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Abstract

An axiomatic approach to macroeconomics based on the mathematical structure of thermodynamics is pre-
sented. This approach deduces relations between aggregate properties of an economy, concerning quantities and
flows of goods and money, prices, and the value of money, without any recourse to ‘microeconomic’ foundations
about the preferences and actions of individual economic agents.

The approach has three important payoffs. Firstly, it provides a new, and more solid, foundation for some
aspects of standard macroeconomic theory, such as the existence of market prices, the value of money, inflation,
the symmetry and negative-definiteness of a macro-version of the Slutsky matrix, and the Le Chatelier-Samuelson
principle, without relying on implausibly strong rationality assumptions over individual microeconomic agents.
Secondly, the approach generates new results, including implications for money flow and trade when two or
more economies are put in contact, in terms of new concepts such as economic entropy, economic temperature,
goods values, and money capacity. We will see that some of these are related to standard economic concepts
(e.g. marginal utility of money, market prices), yet our approach derives them at a purely macroeconomic level
and gives them a meaning independent of usual restrictions, e.g. to rational agents. Others of the concepts, such
as entropy and temperature, have no direct counterparts in standard economics, though they have important
economic interpretations and implications. Thirdly, this analysis promises to open up new frontiers by building a
bridge to ideas from non-equilibrium thermodynamics. In contrast to the strict economic notion of equilibrium,
the present approach starts from a statistical physics notion of equilibrium and thereby has the potential to extend
to the more realistic non-equilibrium settings, as in physics. More broadly, we hope that the economic analogue
of entropy (governing the possible transitions between states of economic systems) may prove to be as fruitful for
the social sciences as entropy has been in the natural sciences.

We restrict attention to “extensive” economic systems: those which can be subdivided into parts with the same
properties apart from size (for example, we ignore possibly “lumpiness” that might caused by large individual
companies). We also restrict attention to exchange economies, leaving production, consumption, labour etc. for
future treatment. Building on an axiomatic approach to thermodynamics by Lieb and Yngvason, we explain how
extensivity plus plausible economic assumptions lead to the definition of an economic analogue of entropy, which
we consider to be an aggregate utility, and an economic temperature, whose inverse is the marginal (aggregate)
utility of money. We obtain a “second law” of economics, governing the allowed direction of changes of economic
state. This approach captures the ‘value’ of nominal money in a way that does not rely on the usual rather
arbitrarily chosen “baskets of goods” and their prices. It explains the direction of financial flow in terms of
temperature differences. We illustrate the theory with an economic analogue of the Carnot cycle whereby a trader
makes money out of temperature differences. We obtain quantitative conditions for trade. On making contact,
nett trade flows occur if and only if they increase the total entropy.

We highlight the subset of “mutually beneficial” trades, which increase the entropy of each economy. We
derive some macroeconomic relations between cross-derivatives. We introduce the concept of “pure money”. We
discuss limitations and possible extensions of our approach, in particular to relaxing the extensivity assumption
and incorporating important realistic aspects like production, consumption and manufacturing.

1 Introduction

Economies appear to exhibit many large-scale regularities, concerning the balance between supply and demand
to clear markets, patterns of interdependence between prices and volumes of different types of goods, the value of
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money and the movement of exchange rates, and many more. Yet economies also have many irregular properties—
including crashes and booms, gluts and shortages, herding, fashion, and unpredictability due not just to tech-
nological or organizational innovation, but apparently due to endogenous, and little understood, fluctuations at
many scales.

During the twentieth century, economists have primarily attempted to explain the mix of regularity and irreg-
ularity in aggregate properties of the economy through attempts to establish micro-foundations, i.e., explaining
aggregate properties as arising from the interaction of economic agents with specified properties. Roughly speak-
ing, the interactions of fully rational and informed consumers and producers each aiming to maximize their own
utility are presumed to generate regularities, most notably through the concept of general equilibrium. In parallel,
there have been attempts to explain irregular aspects of economic behaviour by exploring how partial information,
and bounded rationality, can lead, for example, to booms and crashes. Thus, the pattern of explanation has been
bottom-up: from the properties of economic agents and their interactions to the large-scale economic phenomena.

There is, however, an interesting complementary approach, which does not attempt to provide such micro-
foundations, but instead makes assumptions about economic behaviour in the aggregate, and explores their
consequences at the same aggregate level. This approach has the potential advantage that it may be possible to
abstract away from detailed “micro” assumptions (e.g., about the psychological properties of consumers, or the
behaviour of companies), which are likely to be very difficult to specify and highly variable between contexts.
Interestingly, this strategy predates the modern emphasis on the micro-foundations of economics, and is implicit
in arbitrage arguments from Adam Smith onwards (see discussion in [Su]), and which are the basis for much of
financial economics [V].

In this paper, we explore this non-micro-foundational approach by applying conceptual and mathematical
methods borrowed from “classical” thermodynamics, developed in the nineteenth century by Carnot, Joule, Clau-
sius, Maxwell and Gibbs (“classical” means without involving statistical mechanics [LY99]). Classical thermody-
namics begins with high-level principles, such as the conservation of energy (the first law of thermodynamics) and
the non-decrease of entropy (the second law), and derives systems of relationships between large-scale observable
phenomena including work, pressure, volume, temperature, and so on. It requires the existence of a priori abstract
quantities, such as energy and entropy, which provide a concise and elegant framework for expressing these laws.
These fundamental laws turn out to be extremely general and to apply to systems with very diverse components.
Thus, while in specific contexts there are elegant connections to microfoundations (e.g., to statistical properties
of interacting gas particles), the principles of classical thermodynamics are more general and more abstract (e.g.,
[LY02, Go]) and apply to diverse physical systems, chemical reactions, and biological processes.

Can a similar approach work for economics? Specifically, is there a thermodynamics of economic systems
that can derive economic regularities without making detailed assumptions about consumers and companies?
We formulate such a theory here, by reinterpreting thermodynamic quantities in economic terms. This provides
an interesting new perspective on some well-known economic regularities, captured by equilibrium arguments in
conventional mathematical economics. Most importantly, we establish an analogue of the second law of thermody-
namics, for economic systems, which specifies possible transitions between states of an economy, ruling out those
with non-decreasing entropy. Moreover, this approach provides a principled meaning for the value of nominal
currency (e.g., dollars, euros), which does not depend on the prices of somewhat arbitrarily chosen “baskets of
goods”: the marginal utility of money is the inverse “temperature” of the economic system (which can be called
its “coolness”). It also opens up the possibility of using generalizations of thermodynamics, developed in the
natural sciences, to understand more complex economic phenomena (including the analysis of economic systems
which are out of equilibrium) without recourse to microfoundational assumptions about lack of information or
bounded rationality at the level of individual economic agents. If such a high-level thermodynamic approach to
the economy proves fruitful, it has the potential to complement and inform traditional microeconomic analysis,
just as in physics and chemistry classical thermodynamics has complemented and informed statistical mechanics.

We begin in Section 2 by reviewing precursors of using thermodynamics in economics. We restrict attention
in this paper to exchange economies, reviewed briefly in Section 3. In Sections 4-8 we state our main assumptions
and their justifications. In Section 9 we deduce the existence of an entropy function for economies and the all-
important second law of non-decrease of entropy. We compute the entropy for a simple example in Section 10
and Appendix A. After stating a few technical assumptions in Section 11, we deduce existence of a temperature
function for economies and its relation to financial equilibrium in Section 12. A subsidiary concept of money
capacity is introduced in Section 13 and its significance described. In Section 14 we deduce the existence of
a market price for each good, via a concept of “value” of a good, and a key relation for reversible trade. In
Section 15 we introduce the concept of “pure money” and discuss some of its consequences. Section 16 proposes a
way to measure the temperature of an economy. Section 17 discusses the natural idea of how to make money from
price differences between two economies. Section 18 describes the less intuitive way to make money out of the
temperature ratio between two economies. Section 19 gives quantitative conditions for trade and highlights the
significance of mutually beneficial trades, which increase the entropy of all parties. Section 20 derives relations
between various partial derivatives, based on the existence and concavity of entropy. Section 21 raises some
further issues for exchange economies. Section 22 discusses potential directions for development beyond exchange
economies. The paper concludes with a summary and conclusions in Section 23.
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2 Precursors

Many previous researchers have considered possible links between classical thermodynamics and economics. In-
deed, the architect of modern mathematical economics, Paul Samuelson, stressed the importance of Gibbs’ work
as foundational to his own. But Samuelson (and precursors such as Slutsky) applied principles of maximization
at the level of individual agents, rather than aggregate system properties. Samuelson despaired of numerous
ill-thought-out proposals to attempt to find an economic analogue of entropy and doubted that such an analogue
existed.

The present approach aims to vindicate those who have intuitively felt the existence of a deep connection
between thermodynamics and economics, and to set Samuelson’s concerns aside. We begin by reviewing some of
the most notable precursors of the approach developed here.

The idea that thermodynamics is relevant to economics goes back more than a century. Irving Fisher’s 1891
PhD (considered by many to be the first in Economics) was co-supervised (along with the sociologist Sumner)
by Gibbs, an early champion of thermodynamics. Utility theory, as developed by Fisher, Slutsky, Hotelling,
Houthakker, Samuelson and others, shares many features with thermodynamics. For example, the theory contains
economic analogues of some of the Maxwell relations between partial derivatives (known in economics as the
Hotelling conditions [S50]).

Connections between economics and thermodynamics are particularly prominent in Samuelson’s work (e.g. see
the review of Samuelson’s legacy by Dixit [Di]). Specifically, Samuelson notes that [S72] “Pressure and volume,
and for that matter absolute temperature and entropy, have to each other the same conjugate or dualistic relation
that the wage rate has to labor or the land rent has to acres of land” and “My earlier formulation of the
inequality [

∑
i ∆pi∆vi < 0] owed much to Wilson’s lectures on thermodynamics.”1 Yet Samuelson was also

scathing about attempts to make connections between the subjects [S72]: “There is really nothing more pathetic
than to have an economist or a retired engineer try to force analogies between the concepts of physics and the
concepts of economics”. In the light of Samuelson’s own inspiration from thermodynamics, this statement is
rather puzzling. But it has certainly deterred researchers from the economic and natural sciences from pursuing
such potential analogies further.2 In particular, while Samuelson found important links between thermodynamics
and maximization problems in economics (typically defined for an individual agent, but including an individual
company), the present link is more fundamental: it derives (rather than “forcing”) an economic notion of entropy
for whole economies, and shows that economies, or systems or economies, can only change in ways that do not
decrease their overall entropy.

An influential book, published by Georgescu-Roegen in 1971 [GR], did appear to make a link between entropy
and economics. But our reading of Georgescu-Roegen’s claim that entropy governs economics, has, we believe,
a rather different aim than the project Samuelson was critiquing (and that we are pursuing here). Georgescu-
Roegen’s aim was to explore how physical entropy might place constraints on economic activity, rather than
attempting to create an analogue of entropy within economics itself. This direction has been pursued under
various names including ecological economics and systems ecology (for one take, see [Ku]).

