Mathematics for Fusion Power part 1

R.S.MacKay

February 28, 2024

Introduction

Magnetic fields

Charged particle motion

Introduction: Preamble

- Ideal if you know exterior calculus and Hamiltonian dynamics
- But I'll summarise essentials
- Not necessary to know any physics

DT fusion

- from wikipedia

$2 \mathrm{~g} D+3 \mathrm{~g} T$ per hour makes 470MW power.
- D from sea-water (1 in $5000 \mathrm{D}: \mathrm{H}$). Breed T from Li blanket:
$n+{ }^{6} \mathrm{Li} \rightarrow T+{ }^{4} \mathrm{He}+4.8 \mathrm{MeV}, \quad n+{ }^{7} \mathrm{Li}+2.5 \mathrm{MeV} \rightarrow T+{ }^{4} \mathrm{He}+n$.
Get $L i$ from rocks or sea-water $\left(95 \%{ }^{7} L i\right)$.

Sustained fusion

- Requires Lawson product $n T \tau_{E} \geq 3 \times 10^{21} \mathrm{keV} \mathrm{s} \mathrm{m}{ }^{-3}$ for $T \approx 14 \mathrm{keV}(160 \mathrm{MK})$, where $n=$ electron number density, $T=$ ion temperature, $\tau_{E}=$ energy confinement time (for charged particles).

- Unavoidable energy loss by EM radiation, but slow if no high Z impurities.
- Most important to confine the charged particles, and after that to reduce their transfer of kinetic energy.

Confinement schemes

- Various ideas, e.g.

FUSION
 INDUSTRY ASSOCIATION
 The global fusion industry in 2023

Fusion Companies Survey by the Fusion Industry Association.

Magnetic confinement

- At the envisaged conditions, gases are fully ionised: a plasma of ions (nuclei) \& electrons.
- Aim to confine particles by magnetic field. Progress so far:

- Q is ratio of power-out to power-in. Ignition is $Q=\infty$.
- This module will be about mathematics of confinement of charged particles by magnetic fields.
- Motion of charged particles creates magnetic fields, so in principle have to solve confinement self-consistently, but will largely restrict attention to given magnetic fields.

Magnetic fields: Different faces

- Three ways to view a magnetic field:

1. A volume-preserving 3 D vector field B. Write Ω for volumeform, then B volume-preserving is $L_{B} \Omega=0$, i.e. $\operatorname{di}_{B} \Omega=0$. By Stokes' theorem, if S is a closed surface bounding a volume then $\int_{S} i_{B} \Omega=0$. Require this also for closed surfaces S that do not bound a volume, e.g. boundaries of $T^{2} \times I$.
2. A closed 2-form $\beta=i_{B} \Omega$, which gives the magnetic flux $\int_{S} \beta$ through any surface S. Again, strengthen the definition from closed $(d \beta=0)$ to exact, i.e. $\beta=d \alpha$ for some 1-form α. Given a Riemannian metric g, can define a vector field A by $g(v, A)=i_{v} \alpha$ for all vectors v, called a vector potential for B. Can write $A=\alpha^{\sharp}$ or $\alpha=A^{b}$.
3. A 1-form B^{b}, defined by $i_{v} B^{b}=g(v, B)$ for all vectors v. This view relates B to electric current density $J=\operatorname{curl} B$ (in units with $\mu_{0}=1$): $i, \Omega=d B^{b}$.

- In coordinates $x^{i}, B=\sum_{i} B^{i} \partial_{x_{i}}, \beta=\mathcal{J} \sum B^{i} d x^{j} \wedge d x^{k}$ over cyclic permutations of 123 , where $\mathcal{J}=\Omega\left(\partial_{x^{1}}, \partial_{x^{2}}, \partial_{x^{3}}\right), B^{b}=\sum_{i} B_{i} d x^{i}$ and $B_{i}=g_{i j} B^{j}$ where $g_{i j}=g\left(\partial_{x^{i}}, \partial_{x^{j}}\right)$. Components are called: B^{i} contravariant, B_{i} covariant, $B_{(i)}=B^{i}\left|\partial_{x^{i}}\right|$ physical.

