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1 Introduction

This paper is part of a program whose aim is to establish a new paradigm for the universe
in which there is no big bang. There are three pieces of primary evidence for the big
bang: the distribution of light elements, the cosmic microwave background, and redshift.
This paper concentrates on redshift. Alternative explanations for the other pieces of
primary evidence are given in other papers in the program.

The context for our investigation of redshift is the concept of an observer field by which
we mean a future-pointing time-like unit vector field. An observer field is natural if the
integral curves (field lines) are geodesic and the perpendicular 3–plane field is integrable
(giving normal space slices). It then follows that the field determines a local coherent
notion of time: a time coordinate that is constant on the perpendicular space slices and
whose difference between two space slices is the proper time along any field line. This
is proved in [6, Section 5].

In a natural observer field, red or blueshift can be measured locally and corresponds
precisely to expansion or contraction of space measured in the direction of the null
geodesic being considered (this is proved in Section 2 of this paper). Therefore, if one
assumes the existence of a global natural observer field, an assumption made implicitly
in current conventional cosmology, then redshift leads directly to global expansion
and the big bang. But there is no reason to assume any such thing and many good
reasons not to do so. It is commonplace observation that the universe is filled with heavy
bodies (galaxies) and it is now widely believed that the centres of galaxies harbour
supermassive objects (normally called black holes). The neighbourhood of a black hole
is not covered by a natural observer field. One does not need to assume that there is a

http://www.ams.org/mathscinet/search/mscdoc.html?code=83F05,(83C15, 83C40, 83C57)
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singularity at the centre to prove this. The fact that a natural observer field admits a
coherent time contradicts well known behaviour of space-time near an event horizon.

In this paper we shall sketch the construction of universes in which there are many heavy
objects and such that, outside a neighbourhood of these objects, space-time admits
natural observer fields which are roughly expansive. This means that redshift builds up
along null geodesics to fit Hubble’s law. However there is no global observer field or
coherent time or big bang. The expansive fields are all balanced by dual contractive
fields and there is in no sense a global expansion. Indeed, as far as this makes sense, our
model is roughly homogeneous in both space and time (space-time changes dramatically
near a heavy body, but at similar distances from these bodies space-time is much the
same everywhere).

A good analogy of the difference between our model and the conventional one is given
by imagining an observer of the surface of the earth on a hill. He sees what appears to
be a flat surface bounded by a horizon. His flat map is like one natural observer field
bounded by a cosmological horizon. If our hill dweller had no knowledge of the earth
outside what he can see, he might decide that the earth originates at his horizon and this
belief would be corroborated by the strange curvature effects that he observes in objects
coming over his horizon. This belief is analogous to the belief in a big bang at the limit
of our visible universe.

This analogy makes it clear that our model is very much bigger (and longer lived) than
the conventional model. Indeed it could be indefinitely long-lived and of infinite size.
However, as we shall see, there is evidence that the universe is bounded, at least as
far as boundedness makes sense within a space-time without universal space slices or
coherent time.

This paper is organised as follows. Section 2 contains basic definitions and the proof
of the precise interrelation between redshift and expansion in a natural observer field.
In Section 3 we cover the basic properties of de Sitter space on which our model is
based and in Section 4 we prove that the time-like unit tangent flow on de Sitter space
is Anosov. This use of de Sitter space is for convenience of description and is probably
not essential. In Section 5 we cover rigorously the case of introducing one heavy body
into de Sitter space and in Section 6 we discuss the general case. Here we cannot
give a rigorous proof that a suitable metric exists, but we give instead two plausibility
arguments that it does. Finally in Section 7 we make various remarks.

For more detail on the full program see the second author’s web site at:
http://msp.warwick.ac.uk/~cpr/paradigm/

but please bear in mind that many parts of the program are still in very preliminary form.

http://msp.warwick.ac.uk/~cpr/paradigm/
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We shall use the overall idea of this program namely that galaxies have supermassive
centres which control the dynamic, and that stars in the spiral arms are moving outwards
along the arms at near escape velocity. (It is this movement that maintains the shape of
the arms and the long-term appearance of a galaxy.) However this paper is primarily
intended to illustrate the possibility of a universe satisfying Hubble’s law without overall
expansion and not to describe our universe in detail.

2 Observer fields

A pseudo-Riemannian manifold L is a manifold with a non-degenerate quadratic form
g on its tangent bundle called the metric. A space-time is a pseudo-Riemannian
4–manifold equipped with a metric of signature (−,+,+,+). The metric is often
written as ds2 , a symmetric quadratic expression in differential 1–forms. A tangent
vector v is time-like if g(v) < 0, space-like if g(v) > 0 and null if g(v) = 0. The set of
null vectors at a point form the light-cone at that point and this is a cone on two copies
of S2 . A choice of one of these determines the future at that point and we assume time
orientability, ie a global choice of future pointing light cones. An observer field on a
region U in a space-time L is a smooth future-oriented time-like unit vector field on U .
It is natural if the integral curves (field lines) are geodesic and the perpendicular 3–plane
field is integrable (giving normal space slices). It then follows that the field determines
a coherent notion of time: a time coordinate that is constant on the perpendicular space
slices and whose difference between two space slices is the proper time along any field
line; this is proved in [6, Section 5].