Subsequently, physicists like Jaynes [J] and Farjoun and Machover [FM], began again to address economics,
but from the viewpoint of statistical mechanics, rather than classical thermodynamics. This developed into a
vigorous field of research that was christened “Econophysics” by Gene Stanley in 1996. Particularly relevant
articles from this school in our opinion are [Sas] and [RFP], and the book [C+] on econophysics related to the
Marxist view of economics, which centres on labour as measure of value. Econophysics has applied a wide variety
of ideas and methods developed for analysing complex physical systems to economic phenomena and especially
to financial markets. Yet econophysics has not generally found favour with economists.

Others have attempted to establish links between classical thermodynamics and economics, but like Samuelson,
they typically focus on mapping thermodynamics onto the utility function of individual agents, rather than
considering economies from a purely macro-perspective as here. For example, [SDa, SDb] aim to build links
founded on the observation that both maximizing entropy and maximizing utility are problems of constrained
optimization, and draw out a number of detailed formal parallels.3 A particularly sophisticated bridge between
the two fields is outlined by [SF], who focus on both micro and macro-level analysis and the connections between
them. A more recent development by Cooper and Russell [CR01, CR11] uses ideas from Samuelson to help

1We will derive an analogue of this inequality in Section 20.
2[SF] pick out a particularly clear instruction from Samuelson [S60] to economists and physicists to desist from seeking what he saw

as spurious parallels: “The formal mathematical analogy between classical thermodynamics and mathematic economic systems has now
been explored. This does not warrant the commonly met attempt to find more exact analogies of physical magnitudes – such as entropy
or energy – in the economic realm. Why should there be laws like the first or second laws of thermodynamics holding in the economic
realm? Why should ‘utility’ be literally identified with entropy, energy, or anything else? Why should a failure to make such a successful
identification lead anyone to overlook or deny the mathematical isomorphism that does exist between minimum systems that arise in
different disciplines?” The present paper shows that there is indeed a powerful economic notion of entropy and a corresponding second
law of thermoeconomics, which go beyond the link between thermodynamics and maximization that was so productive in Samuelson’s
work.

3They also highlight early discussion hinting at analogies between the equations used in economics and thermodynamics including
[CMIM, Da, Lis].
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formulate physical thermodynamics, drawing on ideas from symplectic geometry: thus, their primary focus has
the opposite explanatory direction from the account developed here, and a narrower scope. The present purely
macroscopic approach, aiming to map the full axiomatic structure of thermodynamics into a macro-analysis of
economics, seems to be new—although exploring potentially fruitful links with prior work is an interesting topic
for future research.

The term we use for our approach, “thermoeconomics,” aims to express our objective of providing an analysis
of economic theory paralleling the mathematical structure of thermodynamics. We distinguish this usage from
the variety of loosely connected prior usages of the term, which typically point to attempts that, like [GR],
aim to combine economic and thermodynamic principles in contexts as diverse as understanding plant growth,
the emergence of order in biological evolution, designing commercial energy systems, or clarifying the limits to
economic growth.4

The objective of thermoeconomics, in the sense used here, is both narrower in scope and has a very differ-
ent focus: aiming to map the mathematical structure of thermodynamics into economics, in order to provide a
purely ‘macro-level’ analysis of economic phenomena. Thus, we aim to construct an economic theory using the
mathematical and conceptual machinery of thermodynamics. Despite various past attempts, and the intuition
among many researchers (but not, as we’ve seen, Samuelson) that such a link might exist, a purely thermodynamic
approach to economics seems not yet to have reached fruition.5

A key ingredient for our thinking was provided by the axiomatic formulation of thermodynamics by Lieb and
Yngvason in a series of papers culminating with [LY02], which clarifies the underlying mathematical structure
of thermodynamics, independent of its physical interpretation. Thus, Lieb and Yngvason’s formulation doesn’t
require any prior notions of energy, entropy, temperature etc, which then need to be mapped directly onto economic
phenomena. Rather, their approach provides axioms governing abstract relations - and ≡ between states, which
we shall introduce in Sections 5 and 6 respectively. Thus, any analogies between the two domains can emerge
naturally from the mathematics; equally, where there are disanalogies, these will emerge automatically too. The
present work takes literally their invitation in [LY98]: “Maybe an ingenious reader will find an application of this
same logical structure to another field of science.”

Reading [LY02] is not a prerequisite for our paper, however. We require only their axioms, Theorem 1 on
the existence of entropy and their subsequent results on its concavity and differentiability (all of which we review
here). While our exposition here is self-contained, we adopt their numbering system for the axioms (though
inserting our own slight variants), and largely follow their notation.6 There are many nuances in their treatment
that we skip over; we leave a more extensive analysis for future work.

The approach developed here blurs the boundaries between macro and microeconomics. Many of the topics
treated below, such as the formation of market prices, are typically studied in microeconomics starting from
fundamental assumptions about the rationality of individual economic agents. We treat these questions from an
aggregate point of view, by making assumptions about markets as a whole, rather than their participants. This
may create a more natural bridge to macroeconomic questions concerning, for example, the value of money and
flows of trade. We see the ability to generate strong theoretical results without specific micro-foundations as a
major advantage of this approach, regarding both generality and tractability. Nonetheless, the functional form of
the resulting entropy function depends on the micro-foundations, and it is of course interesting to consider how
a macro analysis can connect with microfoundations. We show how this can be done in the special case of an
exchange economy consisting of agents with a Cobb-Douglas utility function.

The economics community is, of course, divided on the value of axiomatic approaches. On the one hand, the
axiomatic approach of Arrow and Debreu [AD] and McKenzie [McK] to general equilibrium is regarded by many
theoretical economists as a pinnacle of intellectual achievement. On the other hand, practical economists tend to be
sceptical of axiomatic arguments and of mathematical theories in general, as encapsulated by Krugman’s comment
on the 2008 financial crisis [Kr]: “The economics profession went astray because economists, as a group, mistook
beauty, clad in impressive-looking mathematics, for truth.” We take a pragmatic view, justifying the axioms
from economic reality as far as we can but identifying their limitations and proposing directions for extension. In

4For example, in applying economic ideas to understanding living systems [CK], [Co] states “The term “thermoeconomics” denotes
a paradigm shift in our understanding of the role of energy in living systems, and in evolution. It is based on the proposition that
energy in biological evolution can best be defined and understood, not in terms of the Second Law of Thermodynamics but in terms
of such economic criteria as productivity, efficiency, and especially the costs and benefits (or “profitability”) of various mechanisms for
capturing and utilizing energy to build biomass and do work.” Others, apparently beginning with Myron Tribus in 1962 [MS], have used
“thermoeconomics” for the exploration of how fundamental thermodynamic constraints in the physical world shape and constrain economic
activity, whether at the level of the individual industrial processes [TE] or the entire economy in the tradition of [GR]. According to
[DG], for example, “Thermoeconomics combines thermodynamic principles with economic analysis and brings some fundamental changes
in the economic evaluation, design, and maintenance of processes.” In sum, no specific usage of the term has yet become well-established.

5Our own efforts in building a link between thermodynamics and economics has had a long gestation. We started discussions on
formulating a link in 2010, including supervising MSc student Daniel Sprague’s simulations of simple economic systems in 2011. We
arrived at our present position only after many iterations and false starts.

6We make slight adjustments to their notation for ‘adiabatic accessibility’ and ‘adiabatic equivalence’—and we also drop the term
‘adiabatic’ entirely, as it is unfamiliar in economics and is ambiguous even in physics where it is usually defined as involving no heat flow
but often used instead for slow variation.
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the present context, that of building a link between thermodynamics and economics, an axiomatic approach is
particularly valuable because it provides a rigorous way of clarifying a common underlying mathematical structure,
rather than relying on intuitive analogies between ideas in each domain.

Finally, the economics community is, as we have already indicated, divided on the value of “imitating” physics.
We aim to set aside aside such general concerns, and focus on showing how a thermodynamic perspective on eco-
nomic systems can yield valuable insights for economic analysis. We hope that, especially if the present approach
can be extended beyond the exchange economies treated here, concepts of economic temperature, economic en-
tropy, money capacity and so on, may become part of standard economic thinking. Indeed, we suspect that
the problematic relationship between economics and physics arises not because economists have been excessively
entranced by attempting to imitate physics, but because the connections between the disciplines have not been
pushed far enough.

3 Exchange economies

In this paper we restrict attention to exchange economies. In an exchange economy, agents exchange various sorts
of durable good with each other; no goods are produced or consumed. This is of course a very limited view of
economics, ignoring production, consumption, manufacturing, recycling, labour, interest rates, etc, but we intend
to extend the approach in later work. In any case, it is fairly standard in economic theory to reduce much to
exchange, for example, one could exchange options to consume a good, provide labour, money, or supply a service,
on some future date or conditional on a specific state of the world.

We suppose there is a particular durable good that we will use as a reference (a “numéraire” in economics)
and will call money. We assume that at the aggregate level, more money is always “preferred” to less, no matter
how much money and other goods are present already. A more precise meaning will become clear in our treatment
below—but roughly this means that if a trader (a figure we will introduce in Section 5) were to offer freely to give
or take money to or from members of an economy, they would in aggregate accept more money than they would
give (indeed, it is natural to expect that this would be true for each individual, though this is not needed in our
account).7 Money should also be easy to store and exchange, though in our exchange economies all goods are
durable and exchangeable; in particular, we will want it to be easily transferable to another economy. To avoid
giving a national preference, we measure its amount in “aurum”, denoted by Au or �. The unit is named after
gold, in the light of gold’s historical role as a numéraire for a large part of the world. Money may or may not have
intrinsic value (contrast gold with paper); we explore the consequences of “pure money” in Section 15. We leave
extending the approach to settings in which there is more than one currency (touched on briefly in Section 21.1)
for future work.

As noted above, we take a deliberately macroscopic view. Hence we do not have to specify the process by
which individual people choose which bundles of goods to exchange nor how frequently they do so. Nonetheless,
we will study one microeconomic example (Section 10) to illustrate how the thermodynamic quantities of our
macroeconomic theory emerge from a microeconomic model. The literature contains many other examples of
microeconomic model of exchange, for which some references can be found in a recent paper [DGMS]. An
important next step (on which we have already made a start and plan to report later) is testing the theory using
computer simulations, exploring both existing models of micro-interactions and new variants of such models.

4 Equilibrium

Our formulation depends on an assumption we call A0, that any closed exchange economy with given amounts
of goods and money in a class of systems settles down to a unique statistical equilibrium state.8 This makes it a
“simple system” in the language of [LY02]: the state is specified by a point in a subset of Rn, for some dimension
n, the coordinates being the amounts of each type of good and of money. One could also consider the number
of agents as a coordinate for the state, but for present purposes we will take the number of agents in a system
as fixed. An implicit assumption is that a simple system is “financially indecomposable”: however the specified
amount of money is initially distributed it ends up distributed with the same probability distribution. So there
is only one money coordinate. But we do not require the indecomposability assumption for types of good other
than money. For example, we allow the possibility there might be no flow of a good from one part an economy to
another, so that the amounts of that type of good in each part of the economy are independent coordinates for
the state.

We emphasise that statistical equilibrium is not an equilibrium in the sense of Nash, where no player can
benefit from a unilateral change [N50]. Nor is it an equilibrium in the sense of Arrow and Debreu, where prices
are such that supply balances demand and then all exchanges stop [A51, D51]. Instead, it is a dynamic state of

7The corresponding aggregate property need not hold for other types of goods: there may be regimes where it is preferable not to have
more, or even preferable to have less (e.g., if the good acts as a pollutant or is simply “surplus to requirements”).