Crash course in exterior calculus

- Two views of a vector field on a smooth manifold:

1. Field of tangent vectors v, representing velocities of parametrised curves. Induces a local flow ϕ by $\frac{d}{d t} \phi_{t}(x)=v\left(\phi_{t}(x)\right)$.
2. Linear operator L_{v} on smooth functions f, satisfying Leibniz rule $L_{v}(f g)=\left(L_{v} f\right) g+f L_{v} g$. Relation $L_{v} f\left(x_{0}\right)=\frac{d}{d t} f(x(t))_{\mid t=0}$ for smooth curves x with $x(0)=x_{0}, \dot{x}(0)=v\left(x_{0}\right)$.

- A differential k-form ω is an antisymmetric k-linear map from tangent space at each point to \mathbb{R}. It can be integrated over a smooth k-surface S to give a scalar $\int_{S} \omega$.
- For vector field X and k-form ω, $i_{X} \omega$ is the ($k-1$)-form given by inserting X as the first argument.
- For function f, derivative $D f$ is a 1 -form $d f$. Note $L_{v} f=i_{v} d f$.
- For k-form $\omega, d \omega$ is $(k+1)$-form s.t. $\int_{V} d \omega=\int_{\partial V} \omega$ $\forall(k+1)$-volumes V. As $\partial \partial V=\emptyset, d^{2}=0$.
- Pushforward $h_{*} u$ of a vector u by a diffeo h is the derivative of $h(x)$ as x moves with velocity u, i.e. $h_{*} u=D h u$. Pullback of a k-form ω is $h^{*} \omega\left(v_{1}, \ldots v_{k}\right)=\omega\left(h_{*} v_{1}, \ldots h_{*} v_{k}\right)$. Extend L_{v} to k-forms ω by $\frac{d}{d t} \phi_{t}^{*} \omega_{\mid t=0}$. On forms, $L_{v}=i_{v} d+d i_{v}$.
- RS MacKay, Differential forms for plasma physics, J Plasma Phys 86 (2020) 925860101

Some more

- A volume-form is a non-degenerate top-dimensional form Ω. A form ω is non-degenerate if $i_{v} \omega=0 \Longrightarrow v=0$.
- A Riemannian metric is a positive-definite symmetric covariant 2-tensor g. It induces a norm $|v|=\sqrt{g(v, v)}$ on vectors v, and on covectors $|\lambda|=\sqrt{g\left(\lambda^{\sharp}, \lambda^{\sharp}\right)}$. Also, for any function f, g induces vector field $\nabla f=(d f)^{\sharp}$.
- Say Ω is compatible with g if $\Omega\left(v_{1}, . ., v_{n}\right)^{2}=\operatorname{det}\left[g\left(v_{i}, v_{j}\right)\right]$.
- For k-form α and l-form $\beta, \alpha \wedge \beta\left(v_{1}, \ldots v_{k+l}\right)=$ $\sum_{\pi \in \operatorname{Sh}(k, l)} \varepsilon_{\pi} \alpha\left(v_{\pi(1)} . . v_{\pi(k)}\right) \beta\left(v_{\pi(k+1)} . . v_{\pi(k+l)}\right)$, where $\operatorname{Sh}(k, l)$ (shuffles) is the set of permutations of $\{1, . . k+I\}$ such that $\pi(1)<. .<\pi(k)$ and $\pi(k+1)<. .<\pi(k+I)$.
- In 3D, cross-product $u \times v$ of vectors is defined by $(u \times v)^{b}=i_{v} i_{u} \Omega$. For compatible $\Omega, i_{u \times v} \Omega=u^{b} \wedge v^{b}$.
- Commutator $[u, v]$ of vector fields is defined by $L_{[u, v]}=L_{u} L_{v}-L_{v} L_{u}$. Equivalently, $[u, v]=L_{u} v=\frac{d}{d t} \phi_{t}^{u *} v_{\mid t=0}$.
- R.S.MacKay, Use of Stokes' theorem for plasma confinement, Phil Trans Roy Soc A 378 (2020) 20190519

