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1 Introduction

A variety of stochastic dynamic systems can be modelled as Markov processes
on networks. Examples include the system of ion channels through a cell mem-
brane [2], spread of disease in an orchard [10], the system of checkout queues
at a supermarket, and probabilistic cellular automata models of “subgrid”
weather [16]. In each case one wants to know how the behaviour depends on
parameters. This can aid understanding, prediction, control and design.

The first aspect to investigate for such a system is its stationary probability
measures (existence and uniqueness), and the second is whether and how fast
they attract other initial probability measures. My interest here is how the
answers depend on parameters. These questions are well studied for general
Markov processes, e.g. [11], but the specifics that arise for processes on large
networks seem not to have been adequately addressed.

For this paper, a network is a countable (finite or countably infinite) set S
with a local state space Xs for each “site” s ∈ S. Each local state space carries
a metric ds; if Xs is discrete and no metric is specified, take the discrete metric
ds(xs, x

′
s) = 1 for all xs 6= x′s. A Markov process on a network is a discrete-

or continuous-time Markov process on the product space X =
∏

s∈S Xs. The
discrete-time case includes probabilistic cellular automata (PCA, [18, 12]), and
the continuous-time case includes interacting particle systems (IPS, e.g. [13]).

States of X are denoted x = (xs)s∈S . The set of probability measures
on X is denoted P(X) (more precisely, the Borel probability measures with
respect to product topology on X). For questions about spatial correlations
(cf. [7]), S should be endowed with a metric and the transition rates for a
given site chosen to depend weakly on the states of distant sites, but that
topic is deferred to a later paper.

Recall (e.g. [17]) that for a Markov process with discrete-time transition
matrix P (or operator if the Xs are not discrete) the stationary probability
measures are those ρ ∈ P(X) satisfying ρP = ρ. For a continuous-time Markov
process with transition rate matrix (or operator) Q, they are the solutions of
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ρQ = 0. A stationary probability measure exists under very general conditions.
Uniqueness holds under more restricted conditions, for example if the state
space is finite and has a single communicating component (the communicating
components of a Markov process are the maximal subsets of the state space
such that it is possible to go from any state of the subset to any other one). In
particular, uniqueness does not hold for systems with non-trivial conservation
laws, like diffusion processes; although there might be a unique stationary
measure on a subset of fixed conserved quantities, such a subset does not
have the form of a product over the network.

It might appear that the existence, uniqueness and attraction rate of the
stationary probability measure ρ is just a question of linear algebra, but when
one asks how fast ρ moves with parameters of the model, it becomes a question
of analysis, i.e. it depends on metrics on P(X).

There are many metrics on spaces of probability measures, e.g. [9]. Most
are unsuitable for large networks, however, because they assign a relatively
large distance between probability distributions that one would like to regard
as close. For example, “total variation convergence essentially never occurs for
particle systems” (p.70 of [13]). The reader who is not aware there is a problem
is invited to jump ahead to Section 2 and return here when convinced.

If the Xs are complete separable metric spaces (“Polish spaces”) and

Ω := sup
s∈S

diam Xs

is finite, I suggest that a useful metric on P(X) for large networks is defined
by taking the worst case of the difference of expectations of a class of functions
relative to a semi-norm of Dobrushin’s [5]. These ingredients have been used
widely, e.g. [12, 13, 14], but that they make a useful metric seems not to have
been remarked. Specifically, for ρ, σ ∈ P(X), let

D(ρ, σ) = sup
f∈F\C

ρ(f)− σ(f)
‖f‖F

, (1)

where F is the space of continuous (with respect to product topology on X)
functions f : X → R with finite

‖f‖F =
∑
s∈S

∆s(f), (2)

∆s(f) = sup{f(x)− f(x′)
ds(xs, x′s)

: xr = x′r ∀r 6= s, xs 6= x′s}, (3)

C denotes the constant functions, and for a measure µ, µ(f) =
∫

f dµ.
The supremum in (1) is finite, indeed at most Ω, because

ρ(f)− σ(f) ≤ sup
x

f(x)− inf
y

f(y) ≤
∑
s∈S

∆s(f) diam Xs ≤ ‖f‖F Ω.
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The bounds can be approached arbitrarily closely by choosing s ∈ S such
that diam Xs is close to Ω, points 0s, 1s ∈ Xs for which ds(0s, 1s) is close to
diam Xs, probability measures ρ, σ concentrated on states with xs = 1s, 0s,
respectively, and f(x) = ds(xs, 0s); so P(X) has diameter Ω. Since ‖ ‖F

is a semi-norm, vanishing only on constants, and the functions f ∈ F are
continuous with respect to product topology, then D is a metric on P(X).

