# Mathematics for Fusion Power part 4 

N. Kallinikos

February 14, 2024

## Outline

(1) Velocity (Hamiltonian) symmetries of FGCM
(2) Approximate (Hamiltonian) symmetries of FGCM

First-order guiding-center motion (FGCM) - Exact treatment
For a given magnetic field $B$ on a 3 -dimensional manifold $M$, the Hamiltonian structure of FGCM is

$$
\begin{align*}
\omega & =-\beta-d\left(p_{\|} b^{b}\right)  \tag{1}\\
H & =\frac{p_{\|}^{2}}{2}+\mu|B| \tag{2}
\end{align*}
$$

on the 4 -dimensional GC bundle $N$ over $M$, where

- $\beta=i_{B} \Omega=$ magnetic flux form,
- $b=B /|B|$ and $b^{b}=i_{b} g$,
- $g=$ metric tensor on $M$
- $\Omega=$ associated volume form on $M$
- $\mu=$ magnetic moment
and normalised units $m=e=1$.


## FGCM - Exact treatment (continued)

In terms of the modified magnetic field,

$$
\begin{equation*}
\tilde{B}=B+p_{\|} c \tag{3}
\end{equation*}
$$

where $c=$ curl $b$, the symplectic form can be written as

$$
\begin{align*}
\omega & =-\beta-d\left(p_{\|} b^{b}\right)=-i_{B} \Omega-d p_{\|} \wedge b^{b}-p_{\|} d b^{b} \\
& =-i_{B} \Omega-p_{\|} i_{c} \Omega-d p_{\|} \wedge b^{b} \\
& =-\tilde{\beta}-d p_{\|} \wedge b^{b} \tag{4}
\end{align*}
$$

where $\tilde{\beta}=i_{\tilde{B}} \Omega$ is the modified flux.
Note that $\operatorname{div} \tilde{B}=0$. This means that $\tilde{\beta}$ is closed on $M$. But it's not closed on $N$. To see these, write $\tilde{\beta}=\beta+p_{\|} d b^{b}$ to derive $d \tilde{\beta}=d p_{\|} \wedge d b^{b}$ and therefrom $d \tilde{\beta} \wedge d p_{\|}=0$.

## FGCM - Exact treatment (continued)

The GC 2 -form $\omega$ is nondegenerate if and only if $\tilde{B}_{\|} \neq 0$, where $\tilde{B}_{\|}=b \cdot \tilde{B}$.

Proof. $\omega$ is nondegenerate if and only if $i_{U} \omega=0 \Leftrightarrow U=0$, where $U=(u, w)$ is a vector field on $N$. Now, using (4)
$i_{U} \omega=-i_{u} i_{\tilde{B}} \Omega-w b^{b}+(u \cdot b) d p_{\|}=-(\tilde{B} \times u)^{b}-w b^{b}+(u \cdot b) d p_{\|}$
So $i_{U} \omega=0$ splits to $u \cdot b=0$ and $\tilde{B} \times u+w b=0$, which in turn splits to

$$
\left\{\begin{array} { l } 
{ ( \tilde { B } \times u ) \times b = 0 } \\
{ w b \cdot \tilde { B } = 0 }
\end{array} \Rightarrow \left\{\begin{array} { l } 
{ ( \tilde { B } \cdot b ) u - ( u \cdot b ) \tilde { B } = 0 } \\
{ \tilde { B } \tilde { \| } _ { \| } w = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\tilde{B}_{\|} u=0 \\
\tilde{B}_{\|} w=0
\end{array}\right.\right.\right.
$$

i.e. $U=0$ is the only solution if-f $\tilde{B}_{\|} \neq 0$.

