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Abstract

‘We generalise the classical Transition by Breaking of Analyticity
for the class of Frenkel-Kontorova models studied by Aubry and oth-
ers to non-zero Planck’s constant and temperature. This analysis is
based on the study of a renormalization operator for the case of irra-
tional mean spacing using Feynman’s functional integral approach.
We show how existing classical results extend to the quantum regime.
In particular we extend MacKay’s renormalization approach for the
classical statistical mechanics to deduce scaling of low frequency ef-
fects and quantum effects. Our approach extends the phenomenon
of hierarchical melting studied by Vallet, Schilling and Aubry to the
quantum regime.

Keywords: Transition by breaking of analyticity; renormaliza-
tion; quantum scaling; specific heat.

1 Introduction

The Frenkel-Kontorova model (FK) is a one-dimensional lattice model
exhibiting incommensurate structures. It is a system of elastically
coupled particles in an external periodic potential (a discrete version
of the sine-Gordon model) with Lagrangian
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L(x,gb):Z{%lfv(:rn,mnH)}, (1)
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where

(z' —2)° + P(a' —z) + Yocos(2mz),  (2)

v(na') = o

N —

with parameters P (“pressure” or —P as tension) and u (amplitude
of the onsite potential). We call successive pairs (Zn,Zn+1) bonds
and v (@, Tny1) the (potential) energy of the bond. Notice that in
(1) and (2) the particles’ mass, the elastic coupling strength and the
period of the onsite potential are all scaled to one. The FK model
is a particular case of the broader class of (Generalised) Frenkel-
Kontorova models (GFK) with Lagrangian still given by (1) but the
bond energy v is a generic C? function satisfying

v(w+1,m'+1) :v(as,x/)
2
% (x,az') <-C<0.

In the space of parameters there are two important limits. In
the integrable limit, the bond energy, v, depends only on (z’' — z).
For the FK model (2) the integrable limit is attained at u = 0 and
its minimum energy configurations (i.e. x € R” such that YM <
N, Vi (2) == S0 v (24, 2n41) is minimum for all variations of
z,, with fixed zas and xn) are arrays of equally spaced particles with
mean spacing

= lim INTIM
P —-M,N—»cx N — M
simply —P. In the anti-integrable limit [4] the onsite term dominates,
which corresponds to u — oo in (2). All particles are then in the
minima of the potential and the mean spacing is the closest integer
to —P, or any value in between the two if non-unique.

An interesting set of codimension-2 critical points occur between
these two regimes, often called Transition by Breaking of Analytic-
ity (TBA): in the space of parameters (u, P), for each irrational p
there is a curve P = P, (u) of mean spacing p containing a crit-
ical value u. (there may be more than one u. depending on the
potential). The regime for u less than wu. is called subcritical (or
sliding phase) and above u. supercritical (or pinned phase) [5] (see
figure 1). For the FK model with fixed mean spacing p = v~ ', where
v = (1 + \/5) /2 is the golden mean, the TBA is at the critical value
ue ~ 0.971635406 [15]. This is the case most often studied in the
literature, since it is presumed to be the highest value of u at which
a TBA occurs.

For the case of mean spacing p = v~ !, relabelling the bonds v
appropriately [19] as 7 and v results in a Fibonacci sequence of 7s
and vs where each v-bond is always surrounded by 7-bonds. The
TBA point can be viewed as a fixed point of the renormalization
operator that minimises the energy of the sum of successive v and



Figure 1: Sketch of the TBA along the curve of constant mean spacing p = vy~ '.

The TBA point corresponding to the critical value u. (p = 7_1) is labelled. For
each irrational mean spacing, p, there is a similar curve at which there is a critical
point at uc (p) (not shown in picture).

T-bonds with suitably chosen space and energy scalings, a, J € R
respectively depending on the pair (v, 7) (actually it is also necessary
to subtract a constant and a quadratic coboundary but we will sup-
press reference to these inessential terms) [19]. The renormalization
operator has a nontrivial fixed point' (0,7) with o ~ —1.4148360
and J ~ 4.3991439. This fixed point corresponds to the critical
u. along the curve in (u, P) for p = ~~1, the transition point be-
tween the subcritical and supercritical regimes. It has two unsta-
ble directions: one along the curve of constant mean spacing, with
eigenvalue § ~ 1.6279500 and the other transverse to this curve in
the (u, P) plane (which we call the P direction), with eigenvalue
n=—-J/vy~—-2.6817384 [19, 20].