Equation (2) defines a norm on the space F mod C of equivalence classes
of functions in F modulo addition of constants. F mod C can be thought of
as a space of “local” Lipschitz functions (no proximity of the sites s on which
∆s(f) is non-small is imposed, but continuity of f in product topology forces
it to depend negligibly on sites outside some bounded region). Equation (1)
induces the dual norm on the space Z(X) of “zero-charge” measures on X,
i.e. measures µ such that µ(c) = 0 for constant functions c, by:

‖µ‖Z = sup
f∈F\C

µ(f)
‖f‖F

. (4)

The space Z(X) is complete with respect to ‖ ‖Z because the dual of a
normed space is always complete. P(X) is complete with respect to D, because
homeomorphic to a closed subset of Z(X), using that the Xs are Polish. Often
I’ll drop (X).

For linear maps L on Z, like the restriction of P to Z, write

‖L‖Z = sup
µ∈Z\0

‖µL‖Z
‖µ‖Z

.

Often I drop the subscript Z, but remember the norm refers to the restriction
of the operator to Z. Such a map L can be considered as acting on f ∈
F mod C: Lf is the unique g ∈ F mod C such that µ(g) = (µL)(f) for
all µ ∈ Z. This gives a convenient way to estimate the size of L: ‖L‖Z ≤
‖L‖F := supf∈F\C ‖Lf‖/‖f‖, because for all µ ∈ Z and f ∈ F with Lf /∈ C,
µLf
‖f‖ ≤

µLf
‖Lf‖

‖Lf‖
‖f‖ ≤ ‖µ‖‖L‖F . Actually, ‖L‖Z = ‖L‖F by choosing a sequence

of µ to approach equality in µLf ≤ ‖µ‖‖Lf‖, but we will not need this.
The metric (1) on P(X) permits the following two theorems, which are the

main results of this paper. The first says that under suitable assumptions the
stationary probability measure of a family of Markov processes on networks
depends smoothly on parameters, uniformly in the size of the network. To
save space, attention is restricted here to the discrete-time case, but there are
directly analogous statements and proofs for the continuous-time case.

Theorem 1. (a) If discrete-time Markov transition matrix P0 has unique sta-
tionary probability measure ρ0, the restriction of I−P0 to Z is invertible, K :=
‖(I − P0)−1‖Z < ∞, δ := ‖P − P0‖Z < 1/K and β := ‖ρ0(P − P0)‖Z < ∞,
then P has unique stationary probability measure ρ,

‖ρ− ρ0‖ ≤
β

K−1 − δ
,
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and (I − P ) is invertible on Z with ‖(I − P )−1‖Z ≤ (K−1 − δ)−1.
(b) If Pλ is a family of Markov transition matrices depending continuously on
parameters λ in a manifold M , and satisfies the conditions of (a) at λ0, then
there is a unique stationary probability measure ρλ for all λ in an open set
Λ ⊂ M containing all λ with ‖Pλ − P0‖ < 1/K, ρλ varies continuously with
λ on Λ, and I − Pλ does not have bounded inverse on Z for λ ∈ ∂Λ.
(c) If Pλ varies C1 with λ then so does ρλ on Λ, and

dρ

dλ
= ρ

dP

dλ
(I − P )−1

Z .

Definitions of continuous and C1 dependence of a Markov process on param-
eters will be given at the appropriate points in Section 3.

The second main result of this paper is that if a stationary probability
measure attracts exponentially then the rate of attraction does not decrease
significantly on small change of parameters.

Definition 1. For a discrete-time Markov process with transition matrix P ,
a stationary probability measure ρ attracts exponentially with factor r < 1 if
there is a prefactor C ∈ R such that D(σPn, ρ) ≤ CrnD(σ, ρ) ∀n ≥ 0 for all
σ close enough to ρ in P(X).

Theorem 2. If ρ0 is stationary for discrete-time transition matrix P0 and
attracts exponentially with factor r < 1 and prefactor C then for all P with
δ := ‖P − P0‖Z < 1−r

C its stationary measure ρ attracts exponentially with
factor at most r + Cδ and the same prefactor.

