Mathematics for Fusion Power part 6

 $\mathsf{R}.\mathsf{S}.\mathsf{MacKay}$

February 26, 2024

Weak Isodrasticity

Strong isodrasticity

Beyond omnigenity

- Good conservation of L = ∫_γ p_{||}b^b is not guaranteed when bounce period T is large, so omnigenity might not guarantee small ⟨ψ⟩ near marginal cases.
- Also, change of ZGCM class can produce a large change in region visited, or transition into a class whose trajectories are not bounded (like ripple bouncers).
- Equilibria with anisotropic pressure (but no flow) might not have a flux function. Closest is i_bdp_⊥ + |B|i_bd(^{p_{||}-p_⊥}/_{|B|}) = 0.
- ▶ But for confinement, don't need all GC motion to stay close to flux surfaces. Indeed, don't need flux surfaces: for B ∈ C³, approximate integrability of B suffices to confine circulating GCs, and approximate conservation of L suffices for bouncing GCs away from marginal cases.
- Idea: Drop requirement for a flux function, prevent transitions between classes of GC motion, and make some KAM tori in each relevant class.

Isodrastic fields

- ▶ Magnetic fields for which transitions in FGCM between different types of ZGCM are prevented. Assume $B \in C^r$, $r \ge 2$.
- Can formulate without assuming a flux function.
- Say B is weak isodrastic if marginal cases are never reached from non-marginal ones by L-reduced FGCM (Cary & Shasharina call it omnigenity for marginally trapped particles).
- *L*-reduced dynamics in scaled variables $h = E/\mu$, $j = L/\sqrt{m\mu}$: reduced phase space F_j at given $j \in \mathbb{R}^+$ is the space of possible segments γ for ZGCM with $\int_{\gamma} \sqrt{2(h - |B|)} = j$ for some $h \in \mathbb{R}$ with |B| = h at the ends of γ and |B| < h in between. The reduced Hamiltonian H_j is the value of h. The symplectic form is β in any transverse section to the segments (it gives the same value in any transverse section). Gives reduced vector field X in scaled time $\tau = \frac{\mu}{e}t$ by $i_X\beta = -dH_j$.
- Reduced dynamics not valid near marginal cases, but continue nonetheless; later, treat transitions exactly (strong isodrasticity), discover reduced dynamics gives correct 1st order answer.

continued

In general, F_j consists of several C^r surfaces, limited by curves of non-degenerate marginal cases (local maximum at an end or interior point of γ), which in turn possibly meet in doubly marginal points (non-quadratic critical point or heteroclinic).

continued

► H_j is differentiable at all non-marginal points of F_j: given vector field on F_j, extend to GC phase space by any smooth vector field X that takes B-lines to B-lines with 1/2 u_{||}² + |B| = H_j. Then a calculation gives

$$i_X dH_j = rac{1}{T} \int \left(i_{X_\perp} d|B| + 2(H_j - |B|)\Omega(X, b, c) \right) dt$$

with $T = \int dt$ for ZGCM.

- So $i_X dH_j = \langle i_{X_\perp} (d|B| + 2(H_j |B|)\kappa^{\flat}) \rangle$, with κ curvature vector of fieldlines.
- ▶ In particular, note that as a segment approaches (single) marginality then $dH_j \rightarrow d|B|$ at the point with $i_B d|B| = 0$, because the period is dominated by time near that point.

Critical points of |B| along B

- To address marginality, need the set Σ of critical points of |B| along fieldlines, i.e. the zeroes of |B|' = i_bd|B|.
- ▶ Subdivide Σ into $\Sigma^+ \cup \Sigma^0 \cup \Sigma^-$ according to the sign of |B|''.

- Marginality consists of having an endpoint in $\Sigma^{-0} = \Sigma^{-} \cup \Sigma^{0}$.
- ▶ Bouncing segments have a point of $\Sigma^+ \cup \Sigma^0$ in their interior.
- Σ is a C^{r-1} surface as long as d(|B|') ≠ 0, which is generic on Σ. In particular, it is guaranteed on Σ[±] (where i_bd(|B|') ≠ 0), so Σ[±] are always C^{r-1} surfaces.