Charged particle motion

- Treat classically: Lorentz force $F=e v \times B$ on charge e with velocity v. Momentum $p=m v^{b}$, Newton's law $\frac{d p}{d t}=F^{b}$.
- In constant field $B=|B| \hat{z}$:

1. $v^{z}=\operatorname{cst}, q^{z}(t)=q^{z}(0)+v^{z} t$.
2. $m \dot{v}^{x}=e v^{y}|B|, m \dot{v}^{y}=-e v^{x}|B|$, so horizontal velocity rotates, $v(t)=R_{\Omega t} v(0)$, with "gyrofrequency" $\Omega=-e|B| / m$.
3. Then position $q(t)=Q(t)+\rho(t)$, with $Q(t)=Q(0)+v^{z} \hat{z} t$ ("guiding centre"), $\rho(t)=R_{\Omega t} \rho(0), \rho=\frac{v \times b}{\Omega}$ ("gyroradius vector"), where $b=\frac{B}{|B|}$.

- In general field, define $\rho=\frac{v \times b}{\Omega}, Q=q-\rho, v_{\|}=v \cdot b$ and seek evolution of $Q, \rho, v_{\|}$.

Hamiltonian formulation

- In canonical coordinates $\left(q^{i}, p_{i}\right), \dot{q}^{i}=\frac{\partial H}{\partial p_{i}}, \dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}$.
- For one particle in magnetic field, choose a vector potential A, and let $p=m \dot{q}^{b}+e A^{b}(q), H(q, p)=\frac{1}{2 m}\left|p-e A^{b}(q)\right|^{2}$.
- Better to use symplectic formulation. A Hamiltonian system is a vector field X on a manifold M such that $i_{X} \omega=d H$ for some function $H: M \rightarrow \mathbb{R}$ and symplectic form ω on M
- A symplectic form is a non-degenerate closed 2-form; implies $\operatorname{dim} M=2 n$ even, n is called number of degrees of freedom (DoF).

Example

- $M=T^{*} Q$, the cotangent bundle of a manifold Q. Can write a cotangent as (q, p) where $q \in Q$ and p is a covector at q, i.e. a linear $\operatorname{map} T_{q} Q \rightarrow \mathbb{R}$.
- Let $\pi: T^{*} Q \rightarrow Q$ be the natural map.
- $T^{*} Q$ has a natural 1-form α defined by $\alpha(v)=p\left(\pi_{*} v\right)$. So it has a natural symplectic form $\omega=-d \alpha$.
- In any local coordinate system q^{i} for Q, can choose associated coordinates for p so that $p(\dot{q})=\sum_{i} p_{i} \dot{q}^{i}$. Then $\alpha=\sum_{i} p_{i} d q^{i}$ and $\omega=\sum_{i} d q^{i} \wedge d p_{i}$.
- A simple mechanical system on $T^{*} Q$ is defined by this ω and $H(q, p)=\frac{1}{2}|p|^{2}+V(q)$ with respect to some Riemannian metric on Q (which incorporates masses and moments of inertia). Produces $\nabla_{\dot{q}} \dot{q}=-\nabla V(q)$.

Charged particle Hamiltonian

- For one particle of charge e, mass m, in $\left(Q^{3}, g\right)$ with magnetic flux form β, take $\omega=-d \alpha-e \pi^{*} \beta$ on $T^{*} Q$ and $H=\frac{1}{2 m}|p|^{2}$.
- Equations of motion are given by solving $\omega\left((\dot{q}, \dot{p}),\left(\xi_{q}, \xi_{p}\right)\right)=\frac{1}{m} i_{p \sharp} \xi_{p}$ for all $\xi \in T\left(T^{*} Q\right)$.
- In Euclidean case and Cartesian coordinates, this gives $\dot{q}^{i}=\frac{p_{i}}{m}$, so $p=m \dot{q}^{b}$, and $-\dot{p} \xi_{q}-e \beta\left(\dot{q}, \xi_{q}\right)=0$ for all ξ_{q}, so using $\beta\left(\dot{q}, \xi_{q}\right)=\Omega\left(B, \dot{q}, \xi_{q}\right)$, we get $\dot{p}=e(\dot{q} \times B)^{b}$.