Section 2 shows why various standard metrics on P(X) are not suitable.
Section 3 proves Theorem 1. Section 4 proves Theorem 2. Section 5 gives some
examples of application of the results, and Section 6 summarises and poses
some problems for the future.

2 Standard metrics on spaces of probabilities

To see why there is a need for a metric like (1), let S = {1, . . . , N}, Xs = {0, 1}
for each s ∈ S, and for λ ∈ [0, 1] let pλ be Bernoulli(1−λ, λ), i.e. the product
of identical independent distributions with pλ(xs = 1) = λ for all s ∈ S.
One can think of pλ as the stationary probability measure for a discrete-

time Markov process with independent transition matrices Ps =
[

1− λ λ
1− λ λ

]
or continuous-time Markov process with independent transition rate matrices

Qs =
[
−λ λ

1− λ λ− 1

]
. Let us evaluate the speed v of change of pλ with respect

to λ for some standard metrics D on P(X), i.e. v = limε→0 D(pλ, pλ+ε)/ε.
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The total variation metric is defined by

DV (ρ, σ) = sup
A⊂X

ρ(A)− σ(A)

over measurable subsets A. If ρ and σ are absolutely continuous with respect to
some reference measure µ this can equivalently be written as 1

2

∫
| dρ
dµ −

dσ
dµ | dµ,

where dρ
dµ is the Radon-Nikodym derivative, so the total variation metric is

half the L1 distance between the densities (some authors move the factor of
2 into DV ). For ε > 0, DV (pλ+ε, pλ) is attained by the event

n1

n0
>
− log(1− ε/(1− λ))

log(1 + ε/λ)
,

where nj is the number of sites with state j = 0, 1. In the limit ε → 0 this
event is n1 > Nλ, so the central limit theorem on pλ′(n1 > Nλ) yields

v ∼

√
N

2πλ(1− λ)
,

which grows like
√

N , whereas diam P(X) in total variation metric is only 1.
The relative entropy (Kullback-Leibler divergence) of ρ from σ is

h(ρ|σ) =
∑
x∈X

ρ(x) log
ρ(x)
σ(x)

in the discrete case (assuming ρ(x) = 0 whenever σ(x) = 0, with interpretation
0 log 0

0 = 0), or
∫

dσ(x)φ( dρ
dσ (x)) with φ(t) = t log t, t ≥ 0 for ρ absolutely

continuous with respect to σ. It is non-negative with equality iff ρ = σ, but is
not symmetric, and even its symmetrisation h(ρ|σ) + h(σ|ρ) does not satisfy
the triangle inequality in general. Nevertheless,

D(ρ, σ) =

√
h

(
ρ|ρ + σ

2

)
+ h

(
σ|ρ + σ

2

)
is a metric on P(X) [8] (the argument of the square root is known as the
Jeffreys divergence or twice the Jensen-Shannon divergence). Now h(pλ|(pλ +
pλ+ε)/2) is the expectation of − log( 1

2 + 1
2 (1+ ε

λ )n(1− ε
1−λ )N−n) with respect

to the binomial distribution Binomial(N,λ) for n. Expanding to second order
and taking the expectation gives Nε2

8λ(1−λ) + O(ε3). Thus

v =

√
N

4λ(1− λ)
,

so grows like
√

N again, whereas diam P(X) in this metric is
√

2 log 2.
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The Hellinger metric for a discrete space is

D(ρ, σ) =
√∑

x∈X

(
√

ρ(x)−
√

σ(x))2,

or more generally for probabilities absolutely continuous with respect to a
reference measure µ,

D(ρ, σ) =

√√√√∫
dµ

(√
dρ

dµ
−

√
dσ

dµ

)2

.

For the family pλ, this gives speed v =
√

N
λ(1−λ) , whereas diam P(X) =

√
2.

The projective metric [3] is defined on P+(X) only, the set of positive
probabilities. For discrete state spaces it is

D(ρ, σ) = sup
x∈X

log
ρ(x)
σ(x)

− inf
y∈X

log
ρ(y)
σ(y)

,

and for mutually absolutely continuous probabilities on infinite state spaces
replace ρ(x)

σ(x) by dρ
dσ (x). For ε > 0, D(pλ+ε, pλ) is attained by xs = 1, ys = 0

for all s ∈ S, and evaluates to N(log(1 + ε
λ )− log(1− ε

1−λ )), so

v =
N

λ(1− λ)
.