For r ≥ 3, Σ⁰ is generically a C^{r-2} curve forming common boundary of Σ[±]: defined by |B|' = 0, |B|" = 0, so fails only if d|B|', d|B|" parallel, which sums to 4 conditions in 3 variables.

Reformulation

- ▶ *B* is weak isodrastic iff marginal segments remain marginal.
- Define functions H and J[±] on Σ[−] by H = |B|_{|Σ[−]} and J^σ = ∫_{γ^σ} √2(H − |B|) |ds| for the segment γ^σ from the chosen point of Σ[−] in direction σ ∈ {±} to the first point at which |B| = H again (if exists).
- ▶ Note that for $x \in \Sigma^-$, $H_{\mathcal{J}^{\sigma}(x)}(x) = \mathcal{H}(x)$, and as a segment endpoint approaches Σ^- , $dH_j \to d\mathcal{H}$.
- For A ⊂ Σ⁻⁰ let A^σ be the subset without heteroclinic connection in direction σ.

Theorem:

- 1. If *B* weak isodrastic & $\sigma \in \{\pm\}$ then $d\mathcal{H}, d\mathcal{J}^{\sigma}$ are linearly dependent at each point of $\Sigma^{-\sigma}$;
- 2. If *B* weak isodrastic and $\Sigma^{0^{\sigma}}$ smooth then $\mathcal{H}, \mathcal{J}^{\sigma}$ are constant on connected components of $\Sigma^{0^{\sigma}}$;
- 3. If \mathcal{J}^{\pm} constant on components of level sets of \mathcal{H} then B weak isodrastic.

► Informally, *B* weak isodrastic iff contours of $\mathcal{H}, \mathcal{J}^{\pm}$ on Σ^{-0} coincide.

Proof

1. If $d\mathcal{J}^{\sigma}$, $d\mathcal{H}$ indpt at $x_0 \in \Sigma^{-\sigma}$, let $j_0 = \mathcal{J}^{\sigma}(x_0)$. $\mathcal{J}^{-1}(j_0)$ is locally a smooth curve and the boundary of F_{j_0} . $d\mathcal{H}(x_0) \neq 0$ and tangent to ∂F_{j_0} not in ker $d\mathcal{H}$. $dH_{j_0} \rightarrow d\mathcal{H}$ as x_0 is approached from $\operatorname{Int} F_{j_0}$. So ker dH_{j_0} is transverse to the boundary near x_0 . So trajectories of the reduced dynamics reach the boundary in finite positive time for one

sign of e. So B is not weak isodrastic.

2. $\Sigma^{0^{\sigma}}$ smooth curve and \mathcal{H} not constant along it implies $\exists x_0 \in \Sigma^{0^{\sigma}}$ where $d\mathcal{H}v \neq 0$ for a tangent v to Σ^0 . So $v \neq \ker d\mathcal{H}$. Let $j_0 = \mathcal{J}^{\sigma}(x_0)$. Then $dH_{j_0} \rightarrow d\mathcal{H}$ as x_0 is approached from Σ^- . Thus ker dH_{j_0} is transverse to Σ^0 near x_0 . So trajectories of the reduced dynamics reach Σ^0 in finite positive time for one sign of e. So B is not weak isodrastic. Thus weak isodrastic implies \mathcal{H} constant along smooth components of $\Sigma^{0^{\sigma}}$. Since we proved in 1. that it also implies $d\mathcal{H} \wedge d\mathcal{J}^{\sigma} = 0$ up to the boundary of F_{j_0} then \mathcal{J}^{σ} is also constant along the boundary.

