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A steady mixing (even Bernoulli) smooth volume-preserving vector field in a
bounded container in R3 with smooth no-slip boundary is constructed. An

interesting feature is that it is structurally stable in the class of C3 volume-
preserving vector fields on the given domain of R3 with smooth no-slip bound-

ary, thus if one could think how to drive it then it would be physically realisable.

It is pointed out, however, that no flow with no-slip boundaries can mix faster
than 1/t2 in time t.

1. Introduction

The possibility that the motion of ideal particles in a steady or time-periodic
fluid flow could be chaotic was proposed by Arnol’d,4 studied by people like
Hénon19 and Zel’dovich, and was part of the standard training at Princeton
Plasma Physics Lab in 1978. It was found in convection9 by 1983, but did
not come to the attention of the fluid mechanics community at large until
the article of Aref,2 who christened the phenomenon “chaotic advection”.
The subsequent development of the subject has been reviewed in Ref. 3.

The ultimate in chaotic advection would be a mixing flow, in the ergodic
theorist’s sense: a flow φ : R × M → M, (t, x) 7→ φt(x) on a manifold
M preserving finite volume µ is (strongly) mixing if for all measurable
A,B ⊂M , then

µ(φt(A) ∩B)→ µ(A)µ(B)/µ(M) as t→∞

(no molecular diffusion is involved). Yet as far as I am aware, no-one has
made an example of a fluid flow which is proved to be mixing. Most exam-
ples in the literature have, or are suspected to have, tiny unmixed “islands”
(at fixed phase for a time-periodic 2D flow) or long thin invariant solid tori
(for a steady 3D flow).

Furthermore, to be realistic for engineering purposes such a flow should
be constructed in a container in R3 with no-slip boundary (an alternative for
a physicist could be a flow in a gravitationally or surface-tension bounded
ball, but let us restrict to the case of a no-slip container).

So, a further 23 years on from Ref. 2, this paper constructs a steady
mixing volume-preserving flow in a bounded container in R3 with no-slip
boundary. Interestingly, the tools have been available in the pure mathe-
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matics literature since 1975. The paper leaves open the question of how one
might drive such a flow, but makes two further significant points.

Firstly, the flow can be proved structurally stable within the class of C3

volume-preserving vector fields in the interior of the given container with
no-slip boundary. Thus all “nearby” flows are topologically equivalent to
the given one, and any such flow is mixing. This robustness gives the hope
that such an example can be realised physically. The proof will be published
elsewhere.

Secondly, it is proved that no C2 volume-preserving vector field with C2

no-slip boundaries mixes faster than 1/t2 in time t, in a sense to be made
precise.

The paper concludes with a discussion of possible variants and addi-
tional results.

2. The construction

I begin from a steady vector field which I call s (Figure 1), proposed by
Arnol’d5 (who showed it to be irrotational Euler for a Riemannian metric
to be recalled in (2)). It is the suspension vector field of the automorphism

2 1
1 1

Fig. 1. The suspension flow s.
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A =
[

2 1
1 1

]
of the 2-torus T2 = R2/Z2. This means it is the vector field

(0, 0, 1) in components (x, y, z) on the quotient space M = (T2 × [0, 1])/α
where

α(x, 1) = (Ax, 0)

for x = (x, y) ∈ T2 (meaning that points (x, 1) and (Ax, 0) are to be
considered as the same). M is a C∞ manifold and s is a C∞ vector field
on it. It preserves volume dx ∧ dy ∧ dz and has exponentially contracting
and backwards contracting subbundles E± leading (by direct sum with
the vector field) to invariant foliations F± by the “planes” y = −γx + c+
and y = x/γ + c−, respectively, where γ = (1 +

√
5)/2 is golden ratio

and c± denote arbitrary constants, as a result of which it is ergodic and
C1-structurally stable. It is not physically realisable, however, because the
suspension manifold M can not be embedded in R3.

The orbit of (0, 0, 0) is periodic and hyperbolic. Blow it up to a cylinder
by the inverse of the mapping from [0, ε)× S1 × [0, 1]→M (S1 is the unit
circle with angular coordinate θ) defined by

(r, θ, z) 7→ (r cos(θ + β), r sin(θ + β), z)

for some ε < 1/4, where β = arctan(1/γ) (the inclusion of β is not essential
but simplifies the next formulae). The identification α becomes α(r, θ, 1) =
(r′, θ′, 0) with

r′ = r
√
f(θ),

f(θ) = γ4 cos2 θ + γ−4 sin2 θ, (1)

tan θ′ = γ−4 tan θ,

where θ′ in the third equation is chosen from the same quadrant of the
circle as θ; it defines a C∞ map ψ of the circle (whose derivative ψ′ is 1/f).
Denote the blowup manifold by N . It is a C∞ manifold with boundary
∂N diffeomorphic to T2. Use coordinates (r, θ, z) near the boundary and
(x, y, z) elsewhere, taking into account the identifications α and the hori-
zontal integer translations. If one wants to be a stickler for rigour, one can
make a cover of N by 10 charts, based on these two coordinate systems and
the gluing map α.

