Mathematics for Fusion Power part 8

R.S.MacKay

March 4, 2024

Interaction of two charges

Reduced dynamics

Reconstructed dynamics

Scattering map

Effect on distribution function

Interaction of charges

- Charged particles exert Coulomb force $\frac{e_{1} e_{2}}{4 \pi \varepsilon_{0} R^{2}}$ on each other, where $R=\left|q_{1}-q_{2}\right|$ (repulsive for same signs, attractive for opposite signs). Corresponds to potential $V(R)=\frac{e_{1} e_{2}}{4 \pi \varepsilon_{0} R}$.
- Interaction of charges can lead to cross-field diffusion of particles and of energy, also fusion!
- Generalise to any potential $V(R)$. In particular, can model effect of sea of other charges by Debye-shielded potential $V(R)=\frac{e_{1} e_{2}}{4 \pi \varepsilon_{0} R} e^{-R / \lambda_{D}}$, where Debye length $\lambda_{D}=\sqrt{\frac{\varepsilon_{0}}{\sum_{j} n_{j} e_{j}^{2} \beta_{j}}}$, with number density n_{j} and coolness $\beta_{j}=\frac{1}{k_{B} T_{j}}$ of species j. [but response to moving charge?]
- Might want to modify repulsive case to simulate fusion.
- Could allow any $V(r, z)$ where z is separation along field and r perpendicular to field.

Two charges in uniform magnetic field

- Treat non-relativistic motion of two charges in a uniform magnetic field $B=B \hat{z}$.
-6 DoF Hamiltonian dynamics: $H=\frac{\left|p_{1}\right|^{2}}{2 m_{1}}+\frac{\left|p_{2}\right|^{2}}{2 m_{2}}+V\left(\left|q_{1}-q_{2}\right|\right)$, $\omega=\sum_{i} d q_{x_{i}} \wedge d p_{x_{i}}+d q_{y_{i}} \wedge d p_{y_{i}}+d q_{z_{i}} \wedge d p_{z_{i}}+k_{i} d q_{x_{i}} \wedge d q_{y_{i}}$, where $k_{i}=-e_{i} B$. Note $p_{i}=m_{i} \dot{q}_{i}$. Let $\Omega_{i}=k_{i} / m_{i}$. Write Coulomb case as $V(R)=\frac{k_{1} k_{2} G}{R}$ with $G=\frac{1}{4 \pi \varepsilon_{0} B^{2}}$.
- D Pinheiro, RS MacKay, Interaction of two charges in a uniform magnetic field: I. planar problem, Nonlinearity 19 (2006) 1713-45.

D Pinheiro, RS MacKay, Interaction of two charges in a uniform magnetic field: II. spatial problem, J Nonlin Sci 18 (2008) 615-666.

- Could add a perpendicular electric field E, but can remove its effect by going to frame with velocity $E \times B /|B|^{2}$ [contrast incorrect papers on atoms in crossed fields].

Symmetries

- Symmetries under all translations and rotation about z-axis.
- Conserved quantities: $P_{z}=\sum_{i} p_{z_{i}}, P_{\perp}=\sum_{i} p_{i \perp}+k_{i} J q_{i \perp}$, $L=\sum_{i} q_{i \perp}^{T} J p_{i \perp}-\frac{k_{i}}{2}\left|q_{i \perp}\right|^{2}$, where $J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
- Let gyroradius vector $\rho_{i}=J \frac{p_{i \perp}}{k_{i}}$, gyrocentre $Q_{i}=q_{i}-\rho_{i}$.

