Mathematics for Fusion Power part 2

R.S.MacKay

February 21, 2024

Quasisymmetry

QS in Magnetohydrostatic plasma

FGCM

- ► Recall FGCM: $H = \frac{1}{2m}p_{\parallel}^2 + \mu |B(Q)|, \ \omega = -d(p_{\parallel}b^{\flat}) e\pi^*\beta.$
- It is on a fibre bundle, subbundle of T*M with fibres ℝb^b (assume |B| ≠ 0).
- For axisymmetric B we reduced to 1DoF and hence found simple principle for confinement: make some bounded level sets of μ, L, H.
- But requires strong toroidal current.
- Can we find other B fields for which FGCM has a continuous symmetry?
- If so, we get reduction to 1DoF, simple principle for confinement, and perhaps cases with small toroidal current?

Quasisymmetry (QS)

- Say 3D vector field u is a *quasisymmetry* for B if $L_u\beta = 0$, $L_u|B| = 0$, $L_ub^{\flat} = 0$. Lift u to U = (u, 0) on the GC phase space. Then for all μ , $L_UH = 0$ and $L_U\omega = 0$.
- A formal way to lift a vector field u to the GC phase space is $U = (u, -p_{\parallel}i_bL_ub^{\flat})$, chosen to preserve $p_{\parallel}b^{\flat}$, but gives same result.
- So FGCM conserves *L* defined by $i_U\omega = dL$: $i_u\beta$ is closed so assuming no global obstacle, $i_u\beta = d\psi$ for some function ψ , and then $L = p_{\parallel}u \cdot b e\psi$.
- Particles on suitable bounded level sets of μ , *L*, *H* are confined.
- Examples: For an axisymmetric *B* in Euclidean space, rotation about the axis is a quasisymmetry. Helical symmetry $u = k\partial_z + h\partial_\phi$ gives others, but has unbounded *u*-orbits; and quotient in vertical can't be realised in Euclidean space.
- QS was proposed in 1983 but still no non-axisymmetric examples known in Euclidean space!
- We'll study their properties and deduce many restrictions.
- JW Burby, N Kallinikos, RS MacKay, Some mathematics for quasi-symmetry, J Math Phys 61 (2020) 093503

Open questions

- Maybe L_ug = 0? (in which case, for Euclidean g and bounded u-orbits, u has to be rotation about an axis), or
- Kovalevskaya found a class of integrable cases for spinning tops (rigid body with one fixed point in a gravitational field) distinct from the Poisson-Euler and Lagrange cases (and

proved that there are no others).

So maybe there are non-axisymmetric magnetic fields for which GC motion is integrable?

Some consequences of QS

- Flux function ψ : $L_u\beta = 0$ implies $di_u i_B\Omega = 0$, so $i_u i_B\Omega = d\psi$ for some local function ψ . Assume there are orbits of u, B spanning H_1 , then ψ is global.
- If u, B are independent (equivalently, dψ ≠ 0) on a component of a level set of ψ, then it is a submanifold (called a *flux surface*) and u, B are tangent to it. The bounded components are 2-tori because orientable (use u, B as frame) and support a nowhere-zero vector field (u or B).

•
$$L_u \Omega = 0$$
: $b^{\flat} \wedge \beta = |B|\Omega$, thus
 $L_u(b^{\flat} \wedge \beta) = L_u b^{\flat} \wedge \beta + b^{\flat} \wedge L_u \beta = 0$. So
 $0 = L_u(|B|\Omega) = (L_u|B|)\Omega + |B|L_u\Omega$. So $L_u\Omega = 0$.
• $L_u B^{\flat} = 0$: $L_u B^{\flat} = L_u(|B|b^{\flat}) = (L_u|B|)b^{\flat} + |B|L_u b^{\flat} = 0$.
• $L_u C = 0$ where $C = u \cdot B$: $L_u(u \cdot B) = L_u i_u B^{\flat} = i_u L_u B^{\flat} = 0$.
• $L_u B = [u, B] = 0$: $i_{[u,B]}\Omega = L_u i_B\Omega - i_B L_u\Omega$ and Ω is
use dependent.

non-degenerate. This leads to...