Whereas the classical ground states of Frenkel-Kontorova mod-
els have been extensively studied since the beginning of the 1980’s
[1, 2, 3, 5, 23] (see also the review in chapter 1 of [11], and the
book [10] for several aspects of the FK model), the extension to the
quantum regime of the classical Transition by Breaking of Analytic-
ity is still not fully understood. Most of the previous studies stem
from the work of Borgonovi et al. [8, 9], where the authors do a nu-
merical study of FK model in the supercritical region u > u. for the
case of mean spacing v~ !. They introduce a ‘quantum hull func-
tion’ for the expected positions Z,, as the extension of Aubry’s hull
function (see [11], section 1.2) as well as the ‘quantum g-function’
(which reduces to sin (27Z,) in the classical limit) and verify that by
increasing i the quantum hull function becomes a smooth version of
the classical hull function and that g, tends to a sawtooth-like map.
Similar results have been later obtained using various numerical or
a combination of analytical and numerical methods [6, 7, 17, 16].

In a recent numerical study Zhirov et al. [27] claim to observe
a ‘quantum phase transition’ in the FK model at a critical value of
Planck’s constant between ‘sliding phonon gas’ and a ‘pinned instan-
ton glass’. In fact we expect that due to KAM-type of arguments,
for sufficiently irrational mean spacing the phonon energy band will
survive for a small perturbation of the integrable limit v = 0, where
the interactions between phonons of different wavenumber are small.
At the anti-integrable limit, on the other hand, when the dominant
interaction is the onsite periodic potential, the quantum spectrum
consists of sets of N degenerate Bloch bands (N being the total

IThis has now been proved by Koch [18] by reformulation as a renormalization on
continuous—time Hamiltonian systems and rigorous computer—assisted bounds.



number of particles) whose width is due to tunnelling or instanton
effects between distinct minima of the onsite potential. As wu is de-
creased from the anti-integrable limit, the periodic potential barrier
decreases and the interaction between degenerate Bloch bands in-
creases (when compared to u) from zero. The degeneracy between
Bloch bands corresponding to distinct particles should therefore be
lifted, widening the Bloch bands. As we approach the integrable
limit, v — 0, these Bloch bands must merge into a unique phonon
band for some non-zero value u. (%) (possibly not a unique curve cor-
responding to merging of distinct bands). We believe that the tran-
sition observed in [27] corresponds in fact to crossing this curve(s)
ue (h) at which the merging of Bloch bands should occur.

In addition to the groundstates, it is physically significant to
study the effect of the TBA on the low temperature statistical me-
chanics of FK models. This was done for the classical case in [21].
The quantum statistical mechanics of FK models was considered in
a series of papers by Giachetti and Tognetti, e.g. [13, 14], but we
are not aware of any work on the effects of the TBA on the quantum
statistical mechanics.

The goal of this article is to study the transition above by ex-
tending the minimum energy renormalization approach in [19] to
non-zero Planck’s constant and temperature, which is done in sec-
tion 2. This is done in a way similar to some extent to the classical
non-zero temperature extension performed in [21], but whereas in
the classical partition function the kinetic and potential contribu-
tions decouple, Z = Zp Zx, in the quantum case this is no longer
true and we have to renormalize the full partition function (and not
only the potential component, Zx, as is [21]). Our renormalization
analysis therefore requires that we take into account not only the
ground states but also time-periodic solutions in order to extend
the renormalization to non-zero Planck’s constant. At this point we
stress that although the method is analogue to the one in [21], our
analysis is completely independent. In fact, our analysis is valid for
the regime 8% > 1 (B is the inverse temperature), whereas in [21]
Planck’s constant is zero (see also section (2.4), where the relation
between both renormalizations is discussed).