A natural observer field is flat if the normal space slices are metrically flat. In [6] we
found a dual pair of spherically-symmetric natural flat observer fields for a large family
of spherically-symmetric space-times including Schwarzschild and Schwarzschild-de-
Sitter space-time, namely space-times which admit metrics of the form:

(1) ds2 = −Q dt2 +
1
Q

dr2 + r2 dΩ2

where Q is a positive function of r . Here t is thought of as time, r as radius and dΩ2 ,
the standard metric on the 2–sphere, is an abbreviation for dθ2 + sin2 θ dφ2 (or more
symmetrically for

∑3
j=1 dz2

j restricted to
∑3

j=1 z2
j = 1). The Schwarzschild metric is

defined by Q = 1− 2M/r , the de Sitter metric by Q = 1− (r/a)2 and the combined
Schwarzschild de Sitter metric by Q = 1 − 2M/r − (r/a)2 (for M/a < 1/

√
27).

Here M is mass (half the Schwarzschild radius) and a is the cosmological radius of
curvature of space-time. In these cases one of these observer fields is expanding and
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the other contracting and it is natural to describe the expanding field as the “escape”
field and the dual contracting field as the “capture” field. The expansive field for
Schwarzschild-de-Sitter space-time is the main ingredient in our redshifted observer
field.

Redshift in a natural observer field

The redshift z of an emitter trajectory of an observer field as seen by a receiver trajectory
is given by

(2) 1 + z =
dtr
dte

for the 1-parameter family of null geodesics connecting the emitter to the receiver in
the forward direction, where te and tr are proper time along the emitter and receiver
trajectories respectively.

Natural observer fields are ideally suited for a study of redshift. It is easy to define a
local coefficient of expansion or contraction of space. Choose a direction in a space
slice and a small interval in that direction. Use the observer field to carry this to a
nearby space slice. The interval now has a possibly different length and comparing the
two we read a coefficient of expansion, the relative change of length divided by the
elapsed time. Intuitively we expect this to coincide with the instantaneous red or blue
shift along a null geodesic in the same direction and for total red/blue shift (meaning
log(1 + z)) to coincide with expansion/contraction integrated along the null geodesic.
As this is a key point for the paper we give a formal proof of this fact.

The metric has the form

(3) ds2 = −dt2 + gij(x, t)dxidxj

where g is positive definite. The observer field is given by ẋ = 0, ṫ = 1. It has
trajectories x = const with proper time t along them.

The rate ρ of expansion of space in spatial direction ξ , along the observer field, is given
by

ρ(ξ) =
∂

∂t
log

√
gijξiξj =

1
2
∂gij

∂t
ξiξj/(gijξ

iξj).

We claim that log (1 + z) can be written as
∫
ρ(v) dt where v(t) is the spatial direction

of the velocity of the null geodesic at time t .
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We prove this first for one spatial dimension. Then the null geodesics are specified by
g( dx

dt )2 = 1. Without loss of generality, take xe < xr , thus dt
dx =

√
g. Differentiating

with respect to initial time te , we obtain

d
dx

dt
dte

=
1
2
∂g
∂t

g−1/2 dt
dte

Thus

log (1 + z) =

∫ xr

xe

1
2
∂g
∂t

g−1/2 dx.

Use dt
dx =

√
g to change variable of integration to t :

log (1 + z) =

∫ tr

te

1
2
∂g
∂t

g−1 dt

But ρ(v) = 1
2
∂g
∂t g−1 . So

log (1 + z) =

∫ tr

te
ρ(v) dt.

To tackle the case of n spatial dimensions, geodesics of a metric G on space-time are
determined by stationarity of

(4) E =

∫
1
2

Gαβ
dxα

dλ
dxβ

dλ
dλ

over paths connecting initial to final position in space-time. This includes determination
of an affine parametrisation λ. The null geodesics are those for which E = 0. Consider
a null geodesic connecting the trajectory xe to the trajectory xr . Generically, it lies in a
smooth 2-parameter family of geodesics connecting xe to xr , parametrised by the initial
and final times te , tr and without loss of generality with all having the same interval of
affine parameter. A 1-parameter subfamily of these are null geodesics, namely those
for which E = 0. Differentiating (4) with respect to a change in (te, tr), and using
stationarity of E with respect to fixed endpoints, we obtain

δE = p0(tr)δtr − p0(te)δte,

where

(5) p0 = G0β
dxβ

dλ
(0 denoting the t-component). So the subfamily for which E = 0 satisfies

dtr
dte

=
p0(te)
p0(tr)

.
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Thus

log (1 + z) = log |p0(te)| − log |p0(tr)|,

which is minus the change in log |p0| from emitter to receiver (note that p0 < 0 for
metric (3)).

Now
d
dt

log |p0| =
dp0

dt
p−1

0 .