continued

3. Suppose \mathcal{J}^{σ} constant on level sets of \mathcal{H} . Let γ be a trajectory of reduced dynamics for segments on side σ of Σ^- s.t. $\gamma(0)$ is not marginal. If $\gamma(t)$ is marginal for some positive time, there is a first such t_0 , because the set of non-marginal cases is open. The initial value problem for $x_0 = \gamma(t_0)$ has unique solution because the reduced dynamics is a factor of the full GC dynamics. x_0 is not an equilibrium point else it was not possible to reach it in finite time from $\gamma(0)$. So for $j = \mathcal{J}^{\sigma}(x_0)$, $dH_i(x_0) \neq 0$. Thus $d\mathcal{H}(x_0) \neq 0$, so the level set of \mathcal{H} containing x_0 is locally a smooth curve Γ . By hypothesis, \mathcal{J}^{σ} is constant along it, so H_i is constant along it. So Γ is locally invariant. But that implies that t_0 was not the first time that $\gamma(t)$ is marginal.

The case that a segment is split by an interior local maximum of |B| can be treated the same way, replacing \mathcal{J}^{σ} by $\mathcal{J}^{+} + \mathcal{J}^{-}$.

Transition flux

Quantify failure of weak isodrasticity by dH ∧ dJ^σ. Can write it as M^σβ and quantify by the function M^σ on Σ[−].

Figure: The parts of Σ above $[-2, 2]^2$ for a non-axisymmetric mirror field of two circular coils with weaker field at top neck, contours of \mathcal{H}, \mathcal{J} on upper Σ^- , and \mathcal{M} there.

- Liouville volume $\Lambda = \frac{1}{2}\omega \wedge \omega = e\beta \wedge d(p_{\parallel}b^{\flat}) = e\tilde{B}_{\parallel}\Omega \wedge dp_{\parallel}$ on GC phase space.
- Theorem: The transition flux-form for GCM corresponding to segments in direction σ from Σ[−] becoming marginal is 2σm^{1/2}μ^{3/2}M^σβ.

Proof & Consequences

 Phase-space volume-flux for a 2DoF Hamiltonian system i_XΛ = dH ∧ ω. So given an area A on Σ⁻ and a choice of direction σ from it, the corresponding transition flux is ∫_{φ(A)} dH ∧ ω, where φ(A) denotes the 3D volume produced by flowing A × {p_{||} = 0} along ZGCM in direction σ and back.
dH = µdH and integrating ω along each homoclinic of ZGCM gives 2σd ∫_γ p_{||}b^b = 2σdL = 2σ√mµ dJ. So

$$\begin{split} \int_{\phi(A)} dH \wedge \omega &= 2\sigma \mu \sqrt{m\mu} \int_A d\mathcal{H} \wedge d\mathcal{J}, \text{ and the reduced} \\ \text{flux-form is } 2\sigma m^{1/2} \mu^{3/2} \mathcal{M} \beta. \end{split}$$

- For the rate of splitting of segments into two by Σ⁻, add the two transition fluxes.
- Liouville volume in the 3DoF phase space converts to $m\tilde{B}_{\parallel}\Omega \wedge dp_{\parallel} \wedge d\mu \wedge d\phi = \frac{m}{e}\Lambda \wedge d\mu \wedge d\phi$ in gyro-coordinates.
- For particle number density ρ in the full 3DoF phase space, obtain gyro-averaged density 2π^m/_eρ wrt Λ ∧ dμ.
- Then number flux transitioning is $4\pi \frac{m^{3/2}}{e} \sigma \langle \bar{\rho} \rangle \mathcal{M}\beta \wedge \mu^{3/2} d\mu$ in $\Sigma^- \times \{\mu\}$, for bounce-average $\langle \bar{\rho} \rangle$ along marginal segment.

Perturbed tokamak example

► In cylindrical polars, $B^R = -\frac{z}{R} - \varepsilon \cos \phi$, $B^{\phi} = \frac{C}{R^2}$, $B^z = 1 - \frac{1}{R} + \varepsilon \frac{z}{R} \cos \phi$.