8In their analysis of thermodynamic entropy, Lieb and Yngvason didn’t label the corresponding property as an axiom. Nonetheless,
we feel it merits a label (A0).
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continuing exchanges but with a steady probability distribution for the micro-state. For example, it is entirely
possible that people’s preferences continually vary (e.g., they become bored with objects they currently have and
would rather exchange them for different ones). Perhaps the closest analogue in economics is dynamic stochastic
general equilibrium (DSGE) [Ga], the workhorse of treasury modelling. The idea of equilibrium in a strict sense
has been criticised from early days in economics. For example, Irving Fisher wrote in 1933 [Fi] that “It is as
absurd to assume that, for any long period of time, the variables in the economic organization, or any part of
them, will ‘stay put,’ in perfect equilibrium, as to assume that the Atlantic Ocean can ever be without a wave.”
A statistical equilibrium with steady (or slowly varying) macro-parameters is more plausible.9

The notion of statistical equilibrium is itself, of course, a simplification of real economic activity, in which there
are, among other things, continual technological and business innovations. These considerations do not arise in
our idealized exchange economies. Nonetheless, we believe that the present approach could usefully be extended
to deal with such cases, expanding on the intuition that the only innovations that catch on are those that increase
economic entropy. For now, we note that entropy is useful in physics even in a time-varying environment and
helps explain the formation of complex structure in physics, chemistry and biology. In particular, it is worth
making a comparison with biochemistry. Concepts from equilibrium thermodynamics like changes in Gibbs free
energy are very useful in understanding which processes occur, even if a cell is a highly structured environment
and subject to time-varying conditions. The assumption behind this analysis is local thermodynamic equilibrium.

A different concern with the equilibrium assumption is that an economic system might have multiple equilibria
[Fa]. This might well be the case when there are fluxes of inputs and outputs; but without inputs and outputs, it
seems to us a plausible working assumption that an economic system with specified amounts of goods and money
and no obvious barriers goes to a unique statistical equilibrium. This type of indecomposability assumption is
widely made in analysing physical systems, in particular in statistical mechanics. It is analogous to the property
of ergodicity in stochastic dynamics, meaning that there is a unique stationary distribution and it attracts all
initial distributions [Li]. Similarly, it is analogous to the property of mixing for measure-preserving dynamics φt,
meaning that for all measurable subsets A and B, the probability of A ∩ φtB converges to the product of the
probabilities of A and B [Wa].

To gain an intuition for the significance of the assumption that our exchange economy has a unique statistical
equilibrium, it is useful to consider how this assumption can be violated. Suppose that the economic system under
study is decomposable into two or more non-interacting parts (e.g., corresponding to islands which are entirely cut
off from each other). Then there will be a continuum of ways in which goods and money can be divided between
the parts (and this division will be conserved as the system evolves, because there is by assumption no trade
between the parts). Thus each of the continuum of possible divisions will correspond to a distinct region of the
state space with its own statistical equilibrium. We assume, unless specified as here, that this does not occur.10

An economic system with more than one money coordinate, corresponding to conserved amounts of money in
financially disconnected parts of the systems, is called “compound”.

5 Accessibility

The next key notion is the accessibility of one state of an economy from another when subject to external influence
(for example, through interaction with other economies, or wealthy traders). Indeed, the main aim of the present
approach is to understand which transitions are, or are not, possible.

To build an intuition for why the question of accessibility is crucial, consider the following. One might suspect
that a sufficiently rich trader could rearrange goods between agents in the economy in any way desired, by paying
people to buy and sell to each other to order; but to do this, the people in the economy would thereby have to be
given additional money by the trader to incentivize them to engage in the desired transactions. But money is itself
part of the state of the economy. So the trader does not have complete control after all—some state-transitions are
possible and others are not. Indeed, suppose the trader wanted rapidly (rather than arbitrarily slowly) to reverse
the allocations of goods to its original state. Doing so would require further financial inducements; so that while
goods (apart from money) could be returned to the initial state, the economy would now contain more money
than before. The reader may have the intuition that the trader forcibly “moving” goods about the economy seems
analogous to doing work on a physical system (e.g., compressing a gas by a piston). Just as moving a physical

9A possible criticism of our equilibrium assumption, especially from finance practioners, is that it cannot account for endogenous
business cycles. We note that there is considerable debate in the academic literature concerning the nature and even existence of such
cycles [Sl37, FG94, Man89]. But we also note that the thermoeconomic framework can potentially generate such cycles through the
system being held out of equilibrium by fluxes of inputs and outputs, just as a physical system may exhibit oscillations when held out
of thermodynamic equilibrium (e.g., in Rayleigh-Bénard convection or the Belousov-Zhabotinskii reaction [NN]). This is an important
direction for future work. Here, however, we allow only temporary fluxes of inputs and outputs (e.g. with an external trader).

10As already indicated, there is a parallel in classical statistical mechanics: for example, one assumes that there is no extra conserved
quantity, beyond those already identified as labels for the state, that would prevent wide exploration of the space corresponding to the
state. More generally, one assumes that there is no invariant surface separating the space into two parts, or even more generally, one
assumes ergodicity of the conditional of Liouville measure on the specified values of conserved quantities. For a simple introductory
reference, see [Set].
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system from one state to another and back again will “heat” the system being operated upon (except when the
movement is arbitrarily slow), so forcibly moving an economic system from one state to another will increase the
economic temperature of the system (by increasing the amount of money in the economy, and thus reducing the
value of money). We will make these intuitions rigorous below.

We consider a system of one or more exchange economies connected to an external trader who has unlimited
goods and money, and ask what effects on the system the trader can achieve.

Let us say that a state Y of an economic system is accessible from state X, written X - Y , if the trader can
move the system from state X to state Y with no nett change in the trader’s assets apart from money. Note that
our notation is slightly different from that of [LY02], who use ≺ instead.

For a simple exchange economy, specified just by total amounts of each type of good and money, because of
the requirement that the trader end up with the same quantity of goods and our assumption that money is always
desirable, we assume that the only accessible states are those with the same quantity of goods and at least as
much money. But for a compound system, as the above discussion indicates, the set of accessible states is less
obvious. A key contribution of the analysis below is to clarify this case, as we see shortly.

To continue introducing the framework, note that directly from the definition, we can see that - is a pre-
order (it is reflexive: X - X, because the trader does not have to do anything to achieve no change; and it is
transitive: X - Y & Y - Z implies X - Z, because the trader just has to make one change followed by the
other). Transitivity of - is A2 of [LY02] but we get it for free here.

We say state Y is reversibly accessible from X, and write X ∼ Y , if X - Y & Y - X. It is an equivalence
relation: symmetric: X ∼ Y iff Y ∼ X, reflexive (which is A1 of [LY02] but again we get it for free) and transitive.

For later use, we will write X ≺ Y if X - Y & X 6∼ Y .
Denote the state of a (compound) system consisting of two unconnected economies (or systems of economies)

A and B in states XA, YB respectively, by (XA, YB). In particular, if XA - X ′A and YB - Y ′B then (XA, YB) -
(X ′A, Y

′
B), because the trader can make the changes to A and B in parallel. This is A3 of [LY02] but we obtain it

for free again.

6 Financial equilibrium

A further key notion is financial equilibrium. This will be crucial to making sense of the notion of the “tempera-
ture” of an economy, which will represent the reciprocal of the marginal utility of money.

Given two simple economies A and B, we define their financial join to be the joint economy where money is
allowed to flow freely between them but no other goods can (we say they are in financial contact). There are
various reasons why this might occur and the present approach is neutral between them. For example, people
working in one economy might wish to send money to relatives in the other. Even more simply, one person
could own assets in both economies; when financial contact is allowed, they can choose to send money from their
holdings in one economy to their holdings in the other. It will make sense to send money to the economy in which
its value is higher, i.e., to the one with the lower temperature (to be formalised in Section 12).11

Denote by θ(XA, YB) the state of the financial join of A,B that is reached from initial states XA, YB after A
and B have come to equilibrium. The equilibrium is specified by the total amount of money and the individual
amounts of the other goods in each economy. Because A and B are assumed to be indecomposable, it is reasonable
to assume that the equilibrium state of the financial join is to a high approximation independent of the way the
join is made.12 The idea is that if say A were decomposable into A1 + A2 then the effects of joining B to A1

or A2 or both would certainly be different, depending on the distribution of goods and money between A1 and
A2, whereas if A and B are indecomposable then any way of letting money flow between them should produce
approximately the same statistical state.

The process of coming to equilibrium will in general lead to a nett transfer of some money from one economy
to the other, but in equilibrium there is no nett flow of money between them (though there will be on-going, but
zero-mean, exchanges of money between the economies). Note that we are hereby applying A0 to the financial
join and thus assuming that allowing money to flow between the two economies is enough to achieve ergodicity of
the joint system. We deduce that (XA, YB) - θ(XA, YB), because the trader does not have to do anything. This
is A11 of [LY02] but we get it for free.

We also deduce that there exist states X ′A, Y
′
B such that θ(XA, YB) ∼ (X ′A, Y

′
B). To see why, let X ′A, Y

′
B be the

states of A and B after financial contact. Then the only difference between the left- and right-hand sides is that
the left-side has financial contact between A and B; but the trader can act as a financial contact between A and
B on the right-hand side by simply detecting if someone in A wants to give money to someone in B and making
the transfer for them. So in the presence of the trader, the two sides are the same. Thus they are reversibly
accessible from each other. This is A12 of [LY02] and we get it again for free.

11A challenge for future work is to analyse some of the forces that drive real-world flows, such as interest rates and investment
opportunities. We also leave treating surrogates for money, such as cheques or I-owe-yous (IOUs), and how to deal with credit, for later
work.

12As far as we can see, Lieb and Yngvason did not address the corresponding question about thermal joins.
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If there is no nett flow of money between A and B on bringing them into financial contact, we say their states
are in financial equilibrium and write XA ≡ YB . Thus, after nett money flow has occurred, X ′A ≡ Y ′B . From the
definition, ≡ is symmetric.13

We assume also (A13′) that ≡ is reflexive: i.e., that each state of an economy is in financial equilibrium with
itself, or put differently, there are no internal barriers to money flow. Formally, this requires us to be able to
make a copy of the system, to make the financial join of a system to itself, but let us suppose that this is possible.
Then there is no money flow between these copies because of the assumed indecomposability of (each copy of)
the system. Thus ≡ is reflexive.14

Finally, we assume that ≡ is transitive. This is A13 of [LY02].15

Thus, ≡ is symmetric, reflexive and transitive, and hence is an equivalence relation.
To give some intuition for the significance of ≡, we will see that economies which are in financial equilibrium,

i.e., such that there is no nett tendency for money to flow from one to the other, are at the same “temperature,”
although the notion of temperature is only derived later in the exposition. We will see that this corresponds
intuitively to money having the same “value” in each economy, so that there is no tendency to generate a nett
flow of money from one economy to another.

7 Accessibility and financial equilibrium

A key component of Lieb and Yngvason’s approach to thermodynamics is to formulate connections between the
two binary relations - and ≡. In particular, we want A14: for each state X of a simple system A there are
states X0, X1 with X0 ≡ X1 such that X0 ≺ X ≺ X1. Intuitively the reason that this assumption is important is
that it ensures that the equivalence classes of reversible accessibility and financial equilibrium “cut across” each
other and avoid “degeneracy”.16 This assumption is crucial below in deriving what we will call the second law of
thermoeconomics. Here we give a plausibility argument for this assumption in the economic context.

