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First-order guiding-center motion (FGCM) - Exact treatment

For a given magnetic field B on a 3-dimensional manifoldM , the
Hamiltonian structure of FGCM is

ω = −β − d(p∥b
♭) (1)

H =
p2∥

2
+ µ|B| (2)

on the 4-dimensional GC bundle N over M , where

β = iBΩ = magnetic flux form,

b = B/|B| and b♭ = ibg,

g = metric tensor on M

Ω = associated volume form on M

µ = magnetic moment

and normalised units m = e = 1.
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FGCM - Exact treatment (continued)

In terms of the modified magnetic field,

B̃ = B + p∥c (3)

where c = curl b, the symplectic form can be written as

ω = −β − d(p∥b
♭) = − iBΩ− dp∥ ∧ b♭ − p∥db

♭

= − iBΩ− p∥icΩ− dp∥ ∧ b♭

= − β̃ − dp∥ ∧ b♭ (4)

where β̃ = iB̃Ω is the modified flux.

Note that div B̃ = 0. This means that β̃ is closed on M . But it’s not
closed on N . To see these, write β̃ = β+p∥db

♭ to derive dβ̃ = dp∥∧db♭

and therefrom dβ̃ ∧ dp∥ = 0.
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FGCM - Exact treatment (continued)

The GC 2-form ω is nondegenerate if and only if B̃∥ ̸= 0, where

B̃∥ = b · B̃.

Proof. ω is nondegenerate if and only if iUω = 0 ⇔ U = 0, where
U = (u,w) is a vector field on N . Now, using (4)

iUω = − iuiB̃Ω− wb♭ + (u · b)dp∥ = − (B̃ × u)♭ − wb♭ + (u·b)dp∥

So iUω = 0 splits to u·b = 0 and B̃ × u+ wb = 0, which in turn
splits to{
(B̃ × u)× b = 0

w b·B̃ = 0
⇒

{
(B̃ ·b)u− (u·b)B̃ = 0

B̃∥w = 0
⇒

{
B̃∥ u = 0

B̃∥w = 0

i.e. U = 0 is the only solution if-f B̃∥ ̸= 0.
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Velocity symmetries of FGCM - Exact treatment

Consider a symmetry generated by a vector field

U = (u,w)

on the guiding-centre phase space N , where

u is the 3D part on the physical space M

w is 1D in the p∥-direction

u,w depend on both (Q, p∥)

u,w are considered independent of µ (at least for now)

Recall that the conditions for a Hamiltonian symmetry are

LUω = 0

LUH = 0
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Velocity symmetries of FGCM - Exact treatment (continued)

1. From LUH = 0, we have wp∥ + µLu|B| = 0. For all values of
µ, this splits to

w = 0 (5)

Lu|B| = 0 (6)

2. For w = 0, LUω reduces to Luω and

Luω = −Luβ − Lud(p∥b
♭) = − iudβ − d(iuβ)− dLu(p∥b

♭)

= − d(iuiBΩ)− d(p∥Lub
♭) = − d(iuiBΩ+ p∥Lub

♭)

since dβ = 0. Thus, LUω = 0 if and only if

iuiBΩ+ p∥Lub
♭ = dψ (7)

for some function ψ (defined at least locally) on N .
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Velocity symmetries of FGCM - Exact treatment (continued)

3. This condition is in turn equivalent to:

iuiBΩ+ p∥iudb
♭ + p∥d(iub

♭) = dψ

iuiBΩ+ p∥iuicΩ+ d(p∥iub
♭)− (iub

♭)dp∥ = dψ

and can be written as

iuiB̃Ω− (u·b)dp∥ = − dK (8)

where
K = −ψ + (u·b)p∥ (9)

Equation (8) splits to
u× B̃ = ∇K (10)

u · b = ∂p∥K (11)
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Velocity symmetries of FGCM - Exact treatment (continued)