Our strategy can be summarised as follows: we construct a renor-
malization operator, R, which reduces to the ground state operator,
Regs, when h goes to zero, i.e. R|,_; = Regs. Then (u, P,...,h =0)
is an invariant subspace for R which includes the critical fixed point
of renormalization corresponding to the TBA by construction (this
is illustrated in figure 2). We then transform the zero temperature
results thus obtained (i.e. scaling of the trace of the kernel) into the
non-zero temperature formalism for the quantum partition function.
This step is straightforward, since in Feynman functional integral
formulation, the partition function (21) is simply the traced kernel
(4) evaluated at an imaginary time interval T'= —i 3 #, a procedure



Figure 2: Sketch of our strategy: We define a new, quantum, renormalization
operator, R, such that when i1 — 0 we recover the classical operator Rcgs of [19]
and obtain a new eigenvalue, &, in the direction of / (note that the temperature
direction is not show - see text for details).

sometimes called Wick rotation® [22, section 2.2]. Having obtained

the scaling of the quantum partition function, our final step is to
obtain the asymptotic scaling laws for the TBA critical point.

In section 2 we start by introducing the trace of the kernel and
by explaining why this is the chosen physical quantity to apply our
renormalization approach. We then define a decimation procedure
@ for pairs of “bond actions” by doing the trace over intermediate
particles corresponding to a partial trace over the kernel and the
renormalization operator R by composing the decimation with the
appropriate scalings. The quantum eigenvalue k is also introduced.
Next, in subsection 2.1, we show that the classical ground state renor-
malization, Rcgs, is obtained as the limit of zero Planck’s constant
and frequency of quantum renormalization. In subsection 2.2 the
value of the quantum eigenvalue is determined by analysing the lin-
earised or phonon problem. In subsection 2.4 the results obtained are
‘Wick rotated’ to obtain the scaling laws for quantum thermal quan-
tities, and an extension of the phenomenon of hierarchical melting
studied by Vallet, Schilling and Aubry [25, 24, 26] to the quantum
regime is proposed. Finally, in the last section 3 the results obtained
are discussed.

2 Renormalization and scaling

We begin by introducing the renormalization procedure for the action
of time-periodic functions of prescribed period. Consider the class
of models with the following formal sum for the action

S(x;T) :Zs(a:n,a:n+1;T).

nez

for time—periodic functions x, of period T, where the bond action s
is given by

s(x,:c';T):/OT{%va(x,x')}dt, 3)

2The Wick rotation therefore relates the quantum mechanics (i.e. dynamics) of a
system to its quantum statistics, and should not be confused with the also well-known
equivalence between quantum statistics of a d dimensional system to the classical statis-
tics of a d + 1 dimensional system.




and v is a GFK bond potential energy. The quantum renormalization
will concern the trace of the kernel which is

K'(T,h) = /D’xe%‘S‘”?T),

where the notation D’z means that the integration is to be performed
over the space of periodic paths z with period T and includes the
integration over the endpoints dz (0) (i.e. z(T) = z(0) and D'z =
dz (0) Dz).

The reasons why we consider the trace of the kernel (as op-
posed to the kernel itself) are twofold: 1) Our objective is generalise
the renormalization to non-zero temperature and Planck’s constant.
Since the quantum partition function is simply the ‘Wick rotated’
version of K’, given by equation (21), the analysis of the real-time
(i.e. zero temperature) renormalization operator (6) is readily trans-
formed into an imaginary-time (i.e. non-zero temperature) renor-
malization (22). 2) For technical reasons (which will become clear
in subsection 2.2) we need to restrict to time-periodic functions to
be able to obtain the scaling laws (20-26). This last point is not
a big limitation for zero temperature quantum mechanics because
quantum averages of observables (e.g. correlation functions) could
be obtained from derivatives of In K’ with respect to source terms if
the appropriate eigenvalues of Regs were known®. Our concern here,
however, is the quantum non-zero temperature case, in which the re-
striction of paths to periodic functions is natural since the quantum
partition function, which contains the thermodynamic information,
involves making the trace of the kernel, and therefore restriction to
periodic imaginary-time paths by definition.

Rescaling time ¢ — ¢/T" and defining Q = 27 /T the bond action
can be rewritten as

1 2
s (m,m'; %T) = %T/o {SQ?:CQ —v (m,m')}dt, (4)

and now s acts on the space of period-one functions z,z’ : R/Z — R
or loops.

