Mathematics for Fusion Power part 2

R.S.MacKay

February 21, 2024

Quasisymmetry

QS in Magnetohydrostatic plasma

- Recall FGCM: $H=\frac{1}{2 m} p_{\|}^{2}+\mu|B(Q)|, \omega=-d\left(p_{\|} b^{b}\right)-e \pi^{*} \beta$.
- It is on a fibre bundle, subbundle of $T^{*} M$ with fibres $\mathbb{R} b^{b}$ (assume $|B| \neq 0$).
- For axisymmetric B we reduced to 1DoF and hence found simple principle for confinement: make some bounded level sets of μ, L, H.
- But requires strong toroidal current.
- Can we find other B fields for which FGCM has a continuous symmetry?
- If so, we get reduction to 1 DoF , simple principle for confinement, and perhaps cases with small toroidal current?

Quasisymmetry (QS)

- Say 3D vector field u is a quasisymmetry for B if $L_{u} \beta=0$, $L_{u}|B|=0, L_{u} b^{b}=0$. Lift u to $U=(u, 0)$ on the GC phase space.
Then for all $\mu, L_{U} H=0$ and $L_{U} \omega=0$.
- A formal way to lift a vector field u to the GC phase space is $U=\left(u,-p_{\|} i_{b} L_{u} b^{\mathrm{b}}\right)$, chosen to preserve $p_{\|} b^{b}$, but gives same result.
- So FGCM conserves L defined by $i_{u} \omega=d L: i_{u} \beta$ is closed so assuming no global obstacle, $i_{u} \beta=d \psi$ for some function ψ, and then $L=p_{\|} u \cdot b-e \psi$.
- Particles on suitable bounded level sets of μ, L, H are confined.
- Examples: For an axisymmetric B in Euclidean space, rotation about the axis is a quasisymmetry. Helical symmetry $u=k \partial_{z}+h \partial_{\phi}$ gives others, but has unbounded u-orbits; and quotient in vertical can't be realised in Euclidean space.
- QS was proposed in 1983 but still no non-axisymmetric examples known in Euclidean space!
- We'll study their properties and deduce many restrictions.
- JW Burby, N Kallinikos, RS MacKay, Some mathematics for quasi-symmetry, J Math Phys 61 (2020) 093503

Open questions

- Maybe $L_{u} g=0$? (in which case, for Euclidean g and bounded u-orbits, u has to be rotation about an axis), or
- Kovalevskaya found a class of integrable cases for spinning tops (rigid body with one fixed point in a gravitational field) distinct from the Poisson-Euler and Lagrange cases (and
proved that there are no others).
- So maybe there are non-axisymmetric magnetic fields for which GC motion is integrable?

Some consequences of QS

- Flux function $\psi: L_{u} \beta=0$ implies $d i_{u} i_{B} \Omega=0$, so $i_{u} i_{B} \Omega=d \psi$ for some local function ψ. Assume there are orbits of u, B spanning H_{1}, then ψ is global.
- If u, B are independent (equivalently, $d \psi \neq 0$) on a component of a level set of ψ, then it is a submanifold (called a flux surface) and u, B are tangent to it. The bounded components are 2-tori because orientable (use u, B as frame) and support a nowhere-zero vector field (u or B).
- $L_{u} \Omega=0: b^{b} \wedge \beta=|B| \Omega$, thus $L_{u}\left(b^{b} \wedge \beta\right)=L_{u} b^{b} \wedge \beta+b^{b} \wedge L_{u} \beta=0$. So $0=L_{u}(|B| \Omega)=\left(L_{u}|B|\right) \Omega+|B| L_{u} \Omega$. So $L_{u} \Omega=0$.
- $L_{u} B^{b}=0: L_{u} B^{b}=L_{u}\left(|B| b^{b}\right)=\left(L_{u}|B|\right) b^{b}+|B| L_{u} b^{b}=0$.
- $L_{u} C=0$ where $C=u \cdot B: L_{u}(u \cdot B)=L_{u} i_{u} B^{b}=i_{u} L_{u} B^{b}=0$.
- $L_{u} B=[u, B]=0: i_{[u, B]} \Omega=L_{u} i_{B} \Omega-i_{B} L_{u} \Omega$ and Ω is non-degenerate. This leads to...