4. K is the invariant associated to the symmetry generator U :

iUω = iuω = iu(− β̃ − dp∥ ∧ b♭) = − iuiB̃Ω+ (iub
♭)dp∥ = dK

5. The compatibility condition between (10)-(11) yields

∇(u · b) = ∂p∥(u× B̃) (12)

while the compatibility condition of (10) is curl (u× B̃) = 0 and

curl (u× B̃) = (div B̃)u− (div u)B̃ + (B̃ · ∇)u− (u · ∇)B̃

= − (div u)B̃ + [B̃, u],

hence reads
[u, B̃] + (div u)B̃ = 0 (13)
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Velocity symmetries of FGCM - Exact treatment (continued)

6a. Writing Luω = Lu(− β̃−dp∥∧b♭) = −Luβ̃−dp∥∧Lub
♭, note

first that yet another way of expressing Luω = 0 is

Luβ̃ + dp∥ ∧ Lub
♭ = 0 (14)

This implies, in particular,

Luβ̃ ∧ dp∥ = 0 (15)

6b. Secondly, iB̃Luβ̃ = (LuiB̃ − i[u,B̃])β̃ = LuiB̃β̃ + div u iB̃β̃,

using (13), and since iB̃β̃ = iB̃iB̃Ω = 0, we have

iB̃Luβ̃ = 0 (16)

6c. Thirdly, applying iB̃ to (14) and using (16), we also deduce

iB̃Lub
♭ = 0 (17)
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Velocity symmetries of FGCM - Exact treatment (continued)

7. Using this,

i[u,B̃]b
♭ = (LuiB̃ − iB̃Lu)b

♭ = LuB̃∥

hence the b-component of the compatibility (13) reads

LuB̃∥ + (div u)B̃∥ = 0 (18)

8. Finally, for b̄ = B̃/B̃∥

[u, b̄] = Lu(B̃
−1
∥ )B̃ + B̃−1

∥ [u, B̃] = − B̃−2
∥ Lu(B̃∥)B̃ + B̃−1

∥ [u, B̃]

and so we deduce from (13),(18) that

[u, b̄] = 0 (19)
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Velocity symmetries of FGCM - Exact treatment (continued)

In summary, what we can say so far are

Theorem 1

Given a magnetic field B, a vector field U = (u,w) on N gener-
ates a Hamiltonian symmetry of FGCM if-f Luβ̃+dp∥∧Lub

♭ = 0,
Lu|B| = 0, w = 0.

Theorem 2

If a p∥-dependent vector field u on M generates a Hamiltonian
symmetry of FGCM, then

[u, B̃] + (div u)B̃ = 0

[u, b̄] = 0

∇(u · b) = ∂p∥(u× B̃)

iB̃Lub
♭ = 0

iB̃Luβ̃ = 0, Luβ̃ ∧ dp∥ = 0
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Velocity symmetries of FGCM - Exact treatment (continued)

In summary, what we can say so far are

Theorem 1

Given a magnetic field B, a vector field U = (u,w) on N gener-
ates a Ham. symmetry of FGCM if-f u× B̃ = ∇K, u · b = ∂p∥K,
u · ∇|B| = 0, w = 0, where K is the associated invariant.

Theorem 2

If a p∥-dependent vector field u on M generates a Hamiltonian
symmetry of FGCM, then

[u, B̃] + (div u)B̃ = 0

[u, b̄] = 0

∇(u · b) = ∂p∥(u× B̃)

iB̃Lub
♭ = 0

iB̃Luβ̃ = 0, Luβ̃ ∧ dp∥ = 0
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FGCM & Symmetries - Approximate treatment

FGCM is the 1st-order approximation of GCM wrt
ε = m/e≪ 1

ω = −β − ε d(p∥b
♭)

H = ε (p2∥/2 + µ|B|)

So, natural to consider:

Approximate vector fields of 1st-order

U = U0 + εU1

Approximate symmetries of 1st-order

LUω = O(ε2)

LUH = O(ε2)