## Velocity symmetries of FGCM - Exact treatment

Consider a symmetry generated by a vector field

$$
U=(u, w)
$$

on the guiding-centre phase space $N$, where

- $u$ is the 3 D part on the physical space $M$
- $w$ is 1 D in the $p_{\|}$-direction
- $u, w$ depend on both $\left(Q, p_{\|}\right)$
- $u, w$ are considered independent of $\mu$ (at least for now)

Recall that the conditions for a Hamiltonian symmetry are

$$
\begin{aligned}
L_{U} \omega & =0 \\
L_{U} H & =0
\end{aligned}
$$

## Velocity symmetries of FGCM - Exact treatment (continued)

1. From $L_{U} H=0$, we have $w p_{\|}+\mu L_{u}|B|=0$. For all values of $\mu$, this splits to

$$
\begin{align*}
w & =0  \tag{5}\\
L_{u}|B| & =0 \tag{6}
\end{align*}
$$

2. For $w=0, L_{U} \omega$ reduces to $L_{u} \omega$ and

$$
\begin{aligned}
L_{u} \omega & =-L_{u} \beta-L_{u} d\left(p_{\|} b^{b}\right)=-i_{u} d \beta-d\left(i_{u} \beta\right)-d L_{u}\left(p_{\|} b^{b}\right) \\
& =-d\left(i_{u} i_{B} \Omega\right)-d\left(p_{\|} L_{u} b^{b}\right)=-d\left(i_{u} i_{B} \Omega+p_{\|} L_{u} b^{b}\right)
\end{aligned}
$$

since $d \beta=0$. Thus, $L_{U} \omega=0$ if and only if

$$
\begin{equation*}
i_{u} i_{B} \Omega+p_{\|} L_{u} b^{b}=d \psi \tag{7}
\end{equation*}
$$

for some function $\psi$ (defined at least locally) on $N$.

## Velocity symmetries of FGCM - Exact treatment (continued)

3. This condition is in turn equivalent to:

$$
\begin{array}{r}
i_{u} i_{B} \Omega+p_{\|} i_{u} d b^{b}+p_{\|} d\left(i_{u} b^{b}\right)=d \psi \\
i_{u} i_{B} \Omega+p_{\|} i_{u} i_{c} \Omega+d\left(p_{\|} i_{u} b^{b}\right)-\left(i_{u} b^{b}\right) d p_{\|}=d \psi
\end{array}
$$

and can be written as

$$
\begin{equation*}
i_{u} i_{\tilde{B}} \Omega-(u \cdot b) d p_{\|}=-d K \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
K=-\psi+(u \cdot b) p_{\|} \tag{9}
\end{equation*}
$$

Equation (8) splits to

$$
\begin{array}{r}
u \times \tilde{B}=\nabla K \\
u \cdot b=\partial_{p_{\|}} K \tag{11}
\end{array}
$$

## Velocity symmetries of FGCM - Exact treatment (continued)

4. $K$ is the invariant associated to the symmetry generator $U$ :

$$
i_{U} \omega=i_{u} \omega=i_{u}\left(-\tilde{\beta}-d p_{\|} \wedge b^{b}\right)=-i_{u} i_{\tilde{B}} \Omega+\left(i_{u} b^{b}\right) d p_{\|}=d K
$$

5. The compatibility condition between (10)-(11) yields

$$
\begin{equation*}
\nabla(u \cdot b)=\partial_{p_{\|}}(u \times \tilde{B}) \tag{12}
\end{equation*}
$$

while the compatibility condition of (10) is $\operatorname{curl}(u \times \tilde{B})=0$ and

$$
\begin{aligned}
\operatorname{curl}(u \times \tilde{B}) & =(\operatorname{div} \tilde{B}) u-(\operatorname{div} u) \tilde{B}+(\tilde{B} \cdot \nabla) u-(u \cdot \nabla) \tilde{B} \\
& =-(\operatorname{div} u) \tilde{B}+[\tilde{B}, u]
\end{aligned}
$$

hence reads

$$
\begin{equation*}
[u, \tilde{B}]+(\operatorname{div} u) \tilde{B}=0 \tag{13}
\end{equation*}
$$