Hamilton’s equations for geodesics with Hamiltonian 1
2 Gαβpαpβ give

(6)
dp0

dλ
= −1

2
∂Gαβ

∂t
pαpβ,

dt
dλ

= G0βpβ.

So

d
dt

log |p0| =
− 1

2
∂Gαβ

∂t pαpβ
p0G0βpβ

.

Now GαβGβγ = δαγ implies that

∂Gαβ

∂t
= −Gαγ ∂Gγδ

∂t
Gδβ

and Gδβpβ = dxδ
dλ which we denote by vδ , so

d
dt

log |p0| =
1
2
∂Gαβ

∂t vαvβ

p0v0 .

For a null geodesic, p0v0 = −pivi (where the implied sum is over only spatial
components). For our form of metric (3), −pivi = −gijvivj and the numerator also
simplifies to only spatial components, so we obtain

(7)
d
dt

log |p0| = −
1
2
∂gij
∂t vivj

gijvivj = −ρ(v).

So

(8) log (1 + z) =

∫ tr

te
ρ(v) dt

as desired.
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Luminosity

Finally, to derive a Hubble law, we must compute the luminosity distance, ie that length
dL such that the received power per unit perpendicular area (in receiver frame) is the
emitted power per unit solid angle (in emitter frame) divided by the square of (1 + z)dL .
Some authors leave out the factor (1 + z), but it is natural to include it in the definition
to take into account the trivial effects of redshift on received power.

For general metrics, dL reflects focussing effects, but if one specialises to metrics
satisfying Einstein’s equations in vacuum (but allowing cosmological constant) then the
focussing equation, [7, page 582], applied to null geodesics implies that dL is precisely
the change in affine parameter λ along the null geodesic from emitter to receiver, scaled
so that dλ

dt = 1 in the emitter frame at the emitter.

For metrics of the form (3), we have from the inverse relation to (5), or the second of
Hamilton’s equations (6)

dt
dλ

= G0βpβ = |p0|,

so the change in λ is ∫ tr

te
dλ =

∫ tr

te

dt
|p0|

.

Hence on the vacuum assumption

dL = |p0|(te)
∫ tr

te

dt
|p0|

.

Using (7) we can write

|p0|(t) = |p0|(te)e−
∫ t

te
ρ(v)(t′)dt′ ,

so

(9) dL =

∫ tr

te
e
∫ t

te
ρ(v)(t′)dt′dt.

Although this appears to disagree with the standard result dL = S(tr)
∫ tr

te
dt

S(t) for the
special case of isotropic homogeneous space with scale factor S(t) (for example [7,
equation (29.7)]), our formula is derived assuming a vacuum, which restricts the overlap
of the two results to the case of exponential S(t), for which they give the same answer.

Compare (9) with (8), written in the form

z = e
∫ tr

te
ρ(v)(t′)dt′ − 1.
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If ρ(v) = ρo constant along the null geodesic then this gives

z = eρo∆t − 1,

where ∆t = tr − te , and (9) gives

dL =
1
ρ0

(eρ0∆t − 1).

Thus
z = ρ0dL,

which is an exact Hubble law.

If ρ(v) is not constant along the null geodesic then the relation between z and dL is not
so simple, but if ρ(v) averages to a value ρ0 along null geodesics then an approximate
relation of the form z ≈ ρ0dL is obtained.

Uniform expansion and the Schwarzschild-de-Sitter case

An important special case of the metric is when g is of the form λ(t)h where λ is a
positive function and h is independent of t . Locally this defines the warped product of
a 3–manifold with time. This is the class of metrics used in conventional cosmology
(the Friedman-Lemaı̂tre-Robertson-Walker or FLRW–metrics). The further special case
where h is the standard quadratic form for Euclidean space R3 and λ(t) = exp(2t/a) is
the unique fully homogeneous FLRW–metric. This metric is uniformly expanding, has
non-zero cosmological constant (CC) namely 3/a2 and is the most natural choice of
metric for an expanding universe.

As remarked above, the Schwarzschild-de-Sitter and Schwarzschild metrics admit flat
natural observer fields. In [6, Section 6] we calculated the space expansion/contraction
in the three principal directions. The average is always expansive and, as we shall see
in final remark 7.4, of a size appropriate for Hubble’s law.

3 de Sitter space

We give here a summary of the properties of de Sitter space that we shall need. Full
proofs can be found in [3].
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Definitions

Minkowski n–space Mn is Rn = R × Rn−1 (time cross space) equipped with the
standard (−,+, . . . ,+) metric. The time coordinate is x0 and the space coordinates
are x1, . . . , xn−1 . The Lorentz n–group is the group of isometries of Minkowski space
fixing 0 and preserving the time direction. This implies that a Lorentz transformation is
a linear isomorphism of Rn . If, in addition to preserving the time direction, we also
preserve space orientation then the group can be denoted SO(1, n− 1). Notice that a
Lorentz transformation which preserves the x0 –axis is an orthogonal transformation of
the perpendicular (n− 1)–space, thus SO(n− 1) is a subgroup of SO(1, n− 1) and we
refer to elements of this subgroup as (Euclidean) rotations about the x0 –axis.