From now on, we write A = B + O(εn) as A ≈ B for any two tensors
of the same type. For FGCM, we take n = 2.
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FGCM & Symmetries - Approximate treatment

FGCM is the 1st-order approximation of GCM wrt
ε = m/e≪ 1

ω = −β − ε d(p∥b
♭)

H = ε (p2∥/2 + µ|B|)

So, natural to consider:

Approximate vector fields of 1st-order

U = U0 + εU1

Approximate symmetries of 1st-order

LUω ≈ 0

LUH ≈ 0

From now on, we write A = B + O(εn) as A ≈ B for any two tensors
of the same type. For FGCM, we take n = 2.
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FGCM & Symmetries - Approximate treatment (continued)

Approximate version of Noether’s theorem

A vector field U generates an approximate symmetry of an approximate
Hamiltonian system (ω,H) if-f there exists an approximate constant of
motion K such that iUω ≈ dK.

Proof. For any K = K0 + εK1 + · · · , a vector field U s.t. iUω ≈ dK is
well-defined for ω = ω0 + εω1 + · · · , since ω0 is nondegenerate,

iU0ω0 = dK0

iU1ω0 + iU0ω1 = dK1

iU2ω0 + iU1ω1 + iU0ω2 = dK2

...

(20)

Thus, LUω ≈ 0 and, if LXK ≈ 0, LUH ≈ 0 too, because

LUω = diUω (21)

LUH = iUdH = iU iXω = − iXdK = −LXK. (22)

In the other direction, if U generates an approximate Hamiltonian sym-
metry, then (21) gives iUω ≈ dK for some (suppose global) function
K, and (22) gives LXK ≈ 0.



Velocity symmetries
Approximate symmetries

FGCM & Symmetries - Approximate treatment (continued)

Complication:

For ε = 0 the GC 2-form, ω0 = −β, is degenerate of rank 2 (i.e.,
presymplectic of constant rank) for B ̸= 0

because iUβ = iuiBΩ = (B × u)♭ for any vector field U = (u,w)
on N , and therefore setting iUβ = 0, we see that

The kernel of β (naturally pullbacked) on N consists of all the
vector fields (fb, g) for arbitrary functions f, g

hence is two-dimensional.

This produces

Trivial symmetries

A trivial approximate symmetry is generated by any vector field
S s.t. iSω ≈ 0. For the GC 2-form ω, S = εS1 with S1 ∈ kerβ.
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Approximate Symmetries of FGCM (Burby, K, MacKay)

Theorem 3

Given a magnetic field B, a v.f. U = (u,w) = (u0 + εu1, w0 + εw1) on
N generates an approximate Ham. symmetry of FGCM if-f Lu0β = 0,
p∥Lu0b

♭ + iu1iBΩ = dψ1, Lu0 |B| = 0, w0 = 0 for a function ψ1 on N .

Proof. Take LUH ≈ 0, LUω ≈ 0 and split up by different powers of ε,
dropping any 2nd-order terms. The first condition gives

p∥w0 + µLu0 |B| = 0

thus w0 = 0, Lu0
|B| = 0 for all µ. For w0 = 0, LUω ≈ 0 reduces to

Luω ≈ 0, so from the second condition, we have

Lu0
β = 0

Lu0d(p∥b
♭) + Lu1β = 0

from the 0th- and 1st-order terms, respectively. Same as in the exact
treatment (see eq. (7)), the latter gives p∥Lu0b

♭+iu1iBΩ = dψ1 for some
function ψ1 on N . Straightforwardly, the converse is also true.
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Approximate Symmetries of FGCM (continued)

Flux surfaces. From Lu0
β = 0, we have iu0

β = dψ0 for some function
ψ0 on N , because β is closed. The p∥-component gives ∂p∥ψ0 = 0, and

since iu0
β = iu0

iBΩ = (B × u0)
♭, we deduce then

B × u0 = ∇ψ0 (23)

Theorem 4

If a vector field U = (u0 + εu1, εw1) on N generates an approximate
Hamiltonian symmetry of FGCM, then:

div u0 = 0, [u0, B] = 0, b · V0 = 0;