First let X ′0, X
′
1 be X ∓ 1�. Then X ′0 ≺ X ≺ X ′1 because, as in Section 5, we have assumed that an economy

accepts money from the trader but will not give money back to the trader for nothing. Thus, the trader can just
give 1� to move X ′0 to X and 1� to move X to X ′1, and each change is irreversible (so we get ≺).17

Intuitively, under financial contact, money will tend to flow from an economy where it has less “value”, to an
economy where it has greater value. Thus, consider two economies with the same goods, but different quantities
of money. Within an economy, the value of any unit of money will be lower where the amount of money is greater
(just as money is devalued when a central bank prints money). This means that the value of money will be lower
in X ′1 than in X ′0, and hence money will tend to flow from X ′1 to X ′0.

So, clone the system into A0, A1, with initial states X ′0, X
′
1. We wish to find a reversible path from X ′1 to a new

state and a reversible path from X ′0 to a new state, such that the resulting states are in financial equilibrium. This
can be done by the trader reversibly buying goods from X ′0. This increases the amount of money in comparison
with the volumes of goods in that economy (and hence reduces the value of money there, to be formalised in
Section 12). At the same time, the trader can reversibly sell those same goods to X ′0 (increasing the value of
money in that economy). The trader ends up in the same state except for amount of money. With sufficient
trading, the two copies can be brought to financial equilibrium. Let X0 ≡ X1 be the states achieved, then
X0 ∼ X ′0 ≺ X ≺ X ′1 ∼ X1.

Note that, as pointed out by [LY02], A14 implies that for each state X there is a state Y such that X ≺ Y ,
which is their A8. In economic terms, this just specifies that there is no “best” state—indeed, any state can be
improved by the trader adding money.

8 Scaling symmetry: Extensivity

Next comes the crucial assumption A4 of scaling symmetry: that one can scale an economy A by any positive real
number λ to obtain a scaled economy λA and that if X - Y for A then λX - λY for λA. This assumption seems
plausible if we think of an economy as consisting of lots of small units with a network of purely local interactions
based on geographic proximity and we ignore the discreteness of the set of agents and possibly of some types of

13[LY02] deduce symmetry of ≡ in their Lemma 2(ii), from their axioms A4, A5, A7, A11 and A12 but we have not yet introduced A4,
A5, A7, and prefer to reduce our dependence on them.

14A13′ is not one of the axioms of [LY02]; instead they deduce it in their Lemma 2(i) from A4, A5, A7, A11 and A12. We prefer to
list it as an axiom, to avoid relying on A4 and A5, and also reflexivity doesn’t seem to us as clear a logical consequence as they claim: it
might depend on the way in which the join is made. So we treat reflexivity as an axiom, A13′.

15One consequence to note is that this implies that for the equilibrium of a network of economies in financial contact, there are no nett
cyclic flows of money. This is because the equilibrium for a spanning tree has no cycles so no nett money flows, and by transitivity when
one adds the remaining links the economies are already in equilibrium, so there is no change to the nett flows.

16A thermometer is such a degenerate case–a system which varies along a single dimension, so that for all X, Y at different temperatures
X 6∼ Y . For discussion of how to deal with this case, see [LY99]. We will introduce financial thermometers in Section 16.

17We do allow that money can flow from one economy to another, as in Section 6, but we preclude the possibility that an economy will
voluntarily hand over money to the trader.
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good. Then one can imagine a scaled version of the economy and it is plausible that the accessibility relation
would inherit scaling symmetry. We call an economy satisfying A4 extensive.

Yet it may be a poor assumption for real economies. The concept of economies of scale is well-known and
already argues against scaling symmetry. Indeed, an economy might need to be at least a certain size before it
could include certain types of industry at all (say aircraft manufacture or investment banking).

In sum, the assumption of scalability is strong, and unlikely to hold in general in many aspects of real economies.
Nonetheless, the analogy with thermodynamics in the natural sciences suggests that the assumption may be useful
for many purposes. For example, classical entropy, which is based on the same scaling assumptions, has been
of central importance in analyzing chemical reactions inside biological cells, although cells, like economies, are
clearly enormously intricate mechanisms containing specific structures and processes operating at specific scales.
In any case, we proceed with the scalability assumption, to explore whether it may provide a potentially useful
idealization in some circumstances. Later we will briefly consider whether and how it may be relaxed.

A further assumption concerning scaling is A5: any system can be subdivided into two parts in an arbitrary
ratio λ : 1−λ by cutting connections, and in particular the stateX can be decomposed into a state (λX, (1−λ)X) of
the pair of systems, with X ∼ (λX, (1−λ)X). Again, it is not clear that this holds in the economic context: cutting
internal connections might make a substantial change to an economy, and the economy might not be homogeneous
so the two parts might not be just scaled versions of the whole. We proceed nonetheless (and leave implications
of weaker assumptions for later work).

Then by Lemma 4 of [LY], we obtain the “comparison hypothesis”: for all states Y = (λ1Y1, . . . λnYn) and
Y ′ = (λ1Y

′
1 , . . . λnY

′
n) of a system (with not necessarily the same subdivisions, but where necessarily

∑
i λi =∑

j λ
′
j), then either Y - Y ′ or Y ′ - Y (including the possibility that Y ∼ Y ′). That is, all states can be compared

with each other by the accessibility relation. Note that this is a very strong claim: in economic terms, it means
that for any two such states, Y and Y ′ containing the same stock of goods, the trader can either move the system
from Y to Y ′, or from Y ′ to Y , or both. The trader can always guide exchanges of goods either in one direction,
or the other, or both, and give or take money; but cannot create or destroy goods. The economy in question
may itself be a compound of any number of smaller component economies, so that the trades required may be
arbitrarily complex.

Finally, we also assume Lieb and Yngvason’s A6: if (X, εZ0) - (Y, εZ1) for some Z0, Z1 and a sequence of
ε → 0 then X - Y . In economic terms, this means that if two economies are reversibly accessible when each
is conjoined with an arbitrarily tiny scaled copy of some other economy, then they are also reversibly accessible
from each other if that arbitrarily tiny scaled copy is entirely absent. This seems reasonable, if we set aside the
discreteness of the set of agents and possibly of some types of good.

9 Economic Entropy

With the above assumptions we are now ready to begin to reap the rewards. The first reward is

Theorem (Theorem 1 of [LY02] applied to this context): There is a function S of state of all extensive economies
such that for any two subdivisions Y, Y ′ of a system (using the notation of the previous section) then

Y - Y ′ iff
∑
i

λiS(Yi) ≤
∑
j

λ′jS(Y ′j ); (1)

and the function S is unique up to orientation-preserving affine transformations: S 7→ aS + b with a > 0.

We illustrate the proof from [LY02] in Figure 1. In keeping with thermodynamics, we call S entropy. The

Figure 1: Sketch proof of existence of entropy: given X0, X1 as in A14, we draw the straight line of convex
combinations and deduce that any X between them in the accessibility order is equivalent to one point on the
line; the resulting λ is the desired entropy; changing the choice of X0, X1 makes an affine transformation of S.
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scale for entropy can be fixed by choosing a scale for temperature (to be defined in Section 12), leaving only its
origin as arbitrary.

We deduce the all-important

Second law of thermoeconomics: On putting two or more economies into contact (in any way), the total
entropy can not decrease.

To prove the Second Law, take systems A and B in states YA, YB , respectively and put them in contact. It
could be just financial contact or permitting arbitrary flow of goods and money or permitting flows corresponding
to a given price. The joint system goes to a state equivalent to some (Y ′A, Y

′
B) (dependent on the type of

contact). The trader does not do anything, so we have (YA, YB) - (Y ′A, Y
′
B). By the property (1) we deduce that

S(YA) + S(YB) ≤ S(Y ′A) + S(Y ′B).
Note that [LY02] consider the second law to be just the existence of entropy with the property (1), but we

consider it worth stating this particular consequence. Note also that the terminology “second law” is historical: the
first law of thermodynamics is conservation of energy. It took physicists as much thought and experiment to settle
on the first law as on the second one. In our exchange economies, each type of good, including money, is assumed
to be conserved, so that the “first law” of the conservation of money (and indeed, of goods) is trivial. In principle,
there could be further conserved quantities needed to describe a macro-state, but at least in our context of
exchange economies we do not see one.

For a simple system, with its state specified by total amounts of each type of good (including money), the
accessibility relation is easy: a state Y is accessible from state X if and only if Y differs from X at most by having
more money. But the consequences of entropy become significant for systems consisting of several parts with
specifications of what transfers are possible.

For example, for a system with two parts, having a common money and a common type of good, with transfers
only via a trader who has to end up with the same state except for money, the state space for the system is given
by the amounts Gj ,Mj of goods and money in parts j = 1, 2, but the allowed changes conserve G1 +G2. Within
this 3D space, the 2D surface of constant total entropy separates the space into those states that are accessible
from a point on this surface from those that are not accessible. Changes within the surface of constant total
entropy are reversible. The others are not.

Alternatively, one could leave out the trader, but allow transfers of goods and money between the two parts:
that is, the economies trade directly with each other, rather than each transaction being mediated by the trader.
Then the possible changes conserve both G1 + G2 and M1 + M2. In this 2D space there are curves of constant
total entropy which separate accessible states from inaccessible ones. The picture is analogous to the indifference
curves for individuals in standard economics, but now at the level of a whole multi-part economic system. These
cases will be illustrated by simple examples in the next Section.

The second law suggests that we can think of entropy as an aggregate utility or value of an economy. But
in contrast to standard utility theory in which the utilities of different agents are typically not viewed as being
on a common scale [ER], one can meaningfully compare, and indeed add, the entropies of different parts of an
economic system. Indeed, it is only the total entropy that can not decrease. Thus, in some interactions between
two economies, the entropy of one economy can decrease, as long as this is compensated by an equally large or
larger increase of the entropy of the other economy. For example, this happens when money flows out of an
economy where it has less value to an economy where money has greater value.

It is worth reflecting on how extraordinarily strong is the existence of entropy, with the property (1). On the
one hand, it provides a very restrictive constraint on possible transitions from one equilibrium state of a system
or set of systems to another: it precludes any transition that leads to a decrease in (total) entropy, whatever the
trader (or other exogenous agent or agents) does. On the other hand, it specifies that there is always an available
path by which the trader or other external agency can move the economy in any entropy-increasing way in the
state space. Entropy-conserving changes can also be achieved in a limiting sense (in practise, requiring transitions
to be carried out arbitrarily slowly).

If we interpret entropy as corresponding to aggregate utility, then the first observation implies that trade,
or financial flow, between any two (exchange) economies does not decrease aggregate utility. That is, there will
always be gains of trade, except for the limiting case of zero gains. Indeed, if any number of economies are put into
contact using any network of trade or financial connections, trade or financial flows will yield non-negative gains
of trade for the compound system. Furthermore, any reduction in restrictions on trade (e.g., removing a barrier
to trade for one or more goods, or removing a prohibition on moving money from one economy to another) will
lead to non-negative gains of trade. Note, though, that the gains of trade may be unequally distributed—indeed,
one or more economy may lose entropy, as long as the entropy of the whole system increases. We analyse trade
in detail in Section 19.