## Velocity symmetries of FGCM - Exact treatment (continued)

6a. Writing $L_{u} \omega=L_{u}\left(-\tilde{\beta}-d p_{\|} \wedge b^{b}\right)=-L_{u} \tilde{\beta}-d p_{\|} \wedge L_{u} b^{b}$, note first that yet another way of expressing $L_{u} \omega=0$ is

$$
\begin{equation*}
L_{u} \tilde{\beta}+d p_{\|} \wedge L_{u} b^{b}=0 \tag{14}
\end{equation*}
$$

This implies, in particular,

$$
\begin{equation*}
L_{u} \tilde{\beta} \wedge d p_{\|}=0 \tag{15}
\end{equation*}
$$

6b. Secondly, $i_{\tilde{B}} L_{u} \tilde{\beta}=\left(L_{u} i_{\tilde{B}}-i_{[u, \tilde{B}]}\right) \tilde{\beta}=L_{u} i_{\tilde{B}} \tilde{\beta}+\operatorname{div} u i_{\tilde{B}} \tilde{\beta}$, using (13), and since $i_{\tilde{B}} \tilde{\beta}=i_{\tilde{B}} i_{\tilde{B}} \Omega=0$, we have

$$
\begin{equation*}
i_{\tilde{B}} L_{u} \tilde{\beta}=0 \tag{16}
\end{equation*}
$$

6c. Thirdly, applying $i_{\tilde{B}}$ to (14) and using (16), we also deduce

$$
\begin{equation*}
i_{\tilde{B}} L_{u} b^{b}=0 \tag{17}
\end{equation*}
$$

## Velocity symmetries of FGCM - Exact treatment (continued)

7. Using this,

$$
i_{[u, \tilde{B}]} b^{b}=\left(L_{u} i_{\tilde{B}}-i_{\tilde{B}} L_{u}\right) b^{b}=L_{u} \tilde{B}_{\|}
$$

hence the $b$-component of the compatibility (13) reads

$$
\begin{equation*}
L_{u} \tilde{B}_{\|}+(\operatorname{div} u) \tilde{B}_{\|}=0 \tag{18}
\end{equation*}
$$

8. Finally, for $\bar{b}=\tilde{B} / \tilde{B}_{\|}$

$$
[u, \bar{b}]=L_{u}\left(\tilde{B}_{\|}^{-1}\right) \tilde{B}+\tilde{B}_{\|}^{-1}[u, \tilde{B}]=-\tilde{B}_{\|}^{-2} L_{u}\left(\tilde{B}_{\|}\right) \tilde{B}+\tilde{B}_{\|}^{-1}[u, \tilde{B}]
$$

and so we deduce from (13),(18) that

$$
\begin{equation*}
[u, \bar{b}]=0 \tag{19}
\end{equation*}
$$

## Velocity symmetries of FGCM - Exact treatment (continued)

In summary, what we can say so far are

## Theorem 1

Given a magnetic field $B$, a vector field $U=(u, w)$ on $N$ generates a Hamiltonian symmetry of FGCM if-f $L_{u} \tilde{\beta}+d p_{\|} \wedge L_{u} b^{b}=0$, $L_{u}|B|=0, w=0$.

## Theorem 2

If a $p_{\|}$-dependent vector field $u$ on $M$ generates a Hamiltonian symmetry of FGCM, then

- $[u, \tilde{B}]+(\operatorname{div} u) \tilde{B}=0$
- $[u, \bar{b}]=0$
- $\nabla(u \cdot b)=\partial_{p_{\|}}(u \times \tilde{B})$
- $i_{\tilde{B}} L_{u} b^{b}=0$
- $i_{\tilde{B}} L_{u} \tilde{\beta}=0, L_{u} \tilde{\beta} \wedge d p_{\|}=0$


## Velocity symmetries of FGCM - Exact treatment (continued)

In summary, what we can say so far are

## Theorem 1

Given a magnetic field $B$, a vector field $U=(u, w)$ on $N$ generates a Ham. symmetry of FGCM if-f $u \times \tilde{B}=\nabla K, u \cdot b=\partial_{p_{\|}} K$, $u \cdot \nabla|B|=0, w=0$, where $K$ is the associated invariant.