Liouville-Arnol'd coordinates

- Theorem: u, B linearly indpt commuting vector fields on a compact surface S imply \exists coordinates $\left(\theta^{1}, \theta^{2}\right): S \rightarrow \mathbb{T}^{2}$ such that u, B are indpt constant combinations of $\partial_{\theta^{1}}, \partial_{\theta^{2}}$.
- Proof: Let ϕ^{u}, ϕ^{B} be the flows of u and B. They commute, so we can combine them into an action ϕ of \mathbb{R}^{2} on S.
Flowing for a time t_{1} along u and t_{2} along B from an initial point x_{0} produces a local diffeomorphism ϕ from $t=\left(t_{1}, t_{2}\right)$ near 0 to a neighbourhood of x_{0}. S is compact so there are $t=\left(t_{1}, t_{2}\right) \neq(0,0)$ such that $\phi_{t}\left(x_{0}\right)=x_{0}$. The set of such pairs forms a 2D lattice. Choose a pair of generators T^{1}, T^{2} and let A be the matrix with these as columns. We obtain an action of $\theta=\left(\theta^{1}, \theta^{2}\right) \in T^{2}$ on S by $\phi_{A \theta}$. Applying to a fixed x_{0}, this gives a diffeomorphism of \mathbb{T}^{2} to S. In these coordinates, u, B are the first and second columns of $A^{-1} . \square$
- Idea was rediscovered by Hamada to make such coordinates on constant pressure surfaces for magnetohydrostatic (MHS) fields $(J \times B=\nabla p)$, from $[J, B]=0$.

continued

- Can extend smoothly by ψ as third coordinate. So $u=u^{1}(\psi) \partial_{\theta_{1}}+u^{2}(\psi) \partial_{\theta_{2}}$ and similarly for B.
- If on each flux surface there is a level set of $|B|$ that is a closed curve, then by $L_{u}|B|=0$, it is a u-line. Then all the u-lines on it are closed. So $u^{1}: u^{2}$ is rational, and by continuity the ratio is independent of ψ.
- We'll see that u is constant in such coordinates.
- Choose toroidal \& poloidal cycles on flux surfaces; distinguish 1. QA (quasiaxisymmetric): u-lines are homologous to toroidal, as for a tokamak; NCSX was to be substantially non-AS QA but not completed; CFQS likely to be first.

2. QP (quasipoloidal): u-lines homologous to the poloidal cycle.
3. $\mathrm{QH}(\mathrm{N}, \mathrm{M})$ (quasihelical): u-lines are homologous to N poloidal loops plus M toroidal loops, for some non-zero integers N, M (wlog in lowest terms and with $M \geq 0$), e.g. HSX is $\operatorname{QH}(4,1)$

- In the case of MHS in Euclidean space with a magnetic axis, we'll see that $M=1$, in particular QP is impossible.
- Define winding ratio $\iota(\psi)$ for B to be limit of ratio of number of poloidal turns to toroidal turns on level set of ψ.
- In set where u, B are independent, $d \psi \neq 0$. Let $n=\frac{\nabla \psi}{|\nabla \psi|^{2}}$ (so $\left.i_{n} d \psi=1, n \cdot B=0, n \cdot u=0\right)$. Then (B, u, n) form a basis.
- Theorem: In this basis, $L_{u} g$ has matrix
$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & L_{u}|u|^{2} & i_{n} L_{u} u^{b} \\ 0 & u \cdot[n, u] & L_{u}|n|^{2}\end{array}\right]$ and $L_{u}|n|^{2}=-|B|^{2}|n|^{4} L_{u}|u|^{2}$.
- Note: symmetric but alternative expressions for off-diagonal.
- Lemma: For any vector fields u, X and covariant 2-tensor g, $i_{X} L_{u} g=L_{u} i_{X} g-i_{[u, X]} g$.
- Proof: For any vector field Y,
$\left(L_{u} g\right)(X, Y)=L_{u}(g(X, Y))-g\left(L_{u} X, Y\right)-g\left(X, L_{u} Y\right)$. So $i_{Y} i_{X} L_{u} g=L_{u} i_{Y} i_{X} g-i_{Y} i_{[u, X]} g-i_{[u, Y]} i_{X} g$. Apply $L_{u} i_{Y} X^{b}=i_{Y} L_{u} X^{b}+i_{[u, Y]} X^{b}$ to 1-form $X^{b}=i_{X} g$, and obtain $i_{Y} i_{X} L_{u} g=i_{Y} L_{u} i_{X} g-i_{Y} i_{[u, X]} g . Y$ arbitrary, hence result.

