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Quasisymmetry

QS in Magnetohydrostatic plasma



FGCM

I Recall FGCM: H = 1
2mp2‖ + µ|B(Q)|, ω = −d(p‖b

[)− eπ∗β.

I It is on a fibre bundle, subbundle of T ∗M with fibres Rb[
(assume |B| 6= 0).

I For axisymmetric B we reduced to 1DoF and hence found
simple principle for confinement: make some bounded level
sets of µ, L,H.

I But requires strong toroidal current.

I Can we find other B fields for which FGCM has a continuous
symmetry?

I If so, we get reduction to 1DoF, simple principle for
confinement, and perhaps cases with small toroidal current?



Quasisymmetry (QS)
I Say 3D vector field u is a quasisymmetry for B if Luβ = 0,

Lu|B| = 0, Lub
[ = 0. Lift u to U = (u, 0) on the GC phase space.

Then for all µ, LUH = 0 and LUω = 0.

I A formal way to lift a vector field u to the GC phase space is
U = (u,−p‖ibLub[), chosen to preserve p‖b

[, but gives same result.

I So FGCM conserves L defined by iUω = dL: iuβ is closed so
assuming no global obstacle, iuβ = dψ for some function ψ, and
then L = p‖u · b − eψ.

I Particles on suitable bounded level sets of µ, L,H are confined.

I Examples: For an axisymmetric B in Euclidean space, rotation
about the axis is a quasisymmetry. Helical symmetry u = k∂z + h∂φ
gives others, but has unbounded u-orbits; and quotient in vertical
can’t be realised in Euclidean space.

I QS was proposed in 1983 but still no non-axisymmetric examples
known in Euclidean space!

I We’ll study their properties and deduce many restrictions.

I JW Burby, N Kallinikos, RS MacKay, Some mathematics for

quasi-symmetry, J Math Phys 61 (2020) 093503



Open questions

I Maybe Lug = 0? (in which case, for Euclidean g and bounded
u-orbits, u has to be rotation about an axis), or

I Kovalevskaya found a class of integrable cases for spinning
tops (rigid body with one fixed point in a gravitational field)
distinct from the Poisson-Euler and Lagrange cases (and

proved that there are no others).

I So maybe there are non-axisymmetric magnetic fields for
which GC motion is integrable?



Some consequences of QS

I Flux function ψ: Luβ = 0 implies diu iBΩ = 0, so iu iBΩ = dψ
for some local function ψ. Assume there are orbits of u,B
spanning H1, then ψ is global.

I If u,B are independent (equivalently, dψ 6= 0) on a
component of a level set of ψ, then it is a submanifold (called
a flux surface) and u,B are tangent to it. The bounded
components are 2-tori because orientable (use u,B as frame)
and support a nowhere-zero vector field (u or B).

I LuΩ = 0: b[ ∧ β = |B|Ω, thus
Lu(b[ ∧ β) = Lub

[ ∧ β + b[ ∧ Luβ = 0. So
0 = Lu(|B|Ω) = (Lu|B|)Ω + |B|LuΩ. So LuΩ = 0.

I LuB
[ = 0: LuB

[ = Lu(|B|b[) = (Lu|B|)b[ + |B|Lub[ = 0.

I LuC = 0 where C = u · B: Lu(u · B) = Lu iuB
[ = iuLuB

[ = 0.

I LuB = [u,B] = 0: i[u,B]Ω = Lu iBΩ− iBLuΩ and Ω is
non-degenerate. This leads to...



Liouville-Arnol’d coordinates
I Theorem: u,B linearly indpt commuting vector fields on a

compact surface S imply ∃ coordinates (θ1, θ2) : S → T2 such
that u,B are indpt constant combinations of ∂θ1 , ∂θ2 .