Hidden symmetry for equal gyrofrequencies

- If $\Omega_{1}=\Omega_{2}, \exists$ additional locomotive coupling-rod (LCR) symmetry, conserving $W=\left|\left(p_{1}+p_{2}\right)_{\perp}\right|^{2}$. The symmetry field is $Q_{i}^{\prime}=0,\left(\rho_{1}-\rho_{2}\right)^{\prime}=0,\left(p_{1}+p_{2}\right)^{\prime}=-J\left(p_{1}+p_{2}\right)$.
- The symmetry action on q_{i} is $q_{i}(\theta)=\tilde{Q}_{i}+R_{\theta} \bar{\rho}$, where

$$
\begin{aligned}
& R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \bar{\rho}=J \frac{\left(p_{1}+p_{2}\right)_{\perp}}{k_{1}+k_{2}}=\frac{k_{1} \rho_{1}+k_{2} \rho_{2}}{k_{1}+k_{2}} \text { and } \\
& \tilde{Q}_{i}=q_{i}-\bar{\rho}\left(\tilde{Q}_{1}=Q_{1}+\frac{k_{2}\left(\rho_{1}-\rho_{2}\right)}{k_{1}+k_{2}}, \tilde{Q}_{2}=Q_{2}+\frac{k_{1}\left(\rho_{2}-\rho_{1}\right)}{k_{1}+k_{2}}\right) .
\end{aligned}
$$

Figure: Charges (equal) at B,D; GCs at E,F; LCR rotation about A,C

Reduction

- By P_{z} : Let $M=m_{1}+m_{2}, m=\frac{m_{1} m_{2}}{M}, q_{z}=q_{z_{1}}-q_{z_{2}}$, $p_{z}=\left(m_{2} p_{z_{1}}-m_{1} p_{z_{2}}\right) / M, Q_{z}=\left(m_{1} q_{z_{1}}+m_{2} q_{z_{2}}\right) / M$. Write Q_{i} for $Q_{i \perp}$, e.g. $R=\sqrt{\left|Q_{1}+\rho_{1}-Q_{2}-\rho_{2}\right|^{2}+q_{z}^{2}}$. Then

$$
\begin{aligned}
& H=\frac{k_{1} \Omega_{1}}{2}\left|\rho_{1}\right|^{2}+\frac{k_{2} \Omega_{2}}{2}\left|\rho_{2}\right|^{2}+V(R)+\frac{p_{z}^{2}}{2 m}+\frac{P_{z}^{2}}{2 M} \\
& \omega=\sum_{i} k_{i}\left(d Q_{x_{i}} \wedge d Q_{y_{i}}-d \rho_{x_{i}} \wedge d \rho_{y_{i}}\right)+d q_{z} \wedge d p_{z}+d Q_{z} \wedge d P_{z} \\
& \text { wlog } P_{z}=0
\end{aligned}
$$

- In gyro-variables, remaining integrals of motion are

$$
P_{\perp}=J \sum_{i} k_{i} Q_{i}, L=\sum_{i} \frac{k_{i}}{2}\left(\left|\rho_{i}\right|^{2}-\left|Q_{i}\right|^{2}\right), W=\left|\sum_{i} k_{i} \rho_{i}\right|^{2} .
$$

Case $k_{1}+k_{2} \neq 0$

\triangleright e.g. $e^{-}-e^{-}, H^{+}-H^{+}(H=p, D, T), H^{+}-\mathrm{He}^{2+}, \mathrm{He}^{2+}-e^{-}$