Figure: Σ , contours of \mathcal{H} on Σ and green for Σ^+ , red for Σ^- .

- Remains to compute J[±]. Many branches, depending on number of poloidal turns before bouncing. Separated by heteroclinic cases.
- Note that contours of H crossing from green to red indicate short bouncers that become unstable to long bouncing (left or right or over the top).

Σ for stellarators

Distinguish three types for Σ in toroidal configurations.

- 1. ΣT : The main component of Σ is an annulus making no poloidal turns for one **toroidal** turn, subdivided into Σ^{\pm} by a closed curve of Σ^{0} ; there may be additional components corresponding to ripple.
- 2. ΣP : The main components are **poloidal** disks in a toroidal sequence, alternating between Σ^{\pm} .
- 3. ΣH : The main component is a **helical** annulus making N poloidal turns for 1 toroidal turn, subdivided into Σ^{\pm} by a closed curve of Σ^{0} . Could allow $M \neq 1$ toroidal turns with self-intersection along Σ^{0} , but not a generic case.
- Omnigenous fields are a special case of weak isodrastic.

Realisability of weak isodrasticity

- We can make non-axisymmetric isodrastic mirror fields, including ones that are not omnigenous, e.g.
- ► Choose $\mathcal{B}(s, u, v) = c + r^2 a(u, v)s^2 + b(u, v)s^3$, where $r^2 = u^2 + v^2$, a, b > 0, on an open neigbourhood of $r \le r_0$, $0 \le s \le \frac{b}{a}$, and assume $c + r^2 > \frac{4a^3}{27b^2}$ so that $\mathcal{B} > 0$. ► Field $\mathcal{B}\partial_s$ has $\Sigma^- = \{s = 0\}$, $\mathcal{H}(u, v) = c + r^2$,
 - $\mathcal{J}(u,v) = \int_0^{a/b} \sqrt{2(as^2 bs^3)} \, ds = \frac{4\sqrt{2}a^{5/2}}{15b^2}$. So it is isodrastic if $a^{5/2}b^{-2}$ is a function of r only.
- ► The field has a flux function r², but local minimum of B at s_m = ^{2a}/_{3b} has B(s_m) H = -^{4a³}/_{27b²}, so if we choose this not to be a function of only r then the field is not omnigenous.
- To realise in Euclidean space (x, y, z), want a diffeomorphism φ : (s, u, v) → (x, y, z) such that |φ_{*}∂_s|² = 1 and div B = 0 for B = φ_{*}(B∂_s). Or let β = φ_{*}(du ∧ dv) (closed), ask for φ^{*}|β| = B & |φ_{*}∂_s|² = 1 and define B by i_B(dx ∧ dy ∧ dz) = β. The conditions for φ are 2 PDEs in first derivatives. If B is analytic then ∃ local solution by Cauchy-Kovalevskaya theorem. Hence a solution on the required domain if c is large enough.

Illustration

Figure: \mathcal{B} -contours on a flux surface r = constant in polar angle θ and arclength *s*, for an isodrastic field that is not omnigenous.

Isodrastic stellarator fields?

- Want to make weak isodrastic stellarator fields that are not omnigenous. In particular, try to make with all marginal segments heteroclinic. Then *H* extends to a flux function. If can specify |*B*| as function of arclength *s* from Σ⁻ then can make *J* a function of only *H*, and *B*_{min} not. But a priori don't know the length from one piece of Σ⁻ to the next.
- Using *H* as flux function, have local coordinate ∫ *i*_B*A* on flux surfaces that is preserved by *B*, so can make a coordinate system in which *B*-lines are straight.
- But what to specify in these coordinates and how to realise it as image of a divergence-free field in Euclidean space?

Strong isodrastic fields

- There is an exact version of isodrasticity for FGCM: Σ⁻ is a submanifold consisting of saddles for ZGCM, so persists to a normally hyperbolic submanifold (NHS) for FGCM.
- Say field is (strong) isodrastic if forwards & backwards contracting submanifolds of NHS coincide in relevant directions.