I Proof: Let φu, φB be the flows of u and B. They commute,
so we can combine them into an action φ of R2 on S .
Flowing for a time t1 along u and t2 along B from an initial
point x0 produces a local diffeomorphism φ from t = (t1, t2)
near 0 to a neighbourhood of x0. S is compact so there are
t = (t1, t2) 6= (0, 0) such that φt(x0) = x0. The set of such
pairs forms a 2D lattice. Choose a pair of generators T 1,T 2

and let A be the matrix with these as columns. We obtain an
action of θ = (θ1, θ2) ∈ T 2 on S by φAθ. Applying to a fixed
x0, this gives a diffeomorphism of T2 to S . In these
coordinates, u, B are the first and second columns of A−1.

I Idea was rediscovered by Hamada to make such coordinates
on constant pressure surfaces for magnetohydrostatic (MHS)
fields (J × B = ∇p), from [J,B] = 0.



continued

I Can extend smoothly by ψ as third coordinate. So
u = u1(ψ)∂θ1 + u2(ψ)∂θ2 and similarly for B.

I If on each flux surface there is a level set of |B| that is a
closed curve, then by Lu|B| = 0, it is a u-line. Then all the
u-lines on it are closed. So u1 : u2 is rational, and by
continuity the ratio is independent of ψ.

I We’ll see that u is constant in such coordinates.



more
I Choose toroidal & poloidal cycles on flux surfaces; distinguish

1. QA (quasiaxisymmetric): u-lines are homologous to toroidal,
as for a tokamak; NCSX was to be substantially non-AS QA
but not completed; CFQS likely to be first.

2. QP (quasipoloidal): u-lines homologous to the poloidal cycle.
3. QH(N,M) (quasihelical): u-lines are homologous to N poloidal

loops plus M toroidal loops, for some non-zero integers N,M
(wlog in lowest terms and with M ≥ 0), e.g. HSX is QH(4,1)

I In the case of MHS in Euclidean space with a magnetic axis,
we’ll see that M = 1, in particular QP is impossible.

I Define winding ratio ι(ψ) for B to be limit of ratio of number
of poloidal turns to toroidal turns on level set of ψ.



Lug

I In set where u,B are independent, dψ 6= 0. Let n = ∇ψ
|∇ψ|2 (so

indψ = 1, n · B = 0, n · u = 0). Then (B, u, n) form a basis.

I Theorem: In this basis, Lug has matrix 0 0 0

0 Lu|u|2 inLuu
[

0 u · [n, u] Lu|n|2

 and Lu|n|2 = −|B|2|n|4Lu|u|2.

I Note: symmetric but alternative expressions for off-diagonal.

I Lemma: For any vector fields u,X and covariant 2-tensor g ,
iXLug = Lu iXg − i[u,X ]g .

I Proof: For any vector field Y ,
(Lug)(X ,Y ) = Lu(g(X ,Y ))− g(LuX ,Y )− g(X , LuY ). So
iY iXLug = Lu iY iXg − iY i[u,X ]g − i[u,Y ]iXg . Apply

Lu iYX
[ = iY LuX

[ + i[u,Y ]X
[ to 1-form X [ = iXg , and obtain

iY iXLug = iY Lu iXg − iY i[u,X ]g . Y arbitrary, hence result.



continued

I Proof of Theorem: Apply the Lemma to X = B, u, n:

1. X = B gives iBLug = 0, hence first row and column are 0.
2. X = u gives iuLug = Lu iug = Luu

[. Apply iu or in to get
iu iuLug = Lu iuu

[ = Lu|u|2 and iniuLug = inLuu
[.

3. X = n gives inLug = Lu ing − i[u,n]g . Then
iu inLug = Lu iu ing − iu i[u,n]g = u · [n, u].

dψ = iu iBΩ so ∇ψ = B × u, so |∇ψ|2 = iB×u iu iBΩ, but
iB×uΩ = B[ ∧ u[, so |∇ψ|2 = iu iB(B[ ∧ u[) = |B|2|u|2 − (B · u)2.
So Lu|∇ψ|2 = |B|2Lu|u|2 , hence the last result.
Alternatively, define rate of strain tensor E = 1

2g
−1Lug and use

0 = LuΩ = trE .

