Mathematics for Fusion Power part 1

 $\mathsf{R}.\mathsf{S}.\mathsf{MacKay}$

February 28, 2024

Introduction

Magnetic fields

Charged particle motion

Introduction: Preamble

- Ideal if you know exterior calculus and Hamiltonian dynamics
- But I'll summarise essentials
- Not necessary to know any physics

DT fusion

from wikipedia

2g D + 3g T per hour makes 470MW power.

> D from sea-water (1 in 5000 D:H). Breed T from Li blanket:

 $n+^{6}Li \rightarrow T+^{4}He+4.8MeV, \quad n+^{7}Li+2.5MeV \rightarrow T+^{4}He+n.$

Get Li from rocks or sea-water (95% ^{7}Li).

Sustained fusion

Requires Lawson product nTτ_E ≥ 3 × 10²¹keV s m⁻³ for T ≈ 14keV(160MK), where n = electron number density, T = ion temperature, τ_E = energy confinement time (for charged particles).

- Unavoidable energy loss by EM radiation, but slow if no high Z impurities.
- Most important to confine the charged particles, and after that to reduce their transfer of kinetic energy.

Confinement schemes

Various ideas, e.g.

Magnetic confinement

- At the envisaged conditions, gases are fully ionised: a plasma of ions (nuclei) & electrons.
- Aim to confine particles by magnetic field. Progress so far:

- Q is ratio of power-out to power-in. Ignition is $Q = \infty$.
- This module will be about mathematics of confinement of charged particles by magnetic fields.
- Motion of charged particles creates magnetic fields, so in principle have to solve confinement self-consistently, but will largely restrict attention to given magnetic fields.

Magnetic fields: Different faces

- Three ways to view a magnetic field:
 - 1. A volume-preserving 3D vector field *B*. Write Ω for volumeform, then *B* volume-preserving is $L_B\Omega = 0$, i.e. $di_B\Omega = 0$. By Stokes' theorem, if *S* is a closed surface bounding a volume then $\int_S i_B\Omega = 0$. Require this also for closed surfaces *S* that do not bound a volume, e.g. boundaries of $T^2 \times I$.
 - 2. A closed 2-form $\beta = i_B \Omega$, which gives the magnetic flux $\int_S \beta$ through any surface S. Again, strengthen the definition from closed $(d\beta = 0)$ to exact, i.e. $\beta = d\alpha$ for some 1-form α . Given a Riemannian metric g, can define a vector field A by $g(v, A) = i_v \alpha$ for all vectors v, called a vector potential for B. Can write $A = \alpha^{\sharp}$ or $\alpha = A^{\flat}$.
 - A 1-form B^b, defined by i_vB^b = g(v, B) for all vectors v. This view relates B to electric current density J = curl B (in units with μ₀ = 1): i_JΩ = dB^b.
- In coordinates xⁱ, B = ∑_i Bⁱ∂_{xi}, β = J∑ Bⁱdx^j ∧ dx^k over cyclic permutations of 123, where J = Ω(∂_{x1}, ∂_{x2}, ∂_{x3}), B^b = ∑_i B_idxⁱ and B_i = g_{ij}B^j where g_{ij} = g(∂_{xi}, ∂_{xi}). Components are called: Bⁱ contravariant, B_i covariant, B_(i) = Bⁱ|∂_{xi}| physical.

Crash course in exterior calculus

Two views of a vector field on a smooth manifold:

- 1. Field of tangent vectors v, representing velocities of parametrised curves. Induces a local flow ϕ by $\frac{d}{dt}\phi_t(x) = v(\phi_t(x))$.
- 2. Linear operator L_v on smooth functions f, satisfying Leibniz rule $L_v(fg) = (L_v f)g + fL_v g$. Relation $L_v f(x_0) = \frac{d}{dt} f(x(t))|_{t=0}$ for smooth curves x with $x(0) = x_0$, $\dot{x}(0) = v(x_0)$.
- A differential k-form ω is an antisymmetric k-linear map from tangent space at each point to ℝ. It can be integrated over a smooth k-surface S to give a scalar ∫_S ω.
- For vector field X and k-form ω , $i_X \omega$ is the (k 1)-form given by inserting X as the first argument.
- For function f, derivative Df is a 1-form df. Note $L_v f = i_v df$.
- For k-form ω , $d\omega$ is (k + 1)-form s.t. $\int_V d\omega = \int_{\partial V} \omega$ $\forall (k + 1)$ -volumes V. As $\partial \partial V = \emptyset$, $d^2 = 0$.
- Pushforward h_*u of a vector u by a diffeo h is the derivative of h(x) as x moves with velocity u, i.e. $h_*u = Dh u$. Pullback of a k-form ω is $h^*\omega(v_1, ..., v_k) = \omega(h_*v_1, ..., h_*v_k)$. Extend L_v to k-forms ω by $\frac{d}{dt}\phi_t^*\omega_{|t=0}$. On forms, $L_v = i_v d + di_v$.
- RS MacKay, Differential forms for plasma physics, J Plasma Phys 86 (2020) 925860101