The vector field s on M induces one on N that I call t. It looks like s
but the periodic orbit along x = 0 is blown up into an invariant torus with
coordinates (θ, z) (modulo gluing by ψ), representing horizontal directions
of approach θ to points z of the periodic orbit. On this boundary torus the
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vector field has two attracting periodic orbits θ = 0, π and two repelling
ones θ = ±π/2, separating four annuli on which all orbits come from a
repelling one at large negative time and go to an attracting one at large
positive time (this comes out of the gluing ψ). The vector field t preserves
the volume form dx ∧ dy ∧ dz in (x, y, z) coordinates and rdr ∧ dθ ∧ dz in
(r, θ, z), and inherits invariant foliations from s.

Next, for a C3 function g : N → R+ = {x ∈ R : x > 0} to be chosen
later, let u = gt on N . Note that g is bounded away from 0 and +∞ because
N is compact. The vector field u preserves volume form 1

gdx∧ dy ∧ dz and
has the same invariant foliations as t.

Then, choose a C3 function ρ : N → R which is positive in N̊ = N \∂N
(the interior of N) and asymptotic to distance to ∂N near ∂N , measured
with some C3 metric. Specifically, I choose Arnol’d’s Riemannian metric

ds2 = γ−4zdx2
+ + γ4zdx2

− + dz2, (2)

where

dx− = cosβ dx+ sinβ dy, (3)

dx+ = − sinβ dx+ cosβ dy,

and require

ρ ∼ r
√
γ−4z sin2 θ + γ4z cos2 θ as r → 0.

Let v = ρu. Then v is C3, preserves volume form

ωg =
r

ρg
dr ∧ dθ ∧ dz =

1
ρg
dx ∧ dy ∧ dz (4)

in the two coordinate systems, and is zero on ∂N .
A remarkable fact is that N is C∞-diffeomorphic to the exterior of a

figure-eight knot in the 3-sphere S3 (“exterior” means the closure of the
complement of a closed tubular neighbourhood). Although this is stated in
many places,11,15,16,27,28,38–40 I have found it hard to locate a proof in the
literature, partly because the interest in many of these references focusses on
the additional fact that it can be endowed with a hyperbolic metric. Even
then, most topologists are happy with existence rather than an explicit
diffeomorphism. In an Appendix I briefly survey the proofs of which I am
aware.

As the final step, I transfer the example from S3 into R3: choose the
figure-eight knot to pass through the “North pole” (0, 0, 0, 1) of S3 (consid-
ered as the unit sphere in R4) and map the rest of S3 stereographically to
the plane tangent to the “South pole”, i.e. (x, y, z, w) 7→ 2(x,y,z)

1−w . The result
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is a C∞ diffeomorphism h from N to the closure of a bounded domain Ω
of R3 which looks like Figure 2. Think of it as an apple through the core of
which a worm has eaten a tubular hole in the form of a figure-eight knot.
The domain Ω is the remaining flesh of the apple.

Fig. 2. The domain Ω for the vector field w and four orbit segments.

The desired vector field is w = h∗v, the image of v under h. It is
C3, vanishes on the boundary of Ω and preserves volume h∗ωg. To make
it preserve a pre-ordained C3 volume form vol on Ω (e.g. the Euclidean
volume from R3), it suffices to choose the function g = h∗ω1

vol , where ω1 is
the special case of (4) with g = 1 (since all volume forms at a point are
multiples of a given one, this ratio makes sense; also it is a C3 positive
function as required).

To give some idea of what the vector field w looks like on Ω, Fig. 2 also
indicates orbit segments approaching or departing from the four periodic
orbits of the skin friction field ∂w

∂r on the boundary (r being distance from
the boundary): they alternately attract and repel along the boundary and
repel and attract from the interior. The fact that the periodic orbits go
the “short” way around the boundary is a consequence of a nice argument
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explained to me by Luisa Paoluzzi which I summarise in the Appendix (see
also Ref. 38).