I For a QS u, Lug = 0 iff Luu
[ = 0. True for axisymmetry:

u = ∂φ, u[ = r2dφ, Luu
[ = r2diudφ = r2d(1) = 0.

I Notes: Can show n · [n, u] = B · [n, u] = 0, so [n, u] parallel to
u⊥ = u − u·B

|B|2B. Also, ivdψ = iBd |u|2 for v = curl u. And

iBLug = 0 implies detE = 0.



Case of Euclidean metric

I Theorem: If vector field u preserves Euclidean metric g
(Lug = 0) then u(x) = U + Ax for some vector U and
antisymmetric matrix A.

I Proof: |x − y |2 constant under the flow of u implies
(u(x)− u(y)) · (x − y) = 0 (u “equiprojective”). Let U = u(0) and
v(x) = u(x)− U. Then v is equiprojective and taking x = 0,
∀ y v(y) · y = 0. So ∀ x , y ,

v(x) · y + v(y) · x = v(x) · (y − x) + v(y) · (x − y)

= (v(x)− v(y)) · (y − x) = 0 (1)

Thus ∀ x , y , z and λ, µ ∈ R,

v(λx + µy) · z = −(λx + µy) · v(z) = −λx · v(z)− µy · v(z)

= λv(x) · z + µv(y) · z , (2)

so v(x) = Ax for some matrix A. By (1), A is antisymmetric.

I So u is a translation plus a rotation.



φu is a circle action

I Assume closed regular level set S of ψ (so a torus), and d |B|,
dψ independent on a component C of a level set of |B| on S .

I Then C is a circle and a closed u-line. From LA, all u-lines on
the same flux surface are closed, have the same period τ(ψ)
and are non-contractible.

I The same holds for all nearby flux surfaces.

I Theorem: If u · B 6= 0 a.e. on this union of flux surfaces then
τ is constant.

I Proof: Let v = τ(ψ)u, φ be the flow of v (period 1) and

f = 1/τ . For forms α, define circle-average 〈α〉 =
∫ 1
0 φ
∗
tα dt.

0 = LuB
[ = LfvB

[ = v · B df + f LvB
[. Take 〈 〉: v · B and f

are constant along each u-line, and 〈Lvα〉 = 0 for any α, so
0 = v · B 〈df 〉. And 〈df 〉 = d〈f 〉 = df , so if v · B 6= 0 a.e. we
get f is constant.



Comments

I In case of axisymmetry, τ = 2π.

I Relate to proof that if every orbit on an energy level of a
Hamiltonian system is periodic then they have a common
period? J Moser, CPAM 23 (1970) 609

I Magnetic flux through annulus S bounded by u-circles γ2 − γ1
is τ [ψ], where [ψ] = ψ(γ2)− ψ(γ1):∫
S iBΩ =

∫ τ
0 dt

∫
φut L

iu iBΩ for an arc L from γ1 to γ2 and time

t along u. iu iBΩ = dψ and
∫
dt = τ .

I Current through S is
∫
S iJΩ = [

∫
γ B

[] = [
∫ τ
0 u · B dt] = τ [C ].



Alternative fibration by tori

I Instead of using u,B commuting vector fields on level sets of
ψ, can use u, J commuting vector fields on level sets of C .

I i[u,J]Ω = Lu iJΩ− iJLuΩ = LudB
[ = 0 so [u, J] = 0.

I Already have iudC = 0.
iu iJΩ = iudB

[ = LuB
[ − diuB

[ = −dC , so iJdC = 0.

I Thus have LA coordinates on regular level sets of C .

I If there is a regular joint level set of (C , ψ) then get common
period for u by propagating constant period on level set of C
and that for ψ.

I Not useful in MHS (where we’ll show C constant on flux
surfaces), but might be useful more generally.



