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Quasisymmetry

QS in Magnetohydrostatic plasma



FGCM

> Recall FGCM: H = o1pf + u|B(Q)|, w = —d(p|b’) — er*B.
» It is on a fibre bundle, subbundle of T*M with fibres Rb

(assume |B| # 0).

For axisymmetric B we reduced to 1DoF and hence found
simple principle for confinement: make some bounded level
sets of u, L, H.

But requires strong toroidal current.

Can we find other B fields for which FGCM has a continuous
symmetry?

If so, we get reduction to 1DoF, simple principle for
confinement, and perhaps cases with small toroidal current?



Quasisymmetry (QS)
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Say 3D vector field v is a quasisymmetry for B if L, =0,

L,|B| =0, L,b> = 0. Lift uto U = (u,0) on the GC phase space.
Then for all g, LyH =0 and Lyw = 0.

A formal way to lift a vector field u to the GC phase space is

U = (u, fp”ibLubb), chosen to preserve pr", but gives same result.
So FGCM conserves L defined by iyw = dL: i, is closed so
assuming no global obstacle, i, = dy for some function %, and
then L = pju-b— ey,

Particles on suitable bounded level sets of u, L, H are confined.
Examples: For an axisymmetric B in Euclidean space, rotation
about the axis is a quasisymmetry. Helical symmetry u = k39, + h0,
gives others, but has unbounded wu-orbits; and quotient in vertical
can't be realised in Euclidean space.

QS was proposed in 1983 but still no non-axisymmetric examples
known in Euclidean space!

We'll study their properties and deduce many restrictions.

JW Burby, N Kallinikos, RS MacKay, Some mathematics for
quasi-symmetry, J Math Phys 61 (2020) 093503



Open questions

» Maybe L,g = 0?7 (in which case, for Euclidean g and bounded
u-orbits, u has to be rotation about an axis), or

» Kovalevskaya found a class of integrable cases for spinning
tops (rigid body with one fixed point in a gravitational field)
distinct from the Poisson-Euler and Lagrange cases (and

proved that there are no others).

» So maybe there are non-axisymmetric magnetic fields for
which GC motion is integrable?



Some consequences of QS

>

v

Flux function ¢: L,8 = 0 implies di,ig2 = 0, so i,igQ = dy
for some local function 1. Assume there are orbits of u, B
spanning Hi, then v is global.

If u, B are independent (equivalently, di) # 0) on a
component of a level set of ¢, then it is a submanifold (called
a flux surface) and u, B are tangent to it. The bounded
components are 2-tori because orientable (use u, B as frame)
and support a nowhere-zero vector field (u or B).

L,Q=0: b’ AB=|B|Q thus

Ly’ ANB) =L, ANB+ B AL,S=0.So

0=L,(|B|2) = (Ly|B|)2+ |B|L,Q2. So L,2=0.

L,B* =0: L,B° = L,(|B|p’) = (L,|B|)b* + |B|L,b* = 0.
L,C =0 where C=u-B: L,(u-B)=L,i,B*=i,L,B°=0.
LUB = [u, B] =0: i[u,B]Q == LuiBQ — iBLuQ and Q is
non-degenerate. This leads to...



Liouville-Arnol’d coordinates

» Theorem: u, B linearly indpt commuting vector fields on a
compact surface S imply 3 coordinates (6*,62) : S — T? such
that u, B are indpt constant combinations of Jp1, Op2.

» Proof: Let ¢“, ¢& be the flows of u and B. They commute,
so we can combine them into an action ¢ of R? on S.
Flowing for a time t; along v and ty along B from an initial
point xp produces a local diffeomorphism ¢ from t = (t1, t2)
near 0 to a neighbourhood of xp. S is compact so there are
t = (t1, t2) # (0,0) such that ¢.(xp) = xo. The set of such
pairs forms a 2D lattice. Choose a pair of generators T!, T2
and let A be the matrix with these as columns. We obtain an
action of @ = (9*,0%) € T2 on S by ¢ 9. Applying to a fixed
xo, this gives a diffeomorphism of T2 to S. In these
coordinates, u, B are the first and second columns of A=1. [

» Idea was rediscovered by Hamada to make such coordinates

on constant pressure surfaces for magnetohydrostatic (MHS)
fields (J x B = Vp), from [J, B] = 0.



continued

» Can extend smoothly by v as third coordinate. So
u = ut ()0, + u*(1))0p, and similarly for B.

