Mathematics for Fusion Power part 5

R.S.MacKay

March 12, 2024

Integrable magnetic fields

Adiabatic theory for First-order Guiding-centre motion

Omnigenity

Integrable magnetic fields

- Relax from desire to make FGCM integrable to just requiring time-averaged rate of change of a flux function be zero.
- Needs B to have a flux function: a function ψ such that $i_B d\psi = 0$ and $d\psi \neq 0$ a.e. Say B is integrable.
- Automatic for non-degenerate MHS, i.e. i_BdB^b = dp with dp ≠ 0 a.e. (in plasma), and AS or QS fields (i_ui_BΩ = dψ) with u, B indpt a.e. Also for ideal equilibria with flow v indpt of B (i_vi_BΩ = dΦ).
- ► Equivalent (modulo ψ global) to \exists continuous symmetry u of β , inpdt of B a.e.: $L_u\beta = 0$ & $d\beta = 0$ imply $i_u i_B \Omega$ is closed so locally $d\psi$, some ψ . Conversely, if ψ is a flux function let $u = \xi + fB$ for $\xi = \frac{b}{|B|} \times \nabla \psi$ & fn f, $L_u\beta = di_u i_B \Omega = di_B (\frac{b^\flat}{|B|} \wedge d\psi) = d^2 \psi = 0$.
- Note we suppose *B* nowhere zero in domain of interest.
- The bounded regular level sets of ψ (flux surfaces) are oriented by area-form A = i_nΩ, where n = ∇ψ/|∇ψ|², and carry a nowhere-zero vector field B so by Poincaré index have Euler characteristic 0, so by classification of compact surfaces are tori.

• On a flux surface *S*, *B* preserves \mathcal{A} : $i_n d\psi = 1$ implies $\Omega = i_n \Omega \wedge d\psi$, so $0 = L_B \Omega = L_B i_n \Omega \wedge d\psi$. Applying i_n , $0 = i_n L_B i_n \Omega \wedge d\psi - L_B i_n \Omega$. So $L_B i_n \Omega = 0$ on pairs of tangents to $\psi = \text{constant}$.

continued

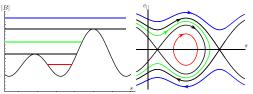
- Implies B is a Poincaré vector field on S, i.e. has a cross-section (a transverse circle such that every trajectory crosses it forwards and backwards in time), because only other option for a nowhere-zero field has a Reeb component (an annulus bounded by periodic orbits in opposite directions), incompatible with a preserved area-form.
- C Baesens, J Guckenheimer, S Kim, RS MacKay, Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Physica D 49 (1991) 387–475
- In particular, B has a winding ratio ι on S, relative to a choice of poloidal and toroidal generators of H₁(S).
- $\int_{\eta} i_B \mathcal{A}$ along an arc η in S from a reference point makes a local coordinate that is preserved by the flow of B ($L_B \mathcal{A} = 0$ implies $i_B di_B \mathcal{A} = 0$, so $\int_{\eta} i_B \mathcal{A}$ is path-indpt on S). So the return map to a cross-section is conjugate to a rigid translation.
- Consequently, B on S is conjugate to λC for some constant vector field C on ℝ²/ℤ² & time-change function λ : S → ℝ⁺.
- ln particular, for ι rational, every fieldline is closed.
- For Diophantine winding ratio, if B is smooth enough then it is conjugate to a constant (KAM theory).