Conditions for a QS
I Can reduce to conditions on just u and the metric g .
I Let the rate of strain tensor E = g−1Lug .
I Theorem: u a QS implies div u = 0 (equivalently trE = 0),

and E has a unit null field e (in particular detE = 0) with
[u, e] = 0 independent of u a.e.

I Proof: LuΩ = 0, [u, b] = 0, & ibLug = 0.
I trE = detE = 0 implies rankE = 0 or 2. The conditions can be

written as 2 or 3 homogeneous PDEs for u: div u = 0 is first order,
detE = 0 is third order. In the rank-2 case, for suitable ordering of

components, a null vector is x =

 E12E23 − E22E13

E21E13 − E11E23

E11E22 − E12E21

. Let

e = x/|x |, then require [u, x ] = |x |−2g(x , [u, x ])x , which can be
written as x × [u, x ] = 0. It is of fifth order.

I If Lug = 0 then can choose any u-invariant functions ψ,C
and get a QS field B = (u ×∇ψ + Cu)/|u|2 (& [u, b] = 0).

I For rank 2 under conditions of Thm, ∃ compatible B & gener-
al formula for it by T2-averaging over flow of (u, e) [Burby].



QS in MHS: C constant on flux surfaces
I A basic desire for plasma confinement is an equilibrium

between the charged particles and the magnetic field.
I Simplest is magnetohydrostatic: J × B = ∇p for some

function p (pressure), equivalently iB iJΩ = dp.
I Use iJΩ = dB[; write as iBdB

[ = dp or LBB
[ = d(p + |B|2).

I Note that LJp = LBp = 0 and [J,B] = 0:
i[J,B]Ω = iJLBΩ− LB iJΩ = 0− LBdB

[ = −dLBB[ = 0.

I Also Lup = 0: Apply Lu to iBdB
[ = dp to get dLup = 0. So

Lup is constant k on connected components. But the orbits
of u are closed so k = 0. Thus, p is constant on flux surfaces.

I Theorem: If u is a QS for an MHS field B then u · B is
constant C (ψ) on flux surfaces.

I Proof: 0 = LuB
[ = iudB

[ + diuB
[, so d(u · B) = −iudB[.

Applying iu gives Lu(u · B) = 0. Applying iB gives
LB(u · B) = iudp = 0. As u,B span the tangent plane to a
flux surface then u · B is constant on it.

I For QS vacuum (dB[ = 0), C is constant because iudB
[ = 0.



Current

I How much toroidal current is there in a QS MHS plasma?

I Theorem: J = −p′(ψ)u − C ′(ψ)B

I Proof: iB iJΩ = dp, iu iBΩ = dψ, and LuB
[ = 0 can be written

as iu iJΩ + dC = 0. iJdψ = iJ iu iBΩ = iu iBdB
[ = iudp = 0, so

J = κu + λB for some functions κ, λ. Putting this into the
first gives −κdψ = dp, so κ = −p′. And into the third gives
λdψ + dC = 0, so λ = −C ′.

I Choosing poloidal & toroidal LA coordinates θ, φ for
[u,B] = 0, then Jφ = −p′uφ − C ′Bφ. This is a function of ψ.
uφ is a constant. Maybe could choose the rest to cancel?

I But maybe the real point is to reduce
∫
S iJΩ over a poloidal

disk S . That equals
∫
∂S B

[. How to get hold of that?



QS Grad-Shafranov equation

I A PDE for ψ for a QS MHS plasma.

I Contracting J with u[: J · u + CC ′ + |u|2p′ = 0.

I iu iBΩ = dψ and u · B = C imply B = (Cu + u ×∇ψ)/|u|2.

I i∇ψΩ = iB×uΩ = B[ ∧ u[. Let v = curl u. Then
di∇ψΩ = dB[ ∧ u[ − B[ ∧ du[ = iJΩ ∧ u[ − B[ ∧ ivΩ.

I For a vector field X and volume-form Ω, divX is defined by
LXΩ = (divX )Ω.