- Write $K=k_{1}+k_{2}, k=\frac{k_{1} k_{2}}{K}$ and $\bar{Q}=\frac{1}{K} \sum_{i} k_{i} Q_{i}, \bar{\rho}=\frac{1}{K} \sum_{i} k_{i} \rho_{i}, S=Q_{1}-Q_{2}, s=\rho_{1}-\rho_{2}$.
So $\rho_{1}=\bar{\rho}+\frac{k_{2}}{K} s, \rho_{2}=\bar{\rho}-\frac{k_{1}}{K} s$ and similar for Q_{j}.
- Then $L=\frac{K}{2}\left(|\bar{\rho}|^{2}-|\bar{Q}|^{2}\right)+\frac{k}{2}\left(|s|^{2}-|S|^{2}\right), W=K^{2}|\bar{\rho}|^{2}$,
$H=\frac{P_{z}^{2}}{2 M}+\frac{p_{z}^{2}}{2 m}+\frac{\bar{\Omega} K}{2}|\bar{\rho}|^{2}+k \delta \Omega \bar{\rho}^{T} s+\frac{k^{2}}{2 m}|s|^{2}+V(R)$,
$\omega=d Q_{z} \wedge d P_{z}+d q_{z} \wedge d p_{z}+K\left(d \bar{Q}_{x} \wedge d \bar{Q}_{y}-d \bar{\rho}_{x} \wedge d \bar{\rho}_{y}\right)+$ $k\left(d S_{x} \wedge d S_{y}-d s_{x} \wedge d s_{y}\right)$, where $\bar{\Omega}=\frac{1}{K} \sum_{i} k_{i} \Omega_{i}$, $\delta \Omega=\Omega_{1}-\Omega_{2}, R=\sqrt{|S+s|^{2}+q_{z}^{2}}$.
- So \bar{Q} conserved (equivalent to $P_{\perp}=J K \bar{Q}$), thus no nett perpendicular displacement of charge. wlog $\bar{Q}=0$.
- To reduce by L (simultaneous rotation of $\bar{Q}, \bar{\rho}, s, S$), let $q=\left(q_{1}-q_{2}\right)_{\perp}$, suppose $r=|q| \neq 0$ and use coordinates X, Y along and \perp to q, i.e. let ϕ be direction of q in (x, y) and write $\left(s_{X}, s_{Y}\right)=\left(s_{X} \cos \phi-s_{Y} \sin \phi, s_{X} \sin \phi+s_{Y} \cos \phi\right)$, etc.

continued

$>$ Then $d s_{x} \wedge d s_{y}=d s_{X} \wedge d s_{Y}+\frac{1}{2} d|s|^{2} \wedge d \phi$. Thus, $K\left(d \bar{Q}_{x} \wedge d \bar{Q}_{y}-d \bar{\rho}_{x} \wedge d \bar{\rho}_{y}\right)+k\left(d S_{x} \wedge d S_{y}-d s_{x} \wedge d s_{y}\right)=$ $K\left(d \bar{Q}_{X} \wedge d \bar{Q}_{Y}-d \bar{\rho}_{X} \wedge d \bar{\rho}_{Y}\right)+k\left(d S_{X} \wedge d S_{Y}-d s_{X} \wedge d s_{Y}\right)-d L \wedge d \phi$.
\rightarrow But $q=S+s$ so eliminate S by $S_{X}=r-s_{X}, S_{Y}=-s_{Y}$: $|S|^{2}=\left(s_{X}-r\right)^{2}+s_{Y}^{2} \& d S_{X} \wedge d S_{Y}-d s_{X} \wedge d s_{Y}=-d r \wedge d s_{Y}$.
Write $p_{r}=-k s_{Y}$ and use
$r^{2}=|S+s|^{2}=|S|^{2}+2 S^{T} s+|s|^{2}=|S|^{2}-|s|^{2}+2 r s_{X}$ to write $s_{X}=\frac{r}{2}+\frac{\tilde{L}}{k r}$ with $\tilde{L}=L+\frac{K}{2}\left(|\bar{Q}|^{2}-|\bar{\rho}|^{2}\right)$.

- Thus, obtain $\omega=$ $d Q_{z} \wedge d P_{z}+d q_{z} \wedge d p_{z}+K\left(d \bar{Q}_{X} \wedge d \bar{Q}_{Y}-d \bar{\rho}_{X} \wedge d \bar{\rho}_{Y}\right)+d r \wedge d p_{r}-d L \wedge d \phi$, $H=\frac{P_{z}^{2}}{2 M}+\frac{p_{z}^{2}}{2 m}+\frac{\bar{\Omega} K}{2}|\bar{\rho}|^{2}+\delta \Omega k \bar{\rho}^{T} S+\frac{1}{2 m}\left(\frac{k r}{2}+\frac{\tilde{L}}{r}\right)^{2}+\frac{p_{r}^{2}}{2 m}+V(R)$, with $k \bar{\rho}^{T} s=\bar{\rho}_{X}\left(\frac{k r}{2}+\frac{\tilde{L}}{r}\right)-\bar{\rho}_{Y} p_{r}, R=\sqrt{r^{2}+q_{z}^{2}}$ and \tilde{L} as above.
\rightarrow Family of 3DoF systems on $\left(\bar{\rho}, r, p_{r}, q_{z}, p_{z}\right)$ param. by P_{z}, \bar{Q}, L.
- Assumption $r>0$ is automatic for $A=\frac{2 L}{K}+|\bar{Q}|^{2}<0$ because $r=0$ implies $|S|=|s|$ implies $A=|\bar{\rho}|^{2} \geq 0$.
- But for other sign of A, should make another coordinate patch to cover $r=0$, e.g. take coordinates along and \perp to $\bar{\rho}$, which would produce a form closer to that for $K=0$ to come.

