Mathematics for Fusion Power part 3

R.S.MacKay

February 13, 2024

General Hamiltonian symmetries of FGCM

Approximate symmetries

Relativistic GC motion

Velocity-dependent symmetries

- GC fibre bundle N over 3D $M, \pi: N \rightarrow M$, fibres $\mathbb{R} b^{b}$.
- What freedom do we gain in Hamiltonian symmetries if allow $U=(u, w)$ on N to depend on $p_{\|}$?
- FGCM $H=\frac{1}{2 m} p_{\|}^{2}+\mu|B|, \omega=-d\left(p_{\|} b^{b}\right)-e \pi^{*} \beta$.
- Suppose U does not depend on μ.
- Then $L_{U} H=0$ implies $\frac{1}{m} p_{\|} w=0$ and $L_{u}|B|=0$. In particular, $w=0$.
- $L_{U} \omega=0$ with $w=0$ implies $0=L_{u} \omega=-d\left(L_{u}\left(p_{\|} b^{b}\right)+e i_{u} \beta\right)$ because $d \beta=0$. So $L_{u}\left(p_{\|} b^{b}\right)+e i_{u} \beta=d L$ for some local function L (suppose global) and L is conserved.
- $d L=e i_{u} i_{B} \Omega+p_{\|} L_{u} b^{b}$.
- Nikos will develop further next week, in particular allowing approximate symmetries.

Approximate symmetries of GC approximations

- FGCM is only a first-order approximation, so allow approximate Hamiltonian symmetries of approximate systems.
- Can take small parameter $\varepsilon=m / e$ and scale variables.
- $H=\varepsilon\left(\frac{1}{2} p_{\|}^{2}+\mu|B|\right), \omega=-\beta-\varepsilon d\left(p_{\|} b^{b}\right)$.
- Awkward feature that leading order of ω is degenerate.
- Theorem: $u_{0}+\varepsilon u_{1}$ is an approximate Hamiltonian symmetry of FGCM on N iff $L_{u_{0}} \beta=0, L_{u_{0}} \Omega=0, L_{u_{0}}|B|=0$ and $u_{1}=\frac{b}{|B|} \times\left(p_{\|} X_{0}-\nabla \psi_{1}\right)$ with $X_{0}=\operatorname{curl}\left(b \times u_{0}\right)+\nabla\left(u_{0} \cdot b\right)$ and a function ψ_{1} such that $i_{B} d \psi_{1}=0, \partial_{p_{\|}} \psi_{1}=p_{\|} \partial_{p_{\|}} b \cdot u_{0}$. It produces approximate conserved quantity $L=-\psi_{0}-\varepsilon\left(\psi_{1}-p_{\|} u_{0} \cdot b\right)$.
- Case of u with u_{0} independent of $p_{\|}$is called a weak quasisymmetry $\left(L_{u_{0}}|B|=0, L_{u_{0}} \beta=0, L_{u_{0}} \Omega=0\right)$: Rodriguez E , Helander P, Bhattacharjee A, Necessary and sufficient conditions for quasisymmetry, Phys Plasma 27 (2020) 062501
- Burby JW, Kallinikos N, MacKay RS, Approximate symmetries of guiding-centre motion, J Phys A 54 (2021) 125202

Weak QS \& MHS implies a scaling is a QS

- Theorem: If $L_{B} \Omega=0, i_{B} d B^{b}=d p$ (MHS), u is a vector field with $L_{u} \Omega=0, L_{u}|B|=0, i_{u} i_{B} \Omega=d \psi \neq 0$ a.e., $u \cdot B \neq 0, \& B$ has density of irrational surfaces (DIS), then $\exists \tau(\psi) \neq 0$ s.t. τu is a QS for B.
- Proof: $L_{u} \Omega=0, i_{u} i_{B} \Omega=d \psi, L_{B} \Omega=0$ imply $[u, B]=0$. MHS $i_{B} i, \Omega=d p$ implies $[J, B]=0$. Also, $i_{B} d p=0$ \& DIS imply p a function of ψ, in particular J tangent to flux surfaces. $d \psi \neq 0$ implies u, B indpt tangents to flux surfaces, so $J=\kappa u+\lambda B$ for some functions κ, λ. Then $0=[J, B]=\left(L_{B} \kappa\right) u+\left(L_{B} \lambda\right) B$, so $L_{B} \kappa=L_{B} \lambda=0$. DIS implies κ and λ constant on flux surfaces. $i_{B} L_{u} B^{b}=L_{u}|B|^{2}=0$. Also, $L_{B} i_{u} B^{b}=i_{u} d\left(p+|B|^{2}\right)=0$, so by DIS, $u \cdot B=C(\psi)$, some C. So $i_{u} L_{u} B^{b}=L_{u} C=0$.
Let $v=\tau u$, some $\tau(\psi) . L_{v} B^{b}=\tau L_{u} B^{b}+C d \tau$ so $i_{B} L_{v} B^{b} \& i_{u} L_{v} B^{b}$ are 0 . For $n=\frac{\nabla \psi}{|\nabla \psi|^{2}}, i_{n} L_{v} B^{b}=\tau i_{n} i_{u} i_{J} \Omega+i_{n} d(\tau C)=\tau \lambda+\frac{d}{d \psi}(\tau C)$.
We can make this 0 by choosing $\tau=\frac{1}{C} \exp \left(-\int^{\psi} \frac{\lambda}{C} d \psi\right)$.
(B, u, n) span the tangent space a.e., hence $L_{v} B^{b}=0$. $L_{v} \Omega=0, L_{v}|B|=0$ and $i_{v} i_{B} \Omega=\tau d \psi=d \Psi$ where $\psi=\int^{\psi} \tau d \psi$ so has the same level sets, and v is a QS for B.