Now let x € RZ be a classical ground state and call a bond action
s a7 or an v as for the renormalization for classical ground states
in [19]. For the case of mean spacing v~' the sequence of bond
actions then forms an infinite Fibonacci sequence of 7 and v types
of bonds where each v is always surrounded by 7s. At this point
one wants to eliminate all particles z from sequences of the form
v(z,2;Q) + 7(2,2';Q) (for simplicity we use Q as an argument of
action bonds instead of 27/ from now on). In order to do this

3For example, we could obtain the scaling laws for the two particle correlation func-
tion (xnxy) if the eigenvalue of renormalization in the direction A zpxy was known.)



define the following decimation operator & acting on pairs of bond
actions (v, T) as

('U & T) (.’L’,Jil; Q) = —ih ln/'D,Z e%[u(z,z;Q)«fq—(zyz’;Q)]’ (5)

such that exp [+ (v @ 7) (z,2'; Q)] is the traced kernel for particle z
as a function of its neighbours x and 2’. The decimated functional
v @ 7 still has the form of an action bond in the sense that it acts on
pairs of loops (z,z’'), and represents the effective coupling between
2 and z’, the new bond action, still unscaled, once z is integrated.
The renormalization operator is defined as the composition of a dec-
imation and scalings as

7 (2,25 Q) J[ wer)(z/a,x' [a;Q/e)
R |: . ] = = [ 1y ) (6)
v (z,2';Q) € T(x/a,z’/a; Q/e€)

which includes a scaling of frequencies, ¢, still undetermined at this
point. The global scaling of bond actions is J /e instead of just J
because the renormalization now acts on actions instead of energies
as in the classical ground state case.

(From equation (6) we see that the effect of renormalization act-
ing on action bonds is to eliminate a subsequence of particles through
decimation (5), resulting in an equivalent system where the undeci-
mated particles are now coupled by renormalized action bonds. By
performing the composition of (6) and (5) explicitly the natural scale
factor k = J /e for Planck’s constant arises, and R can be seen as
acting on the extended space of (7,v, k) for i > 0 as

z'; Q)
2’5 Q)
kh

—ll{ﬁfDlZ e%%{U(z/a,z;ﬂ/s)+7(z,z'/a;ﬂ/s)}
Lr(z/a, 2’ [a;Q/e)

Rl

s =

R :

(z
(z

St

(7
We interpret k as the eigenvalue of R in the direction of Planck’s
constant.

Having constructed the renormalization operator we now want to
find what can this tell us about the physical properties of FK models
when we allow for non-zero h. The complete picture of how R acts
on the full parameter space (the renormalization cascade) is however
typically difficult, if not impossible, to obtain. Fortunately, an anal-
ysis of the fixed points of R gives us some hints on the behaviour of
the R cascade. E.g. distinct simple fixed points (with only attracting
directions) and their basins of attraction corresponding to distinct
phases in parameter space, and a critical fixed point (with both sta-
ble and unstable directions) with their stable manifolds are usually
associated to boundaries between the distinct types of behaviour for
the model. In the following subsection 2.1 we will show that, in the
limit Q, A — 0, this choice of renormalization operator allows us to



recover the the classical ground state renormalization of [19] (this is
shown in figure 2 - Q direction not shown). As was mentioned in the
introduction, this leads us to conclude that the renormalization (7)
we introduce has a critical fixed point in the 2, & = 0 subspace, which
corresponds to the TBA. It is therefore a classical ground state fixed
point, the boundary between a sliding or conducting region (sub-
critical) and a pinned or insulation one (supercritical). In order to
consider how quantum effects change the behaviour of GFK models,
we take into account in 2.2 the periodic motions of small 2, close to
the classical TBA limit at 2 = 0, and this allows us to determine
the eigenvalue k in the quantum direction.