One consequence of existence and extensiveness of entropy is that it provides a rationale for the standard
economics notion of representative agent,18 but with a twist. Given entropy function S(M,G) for an economy

18The notion of a representative agent, is widely and somewhat controversially used in providing a microfoundation for macroeconomic
behaviour. [H96] traces the notion back to Alfred Marshall [M20], while [K92] finds similar ideas in Francis Edgeworth [E81]. The
notion of a representative firm was critiqued by Lionel Robbins [R28]; and critiques of the broader coherence of the notion, in view
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with N agents, we can define Ur(m, g) = S(Nm,Ng)/N and consider it as the utility for a representative agent
to possess m money and g goods. Maximising the sum of the entropies of several economies then corresponds
exactly to maximising the average utility of their representative agents, weighted by the numbers of agents in
each economy. But there is no need to scale entropy to the level of individual agents. Our approach says that
each economy has a utility function (its entropy) and a collection of economies in contact act to maximise the
sum of their constituent utilities (i.e., maximizing the entropy of the collection of economies as a whole). Note
that this maximization of summed utility over the system of economies can arise purely from the interactions of
myopic or selfish agents, from their ability to trade and to move money from one economy to another, as long as
there is convergence to a unique statistical equilibrium (Section 4). The “twist” is that there is no requirement
that each economy attempts to “maximize its own utility.” For example, money can flow from one economy to
another, lowering the entropy of one and increasing the entropy of the other, as long as the change in entropy of
the whole system does not decrease. We will, though, also consider in Section 19.1 the important special case of
what we will call “mutually beneficial” trade, which is constrained not to decrease the entropy of each economy
(i.e., leading to an analogue of Pareto optimality at the level of economies).

To end this section, we discuss to what extent the entropy function depends on the choice of numeraire (money
in our presentation so far).19 We restrict attention to numeraires for which it is always desirable to have more
(required for Sections 5 and 7). A priori, the accessibility concept depends on the choice, because the state space
for a system has fixed amounts of all goods except the numeraire. But one can consider the restricted set of
changes that fix the amount of numeraire too. Then accessibility of one state from another is independent of
which good is considered to be the numeraire. Hence the partial orders determined by the two entropy functions
must be the same. Then extensivity of the entropies implies that one must be an affine transformation of the
other.

10 A toy illustration with interacting agents

One of the distinctive characteristics of the conception of thermoeconomics developed here is that it proceeds
entirely at the level of aggregate behaviour, positing axioms about trade and financial flows and deducing conclu-
sions such as the second law. Thus, just as classical thermodynamics makes no reference to the molecular basis of
pressure, heat, entropy and so on, so thermoeconomics makes no reference to the micro-foundation of economic
behaviour, in terms of the actions of individual agents. A great advantage of this strategy, both for physics and
economics, is that the micro-foundations of real-world systems are often of great complexity and only partially
known, so that providing a detailed micro-level analysis is not realistic—but nonetheless, laws at the aggregate
level are still derived.

It is interesting, however, to illustrate the general theory by special cases in which micro-foundations are
sufficiently simple that they can be analysed directly. In the physics context, a prime example is the molecular
model of ideal gasses, leading to a foundational explanation of temperature and pressure and the entropy function
S = N log vud/2 (though it is conventional to add N(d + 2)/2 and also to multiply by Boltzmann’s constant),
where N is the number of molecules, v and u are the volume and energy per molecule and d is the number of
degrees of freedom per molecule (e.g. for a diatomic molecule like O2 or N2, d is the sum of 3 translational plus
two rotational degrees of freedom, at normal temperatures where vibration is suppressed quantum-mechanically).

In particular, let us compute the entropy for a toy example of an exchange economy with a single good in
addition to money and N independent identical “Cobb-Douglas” agents. By Cobb-Douglas agents we mean firstly
that they have a utility function

U(m, g) = gα−1mη−1, (2)

for amounts g of good and m of money, for some α, η > 0. It is natural to think of both goods and money as being
desirable, in which case α, η > 1.20 Secondly, they interact via stochastic dynamics that we’ll define precisely in
the next paragraph. Importantly, in contrast to standard economic usage, our agents are not utility maximisers;
instead, they use their utility functions to bias the probability rate for the outcome of random pairwise encounters
towards increased utility for both, but with some “errors”.

Let us consider an encounter between one agent i and another agent j. Label the amounts of money and
goods for each agent before the encounter by pairs m = (mi,mj), g = (gi, gj) of positive 2-component vectors,
and after the encounter by m′, g′. We suppose that transitions are restricted to those that conserve both goods
and money: m′i + m′j = mi + mj and g′i + g′j = gi + gj . We denote the probability rate from m, g to m′, g′ by
q(m, g,m′, g′). Each agent biases the probability rate by making it proportional to their utility of the outcome.

of the heterogeneity of economic agents, have continued [K92]. Nonetheless, representative agent models continue to be influential in
macroeconomics and finance [MP].

19We are not aware whether Lieb and Yngvason discussed the analogous question in the physical case, but a difference is that they
allow volume to change, whereas we fix the amount of goods.

20We adopt the form (2) with minus ones in the exponents because it makes future formulae simpler and also allows the case of a good
that is undesirable, such as a pollutant.
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Thus we take

q(m, g,m′, g′) = kij(g
′
ig
′
j)
α−1(m′im

′
j)
η−1 δ(g′i + g′j − gi − gj) δ(m′i +m′j −mi −mj),

where kij ≥ 0 is an encounter rate for i and j and the δ-functions enforce conservation of goods and money. We
suppose that the outcome is independent of all previous encounters of all pairs, conditional on the current state.
The constraints α, η > 0 make the rate integrable and hence the stochastic process well-defined.

Assuming the graph formed by positive encounter rates between agents is connected, for given total goods G
and total money M this stochastic process has a unique stationary probability that attracts all initial probability
distributions (on a finite state space, this would follow from a standard result for Markov processes [Sen], but here
the state space is continuous; nevertheless, the result can be obtained for continuous spaces by use of Dobrushin’s
dependency matrix, e.g. [M11]; or see [DGS] for treatment of the case with only money and η = 1). In fact, the
process is reversible (in the sense of Markov chains) with respect to the distribution with density ρ proportional
to the product of the utilities, i.e.,

ρ(g,m) = Z−1
∏
i

gα−1
i mη−1

i δ

(∑
i

gi −G

)
δ

(∑
i

mi −M

)
,

where g,m now represent the vectors (g1, . . . gN ) and (m1, . . .mN ). Hence we deduce that this distribution is the
stationary one. It is a product of two Dirichlet distributions (one for the partition of goods, the other for money),
and the normalisation constant

Z =
GNα−1Γ(α)N

Γ(Nα)

MNη−1Γ(η)N

Γ(Nη)
.

The marginal distribution for one agent in this stationary distribution is a product of two independent Beta-
distributions (one for goods, one for money). For example, the Beta-distribution for money has density

ρ(m) =
Γ(Nη)

Γ(η)Γ((N − 1)η)

mη−1(M −m)(N−1)η−1

MNη−1
.

It is an illustration of how inequality of wealth can arise, though note that that for η > 1 and N large, the bulk
of the distribution is peaked close to the mean M/N , and that each agent samples the whole distribution as time
evolves.21

To determine the entropy of this toy economy we need to spell out how each agent interacts with an external
trader. We specify this to be consistent with how agents interact with the other agents, i.e., biased in the same
way by the utility function. We suppose the trader offers to buy or sell arbitrary amounts at a price µ. Then the
probability rate for each agent i to transition from m, g to m′, g′ is

q(m, g,m′, g′) = Kig
′α−1

m′
η−1

δ(m′ + µg′ − (m+ µg)),

for some Ki ≥ 0, which is the trader’s encounter rate with agent i. There is no contribution to the dependence
on m′, g′ from the trader because it has unlimited goods and money. As the transition is along the “budget” line
m′ + µg′ = m+ µg we can eliminate m′ in favour of g′ and write the rate as a function of just g′ (given m, g, µ):

q(g′) = Kig
′α−1(m+ µg − µg′)η−1.

This is a Beta-distribution again (though unnormalised), and its mean is

〈g′〉 =
α

α+ η
(g +m/µ).

The means over the initial stationary distribution were 〈g〉 = G
N
, 〈m〉 = M

N
. Thus the change from the mean of g

to the mean of g′ is
αM/µ− ηG
N(α+ η)

.

Thus in a time ∆t we obtain a change

∆G = K

(
αM

µ
− ηG

)
in the quantity of goods, where K = ∆t

N(α+η)

∑
iKi. ∆G is positive, zero or negative according as µ is less than,

equal to, or greater than

µc =
αM

ηG
. (3)

The change in the amount of money is ∆M = −µ∆G. So we see that

α
∆G

G
+ η

∆M

M
=
( α
G
− µ η

M

)
∆G =

K

GMµ
(αM − µηG)2 ≥ 0,

21In particular, wealth does not concentrate in a fixed set of agents.
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with equality iff µ = µc. This is precisely the condition ∆S ≥ 0 for infinitesimal changes in

S = N log

((
G

N

)α(
M

N

)η)
. (4)

Thus we deduce that (up to an affine transformation) the entropy of the toy economy is this function S. The
factors of N are included to make the entropy scale correctly with N .

It is important to note that even though this example has homogeneous agents, the utility Ur(g,m) = log gαmη

for the resulting representative agent is not the utility for a single agent of our Cobb-Douglas agent, which recall
is U(m, g) = gα−1mη−1. It is not even a function of the utility for a single agent. This is not too surprising,
however, because our agents use their utility function to bias the probability rates, not to maximise it. Nonetheless,
if the exponents α and η of the Cobb-Douglas utility function are scaled up sufficiently, the agents will approach
maximizing behaviour (as will be explained in Section 12).

To illustrate the consequences of entropy, Figure 2 shows the boundary of the region accessible from an initial

Figure 2: Boundary of accessible region for a two-part Cobb-Douglas economy from an initial endowment
(anywhere on the displayed surface). The accessible region is to the right. The economies have numbers of agents
in the ratio N1 : N2 = 1 : 2, and the same exponents α = 1, η = 5

2
. The total goods G = 30.

endowment of a system of two Cobb-Douglas economies22. We see that adding money to either economy is allowed,
but also adding money to one while removing money from the other is allowed, within limits. More importantly,
goods can be moved from one to the other but this might require adding money to one or both. Figure 3 shows
contours of the entropy for division of goods and money between two Cobb-Douglas economies with no external
trader. The allowed transitions are those that do not decrease the total entropy.
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Figure 3: Contours of entropy S for a two-part Cobb-Douglas economy. The economies have numbers of agents
N1 = 10, N2 = 20, the same exponent α = 1 for goods, but different exponents η1 = 5
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for money. The

total goods G = 30 and total money M = 1.