Some more

- A volume-form is a non-degenerate top-dimensional form Ω. A form ω is *non-degenerate* if $i_v \omega = 0 \implies v = 0$.
- A Riemannian metric is a positive-definite symmetric covariant 2-tensor g. It induces a norm |v| = √g(v, v) on vectors v, and on covectors |λ| = √g(λ[♯], λ[♯]). Also, for any function f, g induces vector field ∇f = (df)[♯].
- Say Ω is compatible with g if $\Omega(v_1, .., v_n)^2 = \det[g(v_i, v_j)]$.
- For k-form α and l-form β , $\alpha \wedge \beta(v_1, \dots v_{k+l}) = \sum_{\pi \in Sh(k,l)} \varepsilon_{\pi} \alpha(v_{\pi(1)} \dots v_{\pi(k)}) \beta(v_{\pi(k+1)} \dots v_{\pi(k+l)})$, where Sh(k,l) (shuffles) is the set of permutations of $\{1, \dots k+l\}$ such that $\pi(1) < \dots < \pi(k)$ and $\pi(k+1) < \dots < \pi(k+l)$.
- ► In 3D, cross-product $u \times v$ of vectors is defined by $(u \times v)^{\flat} = i_v i_u \Omega$. For compatible Ω , $i_{u \times v} \Omega = u^{\flat} \wedge v^{\flat}$.
- Commutator [u, v] of vector fields is defined by $L_{[u,v]} = L_u L_v - L_v L_u$. Equivalently, $[u, v] = L_u v = \frac{d}{dt} \phi_t^{u*} v_{|t=0}$.
- R.S.MacKay, Use of Stokes' theorem for plasma confinement, Phil Trans Roy Soc A 378 (2020) 20190519

Charged particle motion

Treat classically: Lorentz force F = ev × B on charge e with velocity v. Momentum p = mv^b, Newton's law dp/dt = F^b.
 In constant field B = |B|2:

1.
$$v^z = \operatorname{cst}, q^z(t) = q^z(0) + v^z t$$
.

- 2. $m\dot{v}^{x} = ev^{y}|B|$, $m\dot{v}^{y} = -ev^{x}|B|$, so horizontal velocity rotates, $v(t) = R_{\Omega t}v(0)$, with "gyrofrequency" $\Omega = -e|B|/m$.
- 3. Then position $q(t) = Q(t) + \rho(t)$, with $Q(t) = Q(0) + v^z \hat{z}t$ ("guiding centre"), $\rho(t) = R_{\Omega t}\rho(0)$, $\rho = \frac{v \times b}{\Omega}$ ("gyroradius vector"), where $b = \frac{B}{|B|}$.

▶ In general field, define $\rho = \frac{v \times b}{\Omega}$, $Q = q - \rho$, $v_{\parallel} = v \cdot b$ and seek evolution of Q, ρ, v_{\parallel} .

Hamiltonian formulation

- ▶ In canonical coordinates (q^i, p_i) , $\dot{q}^i = \frac{\partial H}{\partial p_i}$, $\dot{p}_i = -\frac{\partial H}{\partial q^i}$.
- For one particle in magnetic field, choose a vector potential A, and let $p = m\dot{q}^{\flat} + eA^{\flat}(q)$, $H(q, p) = \frac{1}{2m}|p eA^{\flat}(q)|^2$.
- Better to use symplectic formulation. A Hamiltonian system is a vector field X on a manifold M such that i_Xω = dH for some function H : M → ℝ and symplectic form ω on M
- A symplectic form is a non-degenerate closed 2-form; implies dim M = 2n even, n is called number of degrees of freedom (DoF).