Minkowski 4–space M is just called Minkowski space and the Lorentz 4–group is
called the Lorentz group.

Now go up one dimension. Hyperbolic 4–space is the subset of M5

H4 = {‖x‖2 = −a2, x0 > 0 | x ∈M5}

and de Sitter space is the subset of M5

deS = {‖x‖2 = a2 | x ∈M5}.

There is an isometric copy H4
− of hyperbolic space with x0 < 0. The induced metric

on hyperbolic space is Riemannian and on de Sitter space is Lorentzian. Thus de Sitter
space is a space-time. The light cone is the subset

L = {‖x‖ = 0 | x ∈M5}

and is the cone on two 3–spheres with natural conformal structures (see below). These
are S3 and S3

− where S3 is in the positive time direction and S3
− negative.

The constant a plays the role of (hyperbolic) radius and we think of it as the cosmological
radius of curvature of space-time.

Points of
S3 ∪ S3

− ∪ deS∪H4 ∪H4
−

are in natural bijection with the set of half-rays from the origin and we call this half-ray
space. SO(1, 4) acts on half-ray space preserving this decomposition and is easily seen
to act transitively on each piece. Planes through the origin meet half-ray space in lines
which come in three types: time-like (meeting H4 ), light-like (tangent to light-cone) and
space-like (disjoint from the light cone). Symmetry considerations show that lines meet
H4 and deS in geodesics (and all geodesics are of this form). Figure 1 is a projective
picture illustrating these types.
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time

light

space

Figure 1: Types of lines (geodesics)

H4 with the action of SO(1, 4) is the Klein model of hyperbolic 4–space. S3 is then
the sphere at infinity and SO(1, 4) acts by conformal transformations of S3 and indeed
is isomorphic to the group of such transformations.

SO(1, 4) also acts as the group of time and space orientation preserving isometries of
deS and can be called the de Sitter group as a result.

A simple combination of elementary motions of deS proves that SO(1, 4) acts transitively
on lines/geodesics of the same type in half-ray space and indeed acts transitively on
pointed lines. In other words:

Proposition 1 Given geodesics l, m of the same type and points P ∈ l, Q ∈ m, there
is an isometry carrying l to m and P to Q.

It is worth remarking that topologically deS is R×S3 . Geometrically it is a hyperboloid
of one sheet ruled by lines and each tangent plane to the light cone meets deS in two
ruling lines. These lines are light-lines in M5 and hence in deS. (See Figure 2, which
is taken from Moschella [8].)

The expansive metric

Let Π be the 4–dimensional hyperplane x0 + x4 = 0. This cuts deS into two identical
regions. Concentrate on the upper region Exp defined by x0 + x4 > 0. Π is tangent to
both spheres at infinity S3 and S3

− . Name the points of tangency as P on S3 and P− on
S3
− . The hyperplanes parallel to Π, given by x0 + x4 = k for k > 0, are also all tangent

to S3 and S3
− at P,P− and foliate Exp by paraboloids. Denote this foliation by F . We
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O

future of O

past of O

Figure 2: Light-cones: the light-cone in deS is the cone on a 0–sphere (two points) in the
dimension illustrated, in fact it is the cone on a 2–sphere. The figure is reproduced with
permission from [8].

Exp

Π

leaves of F

hyperplanes parallel to Π

Figure 3: The foliation F in the (x0, x4)–plane

shall see that each leaf of F is in fact isometric to R3 . There is a transverse foliation T
by the time-like geodesics passing through P and P− .

These foliations are illustrated in Figures 3 and 4. Figure 3 is the slice by the (x0, x4)–
coordinate plane and Figure 4 (the left-hand figure) shows the view from the x4 –axis in
3–dimensional Minkowski space (2–dimensional de Sitter space). This figure and its
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companion are again taken from Moschella [8].

horizons

Figure 4: Two figures reproduced with permission from [8]. The left-hand figure shows the
foliation F (black lines) and the transverse foliation T by geodesics (blue lines). The righthand
figure shows the de Sitter metric as a subset of deS.

Let G be the subgroup of the Lorentz group which fixes P (and hence P− and Π).
G acts on Exp. It preserves both foliations: for the second foliation this is obvious,
but all Lorentz transformations are affine and hence carry parallel hyperplanes to
parallel hyperplanes; this proves that it preserves the first foliation. Furthermore affine
considerations also imply that it acts on the set of leaves of F by scaling from the
origin. Compare this action with the conformal action of G on S3 (the light sphere
at infinity). Here G acts by conformal isomorphisms fixing P which are similarity
transformations of S3 − P ∼= R3 . The action on the set of leaves of F corresponds to
dilations of R3 and the action on a particular leaf corresponds to isometries of R3 . By
dimension considerations this gives the full group of isometries of each leaf. It follows
that each leaf has a flat Euclidean metric.

We can now see that the metric on Exp is the same as the FLRW metric for a uniformly
expanding infinite universe described in Section 2 above. The transverse foliation by
time-like geodesics determines the standard observer field and the distance between
hyperplanes defining F gives a logarithmic measure of time. Explicit coordinates are
given in [3]. Notice that we have proved that every isometry of Exp is induced by an
isometry of deS.

