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KAM tori

I Bouncing GCs have approximate invariant L =
∫
γ p‖b

[. If its
level sets have bounded components, can use them to
approximately confine.

I Because the FGCM is Hamiltonian, if B is C 3 and some
non-degeneracy, then KAM theory provides some true
invariant tori of FGCM near to some level sets of L on each
energy level. They provide true confinement of GCM.

I Similarly, for circulating GCs, if B has an approximate flux
function ψ with some bounded components of level sets, then
KAM theory provides some true invariant tori near to some
level sets of ψ.



Practicalities
I KAM theory is technical and it is hard work to get KAM tori

for reasonable perturbation sizes.

I Can look numerically and see fairly clearly whether there are
invariant tori, e.g. Poincaré section for sample magnetic field.

I To be more sure, can apply tori v chaos tests:
1. Fractal dimension estimators
2. Lyapunov exponent estimators
3. My version of Lyapunov estimator using trace at recurrences
4. Gottwald & Melbourne (2004) test
5. DESCRIBE THEM



Converse KAM method
I Best is probably to use Converse KAM method: it finds the

complement of the union of invariant tori of given class. It is much
easier than KAM theory. Begin with use for magnetic fields.

I N Kallinikos, RS MacKay, D Martinez-del-Rio, Regions without flux
surfaces of given class for toroidal magnetic fields, Plasma Phys &
Contr Fusion 65 (2023) 095021; Erratum, PPCF 65 (2023) 129602

I Choose class of tori by specifying a direction field ξ to which they
are transverse, e.g. gradient of an approximate flux function.

I Basic method for 3D vector field v : flow ξ with the linearised

dynamics of v , if φt∗ξ becomes aξ + bv with a < 0 then that

trajectory does not lie on an invariant torus transverse to ξ.

4.2 Non-integrable examples

Next we consider magnetic fields with more than one helical term, derived from (6). The
Poincaré section in all the forthcoming examples displays features of typical near-integrable
systems: tori of di↵erent classes and chaotic regions near the hyperbolic saddle of the reso-
nances (magnetic islands). Both formulations, Theorems 3.1 and 3.2, yield closely aligned
results. Using a radial direction field, they are able to identify and eliminate points (and
in fact whole field lines) that do not lie on tori of the original class. They do not distin-
guish, however, between the ones lying on tori of another class or in chaotic regions. But if
required, the use of a suitable foliation centered on the elliptic field lines of an island chain
could di↵erentiate between those two cases.

4.2.1 Example 2

The second example corresponds to the magnetic field derived from (6) for two modes now,
namely the resonances 2/1 and 3/2 with same perturbation parameter value "21 = "32 = ".
That is,

A� = �
⇥
 /4 +  2 + " ( � 4)

⇥
cos(2#� �) +  1/2 cos(3#� 2�)

⇤⇤
. (16)

Following the same order as in previous example, the Converse KAM results using the for-
mulation of Theorem 3.1 are shown in Figures 8-10.

Figure 8 shows the detection in symplectic coordinates, using the same color scheme as
in Figure 3. As we can see on the right, the di↵erent q-hues suggest the location of the two
magnetic islands corresponding to this example.

Figure 8: Converse KAM results using Theorem 3.1 for Example 2 with " = 0.003 in sym-
plectic coordinates (9). On the left, red = nonexistence, blue = undetermined. On the right,
hues vary from fast detection (red) to no detection at all (blue) within timeout.

Figure 9 shows the computed area S = S(tf ) of nonexistence from Theorem 3.1 for the
present example for di↵erent values of the perturbation parameter ". As in Figure 4, we see
that the estimated areas increase monotonically with tf and seem to be approaching a limit.
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Conefields
I Can refine to produce “conefields”: upper and lower bounds

on the slopes of possible invariant tori of the given class (basic
method corresponds to finding where the cones are empty).

[Martinez]
I In general, the conefields can be used to eliminate more

points: those from which every possible invariant torus would
have to enter a non-existence region (“killends” extension).

I In principle, can apply to GCM: just need to choose an
appropriate direction field on each energy level that allows
both circulating and banana tori.



Other uses of Converse KAM for fusion programme

I Can apply Converse KAM also to obtain constraints on
geodesic foliations on tori (as for isodynamic fields) and on
pressure jumps across current sheets.

I In both of these, the relevant class of tori is just the closed
1-forms on the torus.

I Isodynamic fields: recall that they are defined to be integrable
ones with ψ̇ = 0 for FGCM, and that this implies b × κ is
perpendicular to the flux surfaces, i.e. b is a geodesic field on
each flux surface, using the surface metric. Converse KAM
can rule out certain ι on a given flux surface (all if the surface
has a ‘big bump’). Maybe all rational values in many cases?