Liouville-Arnol'd coordinates

- Theorem: u, B linearly indpt commuting vector fields on a compact surface S imply ∃ coordinates (θ¹, θ²) : S → T² such that u, B are indpt constant combinations of ∂_{θ¹}, ∂_{θ²}.
- **Proof**: Let ϕ^{u}, ϕ^{B} be the flows of *u* and *B*. They commute, so we can combine them into an action ϕ of \mathbb{R}^2 on S. Flowing for a time t_1 along u and t_2 along B from an initial point x_0 produces a local diffeomorphism ϕ from $t = (t_1, t_2)$ near 0 to a neighbourhood of x_0 . S is compact so there are $t = (t_1, t_2) \neq (0, 0)$ such that $\phi_t(x_0) = x_0$. The set of such pairs forms a 2D lattice. Choose a pair of generators T^1, T^2 and let A be the matrix with these as columns. We obtain an action of $\theta = (\theta^1, \theta^2) \in T^2$ on S by $\phi_{A\theta}$. Applying to a fixed x_0 , this gives a diffeomorphism of \mathbb{T}^2 to S. In these coordinates, u, B are the first and second columns of A^{-1} .
- Idea was rediscovered by Hamada to make such coordinates on constant pressure surfaces for magnetohydrostatic (MHS) fields (J × B = ∇p), from [J, B] = 0.

continued

- Can extend smoothly by ψ as third coordinate. So u = u¹(ψ)∂_{θ1} + u²(ψ)∂_{θ2} and similarly for B.
- If on each flux surface there is a level set of |B| that is a closed curve, then by L_u|B| = 0, it is a *u*-line. Then all the *u*-lines on it are closed. So u¹ : u² is rational, and by continuity the ratio is independent of ψ.
- We'll see that u is constant in such coordinates.

more

Choose toroidal & poloidal cycles on flux surfaces; distinguish

- 1. QA (quasiaxisymmetric): *u*-lines are homologous to toroidal, as for a tokamak; NCSX was to be substantially non-AS QA but not completed; CFQS likely to be first.
- 2. QP (quasipoloidal): *u*-lines homologous to the poloidal cycle.
- 3. QH(N,M) (quasihelical): *u*-lines are homologous to N poloidal loops plus M toroidal loops, for some non-zero integers N, M (wlog in lowest terms and with $M \ge 0$), e.g. HSX is QH(4,1)

[B] 0.91 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.11

- In the case of MHS in Euclidean space with a magnetic axis, we'll see that M = 1, in particular QP is impossible.
- Define winding ratio ι(ψ) for B to be limit of ratio of number of poloidal turns to toroidal turns on level set of ψ.

L_ug

- ▶ In set where u, B are independent, $d\psi \neq 0$. Let $n = \frac{\nabla \psi}{|\nabla \psi|^2}$ (so $i_n d\psi = 1$, $n \cdot B = 0$, $n \cdot u = 0$). Then (B, u, n) form a basis.
- **Theorem**: In this basis, L_ug has matrix $\begin{bmatrix} 0 & 0 & 0 \\ 0 & L_u|u|^2 & i_n L_u u^{\flat} \\ 0 & u \cdot [n, u] & L_u|n|^2 \end{bmatrix}$ and $L_u|n|^2 = -|B|^2|n|^4 L_u|u|^2$.

▶ Note: symmetric but alternative expressions for off-diagonal.

- Lemma: For any vector fields u, X and covariant 2-tensor g, i_XL_ug = L_ui_Xg - i_[u,X]g.
- ▶ **Proof**: For any vector field *Y*, $(L_ug)(X, Y) = L_u(g(X, Y)) - g(L_uX, Y) - g(X, L_uY)$. So $i_Y i_X L_ug = L_u i_Y i_X g - i_Y i_{[u,X]}g - i_{[u,Y]} i_X g$. Apply $L_u i_Y X^{\flat} = i_Y L_u X^{\flat} + i_{[u,Y]} X^{\flat}$ to 1-form $X^{\flat} = i_X g$, and obtain $i_Y i_X L_ug = i_Y L_u i_X g - i_Y i_{[u,X]}g$. *Y* arbitrary, hence result. □

continued

Proof of Theorem: Apply the Lemma to X = B, u, n:

- For a QS u, $L_ug = 0$ iff $L_uu^{\flat} = 0$. True for axisymmetry: $u = \partial_{\phi}$, $u^{\flat} = r^2 d\phi$, $L_uu^{\flat} = r^2 di_u d\phi = r^2 d(1) = 0$.
- Notes: Can show $n \cdot [n, u] = B \cdot [n, u] = 0$, so [n, u] parallel to $u_{\perp} = u \frac{u \cdot B}{|B|^2} B$. Also, $i_v d\psi = i_B d |u|^2$ for $v = \operatorname{curl} u$. And $i_B L_u g = 0$ implies det E = 0.