It is worth remarking that exactly the same analysis can be carried out for H4 where the
leaves of the foliation given by the same set of hyperplanes are again Euclidean. This
gives the usual “half-space” model for hyperbolic geometry with Euclidean horizontal
sections and vertical dilation.
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Time-like geodesics in Exp

We have a family of time-like geodesics built in to Exp namely the observer field
mentioned above. These geodesics are all stationary, in the sense that they are at rest
with respect to the observer field. They are all equivalent by a symmetry of Exp because
we can use a Euclidean motion to move any point of one leaf into any other point. Other
time-like geodesics are non-stationary. Here is a perhaps surprising fact:

Proposition 2 Let l,m be any two non-stationary geodesics in Exp. Then there is an
element of G = Isom(Exp) carrying l to m.

Thus there in no concept of conserved velocity of a geodesic with respect to the standard
observer field in the expansive metric. This fact is important for the analysis of black
holes in de Sitter space, see below.

The proof is easy if one thinks in terms of hyperbolic geometry. Time-like geodesics
in Exp are in bijection with geodesics in H4 since both correspond to 2–planes
through the origin which meet H4 . But if we use the upper half-space picture for
H4 , stationary means vertical and two non-stationary geodesics are represented by
semi-circles perpendicular to the boundary. Then there is a conformal map of this
boundary (ie a similarity transformation) carrying any two points to any two others:
translate to make one point coincide and then dilate and rotate to get the other ones to
coincide.

The de Sitter metric

There is another standard metric inside de Sitter space, namely that of form (1) with
Q = 1 − (r/a)2 . It is essentially the metric which de Sitter himself used (change
variable from de Sitter’s r in (4B) of [11] to r′ = R sin(r/R) and reverse the sign). The
metric is illustrated in Figure 4 on the right. This metric is static, in other words there is
a time-like Killing vector field (one whose associated flow is an isometry). The region
where it is defined is the intersection of x0 + x4 > 0 defining Exp with x0 − x4 < 0
(defining the reflection of Exp in Ξ, the (x1, x2, x3, x4)–coordinate hyperplane). The
observer field, given by the Killing vector field, has exactly one geodesic leaf, namely
the central (blue) geodesic. The other leaves (red) are intersections with parallel planes
not passing through the origin. There are two families of symmetries of this subset: an
SO(3)–family of rotations about the central geodesic and shear along this geodesic (in
the (x0, x1)–plane). Both are induced by isometries of deS.
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This metric accurately describes the middle distance neighbourhood of a black hole in
empty space with a non-zero CC. The embedding in deS is determined by the choice of
central time-like geodesic. Proposition 2 then implies that there are precisely two types
of black hole in a standard uniformly expanding universe. There are stationary black
holes which, looking backwards in time, all originate from the same point. Since nothing
real is ever completely at rest, this type of black hole is not physically meaningful. The
second class are black holes with non-zero velocity. Looking backwards in time these all
come from “outside the universe” with infinite velocity (infinite blueshift) and gradually
slow down to asymptotically zero velocity. If this description has any relation to the
real universe then this phenomenon might give an explanation for observed gamma
ray bursts. In any case it underlines clearly the unreality of assuming the existence a
standard uniformly expanding universe containing black holes.

In the next section we consider a metric which accurately describes the immediate
neighbourhood of the black hole as well as its surroundings.

The contractive metric

Reflecting in Ξ (the (x1, x2, x3, x4)–coordinate hyperplane) carries Exp to the subset
Cont defined by x0 − x4 < 0. Exactly the same analysis shows that Cont has an
FLRW-metric with constant warping function exp(−2t/a), which corresponds to a
uniformly contracting universe with blueshift growing linearly with distance. Since
the subsets Exp and Cont overlap (in the region where the de Sitter metric is defined),
by homogeneity, any small open set in deS can be given two coordinate systems, one
of which corresponds to the uniformly expanding FLRW-metric and the other to the
uniformly contracting FLRW-metric. These overlapping coordinate systems can be
used to prove that the time-like geodesic flow is Anosov.

4 The Anosov property

A C1 flow φ on a manifold M is equivalent to a vector field v by dφτ (x) = v(φτ (x))
where φτ is the diffeomorphism given by flowing for time τ . The flow is Anosov if
there is a splitting of the tangent bundle TM as a direct sum of invariant subbundles
E− ⊕ E+ ⊕ Rv such that, with respect to a norm on tangent vectors, there are real
numbers C, λ > 0 such that u ∈ E− respectively E+ implies |ut| ≤ C exp(−λ|t|) |u|
for all t > 0 respectively t < 0 where ut is dφt(u). If M is compact then different
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norms do not affect the Anosov property, only the value of C , but if M is non-compact
one must specify a norm.