Fig. 3 shows a slightly different view in which the bottom lobe of the
knot has been rotated round the back to enable visualisation of the image of
the cross-section z = 0 in N by h. It is based on Fig.11 of Ref. 39. Convince

+

-

+

-

Fig. 3. The domain Ω and a cross-section to the vector field w, with direction of flow

indicated by ±.

yourself that the cross-section is indeed diffeomorphic to a torus minus a
round open disc, a space I’ll denote by TO, and that it can be swept round
in Ω, following a given co-orientation and keeping the boundary on ∂Ω, and
that the action on the surface induced by sweeping once round is homotopic
to A′, the blowup of the toral automorphism A. Ω is said to fibre over the
circle, with fibre (or “Seifert spanning surface”) TO and monodromy A′.
More pictures of this can be found in Refs 15,27.

A similar construction was used in Ref. 11 to make an example of a
flow in R3 where the possible knot and link types of periodic orbits could
be shown to be very rich (indeed Ref. 16 proved it contains all knots and
links, and the same for any flow transverse to the fibration). Their vector
field, however, is not volume-preserving. It was obtained from s by a DA
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(“derived from Anosov”) construction, perturbing the gluing map α near
the fixed point (0, 0) to replace it by a repelling fixed point and two saddles
and then excising the repelling orbit.

3. Mixing

The point of the example w is the following theorem.

Theorem 3.1. All vector fields topologically equivalent to w on Ω within
the class of vector fields on Ω preserving given volume form vol, C3 on Ω̄
and vanishing on the boundary are mixing.

Proof. The first return map ψ to the cross-section {z = 0} minus its
boundary is mixing for the area form given by the flux of vol under w, by
the standard Hopf argument using the existence of the invariant foliations
for ψ (e.g. see Ref. 12 for a nice exposition). By Anosov’s alternative1

(rediscovered in Ref. 32), the only obstacle to the flow being mixing would
be if the return time function τ : T̊O → R+ for ψ were a constant plus
a coboundary. A “coboundary” for a map ψ is a function τ : T̊O → R of
the form τ(x) = σ(ψ(x)) − σ(x) for some function σ, so its sum along an
orbit of ψ telescopes. This is a somewhat exceptional situation. Indeed, in
our case the return time goes to infinity at the boundary, so can not be a
constant plus a coboundary.24

Actually, from mixing and a general argument of Ref. 31, it follows that
the flow is Bernoulli.

A nice feature of the example which makes it potentially physically
realisable is that it is robust.

Theorem 3.2. w is structurally stable within the above class of vector
fields.

A vector field is structurally stable if all small perturbations are topologi-
cally equivalent to it. Since the proof involves many technicalities, it will
be published elsewhere.

How fast does the example mix? To answer this requires first a discussion
about how to define rate of mixing.

A standard way to define the rate of mixing of a flow φ on a manifold M
preserving a volume form µ is to choose a class F of functions f : M → R
and ask how fast the correlation Cfg(t) =

∫
f(φt(x))g(x)dµ(x) for f, g ∈ F

decays to the product of the means of f and g, in comparison to the product
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of the sizes of f and g using a notion of size appropriate to the function
class (or f, g can come from different function spaces). The answer depends
strongly on the chosen class of functions, however. For example, if F is L2

then there is no uniform decay estimate: g could be chosen to be f ◦φT for
some large T and then Cfg(T ) = ‖f‖L2‖g‖L2 . For some mixing systems,
exponential decay can be proved for Hölder continuous functions, but the
decay rate depends in general on the Hölder exponent α.

An alternative is to use a metric on a space of probability measures on
M and ask how fast the push-forward of an initial measure converges to µ.
A natural metric is the total variation metric, but for a volume-preserving
flow this metric is invariant, so gives no information about mixing. A better
one is the transportation metric

D(p, q) = inf{
∫
d(x, y)L(dx, dy) : L ∈ Pp,q},

where Pp,q is the set of probability measures on Ω× Ω with marginals p, q
on the first and second factors. It is the minimum average distance that
mass from one measure has to be moved to turn it into the other measure.

A nice result of Ref. 21 is that

D(p, q) = sup
f

p(f)− q(f)
‖f‖Lip

over non-constant Lipschitz functions f , where p(f) is the expectation of f
in measure p and ‖f‖Lip is the smallest Lipschitz constant for f . So the two
views come close when Hölder is specialised to Lipschitz (α = 1). In particu-
lar, given an initial measure ν absolutely continuous with respect to µ, it can
be written as gµ for a function g ∈ L1(µ). Then (φ∗t ν)(f)−µ(f) = Cfg(t), so
D(φ∗t (ν), µ) = supf

Cfg(t)
‖f‖Lip

and any upper bound on the correlation function
proportional to ‖f‖Lip gives a corresponding upper bound on the trans-
portation distance. It is not clear to me, however, whether lower bounds
transfer so easily, because to obtain an accurate lower bound for the trans-
portation distance one may have to change the choice of f as time pro-
gresses.