Case of Euclidean metric

► Theorem: If vector field u preserves Euclidean metric g (L_ug = 0) then u(x) = U + Ax for some vector U and antisymmetric matrix A.

▶ **Proof**: $|x - y|^2$ constant under the flow of *u* implies $(u(x) - u(y)) \cdot (x - y) = 0$ (*u* "equiprojective"). Let U = u(0) and v(x) = u(x) - U. Then *v* is equiprojective and taking x = 0, $\forall y \ v(y) \cdot y = 0$. So $\forall x, y$,

$$v(x) \cdot y + v(y) \cdot x = v(x) \cdot (y - x) + v(y) \cdot (x - y) = (v(x) - v(y)) \cdot (y - x) = 0$$
(1)

Thus $\forall x, y, z$ and $\lambda, \mu \in \mathbb{R}$,

$$v(\lambda x + \mu y) \cdot z = -(\lambda x + \mu y) \cdot v(z) = -\lambda x \cdot v(z) - \mu y \cdot v(z)$$

= $\lambda v(x) \cdot z + \mu v(y) \cdot z$, (2)

so v(x) = Ax for some matrix A. By (1), A is antisymmetric.
▶ So u is a translation plus a rotation.

ϕ^u is a circle action

- Assume closed regular level set S of ψ (so a torus), and d|B|, dψ independent on a component C of a level set of |B| on S.
- Then C is a circle and a closed u-line. From LA, all u-lines on the same flux surface are closed, have the same period τ(ψ) and are non-contractible.
- The same holds for all nearby flux surfaces.
- **Theorem**: If $u \cdot B \neq 0$ a.e. on this union of flux surfaces then τ is constant.
- ▶ **Proof**: Let $v = \tau(\psi)u$, ϕ be the flow of v (period 1) and $f = 1/\tau$. For forms α , define *circle-average* $\langle \alpha \rangle = \int_0^1 \phi_t^* \alpha \, dt$. $0 = L_u B^{\flat} = L_{fv} B^{\flat} = v \cdot B \, df + f \, L_v B^{\flat}$. Take $\langle \rangle$: $v \cdot B$ and f are constant along each *u*-line, and $\langle L_v \alpha \rangle = 0$ for any α , so $0 = v \cdot B \, \langle df \rangle$. And $\langle df \rangle = d \langle f \rangle = df$, so if $v \cdot B \neq 0$ a.e. we get f is constant.

Comments

- ln case of axisymmetry, $\tau = 2\pi$.
- Relate to proof that if every orbit on an energy level of a Hamiltonian system is periodic then they have a common period? J Moser, CPAM 23 (1970) 609
- Magnetic flux through annulus S bounded by u-circles γ₂ − γ₁ is τ[ψ], where [ψ] = ψ(γ₂) − ψ(γ₁): ∫_S i_BΩ = ∫₀^τ dt ∫_{φ^u_L} i_ui_BΩ for an arc L from γ₁ to γ₂ and time t along u. i_ui_BΩ = dψ and ∫ dt = τ.
- Current through S is $\int_S i_J \Omega = [\int_{\gamma} B^{\flat}] = [\int_0^{\tau} u \cdot B \, dt] = \tau[C].$

Alternative fibration by tori

Instead of using u, B commuting vector fields on level sets of ψ, can use u, J commuting vector fields on level sets of C.

$$i_{[u,J]}\Omega = L_u i_J \Omega - i_J L_u \Omega = L_u dB^{\flat} = 0 \text{ so } [u,J] = 0.$$

- Already have $i_u dC = 0$. $i_u i_J \Omega = i_u dB^{\flat} = L_u B^{\flat} - di_u B^{\flat} = -dC$, so $i_J dC = 0$.
- Thus have LA coordinates on regular level sets of C.
- If there is a regular joint level set of (C, ψ) then get common period for u by propagating constant period on level set of C and that for ψ.
- Not useful in MHS (where we'll show C constant on flux surfaces), but might be useful more generally.

Conditions for a QS

- Can reduce to conditions on just u and the metric g.
- Let the rate of strain tensor $E = g^{-1}L_ug$.
- Theorem: u a QS implies div u = 0 (equivalently tr E = 0), and E has a unit null field e (in particular det E = 0) with [u, e] = 0 independent of u a.e.

• **Proof**:
$$L_u \Omega = 0$$
, $[u, b] = 0$, & $i_b L_u g = 0$.