Case $\delta \Omega=0$

- e.g. two of the same species, also $D^{+}{ }^{4} \mathrm{He}^{2+}$.
- If $\delta \Omega=0$ then system is rotation-symmetric in $\bar{\rho}$, so $|\bar{\rho}|^{2}=W / K^{2}$ is conserved and obtain reduction to 2DoF on $\left(r, p_{r}, q_{z}, p_{z}\right)$, parametrised by $P_{z}, \bar{Q}, \tilde{L},|\bar{\rho}|^{2}$, with $H=\frac{P_{z}^{2}}{2 M}+\frac{p_{z}^{2}}{2 m}+\frac{\bar{\Omega} K}{2}|\bar{\rho}|^{2}+\frac{1}{2 m}\left(\frac{k r}{2}+\frac{\tilde{L}}{r}\right)^{2}+\frac{p_{r}^{2}}{2 m}+V(R)$, and $\omega=d r \wedge d p_{r}+d q_{z} \wedge d p_{z}$. Potential for $\tilde{L} \neq 0$ below left.
- $\tilde{L}=\frac{k}{2}\left(|s|^{2}-|S|^{2}\right)$, so $r=0(S=-s)$ implies $\tilde{L}=0$; treat this as a special case, with $r \in \mathbb{R}$ replacing $r>0$. Repulsive potential bounds motion away from (0,0) (right).

Case $K=0$

- $\mathrm{e}^{-}-\mathrm{H}^{+}$or $\mathrm{e}^{-}-\mathrm{e}^{+}$(positron).
- Write $k=k_{1}=-k_{2}, q=\left(q_{1}-q_{2}\right)_{\perp}, p=-\frac{k}{2} J\left(\rho_{1}+\rho_{2}\right)$, $C=-\frac{1}{2} J\left(q_{1}+q_{2}\right)_{\perp}, \Pi=k\left(Q_{1}-Q_{2}\right)_{\perp}, \alpha=\frac{m_{2}-m_{1}}{2 m_{1} m_{2}}$.
- Then

$$
\begin{aligned}
H= & \frac{1}{2 m}|p|^{2}+\frac{k^{2}}{8 m}|q|^{2}-\frac{k}{4 m} \Pi^{T} q+\frac{1}{8 m}|\Pi|^{2}+V(R) \\
& +\alpha(k q-\Pi)^{T} J p+\frac{p_{z}^{2}}{2 m}+\frac{P_{z}^{2}}{2 M},
\end{aligned}
$$

with $R=\sqrt{|q|^{2}+q_{z}^{2}}$, and
$\omega=\sum_{j=1}^{3} d q_{j} \wedge d p_{j}+\sum_{j=1}^{2} d C_{j} \wedge d \Pi_{j}+d Q_{z} \wedge d P_{z}$.

- So Π and P_{z} are conserved and (H, ω) reduces to 3DoF in $\left(q, p, q_{z}, p_{z}\right)$.
- $L=q^{T} J p+C^{T} J \Pi$ also conserved but unless $\Pi=0$, does not constrain reduced variables nor commute with Π.