22The choice α = 1 is perhaps unrealistic, because it implies the utility is independent of the amount of goods, but similar figures are
obtained for α > 1.
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The reader may recognise (4) as the entropy of an ideal gas (discussed earlier), where N is the number of
molecules, G represents volume of the container, M represents internal energy, α = 1, and η = 1/(γ − 1) for ratio
γ of specific heats (e.g. γ = 7

5
for a diatomic gas), modulo a conventional additional term Nγ/(γ − 1) that has

no effect if N is constant. Indeed, that analogy is why we chose this entropy function to try in (4). The analogy
should not be pushed too far, however. In particular, in an accessible change for a gas driven by an external
device whose only nett change is in the height of a weight (as in [LY02]), the volume available to the gas can
change, whereas for our exchange economies, the quantity of goods should return to its initial value.23

One could ask why the entropy of the trader was not considered in this analysis, but the assumption that the
trader has unlimited goods and money can be regarded as saying that its entropy is independent of how much
goods and money it has. More precisely, we are assuming that the trader has no preferences for amounts of goods
and money, so all changes are allowed, which means all its states must have the same entropy. Strictly speaking,
to talk about entropy of the trader we require it to be an extensive trading economy.

Another question is what rules we have perhaps implicitly placed on the trader? For example, if the trader
were willing only to sell then ∆G would be positive whatever price was offered, and thus for µ > µc the change in
the above entropy would be negative. There is a risk of the trader acting as a Maxwell demon, but perhaps the
effects are smaller than O(N). We leave such questions for future thought.

Instead of guessing an entropy function as above, and showing that it fits, a more principled way to derive the
entropy function is via the strategy of proof of Theorem 1 of [LY02]. We do that in Appendix A.

This toy example also has wider significance. We have stressed that thermoeconomics, like thermodynamics,
is defined purely at the “macro” level, and does not depend on specific microfoundational assumptions. This
makes macro analysis possible for systems for which a detailed microfoundational analysis is infeasible—which
will typically be true for realistic economic systems, in the light of the heterogeneity and complexity of human
behaviour.

It is nonetheless reassuring to find an explicit illustration of how there can be a bridge between the micro and
macro accounts, where the micro-foundations are sufficiently simple to be tractable—just as statistical mechanics
provides a micro-foundation for thermodynamics of sufficiently simple physical systems (e.g., ideal gases).

A purely macro-analysis is sufficient to derive the second law, and a variety of specific economic results in
following sections; and macro quantities, such as economic entropy and temperature can in principle be measured
directly–and these issues will be discussed further below. But a micro-foundation, where available, is nonetheless
required to explain the specific form of the entropy function S, and hence the detailed behaviour of an economic
system.

This raises the interesting question of the impact of different stylized microfoundational assumptions on ag-
gregate behavior and how this behaviour aligns with the macro description in a thermoeconomic framework, and
in particular, the question of how different microfoundational assumptions modify the entropy function. Many
such assumptions are possible. Starting from our Cobb-Douglas model, for example, different agents i could have
different αi and ηi (this leads to relatively straightforward extension of the above results, in particular the entropy
has the averages of αi and ηi in place of α and η). Exchanges could be restricted to change of goods and money
of opposite signs. Agents could make just a fraction fi of their holdings available at each interaction. There can
be more than one sort of good (in addition to money). Goods (and money) might come in discrete amounts.
Moreover, agents might be subject to behavioural biases, such as a status quo bias in favour of whatever goods
they hold at the time [SZ]. We anticipate that, unlike this toy example, the preferences of agents could result in
an entropy function that is not just a sum of functions of the quantity of each type of good.

While the Cobb-Douglas set-up explored here yields analytically tractable results, the implications of more
complex micro assumptions will not typically be analytically tractable and will require simulations. This is an
important direction for our on-going and future work. In the rest of the present paper, we largely set microfoun-
dations aside, and return to explore the implications of the purely “macro” thermoeconomic theory.

11 Convexity assumptions

To reap further rewards, we need a few more technical axioms from [LY02]. A reader who is happy to assume
that S is differentiable with respect to relevant variables and that S is concave, will not need this section, but we
include it for logical completeness.

Firstly, we assume A7 that for t ∈ (0, 1), (tX, (1 − t)Y ) - tX + (1 − t)Y . This seems straightforwardly
true: the economy formed by putting two economies together is accessible from the pair of separate economies. A
consequence of A7 is that the “forward sector” AX = {Y : X - Y } of any state X is convex: that is, for t′ ∈ (0, 1),
if W ∈ AX , and Z ∈ AX , then t′W + (1 − t′)Z ∈ AX . Moreover, because the accessibility relation - implies

23It is interesting to consider the possibility that, instead of amount of goods,the number of agents in an economy may be more closely
analogous to volume. Thus, population size could be represented explicitly, and allowed to change, in the short term through migration,
and in the longer term, through births and deaths. Questions of population change and flow are, of course, of considerable relevance to
analysis in political economy and this is a direction deserving study. Note, though, that the current analysis allows the possibility that
agents own goods and money in more than one economy, so it is not yet clear what it would mean to assign them to a particular economy.
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non-decreasing entropy (by the second law), A7 immediately implies that S(tX+(1− t)Y ) ≥ tS(X)+(1− t)S(Y ).
That is, the entropy function S is concave, a result that we shall use at various points below.

Secondly, we assume A9 that each forward sector AX has a unique support plane at X. This tangent plane is
furthermore assumed to be a Lipschitz-continuous function of X as described in [LY02]. This assumption perhaps
requires economic justification.

Thirdly, we assume A10 that the boundary of each forward sector AX is connected. This technical assumption
looks innocuous in an economic context—at least, it is not clear under what plausible economic circumstances
this assumption would be violated.

Lastly, we need A15 that for all pairs of systems A,B and states X of A there is a state Y of B with X ≡ Y .
This is natural in an economic context: on putting the two systems into financial contact, nett money flow
establishes financial equilibrium; if the total amount of money is varied to put A into state X then the resulting
state of B will be the desired Y .

12 Economic Temperature

The second reward, at which we hinted in Section 6, is that there is a positive function T of state such that
when two simple systems A,B are in financial contact there is nett money flow from A to B iff T (XA) > T (YB),
and A,B are in financial equilibrium iff T (XA) = T (YB). In keeping with thermodynamics again, we call T
temperature.

Under the axioms of the previous section, S can be proved to be differentiable with respect to M [LY02], and
the function T is given explicitly by

1

T
=

∂S

∂M
,

holding amounts of all goods fixed except money M .
Note that T has unit � over entropy, which depends on both the scales for money and entropy. Nevertheless,

ratios of temperatures are uniquely defined, independently of the scales. This implies that one can fix a scale for
temperature by one reference system in a reference state.24 Then, as promised, a fixed scale for entropy follows: it
is the scale such that the change in entropy ∆S is ∆M/T for an infinitesimal change ∆M in money with fixed
goods. The unit of temperature is arbitrary (just as the unit of temperature, the Kelvin, is arbitrary in physics),
but then entropy has units of money over temperature. We consider it simplest to measure temperature in units
of money. For example, the reference system could be a Cobb-Douglas economy with 1� per agent and then, as
we will see shortly, it makes sense to define its temperature to be η−1�. This has the consequence that entropy
becomes unitless.

Following Skilling (personal communication) for physical thermodynamics, we call

β =
1

T

the coolness of the economy. Its economic interpretation is the marginal aggregate utility of money (analogous to
the marginal utility of money for an individual agent, a concept that goes back to at least [Hot]).

It is useful to refer back to the toy example of Section 10, with Cobb-Douglas agents where the probabilities
of trades are proportional to their utilities U(m, g) = gα−1mη−1, for amounts g of good and m of money. Then
the resulting entropy function S = N log(M/N)η(G/N)α implies that

β =
Nη

M
, T =

M

Nη
.

Note that the toy economy has the special feature that temperature is proportional to the amount of money per
agent and independent of the amount of goods. To give an interpretation of temperature here, if one multiplies
both exponents α and η by a constant c > 1 then the probability rates and the stationary distribution, proportional
to the utilities, will be more strongly dominated by transitions corresponding to maximising utility. Thus, with
increasing c, the degree of noise will decrease, and the transitions will be closer to pure utility-maximizing trades.
If α and η are multiplied by c, the temperature T = M

Nη
, is divided by c. Thus we see for this example that

temperature quantifies deviations from utility maximisation by the agents. So standard economics with noiseless
utility-maximizing agents might be considered to be the case of zero temperature.25

We will see that temperature being proportional to amount of money and independent of amounts of goods is
a feature of any economy with “pure money”, to be discussed in Section 15.

When economies A and B, with T (XA) > T (YB), are put into financial contact there is nett money flow from
A to B before they equilibrate. If the changes are made quasistatically (that is, via a sequence of equilibrium

24In physics, the standard reference state is the triple point of water, the temperature and pressure at which water can exist as a solid,
liquid or gas).

25Note though that the context in which Hotelling [Hot] introduced marginal utility of money was utility maximisation subject to a
given budget; the marginal utility of money entered as a Lagrange multiplier to relate changes in money to changes in utility and there
is no reason for it to be zero.
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states) so that the changes are reversible, then the money flow dMAB from A to B in each step is given by
TBdSB = dMAB = −TAdSA. Then we see that A loses entropy, B gains entropy, and in fact B gains more than A
loses, because B is at a lower temperature. The same is true however the changes are made. The cooler economy
gains entropy at the partial expense of the hotter one. On the other hand, at the level of individual agents the
benefit flows in the opposite direction: agents with money in the cool economy, where money initially has more
value, find that the value of their money is eroded by an influx of money from the hot economy; conversely, agents
who move money from the hot to the cool economy find the value of their money goes up, which is of course
why they have the incentive to do so.26 Note that the coolness of an economy should not be confused with the
buying-power of money, because the latter depends also on what goods are available.

We can simulate financial contact of two of our toy economies, with exponents ηA, ηB for money not necessarily
equal, by having agents i ∈ A interacting with agents j ∈ B at rate kij (many of these coefficients could be zero)
and dividing their combined money according to distribution proportional to mηA−1

i mηB−1
j (a Beta-distribution

again). On average, this results in a split of the money between A and B in the ratio ηA : ηB .
Note that because the ideal trader of our accessibility notion has constant entropy, their temperature is

infinite. This might seem to imply infinite money flow from the trader on putting them in financial contact with
an economy. But we do not use the trader in this way. Rather, the trader decides at what price to buy or sell.

To end this section we discuss how the concept of temperature depends on the choice of numeraire. Suppose
one economy V has a scarcity of apples and surfeit of bananas, and the other W has the opposite. If apples are
used as money, then financial contact will mean that apples flow from W to V , and hence that W is hotter than
V . But if bananas are used as money, then financial contact will mean that bananas flow from V to W , and hence
that V is hotter than W . Thus, even the ordinal notion of temperature is dependent on the choice of money. Note,
though, that the choice of money does not affect which state transitions are possible in the economy (subject to
the desirability assumption of Section 3), thus that entropy, and in particular the second law, is independent of
the choice of numeraire (up to positive affine transformations).

13 Money capacity and inflation

Having obtained a concept of temperature for an economic system, we define a subsidiary notion that will be
useful in analysing how changes in the amount of money in an economy affect its value. Following the terminology
of heat capacity of a physical system, we define the money capacity of an economic system to be

C =
dM

dT

for changes in temperature keeping amounts of all goods fixed except money.27 Money capacity has a particularly
simple form in our toy economy,

C = ηN.

Note that money capacity is positive, by the following argument. From [LY02] and Section 11, S is concave,
in particular with respect to M at constant goods. Now dS/dM = β, thus concavity of S gives dβ/dM ≤ 0. But
β = 1/T , so dT/dM ≥ 0 and hence C > 0.

