Mathematics for Fusion Power part 5

R.S.MacKay

March 12, 2024

Integrable magnetic fields

Adiabatic theory for First-order Guiding-centre motion

Omnigenity

Integrable magnetic fields

- Relax from desire to make FGCM integrable to just requiring time-averaged rate of change of a flux function be zero.
- Needs B to have a flux function: a function ψ such that $i_{B} d \psi=0$ and $d \psi \neq 0$ a.e. Say B is integrable.
- Automatic for non-degenerate MHS, i.e. $i_{B} d B^{b}=d p$ with $d p \neq 0$ a.e. (in plasma), and AS or QS fields ($i_{u} i_{B} \Omega=d \psi$) with u, B indpt a.e. Also for ideal equilibria with flow v indpt of $B\left(i_{v} i_{B} \Omega=d \Phi\right)$.
- Equivalent (modulo ψ global) to \exists continuous symmetry u of β, inpdt of B a.e.: $L_{u} \beta=0 \& d \beta=0$ imply $i_{u} i_{B} \Omega$ is closed so locally $d \psi$, some ψ. Conversely, if ψ is a flux function let $u=\xi+f B$ for $\xi=\frac{b}{|B|} \times \nabla \psi \& \mathrm{fn} f, L_{u} \beta=d i_{u} i_{B} \Omega=d i_{B}\left(\frac{b^{b}}{|B|} \wedge d \psi\right)=d^{2} \psi=0$.
- Note we suppose B nowhere zero in domain of interest.
- The bounded regular level sets of ψ (flux surfaces) are oriented by area-form $\mathcal{A}=i_{n} \Omega$, where $n=\nabla \psi /|\nabla \psi|^{2}$, and carry a nowherezero vector field B so by Poincaré index have Euler characteristic 0 , so by classification of compact surfaces are tori.
- On a flux surface S, B preserves $\mathcal{A}: i_{n} d \psi=1$ implies $\Omega=i_{n} \Omega \wedge d \psi$, so $0=L_{B} \Omega=L_{B} i_{n} \Omega \wedge d \psi$. Applying $i_{n}, 0=i_{n} L_{B} i_{n} \Omega \wedge d \psi-L_{B} i_{n} \Omega$. So $L_{B} i_{n} \Omega=0$ on pairs of tangents to $\psi=$ constant.