With respect to this metric, P+(X) has infinite diameter, so one might propose
dividing the metric by N to obtain a speed uniform in N . This scaled metric,
however, would give distance of order only 1/N for a change at a single site
in a product distribution, and it does not extend to an infinite network.

Finally, I consider the transportation metric [19] (due to Monge in Eu-
clidean space, shown to be a metric in general by Kantorovich, rediscovered
successively by Vasserstein and Hutchinson). Although not itself suitable, it
is a necessary concept for making the general class of examples in Section 5.
It requires the underlying space to be a metric space (X, d) and is defined on
P(X) by

DT (ρ, σ) = inf
τ

∫
d(x, x′) τ(dx, dx′)

over probability measures τ on X × X with marginals ρ and σ (there are
variants with other “cost” functions than d(x, x′)). Such τ are called “join-
ings” of the two probability distributions [15] (most probabilists call them
“couplings”, but “coupling” already has many other meanings); the infimum
is attained and those which realise it are called “optimal joinings”. DT can
also be written as

DT (ρ, σ) = sup
f∈L\C

ρ(f)− σ(f)
‖f‖L

, (5)
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where L is the space of Lipschitz functions f : X → R, C is the constant
functions, and ‖f‖L = supx6=x′

f(x)−f(x′)
d(x,x′) , the best Lipschitz constant. For the

discrete metric, DT = DV , so DT can be seen as a generalisation of the total
variation metric to take into account the distance one measure has to be moved
to turn it into the other. The transportation metric is essentially the dual
norm on the space of zero-charge measures Z(X), to the Lipschitz norm on
F mod C. The diameter of P(X) is precisely the diameter of X. Specialising to
a product of metric spaces X =

∏
s∈S Xs, one can endow it (or at least subsets

for which the following are finite) with the `1 metric d(x, x′) =
∑

s∈S ds(xs, x
′
s)

or the `∞ metric d(x, x′) = sups∈S d(xs, x
′
s) (or other choices). Each choice

induces a transportation metric on P(X), equivalently norm ‖ ‖Kp on Z for

p = 1,∞. For the `∞ metric on X, DT = DV , so v ∼
√

N
2πλ(1−λ) again

and diam P(X) = Ω. With respect to the `1 metric on X, optimal transport
between two Bernoulli distributions can be achieved by optimal transport of
the associated binomial distributions with respect to the standard metric on
{0, . . . , N}; this is achieved by moving the difference between their cumulative
distributions up by 1 (as in a formula of Kolmogorov), giving exact answer
DT (pλ, pλ+ε) = Nε, so v = N . The diameter of P(X) is

∑
s∈S diam Xs,

which grows like N if all Xs have similar diameter, so one could divide the
`1 norm by N (cf. Ornstein’s d̄ metric [15]) to make v = 1 and diam P(X)
roughly independent of N , but this metric would not give enough weight to
localised changes, nor extend to one for infinite networks.

So we see that already for the simple example of a one-parameter family of
Bernoulli distributions, none of the above metrics give a speed of parameter
dependence uniform in the network size, unless one scales them, but then
either the diameter of the space of probabilities goes to 0 as the network size
goes to infinity or the metric does not give much weight to localised changes
or fails to extend to infinite networks.

In contrast, for the metric (1), the supremum for D(pλ, pλ+ε) is realised
by f = n1, the number of 1s; pλ(n1) = Nλ, ∆s(n1) = 1, so ‖n1‖ = N
and D(pλ, pλ+ε) = |ε|; thus v = 1 independently of N . The metric gives
diam P(X) = Ω, it pays attention to localised changes, and it extends to a
metric on infinite networks.