» If on each flux surface there is a level set of |B| that is a
closed curve, then by L,|B| =0, it is a u-line. Then all the
u-lines on it are closed. So u! : u? is rational, and by
continuity the ratio is independent of .

» We'll see that u is constant in such coordinates.



more

» Choose toroidal & poloidal cycles on flux surfaces; distinguish

1. QA (quasiaxisymmetric): u-lines are homologous to toroidal,
as for a tokamak; NCSX was to be substantially non-AS QA
but not completed; CFQS likely to be first.

2. QP (quasipoloidal): u-lines homologous to the poloidal cycle.

3. QH(N,M) (quasihelical): u-lines are homologous to N poloidal
loops plus M toroidal loops, for some non-zero integers N, M
(wlog in lowest terms and with M > 0), e.g. HSX is QH(4,1)
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» In the case of MHS in Euclidean space with a magnetic axis,
we'll see that M = 1, in particular QP is impossible.

» Define winding ratio 1(v)) for B to be limit of ratio of number
of poloidal turns to toroidal turns on level set of .



In set where u, B are independent, diy) # 0. Let n = % (so
indp=1,n-B=0,n-u=0). Then (B, u,n) form a basis.
Theorem: In this basis, L,g has matrix

0 0 0

0 Lyuf? Ly’ | and Ly|n|> = —|B?|n|*Ly|ul?.

0 wu-[nu] Lyln|?
Note: symmetric but alternative expressions for off-diagonal.
Lemma: For any vector fields u, X and covariant 2-tensor g,
ixLug = Luixg — i[u,X]g-
Proof: For any vector field Y,
(Lug)(X,Y) = Lu(g(X,Y)) —g(LuX,Y) — g(X,L,Y). So
ivixLug = Luiyixg — iyiju,x)& — iju,y]ix&- Apply
LyivX? =iy L, X" + i[u’Y]Xb to 1-form X® = ixg, and obtain
iyixLug = ivLuixg — iviux)g. Y arbitrary, hence result. [



continued

» Proof of Theorem: Apply the Lemma to X = B, u, n:

1. X = B gives igl,g =0, hence first row and column are 0.
2. X = u gives /uLug = Lyi,g = Lyu”. Apply i, or i, to get
iwiglug = Lyiyu® = L, |u|? and /,,/,,Lug L.
3. X=ngives ipnLyg = Lying — iju,mg. Then
iuinLug = Lyiying — iuifu,mg = u - [n, u].
dy = i,igfd so Vi/) =B xu,so |Vy]? = igxuiuiBQ, but
iBxuQ = B° A, so |Vip|2 = iyig(B® A u”) = |B|?|ul]? — (B - u)?.
So L,|Ve|? = |B|2L |u|? , hence the last result
Alternatively, define rate of strain tensor E = 2g ~!1,g and use
0=L,Q=trE. O

» Fora QS u, L,g =0 iff L,u” = 0. True for axisymmetry:
u=09y v =r’de, Ly’ = ridi,dp = r’d(1) = 0.

» Notes: Can show n-[n,ul = B-[n,u] =0, so [n, u] parallel to
up =u-— ﬁB. Also, i,dv) = igd|u|? for v = curl u. And
iglyg = 0 implies det E = 0.



Case of Euclidean metric

» Theorem: If vector field u preserves Euclidean metric g
(Lyg = 0) then u(x) = U + Ax for some vector U and
antisymmetric matrix A.

» Proof: |x — y|? constant under the flow of u implies
(u(x) —u(y)) - (x —y) =0 (u “equiprojective”). Let U = u(0) and
v(x) = u(x) — U. Then v is equiprojective and taking x = 0,
Vyv(y) y=0.SoVx,by,

=v(x)-(y = x)+v(y) - (x—y)
=(v(x)=—v(y) - (y—x)=0 (1)

Thus Vx,y,z and A\, u € R,

v(x) -y +v(y) x

v(AX +py) -z = —(Ax+ py) - v(z) = =Ax - v(z) — py - v(2)
= Av(x) -z +pv(y) -z, (2)

so v(x) = Ax for some matrix A. By (1), A is antisymmetric. O

» So u is a translation plus a rotation.



@" is a circle action
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Assume closed regular level set S of ¥ (so a torus), and d|B|,
dv independent on a component C of a level set of |[B| on S.
Then C is a circle and a closed u-line. From LA, all u-lines on
the same flux surface are closed, have the same period 7(1))
and are non-contractible.