Remark

-u•B$\neq 0$ is unnecessary. Instead of solving $i_{n} L_{\tau u} B^{b}=0$ for τ, define τ to be the period function of the u-lines. It is a flux function by existence of LA coordinates for $[u, B]=0$. Then let $v=\tau u$ and circle average $L_{v} B^{b}=i_{v} i ر \Omega+d i_{v} B^{b}=\tau \lambda d \psi+d(\tau C)$ over the flow of v : $0=\left(\tau \lambda+(\tau C)^{\prime}\right)\langle d \psi\rangle=\left(\tau \lambda+(\tau C)^{\prime}\right) d \psi$. So $i_{n} L_{v} B^{b}=0$ for this choice of τ.

Triple product criterion for weak QS

- Recall that $L_{u} \beta=0$ plus bounded u-lines and $\operatorname{div} B=0$ implies $i_{u} i_{B} \Omega=d \psi$ for some function ψ.
- Theorem [Rodriguez et al]: If $B \cdot \nabla|B| \neq 0$ a.e. then $u=\frac{\nabla \psi \times \nabla|B|}{B \cdot \nabla|B|}$ is a weak QS with flux function ψ iff $\Omega(\nabla \psi, \nabla|B|, \nabla(B \cdot \nabla|B|))=0$ and $B \cdot \nabla \psi=0$.
- Proof: "if": $L_{u}|B|=0, B \times u=\nabla \psi$ (using $B \cdot \nabla \psi=0$), $\operatorname{div} u=-\Omega(\nabla \psi, \nabla|B|, \nabla(B \cdot \nabla|B|)) /(B \cdot \nabla|B|)^{2}=0$. "only if": $B \times u=\nabla \psi$ implies $B \cdot \nabla \psi=0$. $\Omega(\nabla \psi, \nabla|B|, \nabla(B \cdot \nabla|B|))=-(B \cdot \nabla|B|)^{2} \operatorname{div} u=0$.
- Question about continuity of u where $B \cdot \nabla|B|=0$ (which must occur).

Relativistic version

- DT fusion alphas have $|v| / c \approx 4.3 \%$.
- Relativistic charged particle motion in a steady EM field in 3D space M has Hamiltonian formulation on $T^{*} M: H=\gamma(p) m c^{2}+e \Phi(q)$, $\omega=-d\left(\pi^{*} p\right)-e \pi^{*} \beta$, with $\gamma=\sqrt{1+(|p| / m c)^{2}}$. Note $p=\gamma m v^{b}$ and $\gamma=\left(1-|v|^{2} / c^{2}\right)^{-1 / 2}$.
- Reduction by gyro-rotation produces adiabatic invariant $\mu=\frac{\left|p_{\perp}\right|^{2}}{2 m|B|}$,

$$
H=c \sqrt{m^{2} c^{2}+p_{\|}^{2}+2 m \mu \mid B(Q)}+e \Phi(Q), \omega=-d\left(p_{\|} b^{b}\right)-e \beta
$$

- Quasi-symmetry $u: L_{u}|B|=0, L_{u} \Phi=0, L_{u} b^{b}=0, L_{u} \beta=0$.
- Alternatively, motion in general EM field in space-time \tilde{M} wrt particle's proper time τ : $\frac{d P}{d \tau}=-e i_{V} F$, where in Minkowski coordinates $g=-c^{2} d t^{2}+\sum_{i}\left(d x^{i}\right)^{2}, V=\gamma(1, v)$, $P=m V^{b}=(-\mathcal{E}, p)$ and F is the Faraday (closed) 2-form $F=\sum_{\sigma} B^{i} d x^{j} \wedge d x^{k}+\sum_{i} \frac{E_{i}}{c} d x^{i} \wedge d t$ for cyclic perms σ of 123.
- Hamiltonian form on $T^{*} \tilde{M}: H=|P|^{2} / 2 m, \omega=-d\left(\pi^{*} P\right)-e \pi^{*} F$, restricted to $H=-\frac{1}{2} m c^{2}$.
- Can reduce by gyro-rotation to 3DoF. Time-translation symmetry or generalisations reduce to 2DoF. Quasi-symmetries reduce to 1 DoF.

Plan for remaining weeks

- week 4: Nikos to present generalised and approximate symmetries of GCM
- week 5: relax to omnigenity
- week 6: relax to isodrastic plus KAM tori
- week 7\&8: interaction of two charges
- plus perhaps pressure-jump Hamiltonian, divertors