Subcase $\Pi=0$

- $\Pi=0$ means GCs on same fieldline
- By writing $q=r e_{r}, p=p_{r} e_{r}+\frac{p_{\theta}}{r} e_{\theta}, p_{\theta}$ is conserved and system reduces to 2DoF in (r, p_{r}, q_{z}, p_{z}):
$H=\frac{1}{2 m}\left(p_{r}^{2}+p_{z}^{2}+\frac{p_{\theta}^{2}}{r^{2}}\right)+\frac{k^{2}}{8 m} r^{2}+V(R)+\frac{P_{z}^{2}}{2 M}+\alpha k p_{\theta}$,
$R=\sqrt{r^{2}+q_{z}^{2}}, \omega=d r \wedge d p_{r}+d q_{z} \wedge d p_{z}$.
- If $p_{\theta}=0$ (i.e. $\rho_{1}+\rho_{2} \perp q_{1}-q_{2}$) then dynamics is singular at $\left(r, q_{z}\right)=(0,0)(V$ is attractive $)$. wlog $q_{y}=0$ and $H=\frac{1}{2 m}\left(p_{x}^{2}+p_{z}^{2}\right)+\frac{k^{2}}{8 m} q_{x}^{2}+V(R)$, with $R=\sqrt{q_{x}^{2}+q_{z}^{2}}$,
$\omega=d q_{x} \wedge d p_{x}+d q_{z} \wedge d p_{z}$. Can Levi-Civita regularise.

Levi-Civita regularisation

- Write $q=q_{x}+i q_{z}=w^{2}, w \in \mathbb{C}, p=p_{x}+i p_{z} \in \mathbb{C}$, and set $\pi=2 w^{*} p \in \mathbb{C}$. Then $p^{*} d q=\pi^{*} d w$. Note $k_{1} k_{2}<0$.
- $H=\frac{|p|^{2}}{2 m}+\frac{k^{2}}{8 m} q_{x}^{2}+\frac{k_{1} k_{2} G}{|q|}=\frac{|\pi|^{2}}{8 m|w|^{2}}+\frac{k^{2}}{8 m}\left(w_{r}^{2}-w_{i}^{2}\right)^{2}+\frac{k_{1} k_{2} G}{|w|^{2}}$.
- Scale to a new time s by $\frac{d s}{d t}=4 m|w|^{2}$.
- Then the original dynamics on $H=E$ transforms to that of $\tilde{H}=\frac{1}{2}|\pi|^{2}+\frac{1}{2} k^{2}\left(w_{r}^{2}-w_{i}^{2}\right)^{2}|w|^{2}-4 m E|w|^{2}+4 m k_{1} k_{2} G$ on $\tilde{H}=0$ and continues smoothly through $w=0$.
- Accessible region in w-plane for various E :

- Copes with Debye shielding too.

Planar dynamics

- All cases have invariant subspace $q_{z}=p_{z}=0$. Dynamics reduces by 1 DoF.
- Case $\delta \Omega=0: H=\frac{k^{2}}{8 m} r^{2}+\frac{\tilde{L}^{2}}{2 m r^{2}}+\frac{p_{r}^{2}}{2 m}+V(r)+c s t$. For $\tilde{L} \neq 0$ or $V(r) \rightarrow+\infty$ as $r \rightarrow 0$, get periodic oscillations about equilibrium r_{0} minimising H. Its energy $E_{0}=\frac{P_{z}^{2}}{2 M}+\frac{K \bar{\Omega}}{2}|\bar{\rho}|^{2}+|\bar{\Omega} \tilde{L}|+V\left(\left(\frac{2|\tilde{L}|}{|k|}\right)^{\frac{1}{2}}\right)$ to first order in V.
Coulomb case $V(r)=\frac{k K G}{r}$ gives elliptic functions. $V=0$ has $r=\sqrt{A+B \sin \Omega t}$ with $A=\frac{4 E}{k \Omega}, B=\frac{2}{k} \sqrt{\frac{4 E^{2}}{\Omega^{2}}-\tilde{L}^{2}}$
($r=$ distance between two particles with same gyrofrequency).
- Case $K=0, \Pi=0$: same with p_{θ} replacing \tilde{L} and reinterpretation of k. For $p_{\theta} \neq 0$ and (attractive) Coulomb potential there is precisely one equilibrium and get oscillations about it. But when $p_{\theta}=0, r$ reaches 0 in finite time (can restrict the regularisation to q real to continue through).

