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Introduction

Magnetic fields

Charged particle motion



Introduction: Preamble

I Ideal if you know exterior calculus and Hamiltonian dynamics

I But I’ll summarise essentials

I Not necessary to know any physics



DT fusion

I from wikipedia

2g D + 3g T per hour makes 470MW power.

I D from sea-water (1 in 5000 D:H). Breed T from Li blanket:

n+6Li → T+4He+4.8MeV , n+7Li+2.5MeV → T+4He+n.

Get Li from rocks or sea-water (95% 7Li).



Sustained fusion

I Requires Lawson product nT τE ≥ 3× 1021keV s m−3 for
T ≈ 14keV (160MK ), where n = electron number density,
T = ion temperature, τE = energy confinement time (for
charged particles).

I Unavoidable energy loss by EM radiation, but slow if no high
Z impurities.

I Most important to confine the charged particles, and after
that to reduce their transfer of kinetic energy.



Confinement schemes

I Various ideas, e.g.

1The global fusion industry in 2023 

The global fusion 
industry in 2023 
Fusion Companies Survey by the 
Fusion Industry Association



Magnetic confinement
I At the envisaged conditions, gases are fully ionised: a plasma

of ions (nuclei) & electrons.

I Aim to confine particles by magnetic field. Progress so far:

I Q is ratio of power-out to power-in. Ignition is Q =∞.

I This module will be about mathematics of confinement of
charged particles by magnetic fields.

I Motion of charged particles creates magnetic fields, so in
principle have to solve confinement self-consistently, but will
largely restrict attention to given magnetic fields.



Magnetic fields: Different faces
I Three ways to view a magnetic field:

1. A volume-preserving 3D vector field B. Write Ω for volume-
form, then B volume-preserving is LBΩ = 0, i.e. diBΩ = 0. By
Stokes’ theorem, if S is a closed surface bounding a volume
then

∫
S
iBΩ = 0. Require this also for closed surfaces S that

do not bound a volume, e.g. boundaries of T 2 × I .
2. A closed 2-form β = iBΩ, which gives the magnetic flux

∫
S
β

through any surface S . Again, strengthen the definition from
closed (dβ = 0) to exact, i.e. β = dα for some 1-form α.
Given a Riemannian metric g , can define a vector field A by
g(v ,A) = ivα for all vectors v , called a vector potential for B.
Can write A = α] or α = A[.

3. A 1-form B[, defined by ivB
[ = g(v ,B) for all vectors v . This

view relates B to electric current density J = curlB (in units
with µ0 = 1): iJΩ = dB[.

I In coordinates x i , B =
∑

i B
i∂xi , β = J

∑
B idx j ∧ dxk over cyclic

permutations of 123, where J = Ω(∂x1 , ∂x2 , ∂x3 ), B[ =
∑

i Bidx
i

and Bi = gijB
j where gij = g(∂x i , ∂x j ). Components are called: B i

contravariant, Bi covariant, B(i) = B i |∂x i | physical.



Crash course in exterior calculus
I Two views of a vector field on a smooth manifold:

1. Field of tangent vectors v , representing velocities of paramet-
rised curves. Induces a local flow φ by d

dtφt(x) = v(φt(x)).
2. Linear operator Lv on smooth functions f , satisfying Leibniz

rule Lv (fg) = (Lv f )g + fLvg . Relation Lv f (x0) = d
dt f (x(t))|t=0

for smooth curves x with x(0) = x0, ẋ(0) = v(x0).
I A differential k-form ω is an antisymmetric k-linear map from

tangent space at each point to R. It can be integrated over a
smooth k-surface S to give a scalar

∫
S
ω.

I For vector field X and k-form ω, iXω is the (k − 1)-form given by
inserting X as the first argument.

I For function f , derivative Df is a 1-form df . Note Lv f = ivdf .
I For k-form ω, dω is (k + 1)-form s.t.

∫
V
dω =

∫
∂V
ω

∀ (k + 1)-volumes V . As ∂∂V = ∅, d2 = 0.
I Pushforward h∗u of a vector u by a diffeo h is the derivative of h(x)

as x moves with velocity u, i.e. h∗u = Dh u. Pullback of a k-form ω
is h∗ω(v1, ...vk) = ω(h∗v1, ...h∗vk). Extend Lv to k-forms ω by
d
dtφ
∗
t ω|t=0. On forms, Lv = ivd + div .