Advantages of symplectic formulation

- H is conserved along X : $i_{X} d H=i_{X} i_{X} \omega=0$ by antisymmetry
- ω is conserved along $X: L_{X} \omega=i_{X} d \omega+d i_{X} \omega=0+d^{2} H=0$; hence Poincaré invariant $\int_{D} \omega$ is conserved for any disk D flowing with X, which has many consequences (see later).
- and ...

Continuous symmetry leads to conservation \& reduction

- Say vector field u on M is a continuous symmetry of Hamiltonian system (H, ω) if $L_{u} H=0, L_{u} \omega=0$.
- Theorem [Noether]: If Hamiltonian system (H, ω) has a continuous symmetry u then it conserves a local function K.
- Proof: $d \omega=0$ so $d i_{u} \omega=0$, so u is locally Hamiltonian, i.e. $i_{u} \omega=d K$ for some local function K (Poincaré lemma). $i_{X} d K=i_{X} i_{u} \omega=-i_{u} d H=0$, so K is conserved by X.
- Often K is global, e.g. if $H_{1}(M)$ is spanned by closed trajectories γ of the set of vector fields of the form $a u+b X$ for functions a, b (or by asymptotic cycles), because $\int_{\gamma} i_{u} \omega=\int i_{u} \omega(a u+b X) d t=$ $\int \omega(u, a u)+\omega(u, b X) d t=\int 0-b d H(u) d t=0$. So can reduce to level sets $K^{-1}(k)$.
- Also, $i_{u} d K=0$, and $[u, X]=0$ because ω non-degenerate and $i_{[X, u]} \omega=i_{X} L_{u} \omega-L_{u} i_{X} \omega=0-L_{u} d H=d L_{u} H=0$. So if orbit-space of flow ϕ^{u} on $K^{-1}(k)$ is a manifold then can quotient by ϕ^{u} to reduce the dynamics on $K^{-1}(k)$ by one more dimension.
- The resulting vector field is Hamiltonian with respect to the reductions of ω and H.

Poincaré lemma

- Theorem: If a k-form $(k \geq 1) \beta$ is closed on a contractible open subset U of a manifold then $\beta=d \alpha$ for some ($k-1$)-form α on U.
- Proof: U contractible implies there is a vector field X on U with forward flow ϕ that maps U into itself and $\phi_{t} U$ contracts to a point as $t \rightarrow \infty$. Define $\alpha=-\int_{0}^{\infty} i_{X} \phi_{t}^{*} \beta d t$. Then $d \alpha=-\int_{0}^{\infty} d i_{X} \phi_{t}^{*} \beta d t=-\int_{0}^{\infty} L_{X} \phi_{t}^{*} \beta-i_{X} d \phi_{t}^{*} \beta d t=$ $-\int_{0}^{\infty} \partial_{t} \phi_{t}^{*} \beta d t+\int_{0}^{\infty} i_{X} \phi_{t}^{*} d \beta d t$. The second integral is 0 because $d \beta=0$. The first is the change $\phi_{0}^{*} \beta-\phi_{\infty}^{*} \beta=\beta . \quad \square$
- Converse of Noether theorem: if X_{H} conserves a function K (or ${ }_{X_{H}} \alpha=0$ for a closed 1-form α), then X_{K} is a cts symmetry of (H, ω).
- Proof: X_{K} is defined by $i_{X_{K}} \omega=d K$ (or α). So $L_{X_{K}} H=i_{X_{K}} d H=i_{X_{K}} i_{X_{H}} \omega=-i_{X_{H}} i_{X_{K}} \omega=-i_{X_{H}} d K=0$. And $L_{X_{K}} \omega=d i_{X_{K}} \omega=d d K=0$.