continued

- Proof of Theorem: Apply the Lemma to $X=B, u, n$:

1. $X=B$ gives $i_{B} L_{u} g=0$, hence first row and column are 0 .
2. $X=u$ gives $i_{u} L_{u} g=L_{u} i_{u} g=L_{u} u^{b}$. Apply i_{u} or i_{n} to get $i_{u} i_{u} L_{u} g=L_{u} i_{u} u^{b}=L_{u}|u|^{2}$ and $i_{n} i_{u} L_{u} g=i_{n} L_{u} u^{b}$.
3. $X=n$ gives $i_{n} L_{u} g=L_{u} i_{n} g-i_{[u, n]} g$. Then $i_{u} i_{n} L_{u} g=L_{u} i_{u} i_{n} g-i_{u} i_{[u, n]} g=u \cdot[n, u]$.
$d \psi=i_{u} i_{B} \Omega$ so $\nabla \psi=B \times u$, so $|\nabla \psi|^{2}=i_{B \times u} i_{u} i_{B} \Omega$, but
$i_{B \times u} \Omega=B^{b} \wedge u^{b}$, so $|\nabla \psi|^{2}=i_{u} i_{B}\left(B^{b} \wedge u^{b}\right)=|B|^{2}|u|^{2}-(B \cdot u)^{2}$.
So $L_{u}|\nabla \psi|^{2}=|B|^{2} L_{u}|u|^{2}$, hence the last result.
Alternatively, define rate of strain tensor $E=\frac{1}{2} g^{-1} L_{u} g$ and use $0=L_{u} \Omega=\operatorname{tr} E$.

- For a QS $u, L_{u} g=0$ iff $L_{u} u^{b}=0$. True for axisymmetry: $u=\partial_{\phi}, u^{b}=r^{2} d \phi, L_{u} u^{b}=r^{2} d i_{u} d \phi=r^{2} d(1)=0$.
- Notes: Can show $n \cdot[n, u]=B \cdot[n, u]=0$, so $[n, u]$ parallel to $u_{\perp}=u-\frac{u \cdot B}{|B|^{2}} B$. Also, $i_{v} d \psi=i_{B} d|u|^{2}$ for $v=\operatorname{curl} u$. And $i_{B} L_{u} g=0$ implies $\operatorname{det} E=0$.

Case of Euclidean metric

- Theorem: If vector field u preserves Euclidean metric g $\left(L_{u} g=0\right)$ then $u(x)=U+A x$ for some vector U and antisymmetric matrix A.
- Proof: $|x-y|^{2}$ constant under the flow of u implies $(u(x)-u(y)) \cdot(x-y)=0$ (u "equiprojective"). Let $U=u(0)$ and $v(x)=u(x)-U$. Then v is equiprojective and taking $x=0$, $\forall y v(y) \cdot y=0$. So $\forall x, y$,

$$
\begin{align*}
v(x) \cdot y+v(y) \cdot x & =v(x) \cdot(y-x)+v(y) \cdot(x-y) \\
& =(v(x)-v(y)) \cdot(y-x)=0 \tag{1}
\end{align*}
$$

Thus $\forall x, y, z$ and $\lambda, \mu \in \mathbb{R}$,

$$
\begin{align*}
v(\lambda x+\mu y) \cdot z & =-(\lambda x+\mu y) \cdot v(z)=-\lambda x \cdot v(z)-\mu y \cdot v(z) \\
& =\lambda v(x) \cdot z+\mu v(y) \cdot z \tag{2}
\end{align*}
$$

so $v(x)=A x$ for some matrix A. By (1), A is antisymmetric.

- So u is a translation plus a rotation.