more

- Note that we don't get LA coordinates in general. To get from L_uβ = 0, dβ = 0 to [u, B] = 0 requires divu = 0 too: i_[u,B]Ω = i_uL_BΩ − L_Bi_uΩ = i_Bdi_uΩ = (divu)i_BΩ.
 div ξ = (i₁dψ − i_ξd|B|²)/|B|².
- e.g. in non-degenerate MHS (meaning dp ≠ 0 a.e.), or weaker just B integrable with p a function of ψ, then i_Jdψ = 0, so div ξ = 0 iff i_ξd|B| = 0, i.e. div ξ = 0 iff ξ is a weak QS.
- Can rearrange: for integrable *B*, ξ weak QS implies $i_J d\psi = 0$.
- For $\eta = \xi + fB$, div $\eta = \text{div } \xi + i_B df$. To achieve div $\eta = 0$ need f s.t. $i_B df = -\text{div } \xi$. Requires $\int_{\gamma} \text{div } \xi \frac{b^\flat}{|B|} = 0 \forall$ closed field- lines γ . Sufficient for a solution $f \in C^1$ if $B \in C^3$ and $\frac{d\iota}{d\psi} \neq 0$. Newcomb WA, Magnetic differential equations, Phys Fluids 2 (1959) 362-5
- Automatic in non-degenerate MHS, because it is solvability condition for J_{\parallel} . Thus $f = J_{\parallel}/p'$ (plus any flux function).
- ► $|B|^2 \operatorname{div} \eta + i_\eta d|B|^2 = i_J d\psi + i_B d\tilde{f}$ with $\tilde{f} = f|B|^2$. So η weak QS implies $i_J d\psi + i_B d\tilde{f} = 0$. Conversely, under this condition, $\operatorname{div} \eta = 0$ iff $L_\eta |B| = 0$.
- For non-degenerate MHS & $f = \frac{J_{\parallel} + F(\psi)}{p'}$, η weak QS iff $i_b d((J_{\parallel} + F)|B|^2) = 0$.

Zeroth-order Guiding-Centre Motion

- To define time-averaged $\dot{\psi}$, compute $i_X d\psi$ due to FGCM, and average along trajectories of zeroth-order GCM.
- ► ZGCM is $\lim_{\epsilon \to 0}$ of FGCM: $\dot{s} = \frac{p_{\parallel}}{m}$, $\dot{p}_{\parallel} = -\mu i_b d|B|$ along single fieldlines, with arclength parameter *s*.
- ▶ It has Hamiltonian formulation $H = \frac{1}{2m}p_{\parallel}^2 + \mu|B(s)|$, $\omega = ds \wedge dp_{\parallel}$. In particular, it conserves H = E. Suppose $\mu > 0$.



- ▶ If $h = E/\mu$ is larger than the maximum of |B| along the fieldline then the motion is unidirectional.
- ▶ If the GC approaches a point where |B| = h with $|B|' \neq 0$ (where $' = \frac{d}{ds}$) then the GC reverses direction there.
- ► If it approaches a point where |B| = h with |B|' = 0 then the GC takes infinite time to reach it (marginal case).
- For a fieldline on a flux surface, most of the ZGCM is either circulating (unidirectional) or periodically bouncing.

Scaled FGCM

• For $\mu > 0$, use new time $\tau = \sqrt{\frac{\mu}{m}} t$, parallel velocity $u_{\parallel} = \frac{p_{\parallel}}{\sqrt{m\mu}}$, and write $\delta = \frac{\sqrt{m\mu}}{e}$ to make FGCM into

$$rac{dQ}{d au} = ilde{B}_{\parallel}^{-1}(u_{\parallel} ilde{B} + \delta \, b imes
abla |B|), \quad rac{du_{\parallel}}{d au} = -rac{ ilde{B}}{ ilde{B}_{\parallel}} \cdot
abla |B|,$$

with $\tilde{B} = B + \delta u_{\parallel} \operatorname{curl} b$ and $\tilde{B}_{\parallel} = \tilde{B} \cdot b = |B| + \delta u_{\parallel} b \cdot \operatorname{curl} b$.

- ► Equivalent to $\tilde{H} = \frac{H}{\mu} = \frac{1}{2}u_{\parallel}^2 + |B|$, $\tilde{\omega} = \frac{\omega}{\sqrt{m\mu}} = \frac{\beta}{\delta} + d(u_{\parallel}b^{\flat})$.
- Limit of ω as δ → 0 is singular and β is degenerate, but dynamics still well-defined for δ = 0 and is (scaled) ZGCM.
- This scaling absorbs all of e, m, μ into one parameter δ and makes FGCM a regular perturbation of ZGCM. Will use later.