continued

- Implies B is a Poincaré vector field on S, i.e. has a cross-section (a transverse circle such that every trajectory crosses it forwards and backwards in time), because only other option for a nowhere-zero field has a Reeb component (an annulus bounded by periodic orbits in opposite directions), incompatible with a preserved area-form.
- C Baesens, J Guckenheimer, S Kim, RS MacKay, Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Physica D 49 (1991) 387-475
- In particular, B has a winding ratio ι on S, relative to a choice of poloidal and toroidal generators of $H_{1}(S)$.
$-\int_{\eta} i_{B} \mathcal{A}$ along an arc η in S from a reference point makes a local coordinate that is preserved by the flow of $B\left(L_{B} \mathcal{A}=0\right.$ implies $i_{B} d i_{B} \mathcal{A}=0$, so $\int_{\eta} i_{B} \mathcal{A}$ is path-indpt on S). So the return map to a cross-section is conjugate to a rigid translation.
- Consequently, B on S is conjugate to λC for some constant vector field C on $\mathbb{R}^{2} / \mathbb{Z}^{2}$ \& time-change function $\lambda: S \rightarrow \mathbb{R}^{+}$.
- In particular, for ι rational, every fieldline is closed.
\rightarrow For Diophantine winding ratio, if B is smooth enough then it is conjugate to a constant (KAM theory).
- Note that we don't get LA coordinates in general. To get from $L_{u} \beta=0, d \beta=0$ to $[u, B]=0$ requires $\operatorname{div} u=0$ too:
$i_{[u, B]} \Omega=i_{u} L_{B} \Omega-L_{B} i_{u} \Omega=i_{B} d i_{u} \Omega=(\operatorname{div} u) i_{B} \Omega$.
- $\operatorname{div} \xi=\left(i_{ر} d \psi-i_{\xi} d|B|^{2}\right) /|B|^{2}$.
- e.g. in non-degenerate MHS (meaning $d p \neq 0$ a.e.), or weaker just B integrable with p a function of ψ, then $i, d \psi=0$, so $\operatorname{div} \xi=0$ iff $i_{\xi} d|B|=0$, i.e. $\operatorname{div} \xi=0$ iff ξ is a weak QS.
- Can rearrange: for integrable B, ξ weak QS implies $i, d \psi=0$.
- For $\eta=\xi+f B, \operatorname{div} \eta=\operatorname{div} \xi+i_{B} d f$. To achieve $\operatorname{div} \eta=0$ need f s.t. $i_{B} d f=-\operatorname{div} \xi$. Requires $\int_{\gamma} \operatorname{div} \xi \frac{b^{b}}{|B|}=0 \forall$ closed field- lines γ. Sufficient for a solution $f \in C^{1}$ if $B \in C^{3}$ and $\frac{d \iota}{d \psi} \neq 0$. Newcomb WA, Magnetic differential equations, Phys Fluids 2 (1959) 362-5
- Automatic in non-degenerate MHS, because it is solvability condition for $J_{\|}$. Thus $f=J_{\|} / p^{\prime}$ (plus any flux function).
- $|B|^{2} \operatorname{div} \eta+i_{\eta} d|B|^{2}=i_{J} d \psi+i_{B} d \tilde{f}$ with $\tilde{f}=f|B|^{2}$. So η weak QS implies $i_{j} d \psi+i_{B} d \tilde{f}=0$. Conversely, under this condition, $\operatorname{div} \eta=0$ iff $L_{\eta}|B|=0$.
- For non-degenerate MHS \& $f=\frac{J_{\|}+F(\psi)}{p^{\prime}}, \eta$ weak QS iff $i_{b} d\left(\left(J_{\|}+F\right)|B|^{2}\right)=0$.

Zeroth-order Guiding-Centre Motion

- To define time-averaged $\dot{\psi}$, compute $i_{X} d \psi$ due to FGCM, and average along trajectories of zeroth-order GCM.
$>$ ZGCM is $\lim _{\varepsilon \rightarrow 0}$ of FGCM: $\dot{s}=\frac{p_{\|}}{m}, \dot{p}_{\|}=-\mu i_{b} d|B|$ along single fieldlines, with arclength parameter s.
- It has Hamiltonian formulation $H=\frac{1}{2 m} p_{\|}^{2}+\mu|B(s)|, \omega=d s \wedge d p_{\|}$. In particular, it conserves $H=E$. Suppose $\mu>0$.

\rightarrow If $h=E / \mu$ is larger than the maximum of $|B|$ along the fieldline then the motion is unidirectional.
- If the GC approaches a point where $|B|=h$ with $|B|^{\prime} \neq 0$ (where $\left.{ }^{\prime}=\frac{d}{d s}\right)$ then the GC reverses direction there.
- If it approaches a point where $|B|=h$ with $|B|^{\prime}=0$ then the GC takes infinite time to reach it (marginal case).
- For a fieldline on a flux surface, most of the ZGCM is either circulating (unidirectional) or periodically bouncing.

Scaled FGCM

- For $\mu>0$, use new time $\tau=\sqrt{\frac{\mu}{m}} t$, parallel velocity $u_{\|}=\frac{p_{\|}}{\sqrt{m \mu}}$, and write $\delta=\frac{\sqrt{m \mu}}{e}$ to make FGCM into

$$
\frac{d Q}{d \tau}=\tilde{B}_{\|}^{-1}\left(u_{\|} \tilde{B}+\delta b \times \nabla|B|\right), \quad \frac{d u_{\|}}{d \tau}=-\frac{\tilde{B}}{\tilde{B}_{\|}} \cdot \nabla|B|,
$$

with $\tilde{B}=B+\delta u_{\|} \operatorname{curl} b$ and $\tilde{B}_{\|}=\tilde{B} \cdot b=|B|+\delta u_{\|} b \cdot \operatorname{curl} b$.