ϕ^{u} is a circle action

- Assume closed regular level set S of ψ (so a torus), and $d|B|$, $d \psi$ independent on a component C of a level set of $|B|$ on S.
- Then C is a circle and a closed u-line. From LA, all u-lines on the same flux surface are closed, have the same period $\tau(\psi)$ and are non-contractible.
- The same holds for all nearby flux surfaces.
- Theorem: If $u \cdot B \neq 0$ a.e. on this union of flux surfaces then τ is constant.
- Proof: Let $v=\tau(\psi) u, \phi$ be the flow of $v($ period 1$)$ and $f=1 / \tau$. For forms α, define circle-average $\langle\alpha\rangle=\int_{0}^{1} \phi_{t}^{*} \alpha d t$. $0=L_{u} B^{b}=L_{f v} B^{b}=v \cdot B d f+f L_{v} B^{b}$. Take $\rangle: v \cdot B$ and f are constant along each u-line, and $\left\langle L_{v} \alpha\right\rangle=0$ for any α, so $0=v \cdot B\langle d f\rangle$. And $\langle d f\rangle=d\langle f\rangle=d f$, so if $v \cdot B \neq 0$ a.e. we get f is constant.

Comments

- In case of axisymmetry, $\tau=2 \pi$.
- Relate to proof that if every orbit on an energy level of a Hamiltonian system is periodic then they have a common period? J Moser, CPAM 23 (1970) 609
- Magnetic flux through annulus S bounded by u-circles $\gamma_{2}-\gamma_{1}$ is $\tau[\psi]$, where $[\psi]=\psi\left(\gamma_{2}\right)-\psi\left(\gamma_{1}\right)$: $\int_{S} i_{B} \Omega=\int_{0}^{\tau} d t \int_{\phi_{t}^{u} L} i_{u} i_{B} \Omega$ for an arc L from γ_{1} to γ_{2} and time t along $u . i_{u} i_{B} \Omega=d \psi$ and $\int d t=\tau$.
- Current through S is $\int_{S} i ر \Omega=\left[\int_{\gamma} B^{b}\right]=\left[\int_{0}^{\tau} u \cdot B d t\right]=\tau[C]$.

Alternative fibration by tori

- Instead of using u, B commuting vector fields on level sets of ψ, can use u, J commuting vector fields on level sets of C.
- $i_{[u, J]} \Omega=L_{u} i_{j} \Omega-i_{j} L_{u} \Omega=L_{u} d B^{b}=0$ so $[u, J]=0$.
- Already have $i_{u} d C=0$. $i_{u} i_{J} \Omega=i_{u} d B^{b}=L_{u} B^{b}-d i_{u} B^{b}=-d C$, so $i_{j} d C=0$.
- Thus have LA coordinates on regular level sets of C.
- If there is a regular joint level set of (C, ψ) then get common period for u by propagating constant period on level set of C and that for ψ.
- Not useful in MHS (where we'll show C constant on flux surfaces), but might be useful more generally.

Conditions for a QS

- Can reduce to conditions on just u and the metric g.
- Let the rate of strain tensor $E=g^{-1} L_{u} g$.
- Theorem: u a QS implies $\operatorname{div} u=0$ (equivalently $\operatorname{tr} E=0$), and E has a unit null field e (in particular $\operatorname{det} E=0$) with $[u, e]=0$ independent of u a.e.
- Proof: $L_{u} \Omega=0,[u, b]=0, \& i_{b} L_{u} g=0$.
- $\operatorname{tr} E=\operatorname{det} E=0$ implies rank $E=0$ or 2 . The conditions can be written as 2 or 3 homogeneous PDEs for u : $\operatorname{div} u=0$ is first order, $\operatorname{det} E=0$ is third order. In the rank-2 case, for suitable ordering of components, a null vector is $x=\left[\begin{array}{c}E_{12} E_{23}-E_{22} E_{13} \\ E_{21} E_{13}-E_{11} E_{23} \\ E_{11} E_{22}-E_{12} E_{21}\end{array}\right]$. Let $e=x /|x|$, then require $[u, x]=|x|^{-2} g(x,[u, x]) x$, which can be written as $x \times[u, x]=0$. It is of fifth order.
- If $L_{u} g=0$ then can choose any u-invariant functions ψ, C and get a QS field $B=(u \times \nabla \psi+C u) /|u|^{2}(\&[u, b]=0)$.
- For rank 2 under conditions of Thm, \exists compatible B \& general formula for it by \mathbb{T}^{2}-averaging over flow of (u, e) [Burby].