Pressure-jump Hamiltonian

I For a toroidal interface Σ between force-free regions (J × B = 0),
assumed tangent to the limiting B± on each side, a current sheet on
Σ supports a pressure jump P = p− − p+ if the jump in 1

2 |B|2 is P.

I Given one limiting field B−, then B+ = ∇f for a multivalued
potential f on Σ s.t. 1

2 |∇f |2 = 1
2 |B−|2 − P, using surface metric. It

is Hamilton-Jacobi equation for an invariant torus p = ∇f (q) of
H(q, p) = 1

2 |p|2 − V (q) with energy P, where V = 1
2 |B−|2.

I No solutions if P < −Vmin, so take P + V ≥ 0. Then reformulate as
seeking a geodesic field of Maupertuis metric (P + V (q))g on Σ.

I Converse KAM can constrain Σ for solutions [Kaiser & Salat, Phys
Plasma 1 (1994) 281] (also P and ι+).

I Can analyse P near −Vmin by perturbation of the singular case and I
think get no solutions for some interval of P ≥ −Vmin.

I V negligible for P > 0 large, so outcome depends only on Σ.

I Could extend use of Converse KAM numerically and thereby justify

observations by Qu et al, PPCF 63 (2021) 125007?



Divertors
I Want a clear gap between plasma and vessel wall, a transition from

confinement to not.
I So design the magnetic field to have an outermost flux surface S in

the interior of the vessel and put the plasma inside S .
I e.g. for axisymmetric field, make a hyperbolic periodic fieldline, then

its separatrix can bound the plasma. Not robust to breaking axisym-
metry, but find a last invariant torus slightly inside, e.g. Abdullaev
et al, Nucl Fusion 46 (2006) S113-26
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Abstract
Two mapping methods to study magnetic field lines near the separatrix of poloidal divertor tokamaks in the
presence of external non-axisymmetric magnetic perturbations are proposed. The first mapping method is based
on the Hamiltonian formulation of field line equations in the Boozer coordinates and solving it by the canonical
transformation of variables (Abdullaev et al 1999 Phys. Plasmas 6 153). The second mapping is a canonical mapping
near the separatrix which is constructed using the recently developed method (Abdullaev 2004 Phys. Rev. E 70
064202, Abdullaev 2005 Phys. Rev. E 72 064202). We construct the corresponding mappings for magnetic field
lines in divertor tokamaks in the presence of non-axisymmetric magnetic perturbations. The mappings are applied
to study the properties of open stochastic field lines near the separatrix for the wire model of the plasma. Poincaré
sections, the so-called laminar and magnetic footprint plot (a contour plot of wall to wall connections lengths) in the
plasma region and on the divertor plates are obtained. The quasilinear diffusion coefficients of field lines are also
estimated.

PACS numbers: 52.55.Dy, 52.55.Fa, 05.45.Ac, 45.20.Jj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Poloidal divertor tokamaks are an important concept of the
magnetic confinement of plasma (see [1]). The magnetic
configuration of these tokamaks contains a magnetic surface
(a magnetic separatrix) sharply separating closed field lines
on nested magnetic surfaces from open field lines hitting
the walls of fusion device. It has one (or two) singular
points, X-points, on the poloidal section where the poloidal
components of the magnetic field are zeros. A schematic
view of the so-called single-null poloidal divertor is shown
in figure 1. Such configurations of the magnetic field are
created by one or two external current coils parallel to the
plasma current, respectively. Magnetic fusion devices with
a poloidal divertor provide an improved energy confinement
of the plasma and divert particles and heat efficiently into
divertor plates in a special volume, from where they are
pumped away. The future international thermonuclear
experimental reactor (ITER) is designed as a poloidal divertor
tokamak.

Magnetic field lines in such a magnetic configuration are
described by the Hamiltonian system with hyperbolic fixed
points. The magnetic separatrix and the X-points correspond to
the separatrices and the hyperbolic saddle points, respectively.
Typically any small non-axisymmetric magnetic perturbations

Plasma

Divertor plates

X-point

Separatrix

Open 
field lines

Closed 
field lines

Figure 1. Schematic view of a magnetic configuration in a poloidal
single-null divertor tokamak.

destroy the magnetic separatrix replacing it by the stochastic
layer of field lines.

The nature of these magnetic perturbations may range
from magnetic fluctuations produced by plasma instabilities,

0029-5515/06/040113+14$30.00 © 2006 IAEA, Vienna Printed in the UK S113

surfaces and cantori, all NB lines should have essentially the
same value of !wtðuÞ through a range of u. For magnetic sur-
faces, this range becomes longer as 1/uw, but for cantori the
1/uw scaling only holds until the field line can escape through
a turnstile. In regions in which the magnetic field lines are
highly stochastic, the !wtðuÞ for the individual trajectories is
spread over the stochastic region.

