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General Hamiltonian symmetries of FGCM

Approximate symmetries

Relativistic GC motion



Velocity-dependent symmetries

I GC fibre bundle N over 3D M, π : N → M, fibres Rb[.
I What freedom do we gain in Hamiltonian symmetries if allow

U = (u,w) on N to depend on p‖?

I FGCM H = 1
2mp2‖ + µ|B|, ω = −d(p‖b

[)− eπ∗β.

I Suppose U does not depend on µ.

I Then LUH = 0 implies 1
mp‖w = 0 and Lu|B| = 0. In

particular, w = 0.

I LUω = 0 with w = 0 implies 0 = Luω = −d(Lu(p‖b
[) + eiuβ)

because dβ = 0. So Lu(p‖b
[) + eiuβ = dL for some local

function L (suppose global) and L is conserved.

I dL = eiu iBΩ + p‖Lub
[.

I Nikos will develop further next week, in particular allowing
approximate symmetries.



Approximate symmetries of GC approximations
I FGCM is only a first-order approximation, so allow

approximate Hamiltonian symmetries of approximate systems.

I Can take small parameter ε = m/e and scale variables.

I H = ε(12p
2
‖ + µ|B|), ω = −β − εd(p‖b

[).

I Awkward feature that leading order of ω is degenerate.

I Theorem: u0 + εu1 is an approximate Hamiltonian symmetry
of FGCM on N iff Lu0β = 0, Lu0Ω = 0, Lu0 |B| = 0 and
u1 = b

|B| × (p‖X0 −∇ψ1) with X0 = curl (b × u0) +∇(u0 · b)
and a function ψ1 such that iBdψ1 = 0, ∂p‖ψ1 = p‖∂p‖b · u0.
It produces approximate conserved quantity
L = −ψ0 − ε(ψ1 − p‖u0 · b).

I Case of u with u0 independent of p‖ is called a weak quasi-
symmetry (Lu0 |B| = 0, Lu0β = 0, Lu0Ω = 0): Rodriguez E,
Helander P, Bhattacharjee A, Necessary and sufficient
conditions for quasisymmetry, Phys Plasma 27 (2020) 062501

I Burby JW, Kallinikos N, MacKay RS, Approximate symmetries
of guiding-centre motion, J Phys A 54 (2021) 125202



Weak QS & MHS implies a scaling is a QS

I Theorem: If LBΩ = 0, iBdB
[ = dp (MHS), u is a vector field with

LuΩ = 0, Lu|B| = 0, iu iBΩ = dψ 6= 0 a.e., u · B 6= 0, & B has
density of irrational surfaces (DIS), then ∃ τ(ψ) 6= 0 s.t. τu is a QS
for B.

I Proof: LuΩ = 0, iu iBΩ = dψ, LBΩ = 0 imply [u,B] = 0.
MHS iB iJΩ = dp implies [J,B] = 0. Also, iBdp = 0 & DIS imply p
a function of ψ, in particular J tangent to flux surfaces. dψ 6= 0
implies u,B indpt tangents to flux surfaces, so J = κu + λB for
some functions κ, λ. Then 0 = [J,B] = (LBκ)u + (LBλ)B, so
LBκ = LBλ = 0. DIS implies κ and λ constant on flux surfaces.
iBLuB

[ = Lu|B|2 = 0. Also, LB iuB
[ = iud(p + |B|2) = 0, so by DIS,

u · B = C (ψ), some C . So iuLuB
[ = LuC = 0.

Let v = τu, some τ(ψ). LvB
[ = τLuB

[ + Cdτ so iBLvB
[ & iuLvB

[

are 0. For n = ∇ψ
|∇ψ|2 , inLvB

[ = τ iniu iJΩ + ind(τC ) = τλ+ d
dψ (τC ).

We can make this 0 by choosing τ = 1
C exp(−

∫ ψ λ
C dψ).

(B, u, n) span the tangent space a.e., hence LvB
[ = 0.

LvΩ = 0, Lv |B| = 0 and iv iBΩ = τdψ = dΨ where Ψ =
∫ ψ

τdψ so

has the same level sets, and v is a QS for B.



Remark

I u · B 6= 0 is unnecessary. Instead of solving inLτuB
[ = 0 for τ ,

define τ to be the period function of the u-lines. It is a flux
function by existence of LA coordinates for [u,B] = 0. Then
let v = τu and circle average
LvB

[ = iv iJΩ + divB
[ = τλdψ + d(τC ) over the flow of v :

0 = (τλ+ (τC )′)〈dψ〉 = (τλ+ (τC )′)dψ. So inLvB
[ = 0 for

this choice of τ .



Triple product criterion for weak QS

I Recall that Luβ = 0 plus bounded u-lines and divB = 0
implies iu iBΩ = dψ for some function ψ.

I Theorem [Rodriguez et al]: If B · ∇|B| 6= 0 a.e. then

u = ∇ψ×∇|B|
B·∇|B| is a weak QS with flux function ψ iff

Ω(∇ψ,∇|B|,∇(B · ∇|B|)) = 0 and B · ∇ψ = 0.

I Proof: “if”: Lu|B| = 0, B × u = ∇ψ (using B · ∇ψ = 0),
divu = −Ω(∇ψ,∇|B|,∇(B · ∇|B|))/(B · ∇|B|)2 = 0.
“only if”: B × u = ∇ψ implies B · ∇ψ = 0.
Ω(∇ψ,∇|B|,∇(B · ∇|B|)) = −(B · ∇|B|)2divu = 0.

I Question about continuity of u where B · ∇|B| = 0 (which
must occur).



Relativistic version
I DT fusion alphas have |v |/c ≈ 4.3%.
I Relativistic charged particle motion in a steady EM field in 3D space

M has Hamiltonian formulation on T ∗M: H = γ(p)mc2 + eΦ(q),
ω = −d(π∗p)− eπ∗β, with γ =

√
1 + (|p|/mc)2.

Note p = γmv [ and γ = (1− |v |2/c2)−1/2.

I Reduction by gyro-rotation produces adiabatic invariant µ = |p⊥|2
2m|B| ,

H = c
√
m2c2 + p2‖ + 2mµ|B(Q) + eΦ(Q), ω = −d(p‖b

[)− eβ.

I Quasi-symmetry u: Lu|B| = 0, LuΦ = 0, Lub
[ = 0, Luβ = 0.

I Alternatively, motion in general EM field in space-time M̃ wrt
particle’s proper time τ : dP

dτ = −eiVF , where in Minkowski
coordinates g = −c2dt2 +

∑
i (dx

i )2, V = γ(1, v),
P = mV [ = (−E , p) and F is the Faraday (closed) 2-form
F =

∑
σ B

idx j ∧ dxk +
∑

i
Ei

c dx
i ∧ dt for cyclic perms σ of 123.

I Hamiltonian form on T ∗M̃: H = |P|2/2m, ω = −d(π∗P)− eπ∗F ,
restricted to H = − 1

2mc2.

I Can reduce by gyro-rotation to 3DoF. Time-translation symmetry or

generalisations reduce to 2DoF. Quasi-symmetries reduce to 1DoF.



Plan for remaining weeks

I week 4: Nikos to present generalised and approximate
symmetries of GCM

I week 5: relax to omnigenity

I week 6: relax to isodrastic plus KAM tori

I week 7&8: interaction of two charges

I plus perhaps pressure-jump Hamiltonian, divertors
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