QS in MHS: C constant on flux surfaces

- A basic desire for plasma confinement is an equilibrium between the charged particles and the magnetic field.
- Simplest is magnetohydrostatic: $J \times B=\nabla p$ for some function p (pressure), equivalently $i_{B} i_{j} \Omega=d p$.
- Use $i ر \Omega=d B^{b}$; write as $i_{B} d B^{b}=d p$ or $L_{B} B^{b}=d\left(p+|B|^{2}\right)$.
- Note that $L_{J} p=L_{B} p=0$ and $[J, B]=0$: $i_{[J, B]} \Omega=i_{J} L_{B} \Omega-L_{B} i ر \Omega=0-L_{B} d B^{b}=-d L_{B} B^{b}=0$.
- Also $L_{u} p=0$: Apply L_{u} to $i_{B} d B^{b}=d p$ to get $d L_{u} p=0$. So $L_{u} p$ is constant k on connected components. But the orbits of u are closed so $k=0$. Thus, p is constant on flux surfaces.
- Theorem: If u is a QS for an MHS field B then $u \cdot B$ is constant $C(\psi)$ on flux surfaces.
- Proof: $0=L_{u} B^{b}=i_{u} d B^{b}+d i_{u} B^{b}$, so $d(u \cdot B)=-i_{u} d B^{b}$. Applying i_{u} gives $L_{u}(u \cdot B)=0$. Applying i_{B} gives $L_{B}(u \cdot B)=i_{u} d p=0$. As u, B span the tangent plane to a flux surface then $u \cdot B$ is constant on it.
- For QS vacuum $\left(d B^{b}=0\right), C$ is constant because $i_{u} d B^{b}=0$.

Current

- How much toroidal current is there in a QS MHS plasma?
- Theorem: $J=-p^{\prime}(\psi) u-C^{\prime}(\psi) B$
- Proof: $i_{B} i_{j} \Omega=d p, i_{u} i_{B} \Omega=d \psi$, and $L_{u} B^{b}=0$ can be written as $i_{u} i_{J} \Omega+d C=0$. $i_{J} d \psi=i_{j} i_{u} i_{B} \Omega=i_{u} i_{B} d B^{b}=i_{u} d p=0$, so $J=\kappa u+\lambda B$ for some functions κ, λ. Putting this into the first gives $-\kappa d \psi=d p$, so $\kappa=-p^{\prime}$. And into the third gives $\lambda d \psi+d C=0$, so $\lambda=-C^{\prime}$.
- Choosing poloidal \& toroidal LA coordinates θ, ϕ for $[u, B]=0$, then $J^{\phi}=-p^{\prime} u^{\phi}-C^{\prime} B^{\phi}$. This is a function of ψ. u^{ϕ} is a constant. Maybe could choose the rest to cancel?
- But maybe the real point is to reduce $\int_{S} i j \Omega$ over a poloidal disk S. That equals $\int_{\partial S} B^{b}$. How to get hold of that?

QS Grad-Shafranov equation

- A PDE for ψ for a QS MHS plasma.
- Contracting J with $u^{b}: J \cdot u+C C^{\prime}+|u|^{2} p^{\prime}=0$.
- $i_{u} i_{B} \Omega=d \psi$ and $u \cdot B=C$ imply $B=(C u+u \times \nabla \psi) /|u|^{2}$.
$-i_{\nabla \psi} \Omega=i_{B \times u} \Omega=B^{b} \wedge u^{b}$. Let $v=\operatorname{curl} u$. Then $d i_{\nabla} \Omega=d B^{b} \wedge u^{b}-B^{b} \wedge d u^{b}=i_{j} \Omega \wedge u^{b}-B^{b} \wedge i_{v} \Omega$.
- For a vector field X and volume-form $\Omega, \operatorname{div} X$ is defined by $L_{X} \Omega=(\operatorname{div} X) \Omega$.
- So Laplacian $\Delta \psi=\operatorname{div} \nabla \psi=u \cdot J-B \cdot v$.
- $B \cdot v=(C u \cdot v-u \times v \cdot \nabla \psi) /|u|^{2}$.
- QSGSE: $\Delta \psi-\frac{u \times v}{|u|^{2}} \cdot \nabla \psi+C \frac{u \cdot v}{|u|^{2}}+C C^{\prime}(\psi)+|u|^{2} p^{\prime}(\psi)=0$, with $L_{u} \psi=0$.