The transition region from nested magnetic surfaces to
cantori can be represented by the equation

@nB

@u
þ uw

@nB

@!wt

¼ %Ptð!wtÞnB; (12)

where

NBðuÞ &
ð

nBð!wt;uÞd!wt: (13)

NB(u) is the number of magnetic field lines that have not yet
intercepted the surrounding wall and nBð!wt;uÞ is the field-
line density. The probability per radian advance in u that a
magnetic field line will be lost by passing through the turn-
stile that exists for !wt > !wo is Ptð!wtÞ. By its definition
Ptð!wt < !woÞ ¼ 0.

III. NON-RESONANT STELLARATOR DIVERTORS

A. Model Hamiltonian

To simulate the properties of the transition from nested
magnetic surfaces to magnetic field lines that strike the

walls, a magnetic field line Hamiltonian wpðwt; h;uÞ is
required. The field line Hamiltonian that describes a given
magnetic field ~Bð~xÞ is not unique; canonical transforma-
tions preserve all properties of the magnetic field line solu-
tions. A given Hamiltonian wpðwt; h;uÞ can represent
different magnetic fields, which can have different current
densities, by being associated with different shape func-
tions~xðwt; h;uÞ.

Except when investigating the effects of periodicity-
breaking magnetic field errors, it is convenient to let

f ¼ Npu: (14)

The angle f advances from zero to 2p in one of the identical
Np periods of a stellarator. In effect, the use of f combines
the data from the different periods of a stellarator.

Given a magnetic field, ~Bð~xÞ, a method for obtaining a
Hamiltonian that represents that field as exactly as desired is
described in Appendix A. A simpler procedure, which is
described in Appendix B, is to find an analytic Hamiltonian
that has a given surface as one of its magnetic surfaces. The
simpler procedure is followed in this paper. The magnetic field
line Hamiltonian used in the simulations is that given in Eq.
(B25) with !0 ¼ 1=2; !t ¼ 1=2; !x ¼ %1=5, and the rotational
transform per period at the center, i0=Np ¼ 0:15. The wall
is located at 1.7 times the characteristic minor radius of
the plasma. The shear in the transform is weak but posi-
tive, Fig. 4. The interceptions of the field line trajectories
with the two principle planes of the toroidal angle f¼ 0
and p are shown in Fig. 4.

FIG. 4. The rotational transform of the
model Hamiltonian for studies of non-
resonant divertors is given as well as
the interceptions of magnetic field line
trajectories with the two principle
planes of the toroidal angle f¼ 0 and
p.

092505-4 A. H. Boozer and A. Punjabi Phys. Plasmas 25, 092505 (2018)

I or usual mix of tori & chaos makes a last torus,
e.g. Boozer&Punjabi, Phys Plasma 25 (2018) 092505

I Can find it by 1-sided residue criterion: JM Greene, RS MacKay, J

Stark, Boundary circles for area-preserving maps, Physica D 21

(1986) 267–95



Strike points
I If GCs diffuse across their last invariant tori (roughly corresponding

to S), where do they hit the vessel wall? Simplify by looking at
fieldline flow (in both directions).

I Answer can be obtained by working backwards from the wall.
SKETCH

I Decompose the wall W (assumed smooth) into W+ ∪W 0 ∪W−,
according to sign of B · n where n is the unit outward normal to W .
Modulo W 0, forward fieldlines hit W+, backward ones hit W−.

I Decompose W 0 = W 0
i ∪W 0

o ∪W 0
d according as fieldline makes non-

degenerate inner or outer tangency or a degenerate one. Modulo
W 0

d , forward fieldlines hit W+ ∪W 0
i , backward ones hit W− ∪W 0

i .
I Let W±(τ) be the sets of strike points reachable by ± fieldline flow

from the interior of W in time at most τ ; increasing sequences.
I Can do same for length instead of time; the resulting sets are those

with “connection length” at most the given value.
I Endow W with measure |B · dS | and let m(τ) = µ(W±(τ) (equal).

Then divB = 0 implies m(τ) ≤ Vacc/τ , where Vacc is the accessible
volume along the fieldlines from the wall; and Vacc =

∫
τdm(τ).

I If use length instead of time, use dib(|B|Ω) = 0 and replace Vacc by∫
Vacc
|B|Ω.



Perturbed tokamak example
I Poloidal section
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I Contours of connection length on the two parts of W+ [Naik]
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Figure 3.6: Connection length for two entering strips on the wall for (b) ✏ = 0.00, (b) ✏ = 0.01, (c)
✏ = 0.05, (d) ✏ = 0.10. In all cases, s = 1/10, ↵ = 2.10.
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I Much more to do here!
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