Example: Charged particle in axisymmetric field

- Let $\omega=-d \alpha-e \beta, H=\frac{1}{2 m}|p|^{2}, D=\mathbb{R}^{3} \backslash\{r=0\}$ in cylindrical coordinates $(r, \phi, z), u$ lift to $T^{*} D$ of $\partial_{\phi}=r \hat{\phi}$.
- Choose coordinates $\left(p_{r}, p_{\phi}, p_{z}\right)$ so that $\alpha=\sum_{i} p_{i} d q^{i}$. Then $L_{u} \alpha=0$, and $H=\frac{1}{2 m}\left(p_{r}^{2}+r^{-2} p_{\phi}^{2}+p_{z}^{2}\right)$ so $L_{u} H=0$.
- Say B is axisymmetric if $L_{u} \beta=0$. Then $L_{u} \omega=0$ so Noether gives a conserved quantity.
- First, $L_{u} \beta=0 \Longrightarrow d i_{u} \beta=0$, so $i_{u} \beta=d \psi$ for some local function ψ on D. D contains a closed orbit of u so ψ is global. $i_{u} d \psi=0$ so ψ independent of $\phi . \Omega\left(\partial_{r}, \partial_{\phi}, \partial_{z}\right)=r$ and $i_{u} i_{B} \Omega=d \psi$ imply $B^{r}=\frac{1}{r} \partial_{z} \psi, B^{z}=-\frac{1}{r} \partial_{r} \psi$. Magnetic flux $\int_{S} i_{B} \Omega$ through any annulus S spanning two u-circles is $2 \pi[\psi]$, so ψ is called poloidal flux function.
- Note $\beta=r\left(B^{\phi} d z \wedge d r+B^{r} d \phi \wedge d z+B^{z} d r \wedge d \phi\right)$, so $d \beta=0$ implies B^{ϕ} independent of ϕ.
- Then $i_{u} \omega=d p_{\phi}-e d \psi=d L$ with $L=p_{\phi}-e \psi$. So L is conserved.

Reduced system: $H=\frac{1}{2 m}\left(p_{r}^{2}+p_{z}^{2}+\frac{(L+e \psi)^{2}}{r^{2}}\right)$, $\omega=d r \wedge d p_{r}+d z \wedge d p_{z}+e r B^{\phi} d r \wedge d z$.

- Note $p_{\phi}=r p_{(\phi)}, r B^{\phi}=B_{(\phi)}$.

continued

- If ψ / r grows with $\left(r-r_{0}, z\right)$ then get confinement by $|L+e \psi| \leq \sqrt{2 m H} r$. Starting principle of "tokamak".
- e.g. $\psi=\left(r^{2}-1\right)^{2}+\frac{1}{2}\left(3+r^{2}\right) z^{2}$; contours of $\frac{(L+e \psi)^{2}}{e^{2} r^{2}}=0.05,0.1,0.2,0.4,0.8,1.6$ for $\frac{L}{e}=-0.6,0,+0.6$:

- But requires current density $J_{(\phi)}=r J^{\phi}=\frac{1}{r} \partial_{z}^{2} \psi+\partial_{r}\left(\frac{1}{r} \partial_{r} \psi\right)=\frac{3}{r}+9 r$ in the plasma, which needs driving and promotes instabilities.