Perpendicular drifts

- ▶ Instead of the Hamiltonian FGCM, it turns out better to use an alternative set of equations agreeing to first order: $\dot{Q} = \frac{p_{\parallel}}{m}b + v_d$, $\dot{p}_{\parallel} = -\mu(b + \frac{p_{\parallel}}{e|B|}c_{\perp}) \cdot \nabla|B|$, where $v_d = \frac{p_{\parallel}^2}{em|B|}c_{\perp} + \frac{\mu}{e|B|}b \times \nabla|B|$, $c = \operatorname{curl} b$ (c_{\perp} can be written as $b \times \kappa$ with $\kappa^{\flat} = L_b b^{\flat}$). Still preserves *H*. [& some ω ?]
- Then the rate of change of ψ is $\dot{\psi} = i_{v_d} d\psi$.
- Say *B* is *omnigenous* if for all bouncing orbits of ZGCM, the time-average $\langle \dot{\psi} \rangle$ of $i_{v_d} d\psi$ over one period is 0.
- Thus bouncing GCs have O(ε²) long-term rate of change of ψ (from v_d = O(ε) and evaluating on FGCM instead of ZGCM).
- We'll show that $\langle \dot{\psi} \rangle$ for circulating orbits is also 0.
- And that QS implies omnigenous, so it is a generalisation.
- JW Burby, RS MacKay, S Naik, Isodrastic magnetic fields for suppressing transitions in guiding-centre motion, Nonlinearity 36 (2023) 5884–5954.

Stronger options

- Could ask for no bouncing trajectories, i.e. L_B|B| = 0. If DIS then |B| constant on ψ constant.
- Impossible in "normal" MHS if the flux surfaces accumulate on a closed curve ("magnetic axis"), because dp = |B|²κ^b − |B|d_⊥|B| (*).
- More generally, writing ' = d/dψ, (*) requires (p + 1/2|B|²)' < 0 (assuming enclosed volume V has V' > 0), because take smallest sphere surrounding a flux surface T: at contact points κ is into the solid torus bounded by T.
- At contact points the Gauss curvature K > 0. By Gauss-Bonnet, ∃ region R of each flux surface with K < 0. Then κ inwards implies that B has to avoid a cone at each point of R. So there is an interval of winding ratios that is excluded.
- For "skinny" tori T (those near a magnetic axis), κ tends to that for the magnetic axis γ, so taking a closed curve η on T around a point of γ where κ ≠ 0 we see that κ can not be inwards the whole way round η. Thus constant-strength flux surfaces is not possible for skinny tori either.

Isodynamic

- Or ask for *isodynamic*: $i_{\nu_{d}}d\psi = 0$, rather than $\langle i_{\nu_{d}}d\psi \rangle = 0$. • Can write as $-\frac{1}{e}i_{\xi}(\frac{p_{\parallel}^{2}}{m}i_{b}db^{\flat} + \mu d|B|)$ (see Thm 1 to follow). • But in MHS, $dp = i_B dB^{\flat} = i_B d(|B|b^{\flat}) = |B|(i_b db^{\flat} - d_{\perp}|B|)$, so for normal MHS $0 = i_{\xi} dp = |B|(i_{\xi}i_{b}db^{\flat} - d_{\perp}|B|)$. Thus $i_{\nu_d}d\psi = -\frac{1}{e}(\frac{p_{\parallel}^2}{m|B|} + \mu)i_{\xi}d|B| \text{ is 0 iff } i_{\xi}d|B| = 0 \text{ iff } i_{\xi}\kappa^{\flat} = 0.$ Says B-lines form a geodesic foliation for g on each flux surface. Gauss-Bonnet $\int_{S} k \, dS = 2\pi \chi = 0$ for \mathbb{T}^2 implies Gausscurvature k > 0 somewhere. Imposes restrictions on geodesic foliations (Converse KAM), e.g. ∄ for "big bump" tori.
- *i*_ξ*d*|*B*| = 0 implies div ξ = 0 in MHS, so DIS for ξ is typical.
 If add DIS for ξ then get |*B*| constant on flux surfaces and we are back to the no bouncing case.
- Helander P, Theory of plasma confinement in non-axisymmetric magnetic fields, Rep Prog Phys 77 (2014) 087001
- Palumbo D, Some considerations on closed configurations of magnetohydrostatic equilibrium, Nuovo Cim B 53 (1967) 507