2.1 Semiclassical approximation and ground
state limit

As a first step to connect the quantum renormalization (6) with the
ground state renormalization of [19], one can look at the decimation
operator (5) in the stationary phase approximation for small A:

(veT) (ac,ac'; Q) = —ihln/D/z5 (z — Zel. (ac,ac'; Q)) X
Xe%{U(z,z;ﬂ)-&-‘r(z,z/;ﬂ)}. (8)
Here zq. (z,2';Q) is the classical path of period one satisfying the
Euler-Lagrange equations

Sz, z;Q) +7(2,2';Q))

= = 0. (9)

a=zr. (2,2'19)

In the classical limit one is thus left with a dynamical problem (9)
and the decimated action (8) can be rewritten as

sta [v (z,2;Q)+ 7 (z7 x'; Q)} , (10)

z€loops
the sum of bond actions evaluated at z = z.1., given by (9), which
stationarises the sum v-+7 over the space of all loops {z : R/Z — R}.

2.1.1 Ground state limit

The ground state decimation can now be taken as the limit Q@ — 0
of (8) or (10). To see this, notice that in this limit only the classical
ground states contribute to the kernel and

/D/z e%{u(z,z)«&ﬂ'(z,m')} ~e %’5 {V(U)(X,Z)JrV(T)(Z,Xl)}

I

where (x,z,x’) is a segment of a classical ground state and z (x,x’)
minimises the sum v + 7. Taking the logarithm and multiplying by



—ih, this results in the decimation (5) being

Q—0 zER

lim [—% (v T) (:c,ac'; Q)} = min [V(U) (x,2) + v(™ (Z7X’)] (11)

Apart from the limit factor limgo—.o —27 /€ this is in fact the classi-
cal ground state decimation in [19] and so the renormalization (6)
becomes*

R{ 7 (z,2';0) } ~ lim |: -7 (V(U) Degs V(T)) (x/a,x' [a) :|

v (x,2;0) a0 —22 7v (x/a, ¥ Ja)
. 2m v (x,x)
= Slzl_n:lofﬁchs [ V(U) (X, Xl) ) (12)

where @cgs and Regs are the decimation and renormalization opera-

tors for the classical ground states, and € € R is still undetermined.

The renormalization R has therefore a fixed point (the TBA fixed

point), with ground states of mean spacing p = v~ ', in the Q = 0

subspace consisting of

[ 7 (x,2';0) ] — lim _2m [ 7 (z,2) } 7
; Q—0 €

where (v7,¥") is the fixed point of the ground state renormalization
operator Regs, because applying expression (12) at the TBA fixed
point results in

R[ ?(:c,:c'i()) ] — lim _%r { 7 (x,x") ] _ { 7 (z,2;0) }

7 (x,x) o (z,z';0)

We have thus shown that renormalization (6) behaves in the man-
ner we intended, namely that we recover the classical ground state
renormalization® and that the critical TBA point is still a (neces-
sarily critical) fixed point of the quantum renormalization R in the
classical, zero frequency subspace.

2.2 Renormalization for the phonon spectrum

Close to the ground state, for small Q2, the relevant contributions
are approximately given by the normal modes or phonons. For a
GFK model at irrational mean spacing ground state, p, the phonon
spectrum includes zero in the subcritical regime, but the minimum

4We take the formal equality f(Q=0) = limg_.gg(Q) with the meaning
limg 0 [f (Q) /g (2)] = 1, even if both quantities f (2) and g (2) diverge in this limit.
We recall that the factor —27/Q is due to the fact that we now renormalize bond
actions instead of bond energies, and so has a dimensional origin. Note that we
could have formulated renormalization on quantities with dimensions of energy, namely
—Q/27 x (action bonds) in equation (4), thus avoiding the —2 /2 factor in equation (12).



frequency or phonon gap is positive above the critical point u. [5].
The phonon contribution to the trace of the kernel is given by doing
a quadratic approximation which is (with z, = x, + &)

K’ (X, %r) ~ e i T v Gna) o (13)

. 2 . .
=3, f1{%mw(5n,5n+1)7u<">(sn,sn+1)}dt
« /Dlé-ei’ﬂ 01 ’
where the kinetic term was generalised to a symmetric quadratic
form in the velocities

n) (2 2 n) 2 n) ~ - n) 22
m™ (£€) =mPE +2mBEE +mly) ¢

(as will become clear later on the renormalization operator intro-
duces coupling between the velocities of neighbouring particles), and
u is also a symmetric quadratic form

n n n n 2
u™ (£,€) = uly e — 2uPee’ +uiPe”.