Figure: Projection to physical space of a hyperbolic periodic orbit γ of FGCM with one direction of contracting manifolds W^{\pm} up to first bounce, for (a) an axisymmetric field, (b) a non-axisymmetric one, (c) E/μ close to minimum of |B| on Σ^- . Brown is $|B| = E/\mu$.

Normal hyperbolicity theory

► Informally, an invariant submanifold N of a C^r (r ≥ 1) vector field V on manifold M is normally hyperbolic if any forwards "normal" contraction onto N is at faster rate than any forwards contraction tangent to N, and same for backwards.

• e.g. $\dot{x} = -y, \dot{y} = x, \ \dot{u} = u, \dot{s} = -s \text{ in } \mathbb{R}^4, \ N = \{u, s = 0\}.$

- Contracting submanifolds: For σ = ±, let W^σ(N) = set of points in M whose trajectory in direction σ of time converges to N. They are (injectively immersed) submanifolds of M, containing N. Furthermore, they are the unions of submanifolds W[±](x) (Arnol'd's contracting whiskers) of points whose trajectories converge together with that of a point x ∈ N.
- ▶ Persistence theorem: For C^r-small change to V, an NHS persists and is C^s for any s ≤ r and < ratios of normal to tangential contraction rates in forwards and backwards time (technical conditions if not compact or only locally invariant).</p>
- So an approximately invariant submanifold with suitable contraction estimates implies a true NHS nearby.

Scaled FGCM

- ► Recall scaling to make $\dot{Q} = \tilde{B}_{\parallel}^{-1} (u_{\parallel}\tilde{B} + \delta b \times \nabla |B|)$, $\dot{u}_{\parallel} = -\frac{\tilde{B}}{\tilde{B}_{\parallel}} \cdot \nabla |B|$, with $\tilde{B} = B + \delta u_{\parallel} \text{curl } b$, $\tilde{B}_{\parallel} = \tilde{B} \cdot b$, Hamiltonian with $H = \frac{1}{2}u_{\parallel}^2 + |B|, \omega = \frac{\beta}{\delta} + d(u_{\parallel}b^{\flat})$.
- ► Then for $\delta = 0$, $N = \Sigma^- \times \{u_{\parallel} = 0\}$ is invariant. It consists entirely of equilibrium points. The linearised normal dynamics is hyperbolic: $\dot{s} = u_{\parallel}, \dot{u}_{\parallel} = -|B|''s$. So it is an NHS.
- So it persists to an NHS for all small enough δ .
- Dynamics on the NHS is Hamiltonian because ω_{|N} is nondegenerate. 1 DoF & to leading order H = |B|. So to leading order dynamics looks like vector field X given by i_Xβ = δ d|B| on Σ⁻, i.e. periodic orbits along the closed level sets of |B|_{1Σ⁻}.
- Can compute it to any desired accuracy as a "symplectic slow manifold". RS MacKay, Slow manifolds, in T Dauxois, A Litvak-Hinenzon, RS MacKay, A Spanoudaki (eds), Energy localisation and transfer (World Sci, 2004), 149–192.

Contracting whiskers

- For δ = 0, the contracting whiskers are the marginal trajectories of ZGCM approaching x ∈ Σ[−] in time-direction σ.
- Those that bounce approach the same point of Σ[−] in both directions of time, so their union over x ∈ Σ[−] forms a separatrix: a closed invariant submanifold (but not smooth at N) of codimension one. It separates two classes of ZGCM.
- For δ > 0, the local whiskers move smoothly, but in general the separatrices are broken.
- Say B is *isodrastic* if the unions of the whiskers continue to form separatrices for all δ > 0 (perhaps too much to ask?).

Examples of separatrices without integrability

▶ de la Llave map: y' = y + h(x), x' = x + y' with h(x) = g(x) + g⁻¹(x) - 2x for invertible degree-1 circle map g.