General planar cases: $K \neq 0$

- INCOMPLETE NOTES IN PROGRESS FROM HERE ON
- Easiest studied in $\bar{Q}, S, \rho_{1}, \rho_{2}$ coordinates.
$H=\sum_{j} \frac{k_{j} \Omega_{j}}{2}\left|\rho_{j}\right|^{2}+V\left(\left|S+\rho_{1}-\rho_{2}\right|\right)$,
$L=\sum_{j} k_{j}\left|\rho_{j}\right|^{2}-K|\bar{Q}|^{2}-k|S|^{2}$ and \bar{Q} conserved.
- Use coordinate system so that $S+\rho_{1}-\rho_{2}$ is on positive x-axis.
- Then for repulsive V, the dynamics oscillates around a unique equilibrium (minimum). Call its energy E_{00}.
- Can study conditions to reach fusion.

Opposite signs

- For opposite sign charges, have to consider $r \in \mathbb{R}$ and after regularisation get oscillations about $\bar{\rho}_{X}=0, r=0$.
- Although extending after collision is fictitious, many regularised trajectories continue for small \tilde{L} to true trajectories with repeated near-collisions, making a chaotic subshift. We proved this for all high enough energies if $\Omega_{1}+\Omega_{2} \neq 0$. [EXPLAIN?]
- $H=\frac{|p|^{2}}{2 m}+\frac{|q|^{2}}{8 m}+\alpha k q^{T} J p-\Pi^{T}\left(\frac{k}{4 m} q+\alpha J p\right)+V(|q|)+c s t$.
- Absorb the linear terms in p into the quadratic. Left with positive-definite in $q-q_{1}$, for some $q_{1}(\Pi)$, plus negative V. Get oscillations about 0 (after regularisation) and possible saddle to a potential well about some q_{0} (e.g. two widely separated gyromotions).
- Get chaotic subshift again for all high enough energies if $\Omega_{1}+\Omega_{2} \neq 0$ (but excludes $\mathrm{e}^{-}-\mathrm{e}^{+}$) and $\Pi \neq 0$.
- Consequences for $\mathrm{e}^{-}-\mathrm{e}^{+}$annihilation $(\alpha=0)$.

Spatial dynamics

- Reduced z-dynamics is $\dot{q}_{z}=\frac{p_{z}}{m}, \dot{p}_{z}=-q_{z} \frac{V^{\prime}(R)}{R}$, coupled to the other DoF via $R=\sqrt{q_{z}^{2}+r^{2}}$.
- Same signs of charge (\wedge is 4D planar subspace):

- For $E<E_{00}$ all trajectories bounce back. For $E>E_{00}$, subset Λ_{E} with energy E is an \mathbb{S}^{3}, it is 'morally' normally hyperbolic and its 4D forward contracting submanifolds separate the 5D energy level into points whose trajectories pass through and those that bounce back.
- For fusion, want to be on $W^{+}(\Lambda)$ with asymptotic trajectory on Λ approaching $r=0$.
- For $\delta \Omega=0$: extra integral $|\bar{\rho}|^{2}, 2 \mathrm{D}$ lower, and critical energy E_{0}.

Flux over a saddle

- For 3DoF Hamiltonian system (H, ω), vector field X is defined by $i_{X} \omega=d H$ and energy-level volume μ by $\mu \wedge d H=\frac{1}{6} \omega^{\wedge 3}$. Then flux of $\mu, i_{X} \mu=\frac{1}{2} \omega^{\wedge 2}$.
- Let $S_{E}=\left\{x \in H^{-1}(E): q_{z}=0\right\}$. It is an \mathbb{S}^{4} that separates $H^{-1}(E)$ into $q_{z}<0$ and $q_{z}>0$ ("dividing surface").
- Decompose $S_{E}=S_{E}^{ \pm} \cup \Lambda_{E}$ according to the orientation of $i_{X} \mu: \pm=\operatorname{sgn} p_{z}$ and Λ_{E} forms the "equator" $p_{z}=0$.