The first term in (13) is simply the classical ground state and
corresponds to (12), so one wants to apply the decimation (5) to the
sum of the quadratic parts of bond actions of the form

{2 b (69 4 (0] - (60 407 ]}

Because this sum is quadratic in the particle to eliminate, (, the
corresponding functional integral can be calculated (for example
by Gaussian integration of the Fourier transformed sum of action
bonds [28]) and the semiclassical approximation is exact in this case.
To first order in Q2 the result is®

[ B (€m0 )]}

i {0 (6¢)-10 (o))

~e ,

where (™) is a new symmetric quadratic form with components

SThere is possibly also a logarithmic term due to the integration measure which
corresponds to a redefinition of the ground state energy.
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given by

77, () () (m§;>+m§?) u)?

~ T v u
m§1) = m§1)+ (v)lz 1(2.,.>
Usgy” + Uy (ugg)+u<7))
@ @), ), @
()40 4 )y ) (m2 +ml] )U12 3
mp = Mrme Tt (14)

ul?) + ul7) (ugg) + ug))

o (v) () <T)2
- (7) (1) 2m§2)u52) ( M + 1My )

ms = m
22 22" + (U)+ (7-) ( (U)+ (T))

and the new form @(” has components

~ (1) (v) U§2)2
N )
Uszp' + Ugy

G

o R
W= e (5)
22 11
(n)?
(T - U
) = g - (u)12 @
J’_

With these new quadratic forms, the decimation (5) becomes simply
(v®T) (7,259 = (cgs. decimation) + (16)
[ (r
+ 5/ Q*m 7 (¢,6) —a' (,¢) dt
0

where ‘c.g.s decimation’ is the decimation (11). For the renormal-
ization (6) one also needs the ‘undecimated’ bond actions which cor-
respond to isolated bond actions of type 7, so one should define also

m™ (£,¢) =m7 (£¢)
i (€)= u (6,€)] a7)

For a GFK model (3) at the start of renormalization, for either type 7
or v of bonds the quadratic forms are m» = 0, M1 +moe = 1, u;; =
v; (x,x') for j = 1,2 and w12 = —v 12 (X, %), where the subscripts in
v denote differentiation with respect to the first and second variables
and (x,x’) is a segment of a classical ground state. Because u is then
dependent on (x,x’), after iterating the above transformations (14),

(15) and (17) one ends up with a set of asymptotic quadratic forms
( ) () —(7’)
a

depending on the ground state, my, My L, and u , which

11



scale by factors’ w = a252/j ~ 1.255071 for the mass forms and
J/a? for the potential forms [19], i.e.

mx,x ‘272 x,x/
m(“)/ ~ o€ ﬁl(T)/
X, X J X,X (18)
=00 g
x,x! — ‘_72 x,x’
~(v) a? —(v
ux,x’ - 7ux,x’

7 (z,2;Q) = % [—\_/(T) (x,x")
[ @) - ) o

0
v (m,x/;Q) = % [—\7(”) (x, x')

oo N () /
+ {mmxx’ (575) 7ux,x’ (6’5)}dt:| ?

7_-(50>=T/79) 7_'(‘27,$',7Q)
R | 0(x,2';Q) ~ O (x,x';0)
h Kkh

Thus, by including the scaling of frequencies € ~ 1.649 415 (see foot-
note 7) in the renormalization (6), the point (7,0,0) becomes an
approximate fixed point for small Q (actually a line of fixed points
parametrised by Q). In particular the phonon spectrum is asymp-
totically self-similar under scaling by ¢ in the direction of 2.
Finally, note that fixing ¢ also determines the eigenvalue in the

h-direction® as k = J /e ~ 2.630 716.

2.3 Scaling of the kernel

The results in subsection 2.2 imply that the effect of including both
the frequencies and quantum directions, close to the TBA fixed point
(for Au:=u—uc, AP := P —P,—1 (uc), Q and h small), is that the

7 In [19] the scaling is actually for the quantities an := ugg_l) + ug?), by, = uﬁg),

cp = mgg_l) + mg?) and dn := mg) with scaling constants w ~ 1.255071 for a, and
bn and B/« for ¢, and dy, so the first and third equations in (18) are defined up to
a quadratic coboundary. Here we use the scale factors for frequency € := /w7 /a2 =~
1.649415 and energy J = af3 instead. The origin of w is still a mystery.