• Given $S : \mathbb{R}^2 \to \mathbb{R}$ with S(x + m, y + n) = S(x, y) + mA + nBthen $H(q, p) = \frac{1}{2}|p|^2 - \frac{1}{2}|\nabla S(q)|^2$ on $T^*\mathbb{T}^2$ has invariant graph $p = \nabla S(q)$ in $H^{-1}(0)$.

Visualisation of energy level

- W[±](N) ∩ H⁻¹(E) is typically one or more periodic orbits. H⁻¹(E) is a double cover of {|B| ≤ E/μ} glued along the boundary (p_{||}² = 2m(E − μ|B|)). Projection to physical space identifies ±p_{||}.
- Better to choose coordinates (X, Y, W) so that |B| = E/µ is flattened to W = 0 and ±p_{||} correspond to ±W.
- e.g. if accessible region is the inside of an amphora, centre (x, y) on the lowest point and find functions s, t such that writing (x, y) = t(z)(X, Y) and p_{||} = s(z)W then ∂_z (s(z)²/2m W² + µ|B|(t(z)X, t(z)Y, z)) ≠ 0 on H⁻¹(E). Then H⁻¹(E) is a graph z = Z(X, Y, W), so eliminate z & plot

Dynamics

In particular, get a hyperbolic periodic orbit near neck, with contracting submanifolds (plotted using Wazewski principle).

And sketches of how they might continue:

Isodrastic is the case where the contracting submanifolds join.

Perturbed tokamak example

• Take scaling $H = \frac{1}{2}v^2 + \mu|B|$, $\omega = \beta + d(vb^{\flat})$.

Axisymmetric case conserves $p_{\phi} = \psi + \frac{vC}{|B|}$, where $\psi = \frac{1}{2}(r^2 + z^2)$ with r = R - 1.

Contours of reduced Hamiltonian H_{pφ} for some value of pφ, and set of critical points of H_{pφ} in (r, v) (z = 0).

Σ⁻ × {v = 0} perturbs to NHS N⁻. Get a normally elliptic submanifold N⁺ too from Σ⁺ and a transverse submanifold of circular periodic orbits in z = 0 whose vertical components of parallel velocity and curvature drift cancel. [CHECK]

continued

On breaking axisymmetry, p_φ no longer conserved, so best to change view to level sets of p_φ, given E. Axisymmetric case:

So expect righthand picture on perturbation.

MacKay RS, On guiding centre motion, in: Transport, chaos and plasma physics, eds Benkadda S, Doveil F, Elskens Y (World Sci, 1994) 96–101.

Splitting of separatrices

- It is convenient to examine the splitting of the separatrices by following the contracting submanifolds to the first bounce.
- Let W[±](x) be the contracting whiskers of x ∈ N[−] and Ξ[±](x) be fieldline labels of their first points with v = 0. Can use intersection with Σ[−] as fieldline label. SKETCH
- Isodrastic requires Ξ⁺(x) = Ξ[−](τ(x)) for some τ(x) ∈ N[−] in the same orbit as x.
- Generically, x is on a periodic orbit γ ⊂ N⁻ and Ξ[±](x) trace out closed curves γ[±] in Σ⁻.
- γ^{\pm} enclose the same magnetic flux, equal to $-\frac{1}{e} \int_{\gamma} \omega$ (use flux of energy-surface volume = ω).
- ▶ Isodrastic requires γ^{\pm} to coincide. Equivalent to $\exists \tau$ such that $\Xi^+(x) = \Xi^-(\phi_\tau(x))$ for $x \in \gamma$.
- Otherwise, they may intersect, forming lobes of transitioning flux; or miss each other, forming disks of transitioning flux.
- The flux for a lobe equals the difference in actions $\int eA^{\flat} + p_{\parallel}b^{\flat}$ between homoclinic orbits from the intersections.