- Equivalent to $\tilde{H}=\frac{H}{\mu}=\frac{1}{2} u_{\|}^{2}+|B|, \tilde{\omega}=\frac{\omega}{\sqrt{m \mu}}=\frac{\beta}{\delta}+d\left(u_{\|} b^{b}\right)$.
- Limit of ω as $\delta \rightarrow 0$ is singular and β is degenerate, but dynamics still well-defined for $\delta=0$ and is (scaled) ZGCM.
- This scaling absorbs all of e, m, μ into one parameter δ and makes FGCM a regular perturbation of ZGCM. Will use later.

Perpendicular drifts

- Instead of the Hamiltonian FGCM, it turns out better to use an alternative set of equations agreeing to first order:
$\dot{Q}=\frac{p_{\|}}{m} b+v_{d}, \dot{p}_{\|}=-\mu\left(b+\frac{p_{\|}}{e|B|} c_{\perp}\right) \cdot \nabla|B|$, where
$v_{d}=\frac{p_{\| l}^{2}}{e m|B|} c_{\perp}+\frac{\mu}{e|B|} b \times \nabla|B|, c=\operatorname{curl} b\left(c_{\perp}\right.$ can be written as $b \times \kappa$ with $\left.\kappa^{b}=L_{b} b^{b}\right)$. Still preserves H. [\& some ω ?]
- Then the rate of change of ψ is $\dot{\psi}=i_{v_{d}} d \psi$.
- Say B is omnigenous if for all bouncing orbits of ZGCM, the time-average $\langle\dot{\psi}\rangle$ of $i_{v_{d}} d \psi$ over one period is 0 .
- Thus bouncing GCs have $O\left(\varepsilon^{2}\right)$ long-term rate of change of ψ (from $v_{d}=O(\varepsilon)$ and evaluating on FGCM instead of ZGCM).
- We'll show that $\langle\dot{\psi}\rangle$ for circulating orbits is also 0 .
- And that QS implies omnigenous, so it is a generalisation.
- JW Burby, RS MacKay, S Naik, Isodrastic magnetic fields for suppressing transitions in guiding-centre motion, Nonlinearity 36 (2023) 5884-5954.

Stronger options

- Could ask for no bouncing trajectories, i.e. $L_{B}|B|=0$. If DIS then $|B|$ constant on ψ constant.
- Impossible in "normal" MHS if the flux surfaces accumulate on a closed curve ("magnetic axis"), because $d p=|B|^{2} \kappa^{b}-|B| d_{\perp}|B|\left(^{*}\right)$.
- More generally, writing ${ }^{\prime}=\frac{d}{d \psi},\left({ }^{*}\right)$ requires $\left(p+\frac{1}{2}|B|^{2}\right)^{\prime}<0$ (assuming enclosed volume V has $V^{\prime}>0$), because take smallest sphere surrounding a flux surface T : at contact points κ is into the solid torus bounded by T.
- At contact points the Gauss curvature $K>0$. By GaussBonnet, \exists region R of each flux surface with $K<0$. Then κ inwards implies that B has to avoid a cone at each point of R. So there is an interval of winding ratios that is excluded.
- For "skinny" tori T (those near a magnetic axis), κ tends to that for the magnetic axis γ, so taking a closed curve η on T around a point of γ where $\kappa \neq 0$ we see that κ can not be inwards the whole way round η. Thus constant-strength flux surfaces is not possible for skinny tori either.