Longitudinal adiabatic invariant

- ▶ If v_d is slow on scale of the period $T = \int dt = 2 \int \frac{m}{p_{\parallel}} ds$ of bouncing along a segment γ of fieldline, there is a second adiabatic invariant $L = \int p_{\parallel} ds = \int_{\gamma} p_{\parallel} b^{\flat}$ for FGCM.
- ▶ Note that from $p_{\parallel} = \sqrt{2m(E \mu|B|)}$, can write $T = 2\frac{dL}{dE}$.
- Can obtain L by defining phase of bouncing oscillation (e.g. time from lefthand end divided by T) and showing approximate symmetry of FGCM wrt phase-shift.
- Or use conservation of Poincaré invariant for loop-dynamics: $L = \int_{\phi_t D} \omega$ for disk D moving with the Hamiltonian flow ϕ . $\omega = -e\beta - d(p_{\parallel}b^{\flat}) = -d(eA^{\flat} + p_{\parallel}b^{\flat})$. So for disk bounded by slowly moving "periodic" orbit γ_t , $L = \int_{\gamma_t} eA^{\flat} + p_{\parallel}b^{\flat}$ is conserved. For bouncing orbit of ZGCM, the contributions of opposite directions cancel for A^{\flat} and are equal for $p_{\parallel}b^{\flat}$, so can redefine invariant $L = \int_{\gamma} p_{\parallel}b^{\flat}$ in just one direction.

continued

Theorem 1: (B, ψ) omnigenous iff *L* locally constant, given E, ψ . ► **Proof**: $i_{v_d} d\psi = \frac{1}{e|B|} \left(\frac{p_{\parallel}^2}{m} i_c + \mu i_f \right) d\psi = -\frac{1}{e} i_{\xi} \left(\frac{p_{\parallel}^2}{m} i_b db^{\flat} + \mu d|B| \right) (*)$ with $f = b \times \nabla |B|$, $\xi = \frac{b}{|B|} \times \nabla \psi$, since (i) $i_{\xi} \Omega = \frac{b^{\flat}}{|B|} \wedge d\psi$, so $i_{\xi}i_{b}db^{\flat} = i_{b}i_{c}i_{\xi}\Omega = -\frac{1}{|B|}i_{c}d\psi$, and (ii) $i_{f}\Omega = b^{\flat} \wedge d|B|$ so $i_b i_\xi i_f \Omega = -i_\xi d|B|$, but can also be written as $i_f i_b i_\xi \Omega = \frac{1}{|B|} i_f d\psi$. Thus $\frac{T}{2}\langle\dot{\psi}\rangle = \int_{\gamma} i_{v_d} d\psi dt = -\frac{1}{e} \int_{\gamma} i_{\xi} \left(\frac{p_{\parallel}^2}{m} i_b db^{\flat} + \mu d|B|\right) \frac{m}{p_{\parallel}} ds$. Now $i_{[B,\xi]}\Omega = L_B i_{\xi}\Omega - i_{\xi}L_B\Omega = L_B (\frac{b^{\flat}}{|B|} \wedge d\psi) = (L_B \frac{b^{\flat}}{|B|}) \wedge d\psi.$ Apply i_B to get $(L_B 1)d\psi = 0$, so $[\xi, B] = fB$ for some function f. Thus ξ -flow takes *B*-lines to *B*-lines; also preserves ψ . Let $\eta = \xi + gB$ for a function g with $g = -\frac{i_{\xi}d|B|}{i_{E}d|B|}$ at ends of γ (so $i_{\eta}d|B| = 0$ there) and ϕ_{λ} its flow. For $L = \int_{\phi_{\lambda} \circ \gamma} p_{\parallel} b^{\flat}$, $\frac{dL}{d\lambda} = \int_{\gamma} L_{\eta}(p_{\parallel} b^{\flat})$. To fix E, use $p_{\parallel} = \sqrt{2m(E - \mu|B|)}$. $L_n(p_{\parallel}b^{\flat}) = i_n d(p_{\parallel}b^{\flat}) + d(p_{\parallel}i_nb^{\flat})$. Second term integrates to 0 since $p_{\parallel} = 0$ at the ends. So $\frac{dL}{d\lambda} = \int i_b i_\eta d(p_{||} b^{\flat}) ds = \int i_b i_\xi (dp_{||} \wedge b^{\flat} + p_{||} db^{\flat}) ds =$ $\int (-i_{\xi} dp_{\parallel} + p_{\parallel} i_{b} i_{\xi} db^{\flat}) ds. \text{ But } dp_{\parallel} = -\frac{m\mu}{p_{\parallel}} d|B| \text{ so } \frac{dL}{d\lambda} = \frac{eT}{2} \langle \psi \rangle.$