I RS MacKay, Differential forms for plasma physics, J Plasma
Phys 86 (2020) 925860101



Some more
I A volume-form is a non-degenerate top-dimensional form Ω.

A form ω is non-degenerate if ivω = 0 =⇒ v = 0.
I A Riemannian metric is a positive-definite symmetric

covariant 2-tensor g . It induces a norm |v | =
√
g(v , v) on

vectors v , and on covectors |λ| =
√
g(λ], λ]). Also, for any

function f , g induces vector field ∇f = (df )].
I Say Ω is compatible with g if Ω(v1, .., vn)2 = det[g(vi , vj)].
I For k-form α and l-form β, α ∧ β(v1, . . . vk+l) =∑

π∈Sh(k,l) επα(vπ(1)..vπ(k))β(vπ(k+1)..vπ(k+l)), where Sh(k, l)
(shuffles) is the set of permutations of {1, ..k + l} such that
π(1) < .. < π(k) and π(k + 1) < .. < π(k + l).

I In 3D, cross-product u × v of vectors is defined by
(u × v)[ = iv iuΩ. For compatible Ω, iu×vΩ = u[ ∧ v [.

I Commutator [u, v ] of vector fields is defined by
L[u,v ] = LuLv −LvLu. Equivalently, [u, v ] = Luv = d

dtφ
u∗
t v|t=0.

I R.S.MacKay, Use of Stokes’ theorem for plasma confinement,
Phil Trans Roy Soc A 378 (2020) 20190519



Charged particle motion
I Treat classically: Lorentz force F = ev × B on charge e with

velocity v . Momentum p = mv [, Newton’s law dp
dt = F [.

I In constant field B = |B|ẑ :
1. v z = cst, qz(t) = qz(0) + v z t.
2. mv̇ x = ev y |B|, mv̇ y = −ev x |B|, so horizontal velocity rotates,

v(t) = RΩtv(0), with “gyrofrequency” Ω = −e|B|/m.
3. Then position q(t) = Q(t) + ρ(t), with Q(t) = Q(0) + v z ẑ t

(“guiding centre”), ρ(t) = RΩtρ(0), ρ = v×b
Ω (“gyroradius

vector”), where b = B
|B| .

I In general field, define ρ = v×b
Ω , Q = q − ρ, v‖ = v · b and

seek evolution of Q, ρ, v‖.

B

e-



Hamiltonian formulation

I In canonical coordinates (qi , pi ), q̇i = ∂H
∂pi
, ṗi = − ∂H

∂qi
.

I For one particle in magnetic field, choose a vector potential A,
and let p = mq̇[ + eA[(q), H(q, p) = 1

2m |p − eA[(q)|2.

I Better to use symplectic formulation. A Hamiltonian system is
a vector field X on a manifold M such that iXω = dH for
some function H : M → R and symplectic form ω on M

I A symplectic form is a non-degenerate closed 2-form; implies
dimM = 2n even, n is called number of degrees of freedom
(DoF).



Example

I M = T ∗Q, the cotangent bundle of a manifold Q. Can write
a cotangent as (q, p) where q ∈ Q and p is a covector at q,
i.e. a linear map TqQ → R.

I Let π : T ∗Q → Q be the natural map.

I T ∗Q has a natural 1-form α defined by α(v) = p(π∗v). So it
has a natural symplectic form ω = −dα.

I In any local coordinate system qi for Q, can choose
associated coordinates for p so that p(q̇) =

∑
i pi q̇

i . Then
α =

∑
i pidq

i and ω =
∑

i dq
i ∧ dpi .

I A simple mechanical system on T ∗Q is defined by this ω and
H(q, p) = 1

2 |p|
2 + V (q) with respect to some Riemannian

metric on Q (which incorporates masses and moments of
inertia). Produces ∇q̇q̇ = −∇V (q).



Charged particle Hamiltonian

I For one particle of charge e, mass m, in (Q3, g) with magnetic
flux form β, take ω = −dα− eπ∗β on T ∗Q and H = 1

2m |p|
2.

I Equations of motion are given by solving
ω((q̇, ṗ), (ξq, ξp)) = 1

m ip]ξp for all ξ ∈ T (T ∗Q).

I In Euclidean case and Cartesian coordinates, this gives
q̇i = pi

m , so p = mq̇[, and −ṗξq − eβ(q̇, ξq) = 0 for all ξq, so

using β(q̇, ξq) = Ω(B, q̇, ξq), we get ṗ = e(q̇ × B)[.