Isodynamic

- Or ask for isodynamic: $i_{v_{d}} d \psi=0$, rather than $\left\langle i_{v_{d}} d \psi\right\rangle=0$.
- Can write as $-\frac{1}{e} i_{\xi}\left(\frac{p_{\|}^{2}}{m} i_{b} d b^{b}+\mu d|B|\right)$ (see Thm 1 to follow).
- But in MHS, $d p=i_{B} d B^{b}=i_{B} d\left(|B| b^{b}\right)=|B|\left(i_{b} d b^{b}-d_{\perp}|B|\right)$, so for normal MHS $0=i_{\xi} d p=|B|\left(i_{\xi} i_{b} d b^{b}-d_{\perp}|B|\right)$. Thus $i_{v_{d}} d \psi=-\frac{1}{e}\left(\frac{p_{\|}^{2}}{m|B|}+\mu\right) i_{\xi} d|B|$ is 0 iff $i_{\xi} d|B|=0$ iff $i_{\xi} \kappa^{b}=0$.
- Says B-lines form a geodesic foliation for g on each flux surface. Gauss-Bonnet $\int_{S} k d S=2 \pi \chi=0$ for \mathbb{T}^{2} implies Gausscurvature $k \geq 0$ somewhere. Imposes restrictions on geodesic foliations (Converse KAM), e.g. \nexists for "big bump" tori.
- $i_{\xi} d|B|=0$ implies $\operatorname{div} \xi=0$ in MHS, so DIS for ξ is typical. If add DIS for ξ then get $|B|$ constant on flux surfaces and we are back to the no bouncing case.
- Helander P, Theory of plasma confinement in non-axisymmetric magnetic fields, Rep Prog Phys 77 (2014) 087001
- Palumbo D, Some considerations on closed configurations of magnetohydrostatic equilibrium, Nuovo Cim B 53 (1967) 507

Longitudinal adiabatic invariant

- If v_{d} is slow on scale of the period $T=\int d t=2 \int \frac{m}{p_{\|}} d s$ of bouncing along a segment γ of fieldline, there is a second adiabatic invariant $L=\int p_{\|} d s=\int_{\gamma} p_{\|} b^{b}$ for FGCM.
- Note that from $p_{\|}=\sqrt{2 m(E-\mu|B|)}$, can write $T=2 \frac{d L}{d E}$.
- Can obtain L by defining phase of bouncing oscillation (e.g. time from lefthand end divided by T) and showing approximate symmetry of FGCM wrt phase-shift.
- Or use conservation of Poincaré invariant for loop-dynamics: $L=\int_{\phi_{t} D} \omega$ for disk D moving with the Hamiltonian flow ϕ. $\omega=-e \beta-d\left(p_{\|} b^{b}\right)=-d\left(e A^{b}+p_{\|} b^{b}\right)$. So for disk bounded by slowly moving "periodic" orbit $\gamma_{t}, L=\int_{\gamma_{t}} e A^{b}+p_{\|} b^{b}$ is conserved. For bouncing orbit of ZGCM, the contributions of opposite directions cancel for A^{b} and are equal for $p_{\|} b^{b}$, so can redefine invariant $L=\int_{\gamma} p_{\|} b^{b}$ in just one direction.

continued

- Theorem 1: (B, ψ) omnigenous iff L locally constant, given E, ψ.
- Proof: $i_{v_{d}} d \psi=\frac{1}{e|B|}\left(\frac{p_{\|}^{2}}{m} i_{c}+\mu i_{f}\right) d \psi=-\frac{1}{e} i_{\xi}\left(\frac{p_{\|}^{2}}{m} i_{b} d b^{b}+\mu d|B|\right)\left({ }^{*}\right)$ with $f=b \times \nabla|B|, \xi=\frac{b}{|B|} \times \nabla \psi$, since (i) $i_{\xi} \Omega=\frac{b^{b}}{|B|} \wedge d \psi$, so $i_{\xi} i_{b} d b^{b}=i_{b} i_{c} i_{\xi} \Omega=-\frac{1}{|B|} i_{c} d \psi$, and (ii) $i_{f} \Omega=b^{b} \wedge d|B|$ so $i_{b} i_{\xi} i_{f} \Omega=-i_{\xi} d|B|$, but can also be written as $i_{f} i_{b} i_{\xi} \Omega=\frac{1}{|B|} i_{f} d \psi$.
Thus $\frac{T}{2}\langle\dot{\psi}\rangle=\int_{\gamma} i_{v_{d}} d \psi d t=-\frac{1}{e} \int_{\gamma} i_{\xi}\left(\frac{p_{\|}^{2}}{m} i_{b} d b^{b}+\mu d|B|\right) \frac{m}{p_{\|}} d s$. Now $i_{[B, \xi]} \Omega=L_{B} i_{\xi} \Omega-i_{\xi} L_{B} \Omega=L_{B}\left(\frac{b^{b}}{|B|} \wedge d \psi\right)=\left(L_{B} \frac{b^{b}}{|B|}\right) \wedge d \psi$. Apply i_{B} to get $\left(L_{B} 1\right) d \psi=0$, so $[\xi, B]=f B$ for some function f. Thus ξ-flow takes B-lines to B-lines; also preserves ψ. Let $\eta=\xi+g B$ for a function g with $g=-\frac{i_{g} d|B|}{i_{B} d|B|}$ at ends of γ (so $i_{\eta} d|B|=0$ there) and ϕ_{λ} its flow. For $L=\int_{\phi_{\lambda} \circ \gamma} p_{\|} b^{b}, \frac{d L}{d \lambda}=\int_{\gamma} L_{\eta}\left(p_{\|} b^{b}\right)$. To fix E, use $p_{\|}=\sqrt{2 m(E-\mu|B|)} . L_{\eta}\left(p_{\|} b^{b}\right)=i_{\eta} d\left(p_{\|} b^{\mathrm{b}}\right)+d\left(p_{\|} i_{\eta} b^{\mathrm{b}}\right)$.
Second term integrates to 0 since $p_{\|}=0$ at the ends. So