Illustration for 2DoF:

- Flux of μ from $q_{z}<0$ to $q_{z}>0$ is $\int_{S_{E}^{+}} \frac{1}{2} \omega \wedge \omega=\int_{\Lambda_{E}} \omega \wedge \alpha$, where α is a primitive of ω. Same for other direction.
- RS MacKay, Flux over a saddle, Phys Lett A 145 (1990) 425-7

Opposite signs

- Let $E_{\infty}=\frac{P_{z}^{2}}{2 M}$. For $E<E_{\infty}, H^{-1}(E)$ is bounded.
- Regularise $\Omega_{ \pm}=\left\{q_{z}= \pm \infty, p_{z}=0\right\}$ by setting $q_{z}= \pm \sigma^{-2}$ locally and using new time s with $d s / d t=\sigma^{3}$. Then $\frac{d \sigma}{d s}=-\frac{p}{2 m}, \frac{d p}{d s}=\frac{k_{1} k_{2} G \sigma}{\left(1+r^{2} \sigma^{4}\right)^{3 / 2}}$, making $\Omega_{ \pm}$'morally' normally
hyperbolic.
- Their 5D contracting submanifolds separate points which bounce off $\Omega_{ \pm}$from those that go through infinity (in s).
- Let $\Omega_{ \pm}(E)$ be intersections with $H^{-1}(E)$ for $E>E_{\infty}$.
- Their 4D contracting submanifolds intersect $q_{z}=0$ in noncoincident 3 -spheres; get fluxes between "bound" and "free". Can bind only once and unbind only once.
- 2D lower for the case $K=0, \Pi=0$ with extra integral p_{θ}.

Reconstructed motion

- $p_{z_{1}}=\frac{m_{1}}{M} P_{z}+p_{z}, p_{z_{2}}=\frac{m_{2}}{M} P_{z}-p_{z}$, and get $q_{z_{j}}$ by integrating $\dot{q}_{z_{j}}=p_{z_{j}} / m_{j}$.
- Reconstructing the rest from reduced dynamics is more messy.
- But computation of full dynamics is easy:

Figure: (a),(d) opposite signs; (b),(d) equal Ω

Scattering map

- Trajectories starting from $\left|q_{z}\right|=\infty$ at $t=-\infty$ go to $\left|q_{z}\right|=\infty$ at $t=+\infty$ except for (same sign): those asymptotic to Λ, (opposite sign): those that become bound forever (does this have positive measure or not?).
- Define scattering map from state at $t=-\infty$ to $t=+\infty$. Asymptotic gyroradii $\left|\rho_{i}\right|$, guiding centre fieldlines Q_{i}, parallel momenta $p_{z_{i}}$ well-defined. For gyrophases θ_{i}, can define $\phi_{i}=\theta_{i}-\Omega_{i} t$, which has asymptotic limits (possibly $\pm \infty$).
- Only problem is $q_{z_{i}}$: would like to claim $q_{z_{i}}-\frac{p_{z_{i}}}{m_{i}} t$ has asymptotic limits but need screening for this, e.g. 1D case $H=\frac{1}{2} p_{z}^{2}+\frac{G}{z}=E>0$ on $z>0$ gives $z-p t=\frac{G}{E}\left(1-\operatorname{sgn} G \sqrt{1-\frac{G}{E z}} \tanh ^{-1}\left(1-\frac{G}{E z}\right)^{\operatorname{sgn}(G) / 2}\right) \sim$ $\frac{G}{E}\left(1-\operatorname{sgn}(G) \frac{1}{2} \log \frac{4 E z}{|G|}\right)$. [CHECK $G<0$] But not important.
- The conserved quantities constrain the scattering map.
- Change in p_{z} leads to change in parallel $K E$:
$\Delta E_{\| 1}=\Delta p_{z}\left(\frac{p_{z}^{+}+p_{z}^{-}}{2 m_{1}}+\frac{P_{z}}{M}\right)$ and similar.