Guiding-centre motion

- Approximate symmetry of a Hamiltonian system leads to an "adiabatic invariant" and approximate reduced system.
- If $B(x(t))$ seen by the particle changes by a factor at most ε small during one gyroperiod $T=\frac{2 \pi}{\Omega}\left(\Omega=-\frac{e|B|}{m}\right)$ then have approximate symmetry by rotation of the gyroradius vector about guiding centre.
- Verification: (i) Define $Q, \rho, p_{\|}$from q, p by $q=Q+\rho$, $\rho \cdot b=0, p^{\sharp}=e B(Q) \times \rho+p_{\|} b(Q)$. This can be solved for $Q, \rho, p_{\|}$if B changes slowly in distance $|p||B| / e$. Choose slowly varying frame for ρ, b. Let $u=\left(0,0,0,-\rho_{2}, \rho_{1}, 0\right)$. Then $H=\frac{1}{2 m}\left(p_{\|}^{2}+e^{2}|B(Q)|^{2}|\rho|^{2}\right)$ is (exactly) u-invariant.
(ii) $L_{u} \omega$
- For $\omega=-d \alpha-e \beta$: write B for $|B(Q)|$.
$\alpha=\sum_{i} p_{i} d q^{i}=e B\left(\rho_{2}\left(d Q_{1}+d \rho_{1}\right)-\rho_{1}\left(d Q_{2}+d \rho_{2}\right)\right)+p_{\|} d Q_{3}$.
- So $d \alpha=e B\left(d \rho_{2} \wedge d Q_{1}-d \rho_{1} \wedge d Q_{2}-2 d \rho_{1} \wedge d \rho_{2}\right)+d p_{\|} \wedge$ $d Q_{3}+e d B \wedge\left(\rho_{2}\left(d Q_{1}+d \rho_{1}\right)-\rho_{1}\left(d Q_{2}+d \rho_{2}\right)\right)$. Then $i_{u} d \alpha=e B\left(\rho_{1} d Q_{1}+\rho_{2} d Q_{2}+d|\rho|^{2}\right)+e|\rho|^{2} d B$. So $L_{u} d \alpha=e B\left(d \rho_{1} \wedge d Q_{1}+d \rho_{2} \wedge d Q_{2}\right)+e d B \wedge\left(\rho_{1} d Q_{1}+\rho_{2} d Q_{2}\right)$. Second term is $O(\varepsilon)$.
- Or compute $L_{u} \alpha=e B\left(\rho_{1} d Q_{1}+\rho_{2} d Q_{2}\right)$ and take $d L_{u} \alpha$.
- $\beta=|B(Q+\rho)| d\left(Q_{1}+\rho_{1}\right) \wedge d\left(Q_{2}+\rho_{2}\right)$. So
$i_{u} \beta=-|B(Q+\rho)|\left(\rho_{1} d Q_{1}+\rho_{2} d Q_{2}+\rho_{1} d \rho_{1}+\rho_{2} d \rho_{2}\right)$. Then $L_{u} \beta=-|B(Q)|\left(d \rho_{1} \wedge d Q_{1}+d \rho_{2} \wedge d Q_{2}\right)+O(\varepsilon)$.
- So $L_{u} \omega=O(\varepsilon)$.

Adiabatic invariant

- Treating u as an approximate symmetry, get approximate conserved quantity K from $i_{u} \omega \approx d K$. From above, $i_{u} \omega \approx-e|B|\left(\rho_{1} d \rho_{1}+\rho_{2} d \rho_{2}\right)=-\frac{e}{2}|B| d|\rho|^{2}$, so take $K=-\frac{e}{2}|B \| \rho|^{2}$.
- Conventional to write $K=-\frac{m}{e} \mu$ with "magnetic moment" $\mu=\frac{e^{2}}{2 m}|B||\rho|^{2}=\frac{m\left|v_{\perp}\right|^{2}}{2|B|}$.
- This makes μ an adiabatic invariant: $\forall k>0 \exists \varepsilon_{0}>0$ such that for $\varepsilon<\varepsilon_{0}$ the change in μ during any time-interval of length $\leq T / \varepsilon$ is at most k.
- Theory of adiabatic invariants shows that for C^{r} system, there is an asymptotic series for a circle action $u(\varepsilon)$ (gyro-rotation being the first term) and associated $\mu(\varepsilon)$ with first term μ, such that truncating at the $r^{t h}$ term, the errors are $O\left(\varepsilon^{r}\right)$.