$$
\begin{aligned}
& \frac{d L}{d \lambda}=\int i_{b} i_{\eta} d\left(p_{\|} b^{b}\right) d s=\int i_{b} i_{\xi}\left(d p_{\|} \wedge b^{b}+p_{\|} d b^{b}\right) d s= \\
& \int\left(-i_{\xi} d p_{\|}+p_{\|} i_{b} i_{\xi} d b^{b}\right) d s . \text { But } d p_{\|}=-\frac{m \mu}{p_{\|}} d|B| \text { so } \frac{d L}{d \lambda}=\frac{e T}{2}\langle\dot{\psi}\rangle .
\end{aligned}
$$

Length function

- For segments γ of fieldline between points of equal $|B|$ with smaller $|B|$ between, let $h=|B|$ at ends and $\ell=$ length of γ.
- The space of segments of fieldline on a flux surface is a complex of 2D surfaces bounded by set Σ where $i_{b} d|B|=0$.
- Theorem 2: (B, ψ) is omnigenous iff for each flux surface, ℓ is constant along h constant.
- Proof: Convenient to write $E=h \mu$ and $L=\sqrt{m \mu} j$. Then L constant for E constant iff $j=\int \sqrt{2(h-|B|)} d s$ constant for h constant. Decompose integral according to value h^{\prime} of $|B|$ and let $\ell\left(h^{\prime}\right)=\int_{x \in \gamma:|B(x)| \leq h^{\prime}} d s$, so $d \ell\left(h^{\prime}\right)=\sum_{x:|B(x)|=h^{\prime}} d$ s.
Then $j(h)=\int_{-\infty}^{h} \sqrt{2\left(h-h^{\prime}\right)} d \ell\left(h^{\prime}\right)$ (so j is the Abel transform of ℓ). So if ℓ constant along h^{\prime} constant for all $h^{\prime} \leq h$ then j constant along h constant. Conversely, if j is constant along h^{\prime} constant for all $h^{\prime} \leq h$, then Abel inversion gives $\ell(h)=\frac{2}{\pi} \int_{-\infty}^{h} \frac{d j\left(h^{\prime}\right)}{\sqrt{2\left(h-h^{\prime}\right)}}$ is constant for h constant.

Abel inversion

- Lemma: If $j(h)=\int_{-\infty}^{h} \sqrt{2\left(h-h^{\prime}\right)} d \ell\left(h^{\prime}\right)$ then $\ell(h)=\frac{2}{\pi} \int_{-\infty}^{h} \frac{d j\left(h^{\prime}\right)}{\sqrt{2\left(h-h^{\prime}\right)}}$.
- Proof: $d j\left(h^{\prime}\right)=\int_{-\infty}^{h^{\prime}} \frac{d \ell\left(h^{\prime \prime}\right)}{\sqrt{2\left(h^{\prime}-h^{\prime \prime}\right)}} d h^{\prime}$.