B · ∇ψ1 = 0;

B · ∇(b·u0) = c · ∇ψ0;

p∥u0 · ∇(b·u0) = u0 · ∇ψ1 + u1 · ∇ψ0;

p∥[u0, c] + [u1, B] + (div u1)B = 0

where c = curl b and V0 = c× u0 +∇(b·u0).
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Approximate Symmetries of FGCM (continued)

Theorem 5

Given a magnetic field B, a v.f. U = (u,w) = (u0 + εu1, w0 + εw1)
on N generates an approximate Ham. symmetry of FGCM up to trivial
symmetries if-f Lu0

β = 0, Lu0
|B| = 0, w = 0, and

u1 = b× (p∥V0 −∇ψ1)/|B| (24)

b · ∇ψ1 = p∥b · V0 (25)

∂p∥ψ1 = p∥ b · ∂p∥u0 (26)

Proof. From Lu0
b♭ = iu0

db♭ + diu0
b♭ = iu0

icΩ+ d(b·u0), note that

Lu0
b♭ = V ♭

0 + (b · ∂p∥u0)dp∥ (27)

Thus, the condition p∥Lu0b
♭ + iu1iBΩ = dψ1 of Thm 3 splits to

B × u1 + p∥V0 = ∇ψ1 (28)

and (26). Dotting (28) with b gives (25), while crossing with b we find

u1 = b× (p∥V0 −∇ψ1)/|B|+ (b·u1)b
Dropping the trivial symmetry ε((b·u1)b, w1) completes the proof.
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Approximate Symmetries of FGCM (continued)

Approximate invariant

The corresponding approximate constant of motion is now given by

K = −ψ0 − ε(ψ1 − p∥ b·u0) (29)

Proposition 1

Assume the p∥-dependent vector field u0 + εu1 on M generates an
approximate Ham. symmetry of FGCM.

1 u0 is spatial if and only if ψ1 is.

2 If u0 is spatial, then V0 = ∂p∥u1 ×B.

Proof. From B × u0 = ∇ψ0 (23) we have B × ∂p∥u0 = 0 and together
with p∥ b · ∂p∥u0 = ∂p∥ψ1 (26) we deduce ∂p∥ψ1 = 0 if-f ∂p∥u0 = 0.

The second one follows from B × u1 + p∥V0 = ∇ψ1 (28), since if u0 is
spatial then so are ψ1, V0.
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Approximate Symmetries of FGCM (continued)

Corollary

Given a magnetic field B, a vector field u = u0+εu1 onM generates an
approximate quasisymmetry if-f u0 is a quasisymmetry and Lu1β = 0.

Proof. From (27) we have Lu0
b♭ = V ♭, and from Prop 1 we have in

turn Lu0
b♭ = 0 and ∂p∥ψ1 = 0. Therefore the symmetry condition

p∥Lu0
b♭+ iu1

iBΩ = dψ1 of Thm 3 reduces to iu1
iBΩ = dψ1, which says

Lu1
β = 0. The rest of the symmetry conditions, Lu0

β = 0, Lu0
|B| = 0,

together with Lu0
b♭ = 0 prove that u0 is a quasisymmetry.

Weak quasisymmetry (Rodŕıguez, Helander & Bhattacharjee)

is an approximate Hamiltonian symmetry of FGCM on M which is
spatial to leading order and nontrivially linear in p∥ to first order.
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Approximate Symmetries of FGCM (continued)

Theorem 6

Let u0 be a vector field onM with V0 ̸= 0. The vector field u = u0+εu1
generates a weak quasisymmetry up to trivial symmetries if and only if
Lu0β = 0, div u0 = 0, Lu0 |B| = 0 and u1 = b× (p∥V0 −∇ψ1)/|B| with
ψ1 a flux function on M .