Example

- M = T*Q, the cotangent bundle of a manifold Q. Can write a cotangent as (q, p) where q ∈ Q and p is a covector at q, i.e. a linear map T_qQ → ℝ.
- Let $\pi: T^*Q \to Q$ be the natural map.
- ► T^*Q has a natural 1-form α defined by $\alpha(v) = p(\pi_*v)$. So it has a natural symplectic form $\omega = -d\alpha$.
- In any local coordinate system qⁱ for Q, can choose associated coordinates for p so that p(q) = ∑_i p_iqⁱ. Then α = ∑_i p_idqⁱ and ω = ∑_i dqⁱ ∧ dp_i.
- A simple mechanical system on *T***Q* is defined by this ω and *H*(*q*, *p*) = ¹/₂|*p*|² + *V*(*q*) with respect to some Riemannian metric on *Q* (which incorporates masses and moments of inertia). Produces ∇_{*q*}*q* = −∇*V*(*q*).

Charged particle Hamiltonian

- For one particle of charge e, mass m, in (Q³, g) with magnetic flux form β, take ω = −dα − eπ*β on T*Q and H = ¹/_{2m}|p|².
- Equations of motion are given by solving ω((q, p), (ξq, ξp)) = 1/m i_p ξp for all ξ ∈ T(T*Q).
 In Euclidean case and Cartesian coordinates, this gives qⁱ = p/m, so p = mq^b, and -pξq eβ(q, ξq) = 0 for all ξq, so

using $\beta(\dot{q},\xi_q) = \Omega(B,\dot{q},\xi_q)$, we get $\dot{p} = e(\dot{q}\times B)^{\flat}$.

Advantages of symplectic formulation

- *H* is conserved along *X*: $i_X dH = i_X i_X \omega = 0$ by antisymmetry
- ω is conserved along X: L_Xω = i_Xdω + di_Xω = 0 + d²H = 0; hence Poincaré invariant ∫_Dω is conserved for any disk D flowing with X, which has many consequences (see later).
 and ...

Continuous symmetry leads to conservation & reduction

- Say vector field u on M is a continuous symmetry of Hamiltonian system (H,ω) if L_uH = 0, L_uω = 0.
- Theorem [Noether]: If Hamiltonian system (H,ω) has a continuous symmetry u then it conserves a local function K.
- ▶ **Proof**: $d\omega = 0$ so $di_u\omega = 0$, so *u* is locally Hamiltonian, i.e. $i_u\omega = dK$ for some local function *K* (Poincaré lemma). $i_X dK = i_X i_u \omega = -i_u dH = 0$, so *K* is conserved by *X*.
- Often K is global, e.g. if $H_1(M)$ is spanned by closed trajectories γ of the set of vector fields of the form au + bX for functions a, b (or by asymptotic cycles), because $\int_{\gamma} i_u \omega = \int i_u \omega(au + bX) dt = \int \omega(u, au) + \omega(u, bX) dt = \int 0 b dH(u) dt = 0$. So can reduce to level sets $K^{-1}(k)$.
- Also, $i_u dK = 0$, and [u, X] = 0 because ω non-degenerate and $i_{[X,u]}\omega = i_X L_u \omega L_u i_X \omega = 0 L_u dH = dL_u H = 0$. So if orbit-space of flow ϕ^u on $K^{-1}(k)$ is a manifold then can quotient by ϕ^u to reduce the dynamics on $K^{-1}(k)$ by one more dimension.
- The resulting vector field is Hamiltonian with respect to the reductions of ω and H.

Poincaré lemma

- Theorem: If a k-form (k ≥ 1) β is closed on a contractible open subset U of a manifold then β = dα for some (k − 1)-form α on U.
- ▶ **Proof**: *U* contractible implies there is a vector field *X* on *U* with forward flow ϕ that maps *U* into itself and $\phi_t U$ contracts to a point as $t \to \infty$. Define $\alpha = -\int_0^\infty i_X \phi_t^* \beta \, dt$. Then $d\alpha = -\int_0^\infty di_X \phi_t^* \beta \, dt = -\int_0^\infty L_X \phi_t^* \beta i_X d\phi_t^* \beta \, dt = -\int_0^\infty \partial_t \phi_t^* \beta \, dt + \int_0^\infty i_X \phi_t^* d\beta \, dt$. The second integral is 0 because $d\beta = 0$. The first is the change $\phi_0^* \beta \phi_\infty^* \beta = \beta$. \Box
- Converse of Noether theorem: if X_H conserves a function K (or i_{X_H}α = 0 for a closed 1-form α), then X_K is a cts symmetry of (H, ω).
- ► **Proof**: X_K is defined by $i_{X_K}\omega = dK$ (or α). So $L_{X_K}H = i_{X_K}dH = i_{X_K}i_{X_H}\omega = -i_{X_H}i_{X_K}\omega = -i_{X_H}dK = 0$. And $L_{X_K}\omega = di_{X_K}\omega = ddK = 0$.