The same holds for all nearby flux surfaces.
Theorem: If u- B # 0 a.e. on this union of flux surfaces then
T is constant.

Proof: Let v = 7(¢))u, ¢ be the flow of v (period 1) and

f =1/7. For forms «, define circle-average (« fo fadt.
0=L,B"=LsB"=v-Bdf +fL,B" Take < Y: v-Band f
are constant along each u-line, and (L, «) = 0 for any «, so
0=v-B(df). And (df) = d(f) =df,soif v- B# 0 a.e. we
get f is constant. Ol



Comments

» In case of axisymmetry, 7 = 27.

> Relate to proof that if every orbit on an energy level of a
Hamiltonian system is periodic then they have a common
period? J Moser, CPAM 23 (1970) 609

» Magnetic flux through annulus S bounded by u-circles v, — 1

is T[], where [¢] = 9(72) — ¥(m):
[siBQ = [y dt ffﬁﬂ iyig€) for an arc L from 71 to 72 and time

t along u. iyigQ = diy and [dt =T.
> Current through Sis [si,Q =[], B’ = [y u-Bdt] = r[C].



Alternative fibration by tori

>

Instead of using u, B commuting vector fields on level sets of
1, can use u, J commuting vector fields on level sets of C.

i = Lui)Q — iyLuQ = L,dB* = 0 so [u, J] = 0.
Already have i,dC = 0.

iwiQ = i,dB® = L,B" — di,B” = —dC, so i;dC = 0.
Thus have LA coordinates on regular level sets of C.

If there is a regular joint level set of (C,1)) then get common
period for u by propagating constant period on level set of C
and that for 1.

Not useful in MHS (where we'll show C constant on flux
surfaces), but might be useful more generally.



Conditions for a QS

>
>
>

Can reduce to conditions on just u and the metric g.
Let the rate of strain tensor E = g~ 1L,g.
Theorem: u a QS implies div u = 0 (equivalently tr E = 0),
and E has a unit null field e (in particular det E = 0) with
[u, e] = 0 independent of u a.e.
Proof: L,Q =0, [u,b] =0, & i,L,g = 0. O
tr E = det E = 0 implies rank E = 0 or 2. The conditions can be
written as 2 or 3 homogeneous PDEs for u: divu = 0 is first order,
det E = 0 is third order. In the rank-2 case, for suitable ordering of
E12Ey3 — ExzEns
components, a null vector is x = | Ep1E;3 — Ej1Ex3 | . Let
Ell E22 - E12E21
e = x/|x|, then require [u, x] = |x|~2g(x, [u, x])x, which can be
written as x X [u, x] = 0. It is of fifth order.
If L,g = 0 then can choose any uv-invariant functions ¢, C
and get a QS field B = (u x V¢ + Cu)/|ul?> (& [u, b] = 0).
For rank 2 under conditions of Thm, 3 compatible B & gener-
al formula for it by T2-averaging over flow of (u,e) [Burby].




QS in MHS: C constant on flux surfaces
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A basic desire for plasma confinement is an equilibrium
between the charged particles and the magnetic field.
Simplest is magnetohydrostatic. J x B = Vp for some
function p (pressure), equivalently igi;Q = dp.

Use i;Q = dB’; write as igdB’ = dp or LgB’ = d(p + |B|?).
Note that Lyp = Lgp=10and [J,B] =0:

igQ=iLgQ — Lpi}Q=0— LgdB’ = —dLgB" =0.

Also L,p = 0: Apply L, to igdB® = dp to get dL,p = 0. So
L,p is constant k on connected components. But the orbits
of u are closed so k = 0. Thus, p is constant on flux surfaces.
Theorem: If uis a QS for an MHS field B then u - B is
constant C(v) on flux surfaces.

Proof: 0 = L,B" = i,dB’ + di,B’, so d(u - B) = —i,dB".
Applying i, gives L,(u- B) = 0. Applying ig gives

Lg(u-B) = i,dp =0. As u, B span the tangent plane to a
flux surface then u - B is constant on it. O
For QS vacuum (dB’ = 0), C is constant because i,dB° = 0.