▶ tr $E = \det E = 0$ implies rank E = 0 or 2. The conditions can be written as 2 or 3 homogeneous PDEs for u: div u = 0 is first order, det E = 0 is third order. In the rank-2 case, for suitable ordering of $\begin{bmatrix} E_{12}E_{23} - E_{22}E_{13} \end{bmatrix}$

components, a null vector is
$$x = \begin{vmatrix} E_{21}E_{13} - E_{11}E_{23} \\ E_{11}E_{22} - E_{12}E_{21} \end{vmatrix}$$
. Let

e = x/|x|, then require $[u, x] = |x|^{-2}g(x, [u, x])x$, which can be written as $x \times [u, x] = 0$. It is of fifth order.

- If L_ug = 0 then can choose any u-invariant functions ψ, C and get a QS field B = (u × ∇ψ + Cu)/|u|² (& [u, b] = 0).
- For rank 2 under conditions of Thm, ∃ compatible B & general formula for it by T²-averaging over flow of (u, e) [Burby].

QS in MHS: C constant on flux surfaces

- A basic desire for plasma confinement is an equilibrium between the charged particles and the magnetic field.
- Simplest is magnetohydrostatic: J × B = ∇p for some function p (pressure), equivalently i_Bi_JΩ = dp.
- Use $i_J\Omega = dB^{\flat}$; write as $i_B dB^{\flat} = dp$ or $L_B B^{\flat} = d(p + |B|^2)$.
- Note that $L_J p = L_B p = 0$ and [J, B] = 0: $i_{[J,B]}\Omega = i_J L_B \Omega - L_B i_J \Omega = 0 - L_B dB^{\flat} = -dL_B B^{\flat} = 0$.
- ► Also L_up = 0: Apply L_u to i_BdB^b = dp to get dL_up = 0. So L_up is constant k on connected components. But the orbits of u are closed so k = 0. Thus, p is constant on flux surfaces.
- Theorem: If u is a QS for an MHS field B then u · B is constant C(ψ) on flux surfaces.
- ▶ **Proof**: $0 = L_u B^{\flat} = i_u dB^{\flat} + di_u B^{\flat}$, so $d(u \cdot B) = -i_u dB^{\flat}$. Applying i_u gives $L_u(u \cdot B) = 0$. Applying i_B gives $L_B(u \cdot B) = i_u dp = 0$. As u, B span the tangent plane to a flux surface then $u \cdot B$ is constant on it.
- For QS vacuum ($dB^{\flat} = 0$), C is constant because $i_u dB^{\flat} = 0$.

Current

How much toroidal current is there in a QS MHS plasma?

• Theorem:
$$J = -p'(\psi)u - C'(\psi)B$$

- ▶ **Proof**: $i_B i_J \Omega = dp$, $i_u i_B \Omega = d\psi$, and $L_u B^{\flat} = 0$ can be written as $i_u i_J \Omega + dC = 0$. $i_J d\psi = i_J i_u i_B \Omega = i_u i_B dB^{\flat} = i_u dp = 0$, so $J = \kappa u + \lambda B$ for some functions κ, λ . Putting this into the first gives $-\kappa d\psi = dp$, so $\kappa = -p'$. And into the third gives $\lambda d\psi + dC = 0$, so $\lambda = -C'$.
- Choosing poloidal & toroidal LA coordinates θ, φ for
 [u, B] = 0, then J^φ = -p'u^φ C'B^φ. This is a function of ψ.
 u^φ is a constant. Maybe could choose the rest to cancel?
- But maybe the real point is to reduce ∫_S i_JΩ over a poloidal disk S. That equals ∫_{∂S} B^b. How to get hold of that?

QS Grad-Shafranov equation

- A PDE for ψ for a QS MHS plasma.
- Contracting J with u^{\flat} : $J \cdot u + CC' + |u|^2 p' = 0$.
- $i_u i_B \Omega = d\psi$ and $u \cdot B = C$ imply $B = (Cu + u \times \nabla \psi)/|u|^2$.
- $i_{\nabla\psi}\Omega = i_{B\times u}\Omega = B^{\flat} \wedge u^{\flat}$. Let $v = \operatorname{curl} u$. Then $di_{\nabla\psi}\Omega = dB^{\flat} \wedge u^{\flat} - B^{\flat} \wedge du^{\flat} = i_{J}\Omega \wedge u^{\flat} - B^{\flat} \wedge i_{v}\Omega$.
- For a vector field X and volume-form Ω , divX is defined by $L_X \Omega = (\text{div}X)\Omega$.
- So Laplacian $\Delta \psi = \operatorname{div} \nabla \psi = u \cdot J B \cdot v$.

$$\blacktriangleright B \cdot \mathbf{v} = (Cu \cdot \mathbf{v} - u \times \mathbf{v} \cdot \nabla \psi)/|u|^2.$$

• QSGSE: $\Delta \psi - \frac{u \times v}{|u|^2} \cdot \nabla \psi + C \frac{u \cdot v}{|u|^2} + CC'(\psi) + |u|^2 p'(\psi) = 0$, with $L_u \psi = 0$.