The time-like geodesic flow on a space-time is the flow on the negative unit tangent
bundle T−1(M) = {v ∈ TM | g(v) = −1} induced by flowing along geodesics. More
geometrically we can think of W = T−1(M) as the space of germs of time-like geodesics.
Thus a point in W is a pair (X, x) where X ∈ M and x is an equivalence class of oriented
time-like geodesics through X , where two are equivalent if they agree near X ; this is
obviously the same as specifiying a time-like tangent vector at X up to a positive scale
factor. The geodesic flow ψ is defined by ψτ (X, x) = x(τ ) where x() is the geodesic
determined by x parametrised by distance from X .

Proposition 3 T−1(deS) is a Riemannian manifold and ψ is Anosov.

To prove the proposition we need to specify the norm on the tangent bundle of
W = T−1(deS) and prove the Anosov property. Using Proposition 1 we need only
do this at one particular point (X, x) in W and then carry the norm (and the Anosov
parameters) around W using isometries of deS. We choose to do this at (Q, g) where
Q = (0, 0, 0, a) and g is determined by the (x0, x4)–plane. These are the central point
and vertical geodesic in Figure 4. Recall that Ξ is the hyperplane orthogonal to g at Q
(orthogonal in either Minkowski or Euclidean metric is the same here!) and let Ξ′ be a
nearby parallel hyperplane. A geodesic near to g at Q can be specified by choosing
points T, T ′ in Ξ,Ξ′ near to Q and to specify a point of W near to (Q, g) we also need
a point on one of these geodesics and we can parametrize such points by hyperplanes
parallel and close to Ξ. We can identify the tangent space to W at (Q, g) with these
nearby points of W in the usual way and for coordinates we have Euclidean coordinates
in Ξ and Ξ′ and the distance between hyperplanes. This gives us a positive definite
norm on this tangent space.

Now recall that we have a foliation T of deS near Q by time-like geodesics passing
through P and P− (the time curves in the expanding metric) and dually (reflecting in
Ξ) another foliation T ′ which are the time curves in the contracting metric ie geodesics
passing through P′ and P′− the reflected points. Let E+ be the subspace determined
by T at points of Ξ near Q and let E− be determined similarly by T ′ . These meet at
(Q, g) and span a subspace of codimension 1. The remaining 1–dimensional space is
defined by (Qε, g) where Qε varies through points of g near Q. The Anosov property
holds with λ = a and C = 1 by the expanding and contracting properties of the two
metrics which we saw above.

Alternatively, one can study the Jacobi equation v′′ = Mv = −R(u, v, u) for linearised
perpendicular displacement v to a time-like geodesic with tangent u (without loss of
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generality, unit length). Now TrM = −Ric(u, u) = −Λg(u, u) = Λ. But de Sitter space
has rotational symmetry about any time-like vector, in particular u, so M is a multiple
of the identity, hence Λ

3 . Thus v′′ = Λ
3 v and v(t) = v+e−t/a + v−et/a , demonstrating

the splitting into vectors which contract exponentially in forwards and backwards time
respectively.

5 The Schwarzschild de Sitter metric

In this section we look at the effect of introducing a black hole into de Sitter space.
There is an explicit metric which modifies the standard Schwarzschild metric to be valid
in space-time with a CC (see eg Giblin–Marolf–Garvey [4, Equation 3.2] ) given by:

(10) ds2 = −Q(r) dt2 + Q(r)−1 dr2 + r2 dΩ2

Here Q(r) = 1− 2M/r − (r/a)2 where M is mass (half the Schwarzschild radius) and
the CC is 3/a2 as usual.

There are several comments that need to be made about this metric.

(A) It is singular where Q = 0 ie when r = 2M approx and when r = a approx
(we are assuming that a is large). The singularity at r = 2M is at (roughly) the
usual Schwarzschild radius. It is well known to be removable eg by using Eddington–
Finkelstein coordinates. The singularity at r = a is a “cosmological horizon” in these
coordinates and is again removable. This is proved in [4] and more detail is given below.

(B) The metric is static in the sense that the time coordinate corresponds to a time-like
Killing vector field. But like the de Sitter metric described above, the time field is
completely unnatural so this stasis has no physical meaning. Indeed for these coordinates
no time curve is a geodesic.

(C) Comparing equations (1) in the de Sitter case (Q = 1 − (r/a)2 ) and (10) we
see that the former is precisely the same as the latter if the Schwarzschild term
−2M/r is removed. In other words if the central mass (the black hole) is removed
the Schwarzschild metric (modified for CC) becomes the de Sitter metric. Physically
what this means is that as r increases (and the Schwarzschild term tends to zero) the
metric approximates the de Sitter metric closely. Thus the metric embeds the black hole
metric with CC into de Sitter space and in particular we can extend the metric past the
cosmological horizon at r = a which can now be seen as a removable singularity. This
will be proved rigorously below.
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(D) We can picture the metric inside deS by using Figure 4 (right). Imagine that the
central geodesic (blue) is a thick black line. This is the black hole. The other vertical
(red) lines are the unnatural observer field given by the time lines. The horizontal black
curved lines are the unnatural space slices corresponding to the unnatural observer
field. The thick red lines marked “horizon” are the “cosmological horizon” which is
removable and we now establish this fact rigorously.