Axisymmetric case

- $u=r \hat{\phi}, v=2 \hat{z}$, so $u \times v=2 r \hat{r}, u \cdot v=0,|u|^{2}=r^{2}$. Gives GSE $\Delta^{*} \psi+C C^{\prime}+r^{2} p^{\prime}=0$ with $\Delta^{*} \psi=\partial_{z}^{2} \psi+\partial_{r}^{2} \psi-\frac{1}{r} \partial_{r} \psi$.
- Known also as Hicks 1899 equation for ideal fluid flows.
- Under nice conditions, specify functions p and C of ψ and get existence \& uniqueness of a solution ψ as a function of (r, z).
- Variational formulation $\delta \int\left(\frac{|\nabla \psi|^{2}-C^{2}}{2 r^{2}}-p\right) r d r d z=0$.
- Solov'ev equilibria:
$\psi(r, z)=\left(b R^{2}+c_{0} r^{2}\right) \frac{z^{2}}{2}+\frac{1}{8}\left(a-c_{0}\right)\left(r^{2}-R^{2}\right)^{2}$ is a solution for $p=p_{0}-a \psi, C^{2}=C_{0}^{2}-2 b R^{2} \psi$.

QSGSE continued

- When $L_{u} g \neq 0$, the QSGSE needs supplementing by 3 other PDEs to enforce $L_{B} \Omega=0, L_{u} B^{b}=0$.
- We didn't find a variational principle for it.
- There is an alternative QSGSE using circle-averaged metric, which does have a variational principle.
- JW Burby, N Kallinikos, RS MacKay, Generalised Grad-Shafranov equation for non-axisymmetric MHD equilibria, Phys Plasmas 27 (2020) 102504

QS in MHS with magnetic axis

- If a foliation by toroidal flux surfaces degenerates to a circle, call it a magnetic axis.
- Theorem: For an MHS field in Euclidean space with a magnetic axis γ, QS must have $M=1$.
- Proof: $d p=i_{B} d B^{b}=|B| i_{b} d\left(|B| b^{b}\right)=|B| i_{b}\left(|B| d b^{b}+d|B| \wedge b^{b}\right)=$ $|B|^{2} i_{b} d b^{b}-|B| d_{\perp}|B|$, where $d_{\perp}|B|=d|B|-\left(i_{b} d|B|\right) b^{b}$. Now $i_{b} d b^{b}=L_{b} b^{b}=\kappa^{b}$, where κ is the curvature vector for b. On γ, $d p=0$ and $\kappa \neq 0$ somewhere. So $d_{\perp}|B| \neq 0$ there.
- If $M>1$ then the nearby u-lines cross plane perpendicular to γ in at least M points (actually, precisely M, using $u \cdot B=C(\psi)$) and have same $|B|$ at each, so unless they cluster then $d_{\perp}|B|=0$. They can't all cluster because they are equally spaced in LA coordinates.
- If $M=0$ then $u \cdot B$ constant on flux surfaces implies u close to perpendicular to γ, so again $d_{\perp}|B|$ goes to zero on γ.
- But perhaps we don't care about integrability near the magnetic axis, as long as we have it further out.

Beyond MHS

- Even staying at the level of one-fluid models for a plasma, there is scope for more equilibria than MHS.
- Can allow a mean flow velocity v (density ρ) and an electrostatic potential Φ.
- Ideal equilibrium: $L_{\rho v} \Omega=0, \rho i_{v} d v^{b}=i_{B} d B^{b}-d p$, $L_{v}\left(p \rho^{-5 / 3}\right)=0, d \Phi=i_{B} i_{v} \Omega$. Leaves out resistivity, Hall effect, Nernst effect, heat flow...
- Single particle Hamiltonian $H=\frac{p_{\|}^{2}}{2 m}+\mu|B|+e \Phi$. Natural to require $L_{u} \Phi=0$ for a QS : says u, B, v are linearly dependent, so write $v=x B+y u$.
- Probably want to require $L_{u} \rho=0$. Then $L_{\rho v} \Omega=0$ implies $L_{B}(\rho x)+L_{u}(\rho y)=0$.
- Should we require $[u, v]=0$? Then $L_{u} x=L_{u} y=0$ by independence of u, B.
- What more can one deduce?
- Extend to anisotropic pressure, cf Rodriguez \& Bhattacharjee PRE 104 (2021) 015213