## Theorem 2

If a $p_{\|}$-dependent vector field $u$ on $M$ generates a Hamiltonian symmetry of FGCM, then

- $[u, \tilde{B}]+(\operatorname{div} u) \tilde{B}=0$
- $[u, \bar{b}]=0$
- $\nabla(u \cdot b)=\partial_{p_{\|}}(u \times \tilde{B})$
- $i_{\tilde{B}} L_{u} b^{b}=0$
- $i_{\tilde{B}} L_{u} \tilde{\beta}=0, L_{u} \tilde{\beta} \wedge d p_{\|}=0$


## FGCM \& Symmetries - Approximate treatment

- FGCM is the 1st-order approximation of GCM wrt

$$
\varepsilon=m / e \ll 1
$$

$$
\begin{aligned}
\omega & =-\beta-\varepsilon d\left(p_{\|} b^{b}\right) \\
H & =\varepsilon\left(p_{\|}^{2} / 2+\mu|B|\right)
\end{aligned}
$$

So, natural to consider:

- Approximate vector fields of 1 st-order

$$
U=U_{0}+\varepsilon U_{1}
$$

- Approximate symmetries of 1 st-order

$$
\begin{aligned}
L_{U} \omega & =O\left(\varepsilon^{2}\right) \\
L_{U} H & =O\left(\varepsilon^{2}\right)
\end{aligned}
$$

## FGCM \& Symmetries - Approximate treatment

- FGCM is the 1st-order approximation of GCM wrt

$$
\varepsilon=m / e \ll 1
$$

$$
\begin{aligned}
\omega & =-\beta-\varepsilon d\left(p_{\|} b^{b}\right) \\
H & =\varepsilon\left(p_{\|}^{2} / 2+\mu|B|\right)
\end{aligned}
$$

So, natural to consider:

- Approximate vector fields of 1 st-order

$$
U=U_{0}+\varepsilon U_{1}
$$

- Approximate symmetries of 1st-order

$$
\begin{aligned}
& L_{U} \omega \approx 0 \\
& L_{U} H \approx 0
\end{aligned}
$$

From now on, we write $A=B+O\left(\varepsilon^{n}\right)$ as $A \approx B$ for any two tensors of the same type. For FGCM, we take $n=2$.

## FGCM \& Symmetries - Approximate treatment (continued)

## Approximate version of Noether's theorem

A vector field $U$ generates an approximate symmetry of an approximate Hamiltonian system $(\omega, H)$ if-f there exists an approximate constant of motion $K$ such that $i_{U} \omega \approx d K$.

Proof. For any $K=K_{0}+\varepsilon K_{1}+\cdots$, a vector field $U$ s.t. $i_{U} \omega \approx d K$ is well-defined for $\omega=\omega_{0}+\varepsilon \omega_{1}+\cdots$, since $\omega_{0}$ is nondegenerate,

$$
\begin{align*}
i_{U_{0}} \omega_{0} & =d K_{0} \\
i_{U_{1}} \omega_{0}+i_{U_{0}} \omega_{1} & =d K_{1} \\
i_{U_{2}} \omega_{0}+i_{U_{1}} \omega_{1}+i_{U_{0}} \omega_{2} & =d K_{2} \tag{20}
\end{align*}
$$

Thus, $L_{U} \omega \approx 0$ and, if $L_{X} K \approx 0, L_{U} H \approx 0$ too, because

$$
\begin{align*}
L_{U} \omega & =d i_{U} \omega  \tag{21}\\
L_{U} H & =i_{U} d H=i_{U} i_{X} \omega=-i_{X} d K=-L_{X} K . \tag{22}
\end{align*}
$$

In the other direction, if $U$ generates an approximate Hamiltonian symmetry, then (21) gives $i_{U} \omega \approx d K$ for some (suppose global) function $K$, and (22) gives $L_{X} K \approx 0$.