8This result was published in [12] containing a mistake: k = Je instead of the correct

value k = J /e.
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following asymptotic relation of bond actions (regarded as functions
in parameter space) holds

(1,v) (Au, AP, Q, 1) ~ % (1,v) (6Au,nAP, e, kh) . (19)

If K, is the trace of the kernel for a chain of size F,, the mth
Fibonacci number, in the discretised form with J ‘time steps’ (such
that K =limj.c K7, ), then

JFpy 1
K'J,Fm (Au, AP, Q, h) ~ K‘I]sFm—l (6 Au,n AP, eQ, Kk h) <Q> .
(20)

laf e
Here the multiplying factor comes from the functional integration
measure due to the change of coordinates (here with diagonal mass

components ™ = m{ Y +m{)

. J—l\/mdww

1;[(@];)(9,1‘1) 1;[]130 I7%h ol
J

- M(E) @ e m,

where Z,, are the positions of the renormalized particles.

We stress that the scaling relation (20) is asymptotically exact
as we approach the TBA (classical) point. In our analysis of renor-
malization the phonon contribution leading to (20), we have made
use of the stationary phase approximation, which does not take into
account interactions between degenerate minima (i.e. tunnelling ef-
fects), even though the renormalization (7) does. Yet, equation (20)
is asymptotically exact in the limit & — 0 subspace, where tunnelling
contributions do not play a role. Tunnelling is instead important
when 7 is large, and the numerical results of [27] show that for # > 0
there is a transition at u > u. (this is illustrated in figure 3).

Figure 3: Proposed splitting of the u — i space into a phonon region and a Bloch
region. The black area represents transitional behaviour, where Bloch spectral
bands merge into a unique phonon band, motivated by our renormalization ap-
proach which suggest a transition curve originating from the TBA point (A = 0)
and the results of [27] showing that a transition region exists for some i > 0
when u > u. (h = 0).

As we mention in the introduction, our aim is to study non-
zero temperature or statistical mechanics problem, in particular to
obtain scaling laws for thermodynamic quantities. Having obtained
the scaling equation (20) for the kernel, it is straightforward to obtain
an equivalent relation for the partition function Z by ‘Wick rotation’,
which we proceed to do in the next section.
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2.4 Non-zero temperature scaling

The quantum partition function at temperature © can be easily ob-
tained from the trace of the kernel by Wick rotation, i.e. doing
2w/ = —iBh, where 8 = 1/©. The quantum partition function is
then

z (67&7 R) = K’ (—iﬁh, n) = /D/.%‘ e—,BSE(:t;ﬁﬁ), (21)
where the Fuclidean action for the FK model is

> 55 (@0, @air; 1)

1 -2
= Z/o {2(:;7%)2+V(1‘n,l‘n+1)}dt}z’

and the integration is now over the rescaled Euclidean time tp €
R/Z. Comparing with (4), the Fuclidean bond action sg can be
written as

Se

SE (x,x';ﬁﬁ) = [—gs(m,x/;ﬂ)] ,
T Q=2ri/Bh
and has units of an energy instead of an action because of the multi-
plying factor Q/27. This gives another direction to which renormal-
ization can be extended, the temperature direction © = 1/3. Define
then the operator @ by ‘Wick rotating’ the operator @ for the trace
of the kernel (5), to obtain

(v @ 7o) (2,2 98) = =87 [ D'z P aosom el on)

and the renormalization as

7 (x,2'; Bh) } _ { J (e ®p s) (x/a, 2 [a; e fh)

oo (. 2+ B) Tre (z)0,a o ) (22)

R |
Therefore, close to the TBA fixed point the renormalization opera-
tor leads to the corresponding relation to (19) for Euclidean bond
actions:

(T8,vE) (Au, AP, Bh, k) ~ T (T, Ug) (5Au, nAP, e Bh, F\?ﬁ) , (23)

so under the renormalization Rz there is a fixed point at A = 0,
Bh = oo, with an unstable eigenvalue of ke = J ~ 4.3391439 in the
temperature direction.