Case of equilibria

- If x ∈ N⁻ is an equilibrium point then in general Ξ[±](x) miss each other. It is codimension-2 to coincide.
- If they miss then so do γ[±] for all small enough periodic orbits γ around it.

Melnikov analysis

- Can compute the curves γ[±] to first order in δ: given a field-line label ξ (e.g. H extended along field from Σ⁻) and a point x ∈ Σ⁻, let n(x) be the point of N⁻ on the same fieldline, & a(s) be the covector at arclength s along ZGCM from x with a(0) = dξ on TΣ⁻, a(0)b = 0 and da_i/ds = -a_j∂_ib^j, dx/ds = b.
- ► Then the first order change $\Delta \xi$ along $W^{\pm}(n(x))$ to the first bounce is given by $\pm \delta \mathcal{M}_{\xi}$, where Poincaré-Melnikov function $\mathcal{M}_{\xi} = \int \frac{u}{|B|} ac_{\perp} + \frac{1}{u}(a\eta K) ds$ along the ZGCM from x, with $\eta = \frac{b}{|B|} \times \nabla |B|$, $K = a\eta$ at x and $u = \sqrt{2(\mathcal{H} |B|)}$.
- So the first-order difference between ξ on Ξ^{\pm} is $2\delta \mathcal{M}_{\xi}$.
- Tidier to compute a and M wrt fieldline time instead of s.
- For $\xi = \mathcal{H}$ it simplifies to $\mathcal{M}_{\mathcal{H}} = \int ak \frac{ds}{|B|}$ where $k = \operatorname{curl}(ub)$.
- Can show dH ∧ dJ = M_Hβ, so deduce that weak isodrasticity is the first-order condition for strong isodrasticity.
- For equilibrium points on N[−], choose two independent fieldline labels to compute first-order displacement between Ξ[±].

Behaviour near generic Σ^0

- For a C⁴-generic point of Σ⁰ there are fieldline labels x, y nearby for which |B| = f(x, y) + ys + xs² + ks³ + as⁴ + o(s⁴) for (k, a) ≠ (0, 0) and some function f.
- ► Then $|B|' = y + 2xs + 3ks^2 + 4as^3 + o(s^3)$, so Σ is locally $y = -2xs 3ks^2 4as^3 + o(s^3)$.
- ► $|B|'' = 2x + 6ks + 12as^2 + o(s^2)$, so Σ^0 is locally $x = -3ks 6as^2 + o(s^2)$, $y = 3ks^2 + 8as^3 + o(s^3)$.

▶
$$k \neq 0$$
; $k = 0, a > 0$; $k = 0, a < 0$:

Melnikov near Σ^0

- Define c by β = c(x, y)dx ∧ dy. Take k ≠ 0. Use x, s as coordinates on Σ⁻ (x + 3ks < 0). For short marginal bouncers to Σ⁻, M = -√(-x-3ks)/(3ck²) (2xs + 3ks² + 2xf_y + 3kf_x), evaluated at (x, -2xs 3ks²), to leading order in s.
- So weak isodrastic requires kf_x = 0, which is equivalent to H constant along Σ⁰.
- For long marginal bouncers, generic F_j for $k \neq 0$ is

Short bouncers around general Σ^+

- Bouncing GCs with short segment oscillate around Σ^+ .
- The limit $j \to 0$ of the reduced motion X is given by $i_X \beta = -dH_0$ with $H_0 = |B|$ on Σ^+ .
- So bounded components of level sets of |B| on Σ⁺ can be used for approximate confinement.
- There is a true periodic orbit of FGCM near to such a level set.
- The short bouncers nearby have linear approximation $H_j = |B| + \frac{j}{\pi} \sqrt{|B|''}$ on Σ^+ .
- Generically for all small enough j > 0, there is a set of invariant tori for FGCM.
- If level set of |B| on Σ crosses from Σ⁺ to Σ⁻ then short bouncers lose stability and become long bouncers to one side or the other or both.