## FGCM \& Symmetries - Approximate treatment (continued)

Complication:
For $\varepsilon=0$ the GC 2 -form, $\omega_{0}=-\beta$, is degenerate of rank 2 (i.e., presymplectic of constant rank) for $B \neq 0$ because $i_{U} \beta=i_{u} i_{B} \Omega=(B \times u)^{b}$ for any vector field $U=(u, w)$ on $N$, and therefore setting $i_{U} \beta=0$, we see that

The kernel of $\beta$ (naturally pullbacked) on $N$ consists of all the vector fields $(f b, g)$ for arbitrary functions $f, g$
hence is two-dimensional.
This produces

## Trivial symmetries

A trivial approximate symmetry is generated by any vector field $S$ s.t. $i_{S} \omega \approx 0$. For the GC 2 -form $\omega, S=\varepsilon S_{1}$ with $S_{1} \in \operatorname{ker} \beta$.

## Approximate Symmetries of FGCM (Burby, K, MacKay)

## Theorem 3

Given a magnetic field $B$, a v.f. $U=(u, w)=\left(u_{0}+\varepsilon u_{1}, w_{0}+\varepsilon w_{1}\right)$ on $N$ generates an approximate Ham. symmetry of FGCM if-f $L_{u_{0}} \beta=0$, $p_{\|} L_{u_{0}} b^{b}+i_{u_{1}} i_{B} \Omega=d \psi_{1}, L_{u_{0}}|B|=0, w_{0}=0$ for a function $\psi_{1}$ on $N$.

Proof. Take $L_{U} H \approx 0, L_{U} \omega \approx 0$ and split up by different powers of $\varepsilon$, dropping any 2 nd-order terms. The first condition gives

$$
p_{\|} w_{0}+\mu L_{u_{0}}|B|=0
$$

thus $w_{0}=0, L_{u_{0}}|B|=0$ for all $\mu$. For $w_{0}=0, L_{U} \omega \approx 0$ reduces to $L_{u} \omega \approx 0$, so from the second condition, we have

$$
\begin{aligned}
L_{u_{0}} \beta & =0 \\
L_{u_{0}} d\left(p_{\|} b^{b}\right)+L_{u_{1}} \beta & =0
\end{aligned}
$$

from the 0th- and 1st-order terms, respectively. Same as in the exact treatment (see eq. (7)), the latter gives $p_{\|} L_{u_{0}} b^{b}+i_{u_{1}} i_{B} \Omega=d \psi_{1}$ for some function $\psi_{1}$ on $N$. Straightforwardly, the converse is also true.

## Approximate Symmetries of FGCM (continued)

Flux surfaces. From $L_{u_{0}} \beta=0$, we have $i_{u_{0}} \beta=d \psi_{0}$ for some function $\psi_{0}$ on $N$, because $\beta$ is closed. The $p_{\|}$-component gives $\partial_{p_{\|}} \psi_{0}=0$, and since $i_{u_{0}} \beta=i_{u_{0}} i_{B} \Omega=\left(B \times u_{0}\right)^{b}$, we deduce then

$$
\begin{equation*}
B \times u_{0}=\nabla \psi_{0} \tag{23}
\end{equation*}
$$

## Theorem 4

If a vector field $U=\left(u_{0}+\varepsilon u_{1}, \varepsilon w_{1}\right)$ on $N$ generates an approximate Hamiltonian symmetry of FGCM, then:

- $\operatorname{div} u_{0}=0,\left[u_{0}, B\right]=0, b \cdot V_{0}=0$;
- $B \cdot \nabla \psi_{1}=0$;
- $B \cdot \nabla\left(b \cdot u_{0}\right)=c \cdot \nabla \psi_{0}$;
- $p_{\|} u_{0} \cdot \nabla\left(b \cdot u_{0}\right)=u_{0} \cdot \nabla \psi_{1}+u_{1} \cdot \nabla \psi_{0}$;
- $p_{\|}\left[u_{0}, c\right]+\left[u_{1}, B\right]+\left(\operatorname{div} u_{1}\right) B=0$
where $c=\operatorname{curl} b$ and $V_{0}=c \times u_{0}+\nabla\left(b \cdot u_{0}\right)$.


## Approximate Symmetries of FGCM (continued)

## Theorem 5

Given a magnetic field $B$, a v.f. $U=(u, w)=\left(u_{0}+\varepsilon u_{1}, w_{0}+\varepsilon w_{1}\right)$ on $N$ generates an approximate Ham. symmetry of FGCM up to trivial symmetries if-f $L_{u_{0}} \beta=0, L_{u_{0}}|B|=0, w=0$, and

$$
\begin{align*}
& u_{1}=b \times\left(p_{\|} V_{0}-\nabla \psi_{1}\right) /|B|  \tag{24}\\
& b \cdot \nabla \psi_{1}=p_{\|} b \cdot V_{0}  \tag{25}\\
& \partial_{p_{\|}} \psi_{1}=p_{\|} b \cdot \partial_{p_{\|}} u_{0} \tag{26}
\end{align*}
$$

Proof. From $L_{u_{0}} b^{b}=i_{u_{0}} d b^{b}+d i_{u_{0}} b^{b}=i_{u_{0}} i_{c} \Omega+d\left(b \cdot u_{0}\right)$, note that

$$
\begin{equation*}
L_{u_{0}} b^{b}=V_{0}^{b}+\left(b \cdot \partial_{p_{\|}} u_{0}\right) d p_{\|} \tag{27}
\end{equation*}
$$

Thus, the condition $p_{\|} L_{u_{0}} b^{\mathrm{b}}+i_{u_{1}} i_{B} \Omega=d \psi_{1}$ of Thm 3 splits to

$$
\begin{equation*}
B \times u_{1}+p_{\|} V_{0}=\nabla \psi_{1} \tag{28}
\end{equation*}
$$

and (26). Dotting (28) with $b$ gives (25), while crossing with $b$ we find

$$
u_{1}=b \times\left(p_{\|} V_{0}-\nabla \psi_{1}\right) /|B|+\left(b \cdot u_{1}\right) b
$$

Dropping the trivial symmetry $\varepsilon\left(\left(b \cdot u_{1}\right) b, w_{1}\right)$ completes the proof.

## Approximate Symmetries of FGCM (continued)

## Approximate invariant

The corresponding approximate constant of motion is now given by

$$
\begin{equation*}
K=-\psi_{0}-\varepsilon\left(\psi_{1}-p_{\|} b \cdot u_{0}\right) \tag{29}
\end{equation*}
$$

## Proposition 1

Assume the $p_{\|}$-dependent vector field $u_{0}+\varepsilon u_{1}$ on $M$ generates an approximate Ham. symmetry of FGCM.
(1) $u_{0}$ is spatial if and only if $\psi_{1}$ is.
(2) If $u_{0}$ is spatial, then $V_{0}=\partial_{p_{\|}} u_{1} \times B$.

Proof. From $B \times u_{0}=\nabla \psi_{0}(23)$ we have $B \times \partial_{p_{\|}} u_{0}=0$ and together with $p_{\|} b \cdot \partial_{p_{\|}} u_{0}=\partial_{p_{\|}} \psi_{1}(26)$ we deduce $\partial_{p_{\|}} \psi_{1}=0$ if-f $\partial_{p_{\|}} u_{0}=0$.
The second one follows from $B \times u_{1}+p_{\|} V_{0}=\nabla \psi_{1}(28)$, since if $u_{0}$ is spatial then so are $\psi_{1}, V_{0}$.