Current

v

How much toroidal current is there in a QS MHS plasma?
Theorem: J = —p/'(¢)u— C'(¢)B

Proof: igi Q2 = dp, iyigQ = di, and L,B” = 0 can be written
as iyi)Q+dC =0. i;dy = ijiyigQ = iyigdB® = i,dp = 0, so
J = ku + AB for some functions x, A. Putting this into the
first gives —kd1) = dp, so k = —p’. And into the third gives
Ady +dC=0,s0 A\ =—-C". O]
Choosing poloidal & toroidal LA coordinates 6, ¢ for

[u, B] =0, then J® = —p'u® — C'B®. This is a function of .
u?® is a constant. Maybe could choose the rest to cancel?

But maybe the real point is to reduce fs ;€2 over a poloidal
disk S. That equals [, B”. How to get hold of that?



QS Grad-Shafranov equation
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v

A PDE for ¢ for a QS MHS plasma.

Contracting J with v”: J - u+ CC' + |u?p’ = 0.

iigQ = di and u- B = C imply B = (Cu + u x V) /|ul?.
ivyp$2 = ipx 2 = B’ Au’. Let v = curlu. Then

divyQ = dB’ A v’ — B A duf — QAW — B A Q.

For a vector field X and volume-form €2, divX is defined by
LxQ = (divX)Q.

So Laplacian Ay =divVyp =u-J—B-v.
B-v=(Cu-v—uxv-Vi)/|ul

QSGSE: Agp — 257 - Vb + C i + CC'(¥) + [P (v) = 0,
with L,y = 0.



Axisymmetric case

> u=rp,v=22 sou><v—2rfu v=0,uP?=r2 Gives
GSE A%+ CC' + r?p’ = 0 with A% = 92 + 92 — L9,1p.
» Known also as Hicks 1899 equation for ideal fluid flows.

» Under nice conditions, specify functions p and C of ¢ and get
existence & uniqueness of a solution ¢ as a function of (r, z).

» Variational formulation § [ (W - p) rdrdz =0.

» Solov'ev equilibria:
W(r,z) = (bR? + cor?) 22 + 5(a— c0)(r? — R?)? is a solution
for p= py — ayy, C2 = C2 — 2bR%y.



QSGSE continued

» When L,g # 0, the QSGSE needs supplementing by 3 other
PDEs to enforce LgQ =0, L,B" = 0.

> We didn't find a variational principle for it.

» There is an alternative QSGSE using circle-averaged metric,
which does have a variational principle.

> JW Burby, N Kallinikos, RS MacKay, Generalised
Grad-Shafranov equation for non-axisymmetric MHD
equilibria, Phys Plasmas 27 (2020) 102504



QS in MHS with magnetic axis
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>

>

If a foliation by toroidal flux surfaces degenerates to a circle,
call it a magnetic axis.

Theorem: For an MHS field in Euclidean space with a
magnetic axis vy, QS must have M = 1.

Proof: dp = igdB” = |Bli,d(|B|b") = |B|in(|B|db’ + d|B| A b*) =
|B|?ipdb” — |B|dy|B|, where d|B| = d|B| — (ipd|B|)b*. Now
ipdb® = Lpb® = kP, where & is the curvature vector for b. On Y,

dp =0 and k # 0 somewhere. So d, |B| # 0 there.

e If M > 1 then the nearby u-lines cross plane perpendicular to vy in
at least M points (actually, precisely M, using u- B = C(v)) and
have same |B]| at each, so unless they cluster then d, |B| = 0. They
can't all cluster because they are equally spaced in LA coordinates.
e If M =0 then u - B constant on flux surfaces implies u close to
perpendicular to v, so again d, |B| goes to zero on 7. U

But perhaps we don’t care about integrability near the
magnetic axis, as long as we have it further out.



Beyond MHS
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Even staying at the level of one-fluid models for a plasma,
there is scope for more equilibria than MHS.

Can allow a mean flow velocity v (density p) and an
electrostatic potential ®.

Ideal equilibrium: L,,Q =0, pi,dv’ = igdB’ — dp,
Lv(pp*5/3) =0, do = igi, L. Leaves out resistivity, Hall
effect, Nernst effect, heat flow...

2
Single particle Hamiltonian H = 5—‘"', + u|B| + e®. Natural to
require L, = 0 for a QS: says u, B, v are linearly dependent,
so write v = xB + yu.
Probably want to require L,p = 0. Then L,,Q = 0 implies
Lg(px) + Lu(py) = 0.
Should we require [u, v] =07 Then L,x = L,y =0 by
independence of u, B.
What more can one deduce?

Extend to anisotropic pressure, cf Rodriguez & Bhattacharjee
PRE 104 (2021) 015213
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