Money capacity is relevant to various economic questions. For example, money capacity is inversely related to
the inflationary impact of adding money to an economy, while keeping the quantities of all other goods the same.
The added money could flow in from a neighbouring economy or from the government printing money. Recall
that the marginal utility of money, β, is the inverse of temperature, i.e., 1/T (M) (writing T as a function of M ,
as quantities of goods are held constant). Thus for one unit of money added to the economy (with no change in

other goods), the change ∆β in the marginal utility of money is d(T−1)
dM

= −T−2 dT
dM

= − 1
CT2 , so that the relative

change is
∆β

β
= − 1

CT
.

Notice that this reduction in the value of money corresponds to inflation: indeed, the money capacity is a key
ingredient deciding the inflationary effect of adding money to an economy, at least in our exchange economies.
We can define the inflation rate to be

I =
1

T

dT

dt

(equivalently − 1
β
dβ
dt

) with t representing time. Thus for rate of increase Ṁ in money, I = Ṁ
CT

. Note that this
definition of inflation is entirely abstract and not dependent of choices of specific price indices and their associated
weighted baskets of goods.

26The government of an economy might attempt to prevent such flows by imposing capital controls.
27Note, though, that this quantity is a derivative, and hence might more aptly be called marginal money capacity (and the physical

concept would analogously be marginal heat capacity).
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Money capacity also provides a useful relation between temperature and entropy, namely

dS

dT
=
C

T
,

where again the derivative is taken with fixed amounts of all goods except money. The proof is that the change
dM in money can be written as TdS from the formula for T = dM

dS
, and also as CdT from the formula for C = dM

dT
.

From this relation and positivity of C we deduce that S increases with T . In words, the increase in aggregate
utility from unit increase in temperature is the money capacity divided by the temperature.

Money capacity also turns out to be important in quantifying fluctuations of the amount of money in a
subsystem, as will be discussed in Section 16.

Finally, we comment that the above proof of positivity of money capacity C includes the possibility of C = +∞.
This is a situation analogous to physical systems at a phase transition. For example, on heating a solid at constant
rate, its temperature rises until it reaches its melting temperature; the temperature remains constant there until
it has all melted and then goes back to rising. The heat capacity is infinite when part melted and part not. The
possibility of phase transition in economics merits exploration.

14 Values and market prices for goods

The third reward is that for each type of good there exists a market price, µ = −dM/dG (i.e., the price is a rate
of exchange between the good and money) at which the economy will make no nett exchange between the good
and money with an external trader. Thus, we will arrive at an analogue of the celebrated general equilibrium
result of Arrow and Debreu, albeit with a simple exchange economy, and with a statistical notion of equilibrium.
Notice that this approach makes no assumptions about the rationality or otherwise of individual behaviour.

To derive this result, we first define a “value” for each type of good, actually a marginal value for one more
unit of the good. For each type of good (other than money), with amount G, S is differentiable with respect to
G (under the axioms of Section 11). Let

ν =
∂S

∂G
,

keeping the amounts of all other goods fixed, including money. We call ν the value for the good. This is an
important concept in our theory. It is the analogue for goods of the coolness β for money (Section 12). Our
quantifications of value of goods and of money provide a new theoretical basis for discussions of value that go
back to Adam Smith’s “Wealth of Nations” (see, e.g. [Pag]).

Note that in contrast to money, however, the value of a good might be negative. This caters for goods that
are undesirable or perhaps desirable if other types of good are scarce but not if they are plentiful. For example, a
bulky good might be desirable if no alternative is available but undesirable if compact alternatives are cheap and
plentiful; or a good might be desirable only when complementary goods are available (side-cars may be desirable
if motorcycles are available but undesirable “junk” if not).

If we allow changes in the amounts of good and money by connection to an ideal trader then

dS = β dM + ν dG. (5)

There will be no spontaneous nett exchange of goods and money between the economy and the trader if and
only if the exchange between money and goods is reversible, i.e., leads to no change in entropy (dS = 0). By
rearranging (5) with dS = 0, we can see that a reversible exchange between money and the good is possible iff
the trader is offering a market price µ = − dM

dG
= ν

β
.28

For the example of Section 10 where we explored our simple Cobb-Douglas economy,

ν = α
N

G
, µ =

α

η

M

G
.

This µ corresponds to the critical price µc (3) we found in Section 10.
In view of the centrality of the second law in thermoeconomics, we have focused on changes in economic entropy

S in (5). By contrast, it is common in thermodynamics to give priority to energy rather than entropy. In an
economic context, the analogue of the first law of the conservation of energy in physics is the much less interesting
conservation of money. Indeed, in an exchange economy, money and all goods are conserved by assumption.
Nonetheless, if we choose to give priority to money over entropy then the analogous relation to (5) can be written

dM = T dS − µ dG. (6)

The relations (5) and (6) extend naturally to a vector G of amounts of goods and corresponding covectors
ν of values and µ of prices. Furthermore, the relation (5) extends to exchange between any pair of goods, not
necessarily including money. The coolness β is simply the special case of the value for money. For exchange of two
types of good G1, G2, then dS = ν1dG1 + ν2dG2, so reversible exchange happens iff the trader offers the exchange
ratio ν2/ν1 for amount of G1 per amount of G2.

28Note that as mentioned in Section 10, the trader has constant entropy so its state does not affect the allowed changes.
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15 Pure money

What differences does it make if money has no intrinsic value (e.g. paper or digital money), as opposed to some
good like gold? We argue in this case that for fixed vector G of amounts of goods, (i) the price µ of any type of
good, and (ii) the temperature T , should be proportional to the amount M of money in the economy, because
the value of a unit of money will be determined by how large a fraction it is of the total quantity of money in
the economy. Thus, declaring each aurum to be λ new-aurum should make no difference other than to multiply
all prices and the temperature by λ—indeed, it is scarcely more than a trivial notational change, like deciding to
use the word “dollar” to refer to cents.

The above two conditions (i) and (ii) imply that the value ν = µ/T for each type of good is independent of
M , and that the coolness β is K(G)/M for some function K of G. Using νj = ∂S

∂Gj
and β = ∂S

∂M
, we deduce from

the first condition that ∂β
∂Gj

= 0. Thus, from the second condition, K is independent of the amounts of goods. As

a result,
S = K logM + F (G)

for some constant K > 0 and function F of the amounts of goods. An example is the toy economy of Section 10
(where also the other good is pure).

The above holds for an economy with fixed number N of agents. The dependence on N should be extensive,
that is

S = N(k logM/N + f(G/N))

for some constant k and function f .
Money is likely to be “pure” to a good approximation in modern economies, and we discuss the implications

at various points below. One implication that we can make already is that for pure money, the money capacity
C = 1/K is constant. In particular it is never infinite. But historically, some currencies have certainly not been
pure, for example silver. The requirement to use silver as currency for trade with China clashed with its increasing
use in the UK as silverware for serving food and drink, a problem that notably Adam Smith and Isaac Newton
addressed [Fay, Pag].

16 Financial thermometers

Having deduced the existence of temperature in an equilibrium economy (and hence a concept of the value of
money, and the meaning of inflation, as in Sections 12 and 13), a natural question is whether and how temperature
can be measured. A difficulty is that in practice an economy is in general not in equilibrium because it has
inputs and outputs. Moreover, rather than the pure exchange economies we are treating here, real economies
have production of raw materials, manufacturing, consumption, services, and so on. Nonetheless we address the
question here for equilibrium exchange economies, with the hope of later generalisations.

Here, we focus on the question of how financial temperature can be measured in principle—i.e., how to
construct an “ideal” financial thermometer. We leave the question of how well such an ideal can approximated
in practice for later work. To measure the temperature of an economy A, one could imagine floating a relatively
small economy s on a ship, putting it in financial contact with A (with no transfer of goods) and studying the
changes to s to infer the temperature of A.29 The smallness of the ship thermometer s is needed (just as for a
physical thermometer) so that the contact with s does not have a significant effect on the temperature of A, the
economy whose temperature is being measured.

The intuition is that money will flow into, or out of, the ship thermometer from the mainland, bringing the
temperature of s into balance with the temperature of A. If Ts < TA, people in A will tend to move their money
to s because goods are cheaper there (that is, the aggregate marginal utility of money is greater); this influx of
money will in general raise the temperature (by positivity of money capacity, Section 13), until the temperature
reaches that of the mainland. If Ts > TA, the opposite will happen. Then the amount of money on the ship
after equilibration is an increasing function of the temperature, so with calibration it can be used to measure the
temperature.

Perhaps the amount of money on the ship is not readily visible, however. In this case, one could instead
measure the price of some good on the ship, which is more likely to be visible (after averaging), and convert it to
temperature. One can make a plausible story that if Ts < TA then the influx of money can be used to buy goods
in s, thereby driving up their price until Ts reaches TA, though we have not proved that the price has to increase.
If Ts > TA, the opposite can be expected to happen. Thus the market price of each good on the ship will settle
down to a function of the temperature of the mainland A, so one can read off the temperature from the market
price after calibration.

This calibration is very simple in the special case where the currency is “pure”, with no intrinsic value except
as a medium of exchange (as in the previous Section). The amount of pure money in an economy is proportional

29Calling s a ship thermometer is a natural metaphor when measuring the temperature of mainland economies with sea frontage, but
of course applies quite generally.
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to the temperature of that economy. Thus, if the amount of money in the ship thermometer is easily measurable,
it provides a direct measure of the temperature of A. Indeed, from the previous section on pure money, T = M/K,
so the temperature on the ship is proportional to the amount of money. Furthermore, for an economy with pure
money, the price of a good is µ = T ∂F

∂G
. The amounts of goods on the ship do not change, only money, and F is

independent of M . So we deduce that the price of any good is proportional to the temperature.30 31

Note that this measure of temperature agrees with a conventional price index for comparing value of money
in two economies, say A1 and A2, if the goods in A1 and A2 are the same but all prices differ by a fixed factor.
But our approach is much more general. Indeed, there need not be any overlap whatever between the goods in
A1, A2, or indeed s.

As an example of a ship thermometer, we can use the toy economy of Section 10. Combining previous results,
µ = αN

G
T , and noting that N and G remain fixed, we see that µ gives a result proportional to T . So the market

price of the good on the ship can be used to measure the temperature of the mainland economy. Alternatively,
if one can measure the amount M of money on the ship then one can use the more direct formula T = 1

Nη
M ,

proportional to M . But almost any quantifier on any type of ship thermometer would respond in some nontrivial
way to the temperature of A.

As mentioned above, the scale for temperature is arbitrary (at least from our construction). So what can really
be measured is ratios of temperatures. Our ship thermometer allows us to do this.

If we choose to use the amount M of money on the ship to infer the temperature, it is worth noting that if the
ship thermometer is too small then fluctuations in M will make the temperature difficult to measure (and indeed,
prices on the ship will be difficult to measure also). Indeed, the analogue of Einstein’s formula for fluctuations in
energy of a subsystem is that the variance

VarM = CT 2,

where M is the amount of money on the ship, C is the money capacity of the ship, and T is the (common)
temperature of the ship and A. Using the toy economy of Section 10 for the ship, the measured temperature
Tm = M

ηN
and C = ηN , so

VarTm =
VarM

η2N2
=

T 2

ηN
.