Approximate reduced system

$\rightarrow H\left(Q, p_{\|}\right)=\frac{1}{2 m} p_{\|}^{2}+\mu|B(Q)|$, and
$\omega=-d\left(p_{\|} b^{b}\right)-e \beta=b^{b} \wedge d p_{\|}-p_{\|} d b^{b}-e i_{B} \Omega$. Let $c=\operatorname{curl} b$, so $i_{c} \Omega=d b^{b}$, then $\omega=b^{b} \wedge d p_{\|}-e i_{\tilde{B}} \Omega$ with $\tilde{B}=B+\frac{p_{\|}}{e} c$.

- Equations of motion: $i_{\left(\dot{Q}, \dot{\dot{p}}_{\|}\right)} \omega=d H$ says
$i_{\left(\dot{Q}, \dot{p}_{\|}\right)}\left(b^{\mathrm{b}} \wedge d p_{\|}-e i_{\tilde{B}^{2}} \Omega\right)=\frac{p_{\|}}{m} d p_{\|}+\mu d|B|$. Apply to $\left(0, \delta p_{\|}\right)$:

$$
\begin{equation*}
\dot{Q}_{\|}=p_{\|} / m \tag{1}
\end{equation*}
$$

Apply to $(\xi, 0): e(\tilde{B} \times \dot{Q}) \cdot \xi=\xi \cdot\left(\mu \nabla|B|+\dot{p}_{\|} b\right)$, so

$$
\begin{equation*}
e \tilde{B} \times \dot{Q}=\mu \nabla|B|+\dot{p}_{\|} b \tag{2}
\end{equation*}
$$

The case $\xi=\tilde{B}$ gives (avoiding $\tilde{B} \cdot b=0$)

$$
\begin{equation*}
\dot{p}_{\|}=-\mu \frac{\tilde{B} \cdot \nabla|B|}{\tilde{B} \cdot b} \tag{3}
\end{equation*}
$$

Lastly, take $b \times(2)$ and use (1):

$$
\begin{equation*}
\dot{Q}=\frac{1}{\tilde{B} \cdot b}\left(\frac{\mu}{e} b \times \nabla|B|+\frac{p_{\|}}{m} \tilde{B}\right) . \tag{4}
\end{equation*}
$$

- $(3,4)$: the (first-order) guiding-centre equations in Hamiltonian form.

Things to note

- If $|B|$ has a well with minimax B_{w} then it confines particles with $H \leq \mu B_{w}$; but does not help for small μ.
- μ is (up to a scaling) the Poincaré invariant of the disk spanned by a gyro-orbit: $\int_{D} \omega=-e|B| \pi|\rho|^{2}$.
- The parallel motion sees a force roughly $-\mu b \cdot \nabla|B|$.
- There are small perpendicular drifts roughly $\frac{\mu}{e|B|} b \times \nabla_{\perp}|B|$ and $p_{\|}^{2} b \times \frac{\kappa}{m e}$, where $\kappa=\nabla_{b} b$ is the curvature vector of the fieldline (from c in \tilde{B} and $c_{\perp}=b \times \kappa$).
- Higher-order approximate symmetries produce higher-order GC Hamiltonian systems.