In any case, I choose to use transportation metric.

Theorem 3.3. No C2 volume-preserving vector field with compact no-slip
C2 boundary mixes faster than 1/t2 in time t.

Proof. Let v be a C2 volume-preserving vector field with no-slip boundary,
ρ a C2 positive function asymptotic to distance to the boundary, and u =
v/ρ. Then a simple calculation shows that u is tangent to the boundary. Let
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C = sup ∂ur

∂r in a neighbourhood r ≤ r1 of the boundary. Then |ur| ≤ Cr

for r ≤ r1. Thus |vr| ≤ Cr2 for r ≤ r1. It follows that fluid from outside
r ≤ r1 can get to at most distance 1/(1/r1 − Ct) of the boundary in time
t. Take an initial “dye” density 1 in r ≤ r1 and 0 outside. Then the subset
r < 1/(1/r1 − Ct) remains of density 1. It is of thickness of order 1/t,
so has volume of order 1/t and the average distance that dye must be
moved to achieve the average density is at least half the thickness. Thus
the transportation distance to the uniformly mixed state is at least of order
1/t2.

The fact that some flows with no-slip boundaries mix like a power law
was noted numerically in Ref. 18, albeit with molecular diffusion added and
a different notion of mixing rate.

An open question is to determine an upper bound on the transportation
distance as a function of time. This would require some study of the return-
time function to a cross-section, among other things.

If one switches attention to correlation functions, there is some literature
on systems with power law decay, e.g. Ref. 13 for upper and Ref. 36 for
lower bounds. It seems likely to me that the correlation of many pairs of
function decays like 1/t for our flow. This would give rise to anomalous
diffusion. Corresponding to the coordinate z of s is a quantity one can
continue to denote by z which measures how many times (plus fractional
part) trajectories have crossed the cross-section of Fig. 3. Then one can
examine the deviation from the mean rate of increase of z with time. If
the autocorrelation function for ż is integrable then the deviation would
spread like normal diffusion, but if its integral is infinite then the deviation
should spread anomalously. One way to obtain a handle on this would be
to use the fact that the flow has a Markov partition and compute the large
deviation rate function for the increment in z (cf. Ref. 26).

4. Discussion

At the physical level, there remains the question of how to drive the flow.
It suffices to compute w.∇w − ν∆w, where ν is the kinematic viscosity,
subtract off its gradient part, and apply a body force equal to the remainder.
It might not be easy to implement, however.

One can contrast results of Ref. 14 making an Euler flow on S3 contain-
ing all knots and links. Being an Euler flow it requires no forcing at all, but
the catches are that it also requires zero viscosity, the Riemannian struc-
ture could not be specified in advance, and it is not claimed to be mixing:
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indeed the knots and links are supported on a proper subset.
I believe it is possible to make a similar construction of a flow with stress-

free boundaries, by using symplectic polar blowup instead. This ought to
be C2 structurally stable. To obtain mixing, however, one would need to
ensure that the speed function is nontrivial.

One can ask whether the flow is a fast dynamo. The dynamics of a
magnetic field in a steady conducting fluid flow may have a positive growth
rate. The flow is said to be a fast dynamo if the growth rate has a positive
lower bound as the magnetic diffusivity goes to zero (in principle this de-
pends on the Riemannian metric assumed for the magnetic diffusion) (see
survey in Ch.V of Ref. 6). Arnol’d7,8 proved that s is a fast dynamo with
respect to metric (2). It would be interesting to investigate whether w is a
fast dynamo. To make this problem well posed one has to specify what the
magnetic field does outside Ω.

One can ask whether there are alternative constructions of robust mix-
ing fluid flows. I believe one would be the “pigtail stirrer”. Start from s
on M but quotient by σ(x, y, z) = (−x,−y, z) and blowup the orbits of
both (0, 0, 0) and ( 1

2 ,
1
2 , 0) to tori. This gives a vector field in a solid torus

minus a tubular neighbourhood of a knot which goes three times round the
solid torus making the closure of a pigtail braid (as sketched in Ref. 25 for
example). The monodromy goes back to Lattès.22 The analysis is slightly
different from the example w, because the blown-up orbits are 1-prong
singularities rather than regular orbits, but I think the same structural sta-
bility result should be possible. Furthermore, this example opens the pos-
sibility to make the outer boundary axisymmetric and to rotate it about
its axis, so that the no-slip condition gives a non-zero field on the outer
boundary. Equivalently (though different for the fluid dynamics), one could
rotate the 3-braid and examine the flow in the rotating frame.