Although this agrees with the scaling of [21] for classical statisti-
cal mechanics, the result here includes the momentum contribution
and corresponds to the quantum correction of the low temperature
classical result, in the region ©® < h in which the classical partition
function is not valid (see [11, section 3.2]). In fact, we think that the
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classical results in [21] are an indication of the existence of another
fixed point of our quantum renormalization operator (22), namely a
fixed point for Sh = 0. This should require that the kinetic part of
the classical partition function is also renormalized (we recall that
in [21] the renormalization acts exclusively on the potential contribu-
tions) in order to be able to extend the analysis to non-zero Planck’s
constant. The existence of a Bh = 0 fixed point is however indepen-
dent of our present analysis, and requires further investigation.

Denoting by Zr,, (Au, AP, O, k) the quantum partition function
for a chain of F,, particles at temperature ©, regarded as a function
in parameter space, the renormalization picture leads to

JFm,fl
Zp, (Au,AP,0, 1) ~ Zp_ (6 Au,n AP, T O, k1) (ﬂ) _

la e
(24)
The free energy f = —O limm—oo In ZF,, /Frn therefore behaves like

Figure 4: Example of the behaviour of cp for the choice of k(a,b) =
[cTk™ (a,b) + c k™ (a,b)] e~(w7~®%) in equation (27) with ¢ = 1/2, ¢t =

¢ =1/5and k* = 1+cos2n (ln’lj + ﬁ) Lighter shading corresponds to larger
values of ¢p (O, h).

(using ¥y~ = limm— oo Frn—1/Fm)
f(Au,AP,©,h) ~ Lf(6Au,77AP,J@,Fcﬁ) — gln (ﬂ> ,
7 gl lafe

close to the TBA fixed point, and e = —02 9 (f/©) /9O, the energy
per particle, like
e(Au,AP,©,h) ~ %e (6 Au,n AP, T O,kh).

This leads to the following scaling law for the specific heat per par-
ticle at constant pressure cp = de/00:

cp (Au, AP,©,h) ~~ 'cp (6 Au,n AP, T O,k ). (26)

We note that because we construct a discrete renormalization
procedure, the solutions of our scaling equations allow not only power
law behaviour, but also other types of self-similar behaviour. In
particular, close to the TBA, with Au = AP = 0 for small © and &,
equation (26) allows for solutions of the form

¢ (0,1) ~ O1Y k(In®,Ink), (27)

with k(e + n7,b+ Ink) = k (a,b), for all @ and b. Taking into ac-
count the findings of [25, 24, 26], which show a hierarchical behaviour
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of thermodynamic quantities in the classical case, e.g. through a se-
quence of increasing jumps (Schottky anomalies) in the specific heat,
as temperature is increased - the hierarchical melting of the chain - ,
our renormalization picture suggests that close to the TBA this be-
haviour can be extended to the (O, i)-plane through a the sequence
of modulated ridges, invariant under scaling by (J, k), of which we
show an example in figure 4.

3 Summary and conclusions

In summary, we propose a generalisation of the classical Transition
by Breaking of Analyticity by extending the renormalization to non-
zero Planck’s constant and temperature, ©. We construct a renor-
malization operator adapted to quantum thermodynamics by partial
integration of the partition function, and deduce scaling eigenvalues
in the direction of both A and ©. We point as our main results both
the scaling equations 2326 and the technique we present of extend-
ing the study of a classical ground state critical point to quantum
statistical mechanics by making use of a the scaling of the phonon
spectrum.

Our analysis shows that there is a new unstable eigenvalue  of
renormalization in the A. In particular concerning the question of
‘long-range order’, the intuitive picture would be that the non-zero
Planck’s regime is attracted to some high 7, possibly infinite (i.e.
free particle), limit, where long range order is absent. However, the
characterisation of a the system by the analysis of renormalization
fixed points is local, limited to a small region close to the fixed point,
and one should be cautious when extrapolating the results to regions
far from the fixed point. Another factor that can be of importance is
that the behaviour of the system can be dominated by other eigen-
values larger than x of which we have no knowledge. To gain a
complete picture of the behaviour of Frenkel-Kontorova models for
the full parameter space (including temperature and Planck’s con-
stant) further investigation, both theoretical and numerical is thus
needed.
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