a constrained version of the second derivative of the
potential, for example. Thus we see yet another reason to avoid
singularities of πY .

V. CONCLUSION

Five design principles have been formulated for isostatic
mounts of dynamic structures, and they have been illustrated
by a range of examples. The distinction between singular
points of the coupled space and singularities of the projection

to control space has been emphasised. The need to avoid
both has been explained. Consequences for design and motion
planning have been elaborated.

Two issues we have not addressed here are existence and
uniqueness of configuration for given control state. There are
several directions in which these questions can be studied but
we leave them for future work.
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