Advantages of symplectic formulation

I H is conserved along X : iXdH = iX iXω = 0 by antisymmetry

I ω is conserved along X : LXω = iXdω + diXω = 0 + d2H = 0;
hence Poincaré invariant

∫
D ω is conserved for any disk D

flowing with X , which has many consequences (see later).

I and ...



Continuous symmetry leads to conservation & reduction
I Say vector field u on M is a continuous symmetry of

Hamiltonian system (H, ω) if LuH = 0, Luω = 0.

I Theorem [Noether]: If Hamiltonian system (H, ω) has a
continuous symmetry u then it conserves a local function K .

I Proof: dω = 0 so diuω = 0, so u is locally Hamiltonian,
i.e. iuω = dK for some local function K (Poincaré lemma).
iXdK = iX iuω = −iudH = 0, so K is conserved by X .

I Often K is global, e.g. if H1(M) is spanned by closed trajectories γ
of the set of vector fields of the form au + bX for functions a, b (or
by asymptotic cycles), because

∫
γ
iuω =

∫
iuω(au + bX ) dt =∫

ω(u, au) + ω(u, bX ) dt =
∫

0− b dH(u) dt = 0. So can reduce to
level sets K−1(k).

I Also, iudK = 0, and [u,X ] = 0 because ω non-degenerate and
i[X ,u]ω = iXLuω − Lu iXω = 0− LudH = dLuH = 0. So if orbit-space
of flow φu on K−1(k) is a manifold then can quotient by φu to
reduce the dynamics on K−1(k) by one more dimension.

I The resulting vector field is Hamiltonian with respect to the

reductions of ω and H.



Poincaré lemma

I Theorem: If a k-form (k ≥ 1) β is closed on a contractible
open subset U of a manifold then β = dα for some
(k − 1)-form α on U.

I Proof: U contractible implies there is a vector field X on U
with forward flow φ that maps U into itself and φtU contracts
to a point as t →∞. Define α = −

∫∞
0 iXφ

∗
tβ dt. Then

dα = −
∫∞

0 diXφ
∗
tβ dt = −

∫∞
0 LXφ

∗
tβ − iXdφ

∗
tβ dt =

−
∫∞

0 ∂tφ
∗
tβ dt +

∫∞
0 iXφ

∗
tdβ dt. The second integral is 0

because dβ = 0. The first is the change φ∗0β − φ∗∞β = β.

I Converse of Noether theorem: if XH conserves a function K
(or iXH

α = 0 for a closed 1-form α), then XK is a cts
symmetry of (H, ω).

I Proof: XK is defined by iXK
ω = dK (or α). So

LXK
H = iXK

dH = iXK
iXH
ω = −iXH

iXK
ω = −iXH

dK = 0. And
LXK

ω = diXK
ω = ddK = 0.



Example: Charged particle in axisymmetric field
I Let ω = −dα− eβ, H = 1

2m |p|
2, D = R3 \ {r = 0} in cylindrical

coordinates (r , φ, z), u lift to T ∗D of ∂φ = r φ̂.

I Choose coordinates (pr , pφ, pz) so that α =
∑

i pidq
i . Then

Luα = 0, and H = 1
2m (p2

r + r−2p2
φ + p2

z ) so LuH = 0.

I Say B is axisymmetric if Luβ = 0. Then Luω = 0 so Noether gives a
conserved quantity.

I First, Luβ = 0 =⇒ diuβ = 0, so iuβ = dψ for some local function
ψ on D. D contains a closed orbit of u so ψ is global. iudψ = 0 so
ψ independent of φ. Ω(∂r , ∂φ, ∂z) = r and iu iBΩ = dψ imply
B r = 1

r ∂zψ,B
z = − 1

r ∂rψ. Magnetic flux
∫
S
iBΩ through any

annulus S spanning two u-circles is 2π[ψ], so ψ is called poloidal
flux function.

I Note β = r(Bφdz ∧ dr + B rdφ ∧ dz + Bzdr ∧ dφ), so dβ = 0
implies Bφ independent of φ.

I Then iuω = dpφ − e dψ = dL with L = pφ − eψ. So L is conserved.

Reduced system: H = 1
2m (p2

r + p2
z + (L+eψ)2

r2 ),
ω = dr ∧ dpr + dz ∧ dpz + erBφdr ∧ dz .

I Note pφ = rp(φ), rB
φ = B(φ).



continued

I If ψ/r grows with (r − r0, z) then get confinement by
|L + eψ| ≤

√
2mH r . Starting principle of “tokamak”.