Example: Charged particle in axisymmetric field

- Let $\omega = -d\alpha e\beta$, $H = \frac{1}{2m}|p|^2$, $D = \mathbb{R}^3 \setminus \{r = 0\}$ in cylindrical coordinates (r, ϕ, z) , u lift to T^*D of $\partial_{\phi} = r\hat{\phi}$.
- Choose coordinates (p_r, p_{ϕ}, p_z) so that $\alpha = \sum_i p_i dq^i$. Then $L_u \alpha = 0$, and $H = \frac{1}{2m} (p_r^2 + r^{-2} p_{\phi}^2 + p_z^2)$ so $L_u H = 0$.
- Say *B* is axisymmetric if $L_u\beta = 0$. Then $L_u\omega = 0$ so Noether gives a conserved quantity.
- First, $L_u\beta = 0 \implies di_u\beta = 0$, so $i_u\beta = d\psi$ for some local function ψ on D. D contains a closed orbit of u so ψ is global. $i_u d\psi = 0$ so ψ independent of ϕ . $\Omega(\partial_r, \partial_{\phi}, \partial_z) = r$ and $i_u i_B \Omega = d\psi$ imply $B^r = \frac{1}{r} \partial_z \psi$, $B^z = -\frac{1}{r} \partial_r \psi$. Magnetic flux $\int_S i_B \Omega$ through any annulus S spanning two u-circles is $2\pi[\psi]$, so ψ is called poloidal flux function.
- Note $\beta = r(B^{\phi}dz \wedge dr + B^{r}d\phi \wedge dz + B^{z}dr \wedge d\phi)$, so $d\beta = 0$ implies B^{ϕ} independent of ϕ .
- ► Then $i_u \omega = dp_\phi e \, d\psi = dL$ with $L = p_\phi e\psi$. So *L* is conserved. Reduced system: $H = \frac{1}{2m} (p_r^2 + p_z^2 + \frac{(L+e\psi)^2}{r^2})$, $\omega = dr \wedge dp_r + dz \wedge dp_z + erB^\phi dr \wedge dz$.

$$\blacktriangleright \text{ Note } p_{\phi} = rp_{(\phi)}, \ rB^{\phi} = B_{(\phi)}.$$

continued

• But requires current density $J_{(\phi)} = rJ^{\phi} = \frac{1}{r}\partial_z^2\psi + \partial_r(\frac{1}{r}\partial_r\psi) = \frac{3}{r} + 9r$ in the plasma, which needs driving and promotes instabilities.

Guiding-centre motion

- Approximate symmetry of a Hamiltonian system leads to an "adiabatic invariant" and approximate reduced system.
- If B(x(t)) seen by the particle changes by a factor at most ε small during one gyroperiod T = ^{2π}/_Ω (Ω = -^{e|B|}/_m) then have approximate symmetry by rotation of the gyroradius vector about guiding centre.
- ▶ Verification: (i) Define Q, ρ, p_{\parallel} from q, p by $q = Q + \rho$, $\rho \cdot b = 0, p^{\sharp} = eB(Q) \times \rho + p_{\parallel}b(Q)$. This can be solved for Q, ρ, p_{\parallel} if *B* changes slowly in distance |p||B|/e. Choose slowly varying frame for ρ, b . Let $u = (0, 0, 0, -\rho_2, \rho_1, 0)$. Then $H = \frac{1}{2m}(p_{\parallel}^2 + e^2|B(Q)|^2|\rho|^2)$ is (exactly) *u*-invariant.