Length function

- For segments γ of fieldline between points of equal |B| with smaller |B| between, let h = |B| at ends and ℓ = length of γ.
- The space of segments of fieldline on a flux surface is a complex of 2D surfaces bounded by set Σ where i_bd|B| = 0.
- Theorem 2: (B, ψ) is omnigenous iff for each flux surface, ℓ is constant along h constant.
- **Proof**: Convenient to write $E = h\mu$ and $L = \sqrt{m\mu} j$. Then L constant for *E* constant iff $j = \int \sqrt{2(h - |B|)} ds$ constant for h constant. Decompose integral according to value h' of |B|and let $\ell(h') = \int_{x \in \gamma: |B(x)| \le h'} ds$, so $d\ell(h') = \sum_{x: |B(x)| = h'} ds$. Then $j(h) = \int_{-\infty}^{h} \sqrt{2(h-h')} d\ell(h')$ (so j is the Abel *transform* of ℓ). So if ℓ constant along h' constant for all h' < h then *j* constant along *h* constant. Conversely, if *j* is constant along h' constant for all $h' \leq h$, then Abel inversion gives $\ell(h) = \frac{2}{\pi} \int_{-\infty}^{h} \frac{dj(h')}{\sqrt{2(h-h')}}$ is constant for h constant.

Abel inversion

Lemma: If
$$j(h) = \int_{-\infty}^{h} \sqrt{2(h-h')} d\ell(h')$$
 then
$$\ell(h) = \frac{2}{\pi} \int_{-\infty}^{h} \frac{dj(h')}{\sqrt{2(h-h')}}.$$
Proof: $dj(h') = \int_{-\infty}^{h'} \frac{d\ell(h'')}{\sqrt{2(h'-h'')}} dh'.$
So $\int_{-\infty}^{h} \frac{dj(h')}{\sqrt{2(h-h')}} = \int_{-\infty}^{h} \left(\frac{1}{\sqrt{2(h-h')}} \int_{-\infty}^{h'} \frac{d\ell(h'')}{\sqrt{2(h'-h'')}}\right) dh'.$
Interchange order of integration to obtain
$$\int_{-\infty}^{h} \left(\int_{h''}^{h} \frac{dh'}{2\sqrt{(h-h')(h'-h'')}}\right) d\ell(h'') = \frac{\pi}{2}\ell(h).$$

In particular, for an omnigenous field, every fieldline has to have the same sequence of local minima and maxima of |B|, so get non-generic case of curves of local maxima and minima.

Rational circulating trajectories

- Fieldlines γ on a rational torus S are closed. Particles with *E*/μ = h above the maximum of |B| on γ keep going in their original direction. Have adiabatic invariant L = ∫_γ eA^b + p_{||}b^b. *A*^b contributes just a function of ψ, because ∫_γ A^b = ∫_D i_BΩ for a disk D spanning γ, which is the same for all γ.
- By the same proof as for Theorem 2 in the bouncing case, if (B, \u03c6) is omnigenous then L is the same for all circulating particles of the same energy on the same flux surface, because it is determined by the length function.
- And by the same proof as for Theorem 1, this implies that $\langle \dot{\psi} \rangle = 0$ for them.
- Thus, omnigenity for bouncing particles implies omnigenity for rational circulating ones.

Relation to J_{\parallel} in MHS

 The Newcomb solvability condition for J_{||} in normal MHS is ∫_γ i_ξd|B|^{ds}/_{|B|} = 0 for all closed fieldlines γ.

 Compare omnigenity for circulating ZGCM: 0 = -e⟨i_{vd}dψ⟩ = ∫_γ(p_{||} + mµ|B|)/p_{||})i_ξd|B|^{ds}/_{|B|}. Now p_{||} = ±√2m(E - µ|B|), so factor is ±√2mE(1 + O((µ/E)²)), thus omnigenity for the limit of rapidly circulating GCs (E/µ → ∞) is automatic in normal MHS.