Proof. If u generates a weak quasisymmetry then from Thms 4-5 we
see that the conditions hold.
In the opposite direction, note first from (27) that Lu0b

♭ = V ♭
0 since u0

is spatial. Now, div u0 = 0 is equivalent to b · V0 = 0, when Lu0β = 0
and Lu0

|B| = 0. To see this, apply Lu0
to the relation b♭ ∧ β = |B|Ω

to find Lu0
b♭ ∧ β = |B|Lu0

Ω, where Lu0
Ω = diu0

Ω = (div u0)Ω, and
then ib in turn to arrive at (ibLu0

b♭)β = |B|(div u0)ibΩ and hence
ibLu0b

♭ = div u0 since B ̸= 0. Thus, all the conditions of Thm 5 are
met, with (26) trivially satisfied. Therefore u generates an approximate
Hamiltonian symmetry of FGCM, and since V0 and ψ1 are independent
of p∥, it is a weak quasisymmetry.
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Approximate Symmetries of FGCM (continued)

Remarks

For general approximate symmetries, given u0 and ψ1, we can
construct u1, as we can see from Thm 5.

This becomes an advantage, in particular, for weak quasisymme-
try, because in this case u0 and ψ1 decouple. Thus, as we see from
Thm 6, the conditions for weak quasisymmetry to zeroth-order
are completely uncoupled from the first-order ones. Moreover, the
latter amount to simply building u1 once u0 is known.

On this ground, the existence of weak quasisymmetry (but not
weak quasisymmetry itself) is rightfully identified with a v.f. u0
such that Lu0

β = 0, div u0 = 0, Lu0
|B| = 0, as the last condition

of Thm 6 is merely a construction (assuming flux function ψ1).

This allows to compare the part u0 of weak quasisymmetry with
quasisymmetry u, despite their different nature. From their con-
ditions respectively, we see then that div u0 = 0 relaxes Lub

♭ = 0.
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Approximate Symmetries of FGCM (continued)

Theorem 7 (Rodŕıguez, Helander & Bhattacharjee)

Let f = B · ∇|B| ̸= 0. A weak quasisymmetry exists if and only if
∇ψ0 ×∇|B| · ∇f = 0 and ψ0 + εψ1 is a flux function.

Proof. From Thm 6, if u = u0 + εu1 generates a weak quasisymmetry,
then Lu0

β = 0, div u0 = 0, Lu0
|B| = 0, and there’s a flux function ψ1.

Repeating (23), the first condition gives B × u0 = ∇ψ0, where ψ0 is a
flux function. Crossing with ∇|B| and using the third condition we get

u0 = ∇ψ0 ×∇|B|/f (30)

Applying then the second condition, we find ∇ψ0 ×∇|B| · ∇f = 0, as
any ∇ψ0 ×∇|B| has zero divergence.
In the other direction, given flux function ψ0, define u0 from (30).
Then Lu0 |B| = 0. Also div u0 = 0, because ∇ψ0 × ∇|B| · ∇f = 0.
Thirdly, crossing (30) with B gives B × u0 = ∇ψ0, since B · ∇ψ0 = 0.
Finally, take u1 = b× (p∥V0 −∇ψ1)/|B| given flux function ψ1. Thus,
u = u0 + εu1 generates a weak quasisymmetry from Thm 6.
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Approximate Symmetries of FGCM (continued)

Theorem 8

For an MHS magnetic field with dp ̸= 0 almost everywhere on M and
density of irrational surfaces, an approximate symmetry of FGCM on
N implies an approximate quasisymmetry.
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Food for thought

How does MHS (or at least vacuum) combine with (exact) velocity
symmetries?

Does circle action of quasisymmetry extend to an analogue for
velocity symmetries?

Need to impose boundedness. What’s the role of magnetic curva-
ture for approximate symmetries?

Are there special µ-dependent symmetries? Need to study GCM
as a Hamiltonian reduction of charged particle motion.

How far is weak QS from isometries compared to QS? Note that
trgA = 0 but detA ̸= 0, where A = Lu0

g for weak QS u = u0+εu1
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