An alternative is to use metric D(ρ, σ) = supΛ DV (ρΛ, σΛ)/|Λ| over non-
empty finite subsets Λ, where |Λ| is its size and ρΛ and σΛ are the marginals
of ρ, σ on Λ. I proposed this in 1999, but to obtain results like Theorems 1 and
2 with it I had to introduce a second norm using a reference Markov process,
which complicated the picture, so I switched to (1) when I came across the
semi-norm (2) in [12] and realised that its dual would work nicely.
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3 Proof of Theorem 1

Proof (Theorem 1(a)). Given a solution ρ0 for P0, the equation ρP = ρ for
ρ ∈ P(X) can be rewritten as

(ρ− ρ0)(I − P0) = ρ(P − P0), (6)

with both ρ− ρ0 and ρ(P − P0) in Z. By hypothesis, Z := (I − P0)−1 exists
on Z and is bounded, so the solutions of (6) are precisely the fixed points of
the map T : ρ 7→ ρ0 + ρ∆Z on P, where ∆ = P − P0. For ‖∆Z‖Z < 1, T is
a contraction on P. Since ‖∆Z‖ ≤ ‖∆‖‖Z‖ = Kδ, δ < 1/K suffices. Then T
has the unique fixed point

ρ = ρ0

∑
n≥0

(∆Z)n (7)

(the sum converges because the partial sums are a Cauchy sequence and P(X)
is complete). The change in ρ is

ρ− ρ0 = ρ0∆Z
∑
n≥0

(∆Z)n, (8)

which is bounded by

‖ρ− ρ0‖ ≤
‖ρ0∆‖‖Z‖
1− ‖∆Z‖

≤ β

K−1 − δ
, (9)

as claimed. The formula (I − P )−1 = Z
∑

n≥0(∆Z)n provides an inverse for
I−P on Z whenever ‖∆Z‖ < 1. In particular I−P is invertible for δ < K−1,
and then ‖(I − P )−1‖ ≤ (K−1 − δ)−1. �

Before proving parts (b) and (c), precise definitions of continuous and C1

dependence of a discrete-time Markov process on parameters are introduced.

Definition 2. Pλ depends continuously on λ at λ0 ∈ M if ‖Pλ − Pλ0‖Z → 0
as λ → λ0, and for all ρ ∈ P(X), ‖ρ(Pλ − Pλ0)‖Z → 0 as λ → λ0.

Note that it is enough to check the second condition at a single ρ0 because
‖ρ(P − P0)‖ ≤ ‖ρ0(P − P0)‖+ ‖(ρ− ρ0)(P − P0)‖, of which the second term
is bounded by ‖ρ− ρ0‖‖P − P0‖.

Proof (Theorem 1(b)). If Pλ depends continuously on λ then (9) establishes
continuity of ρλ at λ0. The same is true at any λ for which (I − P )−1 has
bounded inverse. Since this is an open property, we obtain the open set Λ
with unique and continuously dependent stationary measure, and the absence
of a bounded inverse for any λ on its boundary. �
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Definition 3. Pλ depends C1 on λ in a differentiable manifold M if (i) there
exists P ′λ : P(X)×TλM → Z such that ‖Pλ+ε−Pλ−P ′λε‖Z = o(|ε|) as |ε| → 0
for tangent vectors ε to M , in a local chart for M , (ii) for all ρ ∈ P(X) then
‖ρPλ+ε − ρPλ − ρP ′λε‖Z = o(|ε|), and (iii) P ′ depends continuously on λ in
the sense of Definition 2 extended to maps from P(X)× TM → Z.

Proof (Theorem 1(c)). If Pλ depends C1 on λ then ∆ := Pλ+ε − Pλ = P ′ε +
o(ε) and (6) shows that ρλ is differentiable at λ0 with derivative

dρ

dλ
= ρ

dP

dλ
(I − P )−1

Z , (10)

and hence at any λ for which I − P on Z is invertible, as claimed. To prove
the derivative is continuous, first note that

(I − P )−1 − (I − P0)−1 = Z
∑
n≥1

(∆Z)n,

so is bounded by Kδ
K−1−δ , which proves continuity of (I−P )−1

Z . Then continuity
of dρ

dλ follows from continuity of the terms out of which (10) is composed. �

4 Proof of Theorem 2

Proof (Theorem 2). Given r < 1, C ≥ 1 such that ‖Pn
0 ‖ ≤ Crn ∀n ≥ 0,

introduce an adapted norm on Z:

‖µ‖r = sup
n≥0

‖µPn
0 ‖r−n.

It is equivalent to the original norm:

‖µ‖ ≤ ‖µ‖r ≤ C‖µ‖, (11)

and it is contracted by P0:

‖µP0‖r = sup
n≥0

‖µPn+1
0 ‖r−n ≤ r‖µ‖r.