GC motion in axisymmetric field

- Recall FGCM $H=\frac{1}{2 m} p_{\|}^{2}+\mu|B(Q)|, \omega=-d\left(p_{\|} b^{b}\right)-e \beta$.
- Recall B axisymmetric means $L_{u} \beta=0$ for $u=\partial_{\phi}$ in cylindrical coordinates. Note this implies $L_{u}|B|=0$ and $L_{u} b^{b}=0$ too, because u is an isometry $\left(L_{u} g=0\right)$.
- Proof: First, $L_{u} \Omega=0$ so $i_{[B, u]} \Omega=i_{B} L_{u} \Omega-L_{u} i_{B} \Omega=0$, so $[u, B]=0$. Second, $L_{u} g=0$ and $B^{b}=i_{B} g$ imply $L_{u} B^{b}=L_{u} i_{B} g=i_{B} L_{u} g-i_{[B, u]} g=0$ (identity is true even though g is not antisymmetric). Then
$2|B| L_{u}|B|=L_{u} i_{B} B^{b}=i_{B} L_{u} B^{b}-i_{[B, u]} B^{b}=0$, so $L_{u}|B|=0$.
Last, $L_{u} B^{b}=L_{u}\left(|B| b^{b}\right)=\left(L_{u}|B|\right) b^{b}+|B| L_{u} b^{b}$, so $L_{u} b^{b}=0$.
- Lift u to $U=\left(\partial_{\phi}, 0\right)$ on $\left(Q, p_{\|}\right)$. Thus $L_{U} H=0$ and $L_{U} \omega=0$. So U is a continuous symmetry, $i_{U} \omega=d L$ for some local function L, and L is conserved. Compute $i_{u} d\left(p_{\|} b^{b}\right)=L_{U}\left(p_{\|} b^{b}\right)-d\left(p_{\|} i_{u} b^{b}\right)$. Use $i_{u} b^{b}=b_{\phi}=r b_{(\phi)}$. Recall $i_{u} \beta=d \psi$. So $L=r b_{(\phi)} p_{\|}-e \psi$ (not same as before).
- A Hamiltonian system reducible to 1 DoF is called integrable.

Reduced system

- Quotient by U to reduce to 1DoF in (r, z) :
$H=\frac{1}{2 m}\left(\frac{L+e \psi}{r b_{(\phi)}}\right)^{2}+\mu|B|(r, z)$ and $\omega=e B_{(\phi)} d r \wedge d z$.
- Can write $|B|=\sqrt{r^{-2}|\nabla \psi|^{2}+B_{(\phi)}^{2}}$ and $b_{(\phi)}=B_{(\phi)} /|B|$.
- If choose ψ and $B_{(\phi)}$ to make H have a local minimum for each L and μ then the corresponding particles are confined. Full principle of tokamak. Confines more particles.
- Example: Solov'ev equilibrium $B_{(\phi)}=I(\psi) / r, I^{2}=I_{0}^{2}-2 E \psi$, $\psi=\left(D r^{2}-C\right)^{2}+\frac{1}{2}\left(E+\left(F-8 D^{2}\right) r^{2}\right) z^{2}$ in $0 \leq \psi \leq p_{0} / F$, with $E, F, C, D, p_{0}>0,2 E p_{0} \leq I_{0}^{2} F\left(p=p_{0}-F \psi\right)$.
- Contours of H for given L, μ; note the banana orbit.

Currents

- Note $r J^{z}=\partial_{r}\left(r B_{(\phi)}\right), r J^{r}=-\partial_{z}\left(r B_{(\phi)}\right)$, so can achieve a strong $B_{(\phi)}=\frac{I_{x}}{2 \pi r}$ from external poloidal current I_{x}, making small gyroradius for desired energies.
- But bounded contours of H require a local max or min for ψ, and so current $J_{(\phi)}=r J^{\phi}=\frac{1}{r} \partial_{z}^{2} \psi+\partial_{r}\left(\frac{1}{r} \partial_{r} \psi\right)$ in the plasma.
- There are some natural currents in a plasma, in particular "diamagnetic" current $J_{\perp}=B \times \nabla p /|B|^{2}$ to make MHS $J \times B=\nabla p$. It contributes little to $J_{(\phi)}$, but in general is not divergence-free: $\operatorname{div} J_{\perp}=-|B|^{-2} J_{\perp} \cdot \nabla|B|^{2}$.
- So it is accompanied by a parallel current $J_{\|} b$ s.t.
$B \cdot \nabla \frac{J_{\|}}{|B|}=-\operatorname{div} J_{\perp}$ (a magnetic differential equation that restricts B). Contributions include a "bootstrap" current, driven by friction between circulating electrons and those on bananas, which could provide much of the required $J_{(\phi)}$.
- But still need some current drive, and toroidal current promotes dangerous instabilities.
- So can one do better than a tokamak?