Extending the expansive field to infinity

We shall use the ideas of Giblin et al [4] to extend the metric (10) beyond the horizon
at r = a to the whole of Exp. In [6] we proved that there is a unique pair of flat
space slices for a spherically-symmetric space-time which admits such slices. Since
this is true for both the Schwarzschild-de-Sitter metric and Exp it follows that the
expansive observer field (the escape field) found in [6] for the Schwarzschild-de-Sitter
metric merges into the standard expansive field on Exp. We shall need to make a small
change to de Sitter space to achieve the extension but we shall not disturb the fact
that the space satisfies Einstein’s equation Ric = Λg with CC Λ = 3/a2 . Recall that
Q(r) = 1− 2M/r − (r/a)2 .

A horizon is an r0 for which Q(r0) = 0. Q has an inner horizon rb and an outer horizon
rc . It is convenient to treat rb, rc as the parameters instead of a,M . Thus

Q(r) = − 1
a2r

(r − rb)(r − rc)(r + rb + rc),

and then a,M become functions of rb, rc , as

a2 = r2
b + r2

c + rbrc,M = rbrc(rb + rc)/2a2.

Suppose κ := 1
2 Q′(r0) 6= 0 and Q′′(r0) < 0. This is true at both horizons, but we shall

just extend beyond rc .

Q′(r) =
2

a2r2 (a2M − r3)

so κ = (a2M − r3
c )/a2r2

c .

We will achieve the goal as a submanifold of R5 with coordinates (X,T, y1, y2, y3)

X2 − T2 = Q(r)/κ2.

The submanifold is given the metric

ds2 = −dT2 + dX2 + β(r)dr2 + r2dΩ2



18 Robert S MacKay and Colin Rourke

with

β(r) =
4κ2 − Q′(r)2

4κ2Q(r)
.

The numerator of β contains a factor (r − rc) which cancels the factor (r − rc) of Q,
and β(r) ∈ (0,∞) for all r ∈ (rb,∞).

The above submanifold and metric are obtained using the coordinate change

X(r, t) =
1
κ

√
Q(r) cosh(κt),

T(r, t) =
1
κ

√
Q(r) sinh(κt).

The metric satisfies Ric = Λg because the original metric does in the region Q(r) > 0,
so the new one does for r ∈ (rb, rc), but the submanifold and the coefficients of the
metric are given by rational expressions in r , so Ric = Λg wherever g is regular.

Asymptotic form for large r

β(r) =
a2((r3 − a2M)2r4

c − (r3
c − a2M)2r4)

(r3
c − a2M)2r3(r3 − a2r + 2Ma2)

It is convenient to use r3
c − a2M = 1

2 rc(3r2
c − a2). Then:

β(r) =
4a2r2

c

(3r2
c − a2)2

1− (3r2
c−a2)2

4r2
c

r−2 − 2a2Mr−3 + a4M2r−6

1− a2r−2 + 2Ma2r−3 .

The factor at the front can be written (κa)−2 , and is close to 1 for M small, so we write
β(r) = (κa)−2β̃(r). Now (3r2

c − a2)/2rc is close to a for small M , so it is sensible to
extract the leading correction −a2r−2 in the numerator, writing

4a2r2
c − (3r2

c − a2)2 = rb(8r3
c + 7rbr2

c − 2r2
brc − r3

b).

Thus:

β̃(r) =
1− a2r−2 + rb

4r2
c
(8r3

c + 7rbr2
c − 2r2

brc − r3
b)r−2 − 2a2Mr−3 + a4M2r−6

1− a2r−2 + 2Ma2r−3

= 1 +
rb(8r3

c + 7rbr2
c − 2r2

brc − r3
b)

4r2
c (r2 − a2)

− 4Ma2

r(r2 − a2)
+ O(M2a3r−5).

An an alternative we can scale X, T to X′ = κaX ,T ′ = κaT so that the submanifold is

X′2 − T ′2 = a2Q(r) = a2 − r2 − 2Ma2/r
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which is an O(Ma2/r3) perturbation of the standard hyperboloid for large r . The metric
then is

ds2 = (κa)−2(−dT ′2 + dX′2 + β̃(r)dr2) + r2dΩ2.

Interestingly, this is not asymptotic to the de Sitter metric as r → ∞ because of the
factor (κa)−2 , although it does tend to 1 as M → 0. Scaling the metric by this factor
does not help because then the last term becomes (κa)2r2dΩ2 .

6 The model

Recall that we are assuming that most galaxies have supermassive centres and that most
stars in those galaxies are travelling on near escape orbits. This implies that most of
the sources of light from distant galaxies is from stars fitting into an escape field. We
also fit into the escape field from our own galaxy. In [6] we proved that these fields are
expansive, see Section 2, and as we saw above, they each individually merge into the
standard expansive field on de Sitter space. We shall give two plausibility arguments to
show that this extension works with many black holes and therefore for many black
holes in de Sitter space there is locally a (roughly uniformly) expansive field outside the
black holes which we call the dominant observer field. Our model is de Sitter space
with many black holes, one for each galaxy in the universe, and anywhere in the model
there is a dominant observer field which locally contains all the information from which
expansion (and incorrectly, the big bang) are deduced. Thus any observer in any of
these fields observes a pattern of uniform redshift and Hubble’s law.