I e.g. ψ = (r2 − 1)2 + 1
2 (3 + r2)z2; contours of

(L+eψ)2

e2r2 = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6 for L
e = −0.6, 0,+0.6:
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I But requires current density
J(φ) = rJφ = 1

r ∂
2
zψ + ∂r ( 1

r ∂rψ) = 3
r + 9r in the plasma, which

needs driving and promotes instabilities.



Guiding-centre motion

I Approximate symmetry of a Hamiltonian system leads to an
“adiabatic invariant” and approximate reduced system.

I If B(x(t)) seen by the particle changes by a factor at most ε

small during one gyroperiod T = 2π
Ω (Ω = − e|B|

m ) then have
approximate symmetry by rotation of the gyroradius vector
about guiding centre.

I Verification: (i) Define Q, ρ, p‖ from q, p by q = Q + ρ,

ρ · b = 0, p] = eB(Q)× ρ+ p‖b(Q). This can be solved for
Q, ρ, p‖ if B changes slowly in distance |p||B|/e. Choose
slowly varying frame for ρ, b. Let u = (0, 0, 0,−ρ2, ρ1, 0).
Then H = 1

2m (p2
‖ + e2|B(Q)|2|ρ|2) is (exactly) u-invariant.



(ii) Luω

I For ω = −dα− eβ: write B for |B(Q)|.
α =

∑
i pidq

i = eB(ρ2(dQ1 +dρ1)−ρ1(dQ2 +dρ2)) +p‖dQ3.

I So dα = eB(dρ2 ∧ dQ1 − dρ1 ∧ dQ2 − 2dρ1 ∧ dρ2) + dp‖ ∧
dQ3 + edB ∧ (ρ2(dQ1 + dρ1)− ρ1(dQ2 + dρ2)). Then
iudα = eB(ρ1dQ1 + ρ2dQ2 + d |ρ|2) + e|ρ|2dB. So
Ludα = eB(dρ1∧dQ1 +dρ2∧dQ2) + edB ∧ (ρ1dQ1 +ρ2dQ2).
Second term is O(ε).

I Or compute Luα = eB(ρ1dQ1 + ρ2dQ2) and take dLuα.

I β = |B(Q + ρ)|d(Q1 + ρ1) ∧ d(Q2 + ρ2). So
iuβ = −|B(Q + ρ)|(ρ1dQ1 + ρ2dQ2 + ρ1dρ1 + ρ2dρ2). Then
Luβ = −|B(Q)|(dρ1 ∧ dQ1 + dρ2 ∧ dQ2) + O(ε).

I So Luω = O(ε).



Adiabatic invariant

I Treating u as an approximate symmetry, get approximate
conserved quantity K from iuω ≈ dK . From above,
iuω ≈ −e|B|(ρ1dρ1 + ρ2dρ2) = − e

2 |B|d |ρ|
2, so take

K = − e
2 |B||ρ|

2.

I Conventional to write K = −m
e µ with “magnetic moment”

µ = e2

2m |B||ρ|
2 = m|v⊥|2

2|B| .

I This makes µ an adiabatic invariant: ∀k > 0 ∃ε0 > 0 such
that for ε < ε0 the change in µ during any time-interval of
length ≤ T/ε is at most k.

I Theory of adiabatic invariants shows that for C r system, there
is an asymptotic series for a circle action u(ε) (gyro-rotation
being the first term) and associated µ(ε) with first term µ,
such that truncating at the r th term, the errors are O(εr ).



Approximate reduced system
I H(Q, p‖) = 1

2mp2
‖ + µ|B(Q)|, and

ω = −d(p‖b
[)− eβ = b[ ∧ dp‖ − p‖db

[ − eiBΩ. Let c = curl b, so

icΩ = db[, then ω = b[ ∧ dp‖ − eiB̃Ω with B̃ = B +
p‖
e c .

I Equations of motion: i(Q̇,ṗ‖)ω = dH says

i(Q̇,ṗ‖)(b
[ ∧ dp‖ − eiB̃Ω) =

p‖
m dp‖ + µd |B|. Apply to (0, δp‖):

Q̇‖ = p‖/m. (1)

Apply to (ξ, 0): e(B̃ × Q̇) · ξ = ξ · (µ∇|B|+ ṗ‖b), so

eB̃ × Q̇ = µ∇|B|+ ṗ‖b. (2)

The case ξ = B̃ gives (avoiding B̃ · b = 0)

ṗ‖ = −µ B̃ · ∇|B|
B̃ · b

. (3)

Lastly, take b×(2) and use (1):

Q̇ =
1

B̃ · b

(µ
e
b ×∇|B|+

p‖
m

B̃
)
. (4)

I (3,4): the (first-order) guiding-centre equations in Hamiltonian form.