It is natural to compare VarTm to T 2, hence to divide both sides of the above equation by T 2. Thus the conclusion
is that the temperature will be measured more precisely if the number N of agents on the ship is larger and if
their exponent η for money preference is larger. As with the design of physical thermometers, however, there
are other considerations, such as how much the financial contact with the ship disturbs A and how fast the ship
temperature equilibrates with that of A. We have begun to explore these issues in simulated exchange economies
and plan to report on it in future work.

Note that the above analysis of fluctuations in money for a subsystem depends on an identification of entropy
as representing the logarithm of available volume. That is true for the toy economies, where the entropy comes
out to be the logarithm of the normalisation factor for the stationary distribution, but it is not clear in general.
It is not a consequence of standard thermodynamics either. But assuming this, the discussion of fluctuations
extends to other quantities, such as price: Varµ = −T ∂µ

∂G |S
, where the partial derivative will be calculated in

Section 20 (and shown to be non-positive and to contain another factor of T ). There are even fluctuations in the
entropy of a subsystem, and there are computable covariances between fluctuations (but the relative sizes of all
of these scale like O(1/N) in the thermodynamic limit, as was made explicit for Tm above).

Note also that the above formulae for variances both give results proportional to T 2. This shows that, under
the assumption that entropy represents logarithm of available volume, temperature is not just the inverse marginal
utility of money but is also connected fundamentally with the level of activity at equilibrium.

A natural question is whether one obtains the same temperature wherever one measures it in an economy.
One might imagine that if the agents in one port have different preferences from those in another port then one
would find different temperatures in the two ports. But under our assumptions that the economy is in equilibrium
and there are no internal barriers to money flow in an economy, the equilibration under financial contact with the
ship thermometer produces the same state on the ship in both ports.

We reiterate the contrast between our approach to measuring economic temperature (remember this is the
inverse of the marginal utility of money) and conventional measures of value of money within countries (e.g.,
the Consumer Price Index) or cost of living ratios between countries (e.g. Penn World Tables, World Bank’s
International Comparison Program), which depend on rather arbitrary choices of baskets of goods. By contrast,
the thermoeconomic concept of temperature is independent of any of basket of goods—indeed there is no need for

30The ship thermometer with pure money is therefore analogous to an ideal gas thermometer in physics, for which volume is proportional
to temperature at constant pressure

31Note that if the currency is not pure, but a good with some intrinsic value such as gold, then the picture is not so simple. Then an
influx of gold into the ship may change the relative prices of other goods on the ship, which might be complements to, or substitutes for,
gold. For example, plentiful gold might drag down the value of silver (if silver and gold are substitutes) as compared with, say, butter.
These same interactions with other goods mean that the value of gold cannot be read off merely by measuring the ratio change in the
quantity of gold on the ship.
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two economies to have any good in common (except money) in order for us to take their temperature ratio. For
realistic application, we need to extend to the case where different economies use different currencies. We make
some remarks on this in Section 21.1.

To close this section, we discuss another measurement question: how one could measure the market price of a
good in the ship thermometer? This may be a more practical method for measuring temperature of a real ship
thermometer than measuring the amount of money on the ship, and also has independent interest. One way is to
have an external trader propose a price and to monitor the nett flow of goods and money. If there is nett flow of
money to the trader, the trader increases the price; if in the other direction, the trader decreases the price. By
this process the trader should settle on the market price.32 Again, the price should not depend on the particular
agents to which the trader is connected.

17 Making money out of price differences

If two economies have some good in common, as well as money, and the price of the good is different in the
two economies, then it is clear that an external trader can make money from the price difference. The trader
buys goods in economy A at price µA aurum where they are cheaper and sells them in the economy B at price
µB aurum where they are more expensive (i.e., µA < µB). For infinitesimal changes (so that the prices do not
change), one aurum purchases 1/µA goods in economy A, which are then sold for µB/µA aurum in economy B.
Thus the trader makes µB/µA − 1 aurum.

In general, however, as trading continues, the prices will change because the amounts of goods and money in
the two economies change. How much money can the trader make in this way?

In the simplest context with just one good besides money, the state of the joint system follows the path of
increasing GB with dGA = −dGB , dMA = µAdGB , dMB = −µBdGB , dMT = (µB − µA)dGB (using subscript T
for the trader) until µB = µA. The path is contained in the intersection of the surfaces of constant entropy for
the two economies, because trade at market prices is reversible and so does not change entropy. Thus one way
to describe the final point is that it minimises MA +MB subject to conservation of SA, SB and GA +GB . And
the amount of money made by the trader is the difference between the initial and final amounts of money in the
economies.

This description extends to the case of more than one tradeable good, where the total amounts of each good
are conserved. The first-order conditions for a minimum enforce equality of prices in the two economies for each
good at the final point. The existence of the final point and its connectedness to any initial condition with the
given entropies requires some more analysis, of course. In particular, it is proved in Section 20 that the price
of a good decreases as the quantity of that good increases by trade at market price (i.e. taking into account
compensating change in money), and vice versa.

We have seen that the maximum amount of money, MT , the trader can extract through exchanging goods
and money is achieved by minimizing MA + MB subject to conservation of SA, SB and GA + GB . But can
the trader do better? From the second law of thermoeconomics, one might ask whether the trader can find a
way of minimising the total amount of money left in the economies A and B subject to conserving goods and
total entropy, SA + SB , rather than the more restrictive condition of conserving the individual entropies SA and
SB . This is indeed achievable by the trader, but not in general by the above strategy. It requires a more general
approach, to be explained in Section 19. To get there we first explain how one can make money out of temperature
differences with no transfer of goods.

18 Making money out of temperature differences

The industrial revolution was powered by the observation that one can extract useful work from physical tempera-
ture differences. Moreover, in physics, one important consequence of the thermodynamic concept of temperature33

is that it gives a formula for how much work can be extracted from temperature differences (more precisely from
temperature ratios). Indeed, the efficiency of an ideal heat engine (called a Carnot cycle) is how Carnot introduced
the thermodynamic temperature scale. So the process of extracting work from a temperature difference turns out
to be both practically and theoretically very significant.

It is therefore natural to ask whether there is an interesting analogy in economics. As spelt out in the previous
section, a trader can make money out of price differences by buying goods in an economy where they are cheaper
and selling where they are more expensive. If price differences correspond to temperature differences then one
could view this as making money out of temperature differences.

But the question here is narrower: how much money can an external trader extract from a temperature ratio
between two economies, without any nett change in amounts of goods in either economy. That is, how can the

32This is similar to the use of a Wheatstone bridge in physics to measure resistance.
33as opposed to purely empirical measures of temperature.
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trader profit purely from the flow of money from the hot economy to the cold economy (just as a heat engine
extracts work purely from the flow of heat between hot and cold bodies)?

To do this, we propose an economic Carnot cycle. The trader will use a “boat economy,” B (essentially
our ship thermometer of the previous section, but independent of its use to measure temperature), which can
shuttle costlessly between two mainland economies H (hot) and C (cold) (perhaps across a narrow strait), with
temperatures TH > TC , and put into financial contact with either. The trader will make reversible trades with
B, but not with either H or C; there will, though, be flows of money from H to B and from B to C.

The trader can extract money from the economic temperature difference between H and C by applying the
following four steps. First, the trader moves B near-reversibly to the temperature of H, by continually buying
goods slightly above the current market price in B, thus gradually, and hence reversibly, pushing up prices on the
boat until its temperature is TH . Second, now that B and H are at the same economic temperature, the trader
puts them into financial contact and begins selling goods to B slightly under the market price. Now there is less
money and more goods in B, marginally increasing the buying-power of money, and hence drawing in money from
H, while keeping the temperature of B at TH . The third step is for the trader to disconnect the financial contact
between B and H, and to continue reversibly selling goods to B. Now the buying power of money on B increases,
as the boat contains many goods and little currency with which to buy them—i.e., the temperature of B reduces
to TC . The fourth step is for the trader to put B and C in financial contact and to begin buying goods from B,
thus marginally lowering the buying power of money in B and thus leading to money to flow from B to L. The
trader can then disconnect B to L and begin the cycle again. This process is illustrated in Figure 4.

Figure 4: An economic Carnot cycle in the plane of amount G of goods and temperature T for an island economy
with α = 2, η = 5/2 operating between two mainland economies at temperatures TH = 0.47 and TC = 0.24.

The nett effect of each cycle is to take some money from H and distribute it between C and the trader;
the trader obtains money by feeding off the temperature difference. If carried out reversibly, the trader takes a
fraction (1−TC/TH) of the money leaving H. Namely, the money leaving H is −THdSH and the money entering
C is TCdSC , and for reversible changes the total change in entropy is zero, so dSH = −dSC (B returns to the
same state after a cycle so there is no nett change in SB); hence the ratio of the money leaving H to the money
entering C is TH/TC . This is the same formula as for the efficiency of a physical Carnot cycle, because it relies
on the same mathematics. In a future paper, we intend to report on demonstration of a Carnot cycle in computer
simulations of exchange economies, and exploration of its efficiency.

In physics, it is most common to plot a Carnot cycle in the plane of pressure and volume. That would
correspond here to price and amount of goods. But for some purposes the best is the plane of temperature and
entropy. So we replot the figure in these two ways in Figure 5.

More generally, in a cyclic process, the money a trader can extract per cycle with reversible moves is the
area of the loop in the (S, T )-plane, as in Figure 5(b). To see this, denote the money and goods on the boat by
subscript B and for the trader by subscript T . For the boat economy, dMB = T dS−µdGB , and reversible moves
imply that the change in the trader’s money dMT = µdGB . So we deduce that dMT = T dS − dMB . But in a
cycle, MB returns to its initial value, so

∫
dMT =

∫
T dS.

Note that the above discussion in terms of a cycle assumes that the hot and cold economies are sufficiently
large that their temperatures are not affected by the flow of money in one cycle. In reality, the temperatures of
the two economies would change slightly and the cycle would have decreasing amplitude in the temperature.

A Carnot cycle can also be used in reverse, just as in physics (e.g. refrigerator or heat pump), to create
economic temperature differences by putting in money, or more generally to drive money flow against a temperature
difference. The trader puts in money MT , the cold economy puts in MC and the hot economy receives MH =
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Figure 5: Carnot cycle replotted in the planes of (a) amount G of goods and price µ, (b) entropy S and
temperature T .

MT +MC , with the ratio MH/MC anything less than TH/TC . In particular, the hot economy can receive anything
up to MT /(1− TC/TH), a considerable enhancement on just receiving MT directly from the trader, especially if
TC is only a little less than TH . We call the ratio MH/MT the coefficient of performance, by analogy with heat
pumps.34

These observations have potentially interesting practical implications. Clearly a large and rich trader can
intervene directly to change the buying power of money in a small state (say an isolated island). For example, it
can make a small state “hotter” (i.e, its money having less value) simply by sending money to the smaller state.
But it can generate the same effect more efficiently if it has access to another island, and a “boat” which shuttles
between the islands (or some equivalent mechanism). The trader can now more cost-effectively cause inflation in
one state by simultaneously causing deflation in the other (even if the second small island is initially cooler, so
that this flow of money is from cooler to hotter). The efficiency gain will be a factor up to a theoretical maximum
of 1/(1 − TC/TH) = TH/(TH − TC). If the value of money is similar in each economy (i.e., TH − TC is small),
the maximum efficiency