There are dual contractive fields and the two are in balance, so that this universe “in
the large” is not expanding. Indeed the expansive field only covers the visible parts
of the universe. Most of the matter in the universe is contained in the supermassive
black holes at the centres of galaxies and this matter is not in any sense in an expanding
universe. The space slices in De Sitter space are infinite but there is no need to assume
this for the real universe (merely that they are rather large) for a description along these
lines to make sense; cf final remark 7.2.

The first plausibility argument: Anosov property

We saw that de Sitter space has an Anosov property. Anosov dynamical systems are
structurally stable. Even more, for any set of time-like geodesics, if weak interactions
are added between the world-lines there is a consistent set of deformed world-lines
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which remain uniformly close to the original ones. Thus if the dynamics of black holes
in de Sitter space were just of the form of an interaction force between world-lines
then the Anosov property would allow us to construct solutions as small perturbations
of arbitrary sets of sufficiently separated time-like geodesics, namely whose pairwise
closest approaches exceed (Ma2)1/3 , where M is the reduced mass for the pair (ie
1/M = 1/M1 + 1/M2 ). General relativity is more complicated than this, the interaction
being mediated by a metric. In particular, interaction of black holes could produce
gravitational waves which would not be captured by the above scenario. Nevertheless
this argument strongly suggests that there are space-times with Ric = Λg containing
arbitrarily many (but well separated) interacting black holes, to which our construction
of expanding observer fields and hence our conclusions about redshift would apply.

The second plausibility argument: the charged case

Kastor and Traschen [5] give an explicit solution for the metric appropriate to many
charged black holes in de Sitter space. Again this proof does not apply to the real
universe because the assumption made is that the charge cancels out gravitational
attraction whereas well known observations (eg Zwicky [12]) clearly show that gravity
is alive and well for galaxies in the real universe.

Nevertheless it does again strongly suggest that the result we want is correct.

7 Final remarks

7.1 Evidence from the Hubble ultra deep field

Note that the expansion from a heavy centre is not uniform. Near the centre the radial
coordinate contracts and the tangential coordinates expand, with a nett effect that is
still expansive on average. This is described in detail in [6, Section 6]. When these
expansive fields are fitted together to form the global expansive field for the universe,
because of the non-uniformity in each piece, the result is highly non-uniform in other
words is filled with gravitational waves. There are also very probably many other
sources of gravitational waves which add to the non-uniformity.

There is strong direct evidence for gravitational waves in deep observations made by the
Hubble telescope, see [9]. It is also worth commenting that there may also be indirect
evidence provided by gamma ray bursts which may well be caustics in the developing
observer field caused by the same non-uniformity, but see also the comments about
black holes entering an expanding universe made in Section 3 above.
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7.2 Bounded space slices

The model we constructed above has infinite space slices for the dominant observer
field, based as it is on the flat slicing of de Sitter space. There is however a nearby
model where the slicing is tilted a little so that the space slices are bounded. This has the
effect of causing the expansion to drop off over very long distances and we cannot resist
pointing out that this is exactly what is observed [1, 2] and conventionally ascribed to
dark energy.

7.3 Cosmological constant

We used de Sitter space as a substrate for our model because of the wealth of structure
and results associated with this space. It has the consequence that we are assuming a
non-zero CC. However it is quite plausible that one could splice together many copies
of Schwarzschild space, which has zero CC, and obtain a similar model but here we
have no hint at any rigorous proof.

7.4 Estimates

Our attitude throughout this paper has been the construction of a model which demon-
strates that redshift and expansion do not have to be associated with a big bang and
therefore we have avoided direct estimates of the size of the expansion that we have
considered. But we finish with just this. The estimate of linear expansion for the natural
flat observer field near a black hole of mass M is T/2 where T =

√
2Mr−3/2 , [6,

Section 5]. Further out the rate tends towards an expansion rate of 1/a corresponding
to the CC. Galaxies are typically spaced about 107 light years apart. So we expect
an expansion of about

√
M × 10−10.5 and if this is the observed Hubble expansion of

10−10.5 then we find M is of the order of one light year. In solar masses this is 1012.5

solar masses. This is within the expected range for a galactic centre though we should
point out that it is 2.5 orders of magnitude smaller than the estimate of 1015 solar
masses obtained in the main paper in this program [10]. This discrepancy is probably
due to ignoring angular momentum, see the next remark.

7.5 Health warning

This paper has used a fully relativistic treatment throughout. However the main paper
in the program [10] uses a combination of Newtonian dynamics and relativistic effects
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especially in the derivation of the rotation curve of a galaxy and the full dynamic. It
needs rewriting in a fully relativistic form using the Kerr metric because non-zero
angular momentum is crucial to the treatment. This probably means that the analysis in
this paper will need to be changed.
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