Things to note

I If |B| has a well with minimax Bw then it confines particles
with H ≤ µBw ; but does not help for small µ.

I µ is (up to a scaling) the Poincaré invariant of the disk
spanned by a gyro-orbit:

∫
D ω = −e|B|π|ρ|2.

I The parallel motion sees a force roughly −µb · ∇|B|.
I There are small perpendicular drifts roughly µ

e|B|b ×∇⊥|B|
and p2

‖b ×
κ
me , where κ = ∇bb is the curvature vector of the

fieldline (from c in B̃ and c⊥ = b × κ).

I Higher-order approximate symmetries produce higher-order
GC Hamiltonian systems.



GC motion in axisymmetric field

I Recall FGCM H = 1
2mp2

‖ + µ|B(Q)|, ω = −d(p‖b
[)− eβ.

I Recall B axisymmetric means Luβ = 0 for u = ∂φ in
cylindrical coordinates. Note this implies Lu|B| = 0 and
Lub

[ = 0 too, because u is an isometry (Lug = 0).

I Proof: First, LuΩ = 0 so i[B,u]Ω = iBLuΩ− Lu iBΩ = 0, so

[u,B] = 0. Second, Lug = 0 and B[ = iBg imply
LuB

[ = Lu iBg = iBLug − i[B,u]g = 0 (identity is true even
though g is not antisymmetric). Then
2|B|Lu|B| = Lu iBB

[ = iBLuB
[ − i[B,u]B

[ = 0, so Lu|B| = 0.

Last, LuB
[ = Lu(|B|b[) = (Lu|B|)b[ + |B|Lub[, so Lub

[ = 0.

I Lift u to U = (∂φ, 0) on (Q, p‖). Thus LUH = 0 and
LUω = 0. So U is a continuous symmetry, iUω = dL for some
local function L, and L is conserved. Compute
iUd(p‖b

[) = LU(p‖b
[)− d(p‖iub

[). Use iub
[ = bφ = rb(φ).

Recall iuβ = dψ. So L = rb(φ)p‖ − eψ (not same as before).

I A Hamiltonian system reducible to 1DoF is called integrable.



Reduced system
I Quotient by U to reduce to 1DoF in (r , z):

H = 1
2m

(
L+eψ
rb(φ)

)2
+ µ|B|(r , z) and ω = eB(φ)dr ∧ dz .

I Can write |B| =
√

r−2|∇ψ|2 + B2
(φ) and b(φ) = B(φ)/|B|.

I If choose ψ and B(φ) to make H have a local minimum for
each L and µ then the corresponding particles are confined.
Full principle of tokamak. Confines more particles.

I Example: Solov’ev equilibrium B(φ) = I (ψ)/r , I 2 = I 2
0 − 2Eψ,

ψ = (Dr2 − C )2 + 1
2 (E + (F − 8D2)r2)z2 in 0 ≤ ψ ≤ p0/F ,

with E ,F ,C ,D, p0 > 0, 2Ep0 ≤ I 2
0 F (p = p0 − Fψ).

I Contours of H for given L, µ; note the banana orbit.



Currents
I Note rJz = ∂r (rB(φ)), rJ r = −∂z(rB(φ)), so can achieve a

strong B(φ) = Ix
2πr from external poloidal current Ix , making

small gyroradius for desired energies.
I But bounded contours of H require a local max or min for ψ,

and so current J(φ) = rJφ = 1
r ∂

2
zψ + ∂r ( 1

r ∂rψ) in the plasma.
I There are some natural currents in a plasma, in particular

“diamagnetic” current J⊥ = B ×∇p/|B|2 to make MHS
J × B = ∇p. It contributes little to J(φ), but in general is not
divergence-free: divJ⊥ = −|B|−2J⊥ · ∇|B|2.

I So it is accompanied by a parallel current J‖b s.t.

B · ∇ J‖
|B| = −divJ⊥ (a magnetic differential equation that

restricts B). Contributions include a “bootstrap” current,
driven by friction between circulating electrons and those on
bananas, which could provide much of the required J(φ).

I But still need some current drive, and toroidal current
promotes dangerous instabilities.

I So can one do better than a tokamak?
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