From (11), for any linear operator P on Z we have ‖P‖ ≤ C‖P‖r and ‖P‖r ≤
C‖P‖. Then ‖P − P0‖ = δ implies ‖P − P0‖r ≤ Cδ, so ‖P‖r ≤ r + Cδ. So
‖Pn‖r ≤ (r + Cδ)n and hence ‖Pn‖ ≤ C(r + Cδ)n. The factor r + Cδ is close
to r for δ small enough, and the prefactor has not changed. �

A similar proof can be done in continuous time, with respect to the fol-
lowing definition.

Definition 4. For a continuous-time Markov process with rate matrix Q, a
stationary measure ρ attracts exponentially with rate κ > 0 if there is a
prefactor C ∈ R such that D(eQtσ, ρ) ≤ Ce−κt for all close enough σ to ρ.
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Note that in both discrete and continuous time the prefactor C ≥ 1 because
the case n = 0 or t = 0 is included. To make the factor r or rate κ unique, one
could take the infimum of such r or supremum of such κ, but the prefactor C
might go to infinity there, so I prefer not to. Also if D comes from a norm on
Z there is no need to restrict σ to be close to ρ.

Existence of an exponentially attracting stationary measure (with some
technical extra conditions) is known as “geometric ergodicity” by probabilists.
Ergodic theorists would say an exponentially attracting stationary measure is
“exponentially mixing”.

For example, for finite state Markov processes, exponentially attracting
stationary measure holds in continuous-time as soon as there is a unique
communicating component. In discrete-time it holds if in addition the unique
communicating component is aperiodic, i.e. there exists T ∈ N such that it is
possible to go from any state to any state in the same time T . These results
are often proved by showing that P or eQ is a contraction in total variation
metric (an approach of Dobrushin, e.g. [4]), or projective metric [3].

5 Examples

The theory applies to several relevant classes of example. They include fami-
lies of exponentially ergodic PCA such as kinetic Ising models, Toom’s voter
model, and directed percolation, in the regimes of unique stationary measure.

Definition 5. A PCA with independent transition probability measures pr(x)
for the state at site r ∈ S at time n + 1 as functions of the state x of the
whole network at time n is weakly dependent if there is a dependency matrix
k = (krs)r,s∈S of non-negative reals such that (i) for all r, s ∈ S and states
x, x′ with xt = x′t for all t 6= s,

DTr (pr(x), pr(x′)) ≤ krsds(xs, x
′
s), (12)

where DTr is transportation metric on P(Xr), and (ii) there is C ≥ 1, γ ∈
[0, 1) such that for all n ≥ 0, ‖kn‖∞ ≤ Cγn (where ‖k‖∞ = supr∈S

∑
s∈S krs).

If the Xs carry discrete metric, then (12) reduces to DVr
(pr(x), pr(x′)) ≤ krs.

The usual definition (e.g. [14]) requires only ‖k‖∞ < 1, but extending to
(ii) allows more cases. In particular, one can start from uncoupled Markov
chains with strong dependence on initial state provided they mix with uniform
bounds, and then couple them weakly. A more or less equivalent alternative to
(ii) is to assume there is some matrix norm such that ‖k‖ < 1 [6], but factors
of network size can enter this approach unless it is chosen to be an operator
norm, uniform in network size.

Definition 6. A family of weakly dependent PCA with transition probability
measures pr(x, λ) for updating the state on site r given state x and parameter
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value λ depends continuously on parameters if there is a function g such that
DTr (pr(x, λ), pr(x, λ′)) ≤ g(λ, λ′) → 0 as λ′ → λ and for all r, s ∈ S, states
x, x′ which differ only on site s and functions f : Xr → R,

(pr(x′, λ′)− pr(x, λ′)− pr(x′, λ) + pr(x, λ))(f) ≤ g(λ, λ′)krsds(xs, x
′
s)‖f‖Lr .

For lack of space, I don’t formulate the C1 or continuous-time cases here.

Theorem 3. If P is the transition matrix for a weakly dependent PCA then
it is an eventual contraction in metric (1).

Proof. As in [14], for x, x′ agreeing off s ∈ S, let τr, r ∈ S, be an optimal
joining for pr(x) and pr(x′). Given f ∈ F , Pf(x)− Pf(x′)

=
∫

(f(ξ)− f(ξ′))
∏
r∈S

τr(dξr, dξ′r) ≤
∑
r∈S

∫
∆r(f)dr(ξr, ξ

′
r)τr(dξr, dξ′r)

=
∑

r

∆r(f)DTr (pr(x), pr(x′)) ≤
∑

r

∆r(f)krsds(xs, x
′
s).