(ii) $L_u \omega$

▶ For
$$\omega = -d\alpha - e\beta$$
: write *B* for $|B(Q)|$.
 $\alpha = \sum_{i} p_{i}dq^{i} = eB(\rho_{2}(dQ_{1} + d\rho_{1}) - \rho_{1}(dQ_{2} + d\rho_{2})) + p_{\parallel}dQ_{3}$.
▶ So $d\alpha = eB(d\rho_{2} \land dQ_{1} - d\rho_{1} \land dQ_{2} - 2d\rho_{1} \land d\rho_{2}) + dp_{\parallel} \land dQ_{3} + edB \land (\rho_{2}(dQ_{1} + d\rho_{1}) - \rho_{1}(dQ_{2} + d\rho_{2}))$. Then
 $i_{u}d\alpha = eB(\rho_{1}dQ_{1} + \rho_{2}dQ_{2} + d|\rho|^{2}) + e|\rho|^{2}dB$. So
 $L_{u}d\alpha = eB(d\rho_{1} \land dQ_{1} + d\rho_{2} \land dQ_{2}) + edB \land (\rho_{1}dQ_{1} + \rho_{2}dQ_{2})$.
Second term is $O(\varepsilon)$.

• Or compute
$$L_u \alpha = eB(\rho_1 dQ_1 + \rho_2 dQ_2)$$
 and take $dL_u \alpha$.

Adiabatic invariant

- Treating u as an approximate symmetry, get approximate conserved quantity K from i_uω ≈ dK. From above, i_uω ≈ -e|B|(ρ₁dρ₁ + ρ₂dρ₂) = -^e/₂|B|d|ρ|², so take K = -^e/₂|B||ρ|².
- Conventional to write $K = -\frac{m}{e}\mu$ with "magnetic moment" $\mu = \frac{e^2}{2m}|B||\rho|^2 = \frac{m|v_{\perp}|^2}{2|B|}.$
- This makes μ an adiabatic invariant: ∀k > 0 ∃ε₀ > 0 such that for ε < ε₀ the change in μ during any time-interval of length ≤ T/ε is at most k.
- Theory of adiabatic invariants shows that for C^r system, there is an asymptotic series for a circle action u(ε) (gyro-rotation being the first term) and associated μ(ε) with first term μ, such that truncating at the rth term, the errors are O(ε^r).

Approximate reduced system

$$\begin{array}{l} H(Q,p_{\parallel}) = \frac{1}{2m}p_{\parallel}^{2} + \mu |B(Q)|, \text{ and} \\ \omega = -d(p_{\parallel}b^{\flat}) - e\beta = b^{\flat} \wedge dp_{\parallel} - p_{\parallel}db^{\flat} - ei_{B}\Omega. \text{ Let } c = \operatorname{curl} b, \text{ so} \\ i_{c}\Omega = db^{\flat}, \text{ then } \omega = b^{\flat} \wedge dp_{\parallel} - ei_{\tilde{B}}\Omega \text{ with } \tilde{B} = B + \frac{p_{\parallel}}{e}c. \\ \text{Equations of motion: } i_{(\dot{Q},\dot{p}_{\parallel})}\omega = dH \text{ says} \\ i_{(\dot{Q},\dot{p}_{\parallel})}(b^{\flat} \wedge dp_{\parallel} - ei_{\tilde{B}}\Omega) = \frac{p_{\parallel}}{m}dp_{\parallel} + \mu d|B|. \text{ Apply to } (0, \delta p_{\parallel}): \\ \dot{Q}_{\parallel} = p_{\parallel}/m. \tag{1} \\ \text{Apply to } (\xi, 0): e(\tilde{B} \times \dot{Q}) \cdot \xi = \xi \cdot (\mu \nabla |B| + \dot{p}_{\parallel}b), \text{ so} \\ e\tilde{B} \times \dot{Q} = \mu \nabla |B| + \dot{p}_{\parallel}b. \end{aligned}$$

Lastly, take $b \times (2)$ and use (1):

$$\dot{Q} = \frac{1}{\tilde{B} \cdot b} \left(\frac{\mu}{e} b \times \nabla |B| + \frac{P_{\parallel}}{m} \tilde{B} \right).$$
(4)

► (3,4): the (first-order) guiding-centre equations in Hamiltonian form.

Things to note

- If |B| has a well with minimax B_w then it confines particles with H ≤ μB_w; but does not help for small μ.
- μ is (up to a scaling) the Poincaré invariant of the disk spanned by a gyro-orbit: $\int_D \omega = -e|B|\pi|\rho|^2$.
- The parallel motion sees a force roughly $-\mu b \cdot \nabla |B|$.
- There are small perpendicular drifts roughly ^μ/_{e|B|} b × ∇_⊥|B| and p²_{||}b × ^κ/_{me}, where κ = ∇_bb is the curvature vector of the fieldline (from c in B̃ and c_⊥ = b × κ).
- Higher-order approximate symmetries produce higher-order GC Hamiltonian systems.