Irrational circulating trajectories

- Finally, $\langle \dot{\psi} \rangle = 0$ for circulating particles on irrational flux surfaces S.
- Proof:
 - 1. ZGCM preserves $\frac{|B|}{Z\rho_{\parallel}}\mathcal{A}$ (speed factor $\frac{v_{\parallel}}{|B|}$ compared to *B*-flow, normalisation $Z = \int_{S} \frac{|B|}{\rho_{\parallel}}\mathcal{A}$) and for $h > |B|_{\text{max}}$ is uniquely ergodic on irrational surfaces. So time-average of any continuous function along any trajectory equals its space-average. In particular, $\langle \dot{\psi} \rangle = \int_{S} \frac{|B|}{Z\rho_{\parallel}} i_{v_d} d\psi \mathcal{A}$.
 - 2. Now $\mathcal{A} \wedge d\psi = \Omega$, so $i_{v_d} \mathcal{A} \wedge d\psi + \mathcal{A} i_{v_d} d\psi = i_{v_d} \Omega$. $d\psi = 0$ on tangents to S, so $\langle \dot{\psi} \rangle = \int_S \frac{|B|}{Z\rho_{\parallel}} i_{v_d} \Omega$.
 - 3. Compare $\frac{|B|}{p_{\parallel}}i_{v_d}\Omega = \frac{p_{\parallel}}{em}i_{c_{\perp}}\Omega + \frac{\mu}{ep_{\parallel}}b^{\flat} \wedge d|B|$ to $d(p_{\parallel}b^{\flat}) = dp_{\parallel} \wedge b^{\flat} + p_{\parallel}db^{\flat} = -\frac{m\mu}{p_{\parallel}}d|B| \wedge b^{\flat} + p_{\parallel}i_c\Omega$. On pairs of tangents to *S*, $i_c\Omega = i_{c_{\perp}}\Omega$, because i_b gives the same. So $\langle \dot{\psi} \rangle = \frac{1}{emZ} \int_S d(p_{\parallel}b^{\flat}) = 0$. [USE in Thm 1 TOO]

Question about speed of convergence?

More consequences of omnigenity

- For omnigenous B, on each flux surface S the regular contours of |B| (i.e. with d(|B||S) ≠ 0) are transverse to B.
- **Proof**: By (*), $i_{v_d} d\psi = -\frac{1}{e} i_{\xi} (\frac{p_{\parallel}^2}{m} i_b db^{\flat} + \mu d|B|)$. If $i_b d|B| = 0$ at a point x on a regular contour of |B| then $i_{\mathcal{E}}d|B| \neq 0$ there. So for $\mu > 0$ and $E = \mu |B|(x)$, $i_{v_d} d\psi \neq 0$ there. If x is a local minimum of |B| along B then for slightly larger E get short bouncers and $\langle \dot{\psi} \rangle \neq 0$ for them, contradicting omnigenity. If B has a downhill direction from x along B then using that the fieldlines are recurrent and $i_{\varepsilon} d|B| \neq 0$, every ZGCM with an end near to x has a second end. If the second end is a normal point $(i_b d | B | \neq 0)$ then the period is dominated by the time near x, so $\langle \psi \rangle \neq 0$ again. Argue that not possible for all segments to have abnormal second end [??].
- So they are all non-contractible closed curves with the same winding ratio.

continued

- For B ∈ C² most contours are regular, by Sard's theorem (set of critical values of a C^k map f from n to m dimensions with k ≥ 1, n − m + 1 has measure zero): the set of values of |B| for which there is a non-regular contour on a given flux surface has measure zero. Ignore the case of |B| constant on the flux surface. [Is it impossible anyway?] |B| is continuous, so its image is an interval. So contours are regular for all but a set of measure zero in this interval.
- In particular, omnigenity has a rational type, meaning the ratio of poloidal to toroidal turns for curves of constant |B|.
 So distinguish OT, OP, OH(N, M) (toroidal, poloidal, helical).
- e.g. W7-X is approximately OP.
- ▶ Not aware of constraints on *M* (unlike for QS).
- Note that the sets where |B| is max or min are not regular contours, but may still be smooth curves.

Relations between omnigenity & QS

- QS *u* implies a flux function ψ ($i_u i_B \Omega = d\psi$) and $L_u b^{\flat} = 0$. Let ϕ_{λ} be the flow of *u*. For γ fieldline segment with ends at |B| = h, $\frac{d}{d\lambda} \int_{\phi_{\lambda} \circ \gamma} ds = \int_{\gamma} L_u b^{\flat} = 0$. So (B, ψ) omnigenous.
- Same argument shows that weak QS implies omnigenous: weak QS implies $i_b L_u b^{\flat} = 0$, which suffices.
- Analyticity & omnigenity (with MHS) implies QS [Cary & Shasharina, Phys Plasma 4 (1997) 3323].
- It is claimed that can make many non-QS fields that are omnigenous (& MHS), e.g. Dudt et al, Magnetic fields with general omnigenity, arxiv:2305.08026, but constructions depend on realising |B|-profiles on flux surfaces by a 3D divergence-free field in Euclidean space, and I'm not convinced this is feasible. Do the numerical procedures converge? If so, it would provide construction of smooth non-AS MHS examples, suspected not to exist by Grad H, Toroidal containment of a plasma, Phys Fluids 10 (1967) 137.