## Approximate Symmetries of FGCM (continued)

## Corollary

Given a magnetic field $B$, a vector field $u=u_{0}+\varepsilon u_{1}$ on $M$ generates an approximate quasisymmetry if-f $u_{0}$ is a quasisymmetry and $L_{u_{1}} \beta=0$.

Proof. From (27) we have $L_{u_{0}} b^{b}=V^{b}$, and from Prop 1 we have in turn $L_{u_{0}} b^{b}=0$ and $\partial_{p_{\|}} \psi_{1}=0$. Therefore the symmetry condition $p_{\|} L_{u_{0}} b^{b}+i_{u_{1}} i_{B} \Omega=d \psi_{1}$ of Thm 3 reduces to $i_{u_{1}} i_{B} \Omega=d \psi_{1}$, which says $L_{u_{1}} \beta=0$. The rest of the symmetry conditions, $L_{u_{0}} \beta=0, L_{u_{0}}|B|=0$, together with $L_{u_{0}} b^{b}=0$ prove that $u_{0}$ is a quasisymmetry.

## Weak quasisymmetry (Rodríguez, Helander \& Bhattacharjee)

is an approximate Hamiltonian symmetry of FGCM on $M$ which is spatial to leading order and nontrivially linear in $p_{\|}$to first order.

## Approximate Symmetries of FGCM (continued)

## Theorem 6

Let $u_{0}$ be a vector field on $M$ with $V_{0} \neq 0$. The vector field $u=u_{0}+\varepsilon u_{1}$ generates a weak quasisymmetry up to trivial symmetries if and only if $L_{u_{0}} \beta=0, \operatorname{div} u_{0}=0, L_{u_{0}}|B|=0$ and $u_{1}=b \times\left(p_{\|} V_{0}-\nabla \psi_{1}\right) /|B|$ with $\psi_{1}$ a flux function on $M$.

Proof. If $u$ generates a weak quasisymmetry then from Thms 4-5 we see that the conditions hold.
In the opposite direction, note first from (27) that $L_{u_{0}} b^{b}=V_{0}^{\mathrm{b}}$ since $u_{0}$ is spatial. Now, $\operatorname{div} u_{0}=0$ is equivalent to $b \cdot V_{0}=0$, when $L_{u_{0}} \beta=0$ and $L_{u_{0}}|B|=0$. To see this, apply $L_{u_{0}}$ to the relation $b^{b} \wedge \beta=|B| \Omega$ to find $L_{u_{0}} b^{b} \wedge \beta=|B| L_{u_{0}} \Omega$, where $L_{u_{0}} \Omega=d i_{u_{0}} \Omega=\left(\operatorname{div} u_{0}\right) \Omega$, and then $i_{b}$ in turn to arrive at $\left(i_{b} L_{u_{0}} b^{b}\right) \beta=|B|\left(\operatorname{div} u_{0}\right) i_{b} \Omega$ and hence $i_{b} L_{u_{0}} b^{b}=\operatorname{div} u_{0}$ since $B \neq 0$. Thus, all the conditions of Thm 5 are met, with (26) trivially satisfied. Therefore $u$ generates an approximate Hamiltonian symmetry of FGCM, and since $V_{0}$ and $\psi_{1}$ are independent of $p_{\|}$, it is a weak quasisymmetry.