I So Laplacian ∆ψ = div∇ψ = u · J − B · v .

I B · v = (Cu · v − u × v · ∇ψ)/|u|2.

I QSGSE: ∆ψ − u×v
|u|2 · ∇ψ + C u·v

|u|2 + CC ′(ψ) + |u|2p′(ψ) = 0,

with Luψ = 0.



Axisymmetric case

I u = r φ̂, v = 2ẑ , so u × v = 2r r̂ , u · v = 0, |u|2 = r2. Gives
GSE ∆∗ψ + CC ′ + r2p′ = 0 with ∆∗ψ = ∂2zψ + ∂2r ψ − 1

r ∂rψ.

I Known also as Hicks 1899 equation for ideal fluid flows.

I Under nice conditions, specify functions p and C of ψ and get
existence & uniqueness of a solution ψ as a function of (r , z).

I Variational formulation δ
∫ ( |∇ψ|2−C2

2r2
− p
)
r dr dz = 0.

I Solov’ev equilibria:
ψ(r , z) = (bR2 + c0r

2) z
2

2 + 1
8(a− c0)(r2 − R2)2 is a solution

for p = p0 − aψ, C 2 = C 2
0 − 2bR2ψ.



QSGSE continued

I When Lug 6= 0, the QSGSE needs supplementing by 3 other
PDEs to enforce LBΩ = 0, LuB

[ = 0.

I We didn’t find a variational principle for it.

I There is an alternative QSGSE using circle-averaged metric,
which does have a variational principle.

I JW Burby, N Kallinikos, RS MacKay, Generalised
Grad-Shafranov equation for non-axisymmetric MHD
equilibria, Phys Plasmas 27 (2020) 102504



QS in MHS with magnetic axis

I If a foliation by toroidal flux surfaces degenerates to a circle,
call it a magnetic axis.

I Theorem: For an MHS field in Euclidean space with a
magnetic axis γ, QS must have M = 1.

I Proof: dp = iBdB
[ = |B|ibd(|B|b[) = |B|ib(|B|db[ + d |B| ∧ b[) =

|B|2ibdb[ − |B|d⊥|B|, where d⊥|B| = d |B| − (ibd |B|)b[. Now
ibdb

[ = Lbb
[ = κ[, where κ is the curvature vector for b. On γ,

dp = 0 and κ 6= 0 somewhere. So d⊥|B| 6= 0 there.
• If M > 1 then the nearby u-lines cross plane perpendicular to γ in
at least M points (actually, precisely M, using u · B = C (ψ)) and
have same |B| at each, so unless they cluster then d⊥|B| = 0. They
can’t all cluster because they are equally spaced in LA coordinates.
• If M = 0 then u · B constant on flux surfaces implies u close to
perpendicular to γ, so again d⊥|B| goes to zero on γ.

I But perhaps we don’t care about integrability near the
magnetic axis, as long as we have it further out.



Beyond MHS
I Even staying at the level of one-fluid models for a plasma,

there is scope for more equilibria than MHS.
I Can allow a mean flow velocity v (density ρ) and an

electrostatic potential Φ.
I Ideal equilibrium: LρvΩ = 0, ρivdv

[ = iBdB
[ − dp,

Lv (pρ−5/3) = 0, dΦ = iB ivΩ. Leaves out resistivity, Hall
effect, Nernst effect, heat flow...

I Single particle Hamiltonian H =
p2‖
2m + µ|B|+ eΦ. Natural to

require LuΦ = 0 for a QS: says u,B, v are linearly dependent,
so write v = xB + yu.

I Probably want to require Luρ = 0. Then LρvΩ = 0 implies
LB(ρx) + Lu(ρy) = 0.

I Should we require [u, v ] = 0? Then Lux = Luy = 0 by
independence of u,B.

I What more can one deduce?
I Extend to anisotropic pressure, cf Rodriguez & Bhattacharjee
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