So $\int_{-\infty}^{h} \frac{d j\left(h^{\prime}\right)}{\sqrt{2\left(h-h^{\prime}\right)}}=\int_{-\infty}^{h}\left(\frac{1}{\sqrt{2\left(h-h^{\prime}\right)}} \int_{-\infty}^{h^{\prime}} \frac{d \ell\left(h^{\prime \prime}\right)}{\sqrt{2\left(h^{\prime}-h^{\prime \prime}\right)}}\right) d h^{\prime}$. Interchange order of integration to obtain

$$
\int_{-\infty}^{h}\left(\int_{h^{\prime \prime}}^{h} \frac{d h^{\prime}}{2 \sqrt{\left(h-h^{\prime}\right)\left(h^{\prime}-h^{\prime \prime}\right)}}\right) d \ell\left(h^{\prime \prime}\right)=\frac{\pi}{2} \ell(h)
$$

- In particular, for an omnigenous field, every fieldline has to have the same sequence of local minima and maxima of $|B|$, so get non-generic case of curves of local maxima and minima.

Rational circulating trajectories

- Fieldlines γ on a rational torus S are closed. Particles with $E / \mu=h$ above the maximum of $|B|$ on γ keep going in their original direction. Have adiabatic invariant $L=\int_{\gamma} e A^{b}+p_{\|} b^{b}$. A^{b} contributes just a function of ψ, because $\int_{\gamma} A^{b}=\int_{D} i_{B} \Omega$ for a disk D spanning γ, which is the same for all γ.
- By the same proof as for Theorem 2 in the bouncing case, if (B, ψ) is omnigenous then L is the same for all circulating particles of the same energy on the same flux surface, because it is determined by the length function.
- And by the same proof as for Theorem 1, this implies that $\langle\dot{\psi}\rangle=0$ for them.
- Thus, omnigenity for bouncing particles implies omnigenity for rational circulating ones.

Relation to $J_{\|}$in MHS

- The Newcomb solvability condition for $J_{\|}$in normal MHS is $\int_{\gamma} i_{\xi} d|B| \frac{d s}{|B|}=0$ for all closed fieldlines γ.
- Compare omnigenity for circulating ZGCM: $0=-e\left\langle i_{v_{d}} d \psi\right\rangle=\int_{\gamma}\left(p_{\|}+\frac{m \mu|B|}{p_{\|}}\right) i_{\xi} d|B| \frac{d s}{|B|}$. Now $p_{\|}= \pm \sqrt{2 m(E-\mu|B|)}$, so factor is $\pm \sqrt{2 m E}\left(1+O\left(\left(\frac{\mu}{E}\right)^{2}\right)\right)$, thus omnigenity for the limit of rapidly circulating GCs
$(E / \mu \rightarrow \infty)$ is automatic in normal MHS.

Irrational circulating trajectories

- Finally, $\langle\dot{\psi}\rangle=0$ for circulating particles on irrational flux surfaces S.
- Proof:

1. ZGCM preserves $\frac{|B|}{Z p_{\|}} \mathcal{A}$ (speed factor $\frac{v_{\|}}{|B|}$ compared to B-flow, normalisation $Z=\int_{S} \frac{|B|}{p_{\|}} \mathcal{A}$) and for $h>|B|_{\text {max }}$ is uniquely ergodic on irrational surfaces. So time-average of any continuous function along any trajectory equals its space-average. In particular, $\langle\dot{\psi}\rangle=\int_{S} \frac{|B|}{Z p_{\|} \mid} i_{v_{d}} d \psi \mathcal{A}$.
2. Now $\mathcal{A} \wedge d \psi=\Omega$, so $i_{v_{d}} \mathcal{A} \wedge d \psi+\mathcal{A} i_{v_{d}} d \psi=i_{v_{d}} \Omega$. $d \psi=0$ on tangents to S, so $\langle\dot{\psi}\rangle=\int_{S} \frac{|B|}{Z P_{\|}} i_{v_{d}} \Omega$.
3. Compare $\frac{|B|}{p_{\|}} i_{v_{d}} \Omega=\frac{p_{\|}}{e m} i_{c_{\perp}} \Omega+\frac{\mu}{e p_{\|}} b^{\text {b }} \wedge d|B|$ to $d\left(p_{\|} b^{b}\right)=d p_{\|} \wedge b^{b}+p_{\|} d b^{b}=-\frac{m \mu}{p_{\|}} d|B| \wedge b^{b}+p_{\|} i_{c} \Omega$. On pairs of tangents to $S, i_{c} \Omega=i_{c_{\perp}} \Omega$, because i_{b} gives the same. So $\langle\dot{\psi}\rangle=\frac{1}{e m Z} \int_{S} d\left(p_{\|} b^{b}\right)=0 . \quad \square[$ USE in Thm 1 TOO]

- Question about speed of convergence?

More consequences of omnigenity

- For omnigenous B, on each flux surface S the regular contours of $|B|$ (i.e. with $d\left(|B|_{\mid S}\right) \neq 0$) are transverse to B.
- Proof: By $\left({ }^{*}\right), i_{v_{d}} d \psi=-\frac{1}{e} i_{\xi}\left(\frac{p_{\|}^{2}}{m} i_{b} d b^{b}+\mu d|B|\right)$. If $i_{b} d|B|=0$ at a point x on a regular contour of $|B|$ then $i_{\xi} d|B| \neq 0$ there. So for $\mu>0$ and $E=\mu|B|(x), i_{v_{d}} d \psi \neq 0$ there. If x is a local minimum of $|B|$ along B then for slightly larger E get short bouncers and $\langle\dot{\psi}\rangle \neq 0$ for them, contradicting omnigenity. If $|B|$ has a downhill direction from x along B then using that the fieldlines are recurrent and $i_{\xi} d|B| \neq 0$, every ZGCM with an end near to x has a second end. If the second end is a normal point $\left(i_{b} d|B| \neq 0\right)$ then the period is dominated by the time near x, so $\langle\dot{\psi}\rangle \neq 0$ again. Argue that not possible for all segments to have abnormal second end [??].
- So they are all non-contractible closed curves with the same winding ratio.

continued

- For $B \in C^{2}$ most contours are regular, by Sard's theorem (set of critical values of a C^{k} map f from n to m dimensions with $k \geq 1, n-m+1$ has measure zero): the set of values of $|B|$ for which there is a non-regular contour on a given flux surface has measure zero. Ignore the case of $|B|$ constant on the flux surface. [ls it impossible anyway?] $|B|$ is continuous, so its image is an interval. So contours are regular for all but a set of measure zero in this interval.
- In particular, omnigenity has a rational type, meaning the ratio of poloidal to toroidal turns for curves of constant $|B|$. So distinguish $O T, O P, O H(N, M)$ (toroidal, poloidal, helical).
- e.g. W7-X is approximately OP.
- Not aware of constraints on M (unlike for QS).
- Note that the sets where $|B|$ is max or min are not regular contours, but may still be smooth curves.

Relations between omnigenity \& QS

- QS u implies a flux function $\psi\left(i_{u} i_{B} \Omega=d \psi\right)$ and $L_{u} b^{b}=0$. Let ϕ_{λ} be the flow of u. For γ fieldline segment with ends at $|B|=h, \frac{d}{d \lambda} \int_{\phi_{\lambda} \circ \gamma} d s=\int_{\gamma} L_{u} b^{b}=0$. So (B, ψ) omnigenous.
- Same argument shows that weak QS implies omnigenous: weak QS implies $i_{b} L_{u} b^{b}=0$, which suffices.
- Analyticity \& omnigenity (with MHS) implies QS [Cary \& Shasharina, Phys Plasma 4 (1997) 3323].
- It is claimed that can make many non-QS fields that are omnigenous (\& MHS), e.g. Dudt et al, Magnetic fields with general omnigenity, arxiv:2305.08026, but constructions depend on realising $|B|$-profiles on flux surfaces by a $3 D$ divergence-free field in Euclidean space, and I'm not convinced this is feasible. Do the numerical procedures converge? If so, it would provide construction of smooth non-AS MHS examples, suspected not to exist by Grad H, Toroidal containment of a plasma, Phys Fluids 10 (1967) 137.