Scattering map for same sign charges

- Except for trajectories in or asymptotic to Λ, scattering map is well-defined and smooth. Subdivides into pass-through and bounce-back.
- Case $\delta \Omega=0: P_{z}, \bar{Q},|\bar{\rho}|^{2}, \tilde{L}, H$ conserved. Tidiest to write in terms of $p_{z}, S, s . \frac{k \Omega}{2}|s|^{2}+\frac{p_{z}^{2}}{2 m}=c s t,|S|^{2}-|s|^{2}=c s t$. So there is an allowed interval I in p_{z} and for each $p_{z} \in I$ there is a unique $|S|,|s|$. One or other goes to 0 at the ends of I, depending on the sign of \tilde{L}. Except for $\tilde{L}=0$ the allowed space is an \mathbb{S}^{3}. But given s there is also an \mathbb{S}^{1} for $\left(\rho_{1}, \rho_{2}\right)$. So the scattering map is on $\mathbb{S}^{3} \times \mathbb{S}^{1}$. Change in S changes the fieldlines for the GCs, change in $|s|$ changes the gyroradii. Both could lead to cross-field transfer of perpendicular KE.

continued

- Formulate using coordinates for the individual particles but in centre of mass frame. Write $\rho_{i}=\sqrt{2 \nu_{i}} e_{\theta_{i}}\left(\nu_{i}\right.$ is scaled $\left.\mu_{i}\right)$.
- $H=\frac{p_{z}^{2}}{2 m}+\sum_{i} k_{i} \Omega_{i} \nu_{i}+V(R)$.

Weak interaction for $\delta \Omega=0$

- If helices are far apart there is another adiabatic invariant, for $\left(r, p_{r}\right)$. Write $V=V\left(r, q_{z}\right)$. Then for fixed q_{z}, $H_{r}=\frac{k^{2}}{8 m} r^{2}+\frac{\tilde{L}^{2}}{2 m r^{2}}+\frac{p_{r}^{2}}{2 m}+V\left(r, q_{z}\right)$ performs oscillations at frequency roughly $\bar{\Omega}$. So if effect of changing q_{z} is small in a gyroperiod then action $I=\int p_{r} d r$ is an adiabatic invariant.
- When V negligible, $H_{r}=\frac{1}{2} \bar{\Omega} k|s|^{2} \& I=\frac{1}{2} k|s|^{2}$. So scattering map preserves $|s|$, hence p_{z}^{2} and $|S|$ too. Thus no change in magnetic moments. Ignoring the gyrophase, only changes are a possible sign-change of p_{z} and rotation of S about \bar{Q}.
- Can compute the rotation of S. But it will produce no transport of charge, nor mass nor KE in a cross-field gradient. Only perpendicular to the gradient.
- Bouncing could produce parallel transport of parallel KE, but is limited to a small fraction of encounters.

$\delta \Omega \neq 0$

- If assume ratio between gyrofrequencies is not a low-order rational, the helices are widely separated and p_{z} not too large, then can two-phase average, deduce conservation of the magnetic moments again and compute the angle of rotation of S. But produces transport perpendicular to gradient.

Opposite sign charges

- Scattering map defined for initial conditions that do not get bound forever, but "chaotic" because the pair of GCs may become bound temporarily. But perhaps irrelevant in plasma because other particles interact too.
- Bound region is usually claimed to be negligible ("fully ionised") but I'm not so sure.
- Have to treat neutral case $\left(k_{1}+k_{2}=0\right)$ separately. In averaging approximation, get a shift of guiding centres perpendicular to their separation. But this produces flow perpendicular to a density gradient.

Non-widely separated helices

- So I think we have to analyse the non-widely separated case to find significant effects of encounters between particles.
- Usual mantra (e.g. Helander \& Sigmar, Collisional transport in magnetized plasmas, 2002) is that transport is dominated by accumulation of small deflections from approaches b much larger than $b_{\text {min }}=\frac{e_{1} e_{2}}{4 \pi \varepsilon_{0} k_{B} T}$ (for 90° deflection) but less than λ_{D}. This applies to magnetised plasma for gyroradii larger than λ_{D}. But ITER is planned to have gyroradii smaller than λ_{D}. So needs a more refined analysis. Approximate treatments by Psimopoulos\&Li, Dubin\&O'Neil. I think the result will be roughly that the usual $\log \Lambda$ with Debye cutoff is replaced by gyroradius cutoff.

Distribution function