Axisymmetric case

- $u = r\hat{\phi}, v = 2\hat{z}$, so $u \times v = 2r\hat{r}, u \cdot v = 0, |u|^2 = r^2$. Gives GSE $\Delta^*\psi + CC' + r^2p' = 0$ with $\Delta^*\psi = \partial_z^2\psi + \partial_r^2\psi - \frac{1}{r}\partial_r\psi$.
- Known also as Hicks 1899 equation for ideal fluid flows.
- Under nice conditions, specify functions p and C of ψ and get existence & uniqueness of a solution ψ as a function of (r, z).
- Variational formulation $\delta \int \left(\frac{|\nabla \psi|^2 C^2}{2r^2} p\right) r \, dr \, dz = 0.$
- Solov'ev equilibria: $\psi(r,z) = (bR^2 + c_0r^2)\frac{z^2}{2} + \frac{1}{8}(a - c_0)(r^2 - R^2)^2$ is a solution for $p = p_0 - a\psi$, $C^2 = C_0^2 - 2bR^2\psi$.

QSGSE continued

- ► When $L_u g \neq 0$, the QSGSE needs supplementing by 3 other PDEs to enforce $L_B \Omega = 0$, $L_u B^{\flat} = 0$.
- We didn't find a variational principle for it.
- There is an alternative QSGSE using circle-averaged metric, which does have a variational principle.
- JW Burby, N Kallinikos, RS MacKay, Generalised Grad-Shafranov equation for non-axisymmetric MHD equilibria, Phys Plasmas 27 (2020) 102504

QS in MHS with magnetic axis

- If a foliation by toroidal flux surfaces degenerates to a circle, call it a *magnetic axis*.
- Theorem: For an MHS field in Euclidean space with a magnetic axis γ, QS must have M = 1.
- ▶ **Proof**: $dp = i_B dB^{\flat} = |B|i_b d(|B|b^{\flat}) = |B|i_b(|B|db^{\flat} + d|B| \land b^{\flat}) = |B|^2 i_b db^{\flat} |B|d_{\perp}|B|$, where $d_{\perp}|B| = d|B| (i_b d|B|)b^{\flat}$. Now $i_b db^{\flat} = L_b b^{\flat} = \kappa^{\flat}$, where κ is the curvature vector for b. On γ , dp = 0 and $\kappa \neq 0$ somewhere. So $d_{\perp}|B| \neq 0$ there.
 - If M > 1 then the nearby *u*-lines cross plane perpendicular to γ in at least M points (actually, precisely M, using $u \cdot B = C(\psi)$) and have same |B| at each, so unless they cluster then $d_{\perp}|B| = 0$. They can't all cluster because they are equally spaced in LA coordinates. • If M = 0 then $u \cdot B$ constant on flux surfaces implies u close to perpendicular to γ , so again $d_{\perp}|B|$ goes to zero on γ .
- But perhaps we don't care about integrability near the magnetic axis, as long as we have it further out.

Beyond MHS

- Even staying at the level of one-fluid models for a plasma, there is scope for more equilibria than MHS.
- Can allow a mean flow velocity v (density ρ) and an electrostatic potential Φ.
- ► Ideal equilibrium: $L_{\rho\nu}\Omega = 0$, $\rho i_{\nu}d\nu^{\flat} = i_{B}dB^{\flat} dp$, $L_{\nu}(p\rho^{-5/3}) = 0$, $d\Phi = i_{B}i_{\nu}\Omega$. Leaves out resistivity, Hall effect, Nernst effect, heat flow...
- Single particle Hamiltonian H = ^{p_{||}/_{2m} + µ|B| + eΦ. Natural to require L_uΦ = 0 for a QS: says u, B, v are linearly dependent, so write v = xB + yu.}
- Probably want to require $L_u \rho = 0$. Then $L_{\rho v} \Omega = 0$ implies $L_B(\rho x) + L_u(\rho y) = 0$.
- Should we require [u, v] = 0? Then L_ux = L_uy = 0 by independence of u, B.
- What more can one deduce?
- Extend to anisotropic pressure, cf Rodriguez & Bhattacharjee PRE 104 (2021) 015213