Omnigenity & MHS

- Say an MHS field is *normal* if it has a flux function ψ and p is constant on ψ constant, e.g. non-degenerate (dp ≠ 0 a.e.).
- Lemma: For a normal MHS field, $a = \frac{b}{|B|}, \xi = a \times \nabla \psi$ are commuting fields on each flux surface.
- ▶ **Proof of Lemma**: $i_a d\psi = i_\xi d\psi = 0$ (†), so a, ξ are tangent to ψ = constant. Apply $i_{[a,\xi]} = L_a i_\xi - i_\xi L_a$ to basis $d\psi, B^{\flat}, \xi^{\flat}$, and use $L_a = |B|^{-2}L_B + d(|B|^{-2}) \wedge i_B$. $i_{[a,\xi]}d\psi = 0$ by (†). Using $L_B B^{\flat} = d(p + |B|^2)$ and $i_\xi dp = 0$, $i_{[a,\xi]} B^{\flat} = -i_\xi L_a B^{\flat} = -i_\xi (|B|^{-2}d|B|^2 + |B|^2d|B|^{-2}) = 0$. Can show $i_{[a,\xi]}\xi^{\flat} = |B|^{-2}i_{[B,\xi]}\xi^{\flat}$. Using $i_\xi\Omega = a^{\flat} \wedge d\psi$, show $i_B i_{[B,\xi]}\Omega = 0$, so $[B,\xi]$ is parallel to B, hence $i_{[a,\xi]}\xi^{\flat} = 0$ too. So $[a,\xi] = 0$. [SIMPLIFY?]
- Call LA coordinates for [a, ξ] = 0 Boozer angles. Extend to Boozer coordinates by adding ψ.

continued

Theorem: A normal MHS field B is omnigenous iff the differences of Boozer angles along B between contours of constant |B| are locally constant on each flux surface.

Proof of Theorem: In Boozer angles θ = (θ¹, θ²), a = ρ(ψ), some ρ : ℝ → ℝ². Thus, dθⁱ = ρⁱ|B| ds and for a segment with |B| = h at the ends,

 $\Delta \theta^{i}(h) = \int d\theta^{i} = \rho^{i} \int |B| \, ds = \rho^{i} \int_{-\infty}^{h} h' d\ell(h').$ If *B* is omnigenous then $\ell(h')$ does not depend on the fieldline on the given flux surface, so neither does $\Delta \theta^{i}(h)$. Conversely, if for each value *h* of |B| at the ends of a segment, $\Delta \theta^{i}(h)$ is indpt of the fieldline on the given flux surface, then $\ell(h')$ must be indpt of the fieldline too.

► A consequence on irrational surfaces: |B|_{max} contour is straight in Boozer angles, else the Boozer angle between successive intersections is not constant.

Illustration

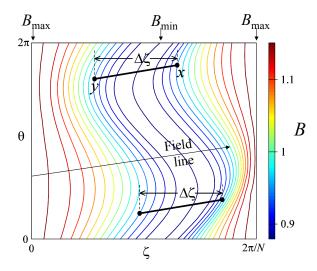


Figure: |B| contours for an OP field in Boozer coordinates on a flux surface, from Landreman

Notes

- ▶ A normal MHS field is QS iff $\exists N, M \text{ s.t. } |B|$ is constant along straight lines of slope $\frac{N}{M}$ in Boozer angles on each flux surface.
- The QS is a constant field of slope N/M in Boozer coordinates and produces same \u03c6 up to an affine transformation.
- QS u with associated ψ implies [u, a] = 0, [u, ξ] = 0. So MHS adds that [a, ξ] = 0, which implies simultaneous LA coordinates for all 3 on each flux surface.
- Similar theorem for non-degenerate MHS and Hamada angles.
- Current in omnigenous fields?