Another starting point is geodesic flow on the unit tangent bundle of
a surface of negative curvature, which is mixing Anosov. Birkhoff showed
that blowup of 6 periodic orbits of the genus 2 case produces a suspension
of a hyperbolic toral automorphism with 12 points blown up,10 and I expect
this can be mapped into R3.

What if one abandons the structural stability requirement but just asks
for robust mixing, i.e. all nearby volume-preserving flows are also mixing? I
believe this can be achieved by what I call a “baker’s flow” by analogy with
the well known baker’s map. It is a volume-preserving flow in a container
whose boundary is a surface of genus 2. The 2D stable manifold of a reat-
tachment point on the boundary separates the volume into orbits which go
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round one loop from ones which go round the other loop. These two sets
glue together again along the 2D unstable manifold of a separation point on
the boundary. If the two manifolds are designed to intersect transversely,
the eigenvalues of the skin-friction field satisfy certain inequalities at the
separation and reattachment points, and the flow round the loops rotates
trajectories suitably, then the return map to a transverse section in the
middle is a nonlinear version of the baker’s map. The system is a volume-
preserving analogue of the Lorenz system. The flows are not structurally
stable, but are probably robustly mixing (just as for the Lorenz system in
the good parameter regime24).

Lastly, one can ask about time-periodic 2D flows. I think it might be
possible to make a codimension-3 submanifold of C2 area-preserving maps
of the torus, isotopic to the identity (so realisable by time-periodic flows),
looking perhaps a bit like Zeldovich’s alternating sine-flow, which are mixing
and topologically conjugate. The idea is to start from a pseudo-Anosov
example (maybe a variant of Ref. 26), then smooth it and show topological
conjugacy for all small smooth perturbations preserving the singular orbits.

Appendix

Here I survey what I have found about the diffeomorphism between the
blow-up of the suspension manifold and the exterior of a figure-eight knot.

The starting point is to notice that they have isomorphic fundamental
groups, with isomorphism respecting the subgroup for the boundary. Then
a result of Ref. 37 applies to give a homeomorphism (alternative proofs
are in Ref. 30 using Ref. 29, and Cor 6.5 of Ref. 41). Stallings’ paper wor-
ries me, however, because he ends by saying that it is not clear whether
fibred manifolds with isotopic monodromy are homeomorphic. All of these
proofs involve various cutting and gluing operations that make it difficult
to see an explicit homeomorphism and they do not address the question of
smoothness (but Ref. 23 redoes it in the differentiable category).

More explicit are three approaches which involve viewing the manifold as
a quotient of hyperbolic 3-space H3 by a discrete group of isometries20,33,38

(see also Ref. 40).
Another strategy17 (also described in 10.J of Ref. 35) is to notice that the

figure-eight knot has a Z2 symmetry by a half-rotation about some unknot
(this was used also by Ref. 11). Quotienting by the symmetry reduces it to
the closure of the pigtail braid relative to the unknot symmetry axis. Since
any braid-closure is fibred, so is the figure-eight knot, and the monodromy
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can be seen to act like A′, the blowup of
[

2 1
1 1

]
to T̊O.

With an explicit diffeomorphism it would be easy to verify the claim of
Section 2 about the homotopy class of the periodic orbits on the boundary,
but the following argument of Luisa Paoluzzi answers the question anyway.
Choose as base point for the fundamental group π1(N) the point at z = 0
on ∂N with θ = 0. Choose the following generators for π1(N): a translates
by (1, 0, 0) passing over the second tube, b translates by (0, 1, 0) passing to
the left of the second tube, c translates by (0, 0, 1) up the periodic orbit
at r = θ = 0 (and glues by A). Then a generating set of relations is
c−1ac = a2b, c−1bc = ab. Also, going once round the tube anticlockwise
in the plane z = 0 is achieved by κ = b−1a−1ba. The preimage under the
diffeomorphism h : N̊ → Ω of the homotopy class of a closed curve going
the short way around the knot in Ω, cutting the Seifert surface positively, is
cκn for some integer n. We want to show n = 0. The quotient of π1(N) by
cκn is trivial, since it is equivalent to reinserting the knot and its tubular
neighbourhood into S3. The quotient of π1(N) by c is indeed trivial (the
relations then imply a = a2b, b = ab, so a = b = e, the identity). In
contrast, one can argue that for any n 6= 0, the quotient of π1(N) by cκn

is non-trivial.
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