GC motion in axisymmetric field

- ► Recall FGCM $H = \frac{1}{2m}p_{\parallel}^2 + \mu |B(Q)|, \ \omega = -d(p_{\parallel}b^{\flat}) e\beta.$
- ► Recall B axisymmetric means L_uβ = 0 for u = ∂_φ in cylindrical coordinates. Note this implies L_u|B| = 0 and L_ub^b = 0 too, because u is an isometry (L_ug = 0).
- ▶ Proof: First, $L_u \Omega = 0$ so $i_{[B,u]} \Omega = i_B L_u \Omega L_u i_B \Omega = 0$, so [u, B] = 0. Second, $L_u g = 0$ and $B^{\flat} = i_B g$ imply $L_u B^{\flat} = L_u i_B g = i_B L_u g - i_{[B,u]} g = 0$ (identity is true even though g is not antisymmetric). Then $2|B|L_u|B| = L_u i_B B^{\flat} = i_B L_u B^{\flat} - i_{[B,u]} B^{\flat} = 0$, so $L_u|B| = 0$. Last, $L_u B^{\flat} = L_u (|B|b^{\flat}) = (L_u|B|)b^{\flat} + |B|L_u b^{\flat}$, so $L_u b^{\flat} = 0$.
- Lift u to U = (∂_φ, 0) on (Q, p_{||}). Thus L_UH = 0 and L_Uω = 0. So U is a continuous symmetry, i_Uω = dL for some local function L, and L is conserved. Compute i_Ud(p_{||}b^b) = L_U(p_{||}b^b) - d(p_{||}i_ub^b). Use i_ub^b = b_φ = rb_(φ). Recall i_uβ = dψ. So L = rb_(φ)p_{||} - eψ (not same as before).
- A Hamiltonian system reducible to 1DoF is called *integrable*.

Reduced system

• Quotient by U to reduce to 1DoF in (r, z):

$$H = \frac{1}{2m} \left(\frac{L + e\psi}{rb_{(\phi)}} \right)^2 + \mu |B|(r, z) \text{ and } \omega = eB_{(\phi)}dr \wedge dz.$$

• Can write
$$|B| = \sqrt{r^{-2}|\nabla \psi|^2 + B_{(\phi)}^2}$$
 and $b_{(\phi)} = B_{(\phi)}/|B|$.

- If choose ψ and B_(φ) to make H have a local minimum for each L and μ then the corresponding particles are confined.
 Full principle of tokamak. Confines more particles.
- ► Example: Solov'ev equilibrium $B_{(\phi)} = I(\psi)/r$, $I^2 = I_0^2 2E\psi$, $\psi = (Dr^2 - C)^2 + \frac{1}{2}(E + (F - 8D^2)r^2)z^2$ in $0 \le \psi \le p_0/F$, with $E, F, C, D, p_0 > 0$, $2Ep_0 \le I_0^2F$ $(p = p_0 - F\psi)$.

• Contours of H for given L, μ ; note the banana orbit.

Currents

- Note rJ^z = ∂_r(rB_(φ)), rJ^r = −∂_z(rB_(φ)), so can achieve a strong B_(φ) = ^{I_x}/_{2πr} from external poloidal current I_x, making small gyroradius for desired energies.
- ▶ But bounded contours of *H* require a local max or min for ψ , and so current $J_{(\phi)} = rJ^{\phi} = \frac{1}{r}\partial_z^2\psi + \partial_r(\frac{1}{r}\partial_r\psi)$ in the plasma.
- There are some natural currents in a plasma, in particular "diamagnetic" current J_⊥ = B × ∇p/|B|² to make MHS J × B = ∇p. It contributes little to J_(φ), but in general is not divergence-free: divJ_⊥ = −|B|⁻²J_⊥ · ∇|B|².
- So it is accompanied by a parallel current J_{||}b s.t. B · ∇ J_{||} = −divJ_⊥ (a magnetic differential equation that restricts B). Contributions include a "bootstrap" current, driven by friction between circulating electrons and those on bananas, which could provide much of the required J_(φ).
- But still need some current drive, and toroidal current promotes dangerous instabilities.
- So can one do better than a tokamak?