Omnigenity \& MHS

- Say an MHS field is normal if it has a flux function ψ and p is constant on ψ constant, e.g. non-degenerate ($d p \neq 0$ a.e.).
- Lemma: For a normal MHS field, $a=\frac{b}{|B|}, \xi=a \times \nabla \psi$ are commuting fields on each flux surface.
- Proof of Lemma: $i_{a} d \psi=i_{\xi} d \psi=0(\dagger)$, so a, ξ are tangent to $\psi=$ constant. Apply $i_{[a, \xi]}=L_{a} i_{\xi}-i_{\xi} L_{a}$ to basis $d \psi, B^{b}, \xi^{b}$, and use $L_{a}=|B|^{-2} L_{B}+d\left(|B|^{-2}\right) \wedge i_{B} . i_{[a, \xi]} d \psi=0$ by (\dagger). Using $L_{B} B^{b}=d\left(p+|B|^{2}\right)$ and $i_{\xi} d p=0$, $i_{[a, \xi]} B^{b}=-i_{\xi} L_{a} B^{b}=-i_{\xi}\left(|B|^{-2} d|B|^{2}+|B|^{2} d|B|^{-2}\right)=0$. Can show $i_{[a, \xi]} \xi^{b}=|B|^{-2} i_{[B, \xi]} \xi^{b}$. Using $i_{\xi} \Omega=a^{b} \wedge d \psi$, show $i_{B} i_{[B, \xi]} \Omega=0$, so $[B, \xi]$ is parallel to B, hence $i_{[a, \xi]} \xi^{b}=0$ too. So $[a, \xi]=0$. [SIMPLIFY?]
- Call LA coordinates for $[a, \xi]=0$ Boozer angles. Extend to Boozer coordinates by adding ψ.

continued

- Theorem: A normal MHS field B is omnigenous iff the differences of Boozer angles along B between contours of constant $|B|$ are locally constant on each flux surface.
- Proof of Theorem: In Boozer angles $\theta=\left(\theta^{1}, \theta^{2}\right), a=\rho(\psi)$, some $\rho: \mathbb{R} \rightarrow \mathbb{R}^{2}$. Thus, $d \theta^{i}=\rho^{i}|B| d s$ and for a segment with $|B|=h$ at the ends,

$$
\Delta \theta^{i}(h)=\int d \theta^{i}=\rho^{i} \int|B| d s=\rho^{i} \int_{-\infty}^{h} h^{\prime} d \ell\left(h^{\prime}\right)
$$

If B is omnigenous then $\ell\left(h^{\prime}\right)$ does not depend on the fieldline on the given flux surface, so neither does $\Delta \theta^{i}(h)$. Conversely, if for each value h of $|B|$ at the ends of a segment, $\Delta \theta^{i}(h)$ is indpt of the fieldline on the given flux surface, then $\ell\left(h^{\prime}\right)$ must be indpt of the fieldline too.

- A consequence on irrational surfaces: $|B|_{\max }$ contour is straight in Boozer angles, else the Boozer angle between successive intersections is not constant.

Illustration

Figure: $|B|$ contours for an OP field in Boozer coordinates on a flux surface, from Landreman

Notes

- A normal MHS field is QS iff $\exists N, M$ s.t. $|B|$ is constant along straight lines of slope $\frac{N}{M}$ in Boozer angles on each flux surface.
- The QS is a constant field of slope N / M in Boozer coordinates and produces same ψ up to an affine transformation.
- QS u with associated ψ implies $[u, a]=0,[u, \xi]=0$. So MHS adds that $[a, \xi]=0$, which implies simultaneous LA coordinates for all 3 on each flux surface.
- Similar theorem for non-degenerate MHS and Hamada angles.
- Current in omnigenous fields?