So ∆s(Pf) ≤
∑

r∈S ∆r(f)krs. Let ∆(f) = (∆s(f))s∈S and ≤ the component-
wise partial order on RS , then ∆(Pf) ≤ ∆(f)k, and iteration yields ∆(Pnf) ≤
∆(f)kn for all n ≥ 0. Summing over components gives ‖Pnf‖ ≤ ‖kn‖∞‖f‖ ≤
Cγn‖f‖. So ‖Pn‖Z ≤ Cγn. Thus P is an eventual contraction of P, so has a
unique fixed point ρ0 and ρ0 attracts exponentially.

∑
n≥0 Pn < ∞ provides

an inverse for I − P and shows that ‖(I − P )−1‖ ≤ 1 + Cγ
1−γ . �

Theorem 4. For a family Pλ of weakly dependent PCA depending continu-
ously on λ, and any λ0 (sometimes shortened to 0), then ‖ρ0(Pλ − P0)‖ and
‖Pλ − P0‖ go to zero as λ → λ0.

Proof. Given f ∈ F , ρ0(Pλ − P0)f ≤ supx∈X((Pλ − P0)f)(x). Given x ∈ X,
take optimal joinings τr of pr(x, λ) with pr(x, λ0) for r ∈ S. Then

(Pλ − P0)f(x) =
∫

(f(ξ)− f(ξ′))
∏
r

τr(dξ, dξ′) (13)

≤
∑

r

∆r(f)DTr (pr(x, λ), pr(x, λ0)) ≤ g(λ, λ0)‖f‖.

Next, for x, x′ agreeing off site s, by the last assumption of Definition 6,

(Pλ − P0)f(x)− (Pλ − P0)f(x′) ≤
∑

r

g(λ, λ0)krsds(xs, x
′
s)∆r(f).

So ∆s((Pλ − P0)f) ≤
∑

r g∆r(f)krs, and ‖(Pλ − P0)f‖ ≤ g‖k‖∞‖f‖. �

Thus Theorems 1 and 2 apply to any continuous family Pλ of weakly
dependent PCAs.
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Theorem 2 leads to bounds for mixing time which are uniform in system
size. Given a Markov process on X with exponentially attracting stationary
probability measure ρ for a metric D on P, and ε > 0, the mixing time N(ε)
is the minimum N such that D(σPn, ρ) ≤ ε for all n ≥ N and σ ∈ P (beware
of an additional factor of system size that is sometimes quoted in mixing time
estimates, e.g. [6]). Then ‖Pn‖ ≤ Crn implies that N ≤ log ε/CΩ′

log r , where
Ω′ = diam P. In metric (1), Ω′ = Ω, so if Ω is uniform in N I obtain mixing
time uniform in the size of the network. Contrast [6], which uses total variation
metric and thus the best achieved there is logarithmic in the size.

In both discrete and continuous time, the results apply to more than
just the standard type of PCA or IPS with independent updates of different
sites. For example, the Markov transitions can involve simultaneous correlated
change in state at a group of sites, as occurs in reaction-diffusion models.

6 Conclusion and Problems for the future

In summary, metric (1) provides a good way to measure the rates at which
a stationary probability measure for a Markov process on a large network
changes with parameters and attracts other initial probability measures.

Here is a list of some problems for the future:

• Spatial and spatio-temporal correlations of the stationary measure (these
will follow from spatial hypotheses on the dependency matrix, via [1]).

• How to design a PCA to achieve desired spatiotemporal statistics.
• Generic ways that ‖(I − P )−1‖Z can go to infinity.
• Case of a level set of conserved quantities for a system with conservation

laws? No obvious analogue because for example for particles diffusing on a
lattice the relaxation to equilibrium is a power law in time, not exponential.

• Continuation of the set of stationary probability measures, or more gen-
erally space-time Gibbs measures, when there is more than one.

• Continuation of other spectral projections for Markov processes.
• Computational methods for stationary measures of large networks.
• Control of Markov processes on large networks.
• Convergence estimates for Markov chain Monte Carlo methods for multi-

variate probabilities.

I am grateful to Wolfgang Loehr for pointing out some errors in the version
in the proceedings of ECCS’07, which have been corrected here.
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