## Approximate Symmetries of FGCM (continued)

## Remarks

- For general approximate symmetries, given $u_{0}$ and $\psi_{1}$, we can construct $u_{1}$, as we can see from Thm 5 .
- This becomes an advantage, in particular, for weak quasisymmetry, because in this case $u_{0}$ and $\psi_{1}$ decouple. Thus, as we see from Thm 6, the conditions for weak quasisymmetry to zeroth-order are completely uncoupled from the first-order ones. Moreover, the latter amount to simply building $u_{1}$ once $u_{0}$ is known.
- On this ground, the existence of weak quasisymmetry (but not weak quasisymmetry itself) is rightfully identified with a v.f. $u_{0}$ such that $L_{u_{0}} \beta=0, \operatorname{div} u_{0}=0, L_{u_{0}}|B|=0$, as the last condition of Thm 6 is merely a construction (assuming flux function $\psi_{1}$ ).
- This allows to compare the part $u_{0}$ of weak quasisymmetry with quasisymmetry $u$, despite their different nature. From their conditions respectively, we see then that $\operatorname{div} u_{0}=0$ relaxes $L_{u} b^{b}=0$.


## Approximate Symmetries of FGCM (continued)

## Theorem 7 (Rodríguez, Helander \& Bhattacharjee)

Let $f=B \cdot \nabla|B| \neq 0$. A weak quasisymmetry exists if and only if $\nabla \psi_{0} \times \nabla|B| \cdot \nabla f=0$ and $\psi_{0}+\varepsilon \psi_{1}$ is a flux function.

Proof. From Thm 6, if $u=u_{0}+\varepsilon u_{1}$ generates a weak quasisymmetry, then $L_{u_{0}} \beta=0, \operatorname{div} u_{0}=0, L_{u_{0}}|B|=0$, and there's a flux function $\psi_{1}$. Repeating (23), the first condition gives $B \times u_{0}=\nabla \psi_{0}$, where $\psi_{0}$ is a flux function. Crossing with $\nabla|B|$ and using the third condition we get

$$
\begin{equation*}
u_{0}=\nabla \psi_{0} \times \nabla|B| / f \tag{30}
\end{equation*}
$$

Applying then the second condition, we find $\nabla \psi_{0} \times \nabla|B| \cdot \nabla f=0$, as any $\nabla \psi_{0} \times \nabla|B|$ has zero divergence.
In the other direction, given flux function $\psi_{0}$, define $u_{0}$ from (30). Then $L_{u_{0}}|B|=0$. Also div $u_{0}=0$, because $\nabla \psi_{0} \times \nabla|B| \cdot \nabla f=0$. Thirdly, crossing (30) with $B$ gives $B \times u_{0}=\nabla \psi_{0}$, since $B \cdot \nabla \psi_{0}=0$. Finally, take $u_{1}=b \times\left(p_{\|} V_{0}-\nabla \psi_{1}\right) /|B|$ given flux function $\psi_{1}$. Thus, $u=u_{0}+\varepsilon u_{1}$ generates a weak quasisymmetry from Thm 6 .

## Approximate Symmetries of FGCM (continued)

## Theorem 8

For an MHS magnetic field with $d p \neq 0$ almost everywhere on $M$ and density of irrational surfaces, an approximate symmetry of FGCM on $N$ implies an approximate quasisymmetry.

References
Rodríguez E., Helander P. \& Bhattacharjee A., Necessary and sufficient conditions for quasisymmetry, Phys. Plasmas 27 (2020), 062501.

國
Burby J.W., Kallinikos N. \& MacKay R.S., Approximate symmetries of guiding-centre motion, J. Phys. A: Math. Theor. 54 (2021), 125202.

## Food for thought

- How does MHS (or at least vacuum) combine with (exact) velocity symmetries?
- Does circle action of quasisymmetry extend to an analogue for velocity symmetries?
- Need to impose boundedness. What's the role of magnetic curvature for approximate symmetries?
- Are there special $\mu$-dependent symmetries? Need to study GCM as a Hamiltonian reduction of charged particle motion.
- How far is weak QS from isometries compared to QS? Note that $\operatorname{tr}_{g} A=0$ but det $A \neq 0$, where $A=L_{u_{0}} g$ for weak QS $u=u_{0}+\varepsilon u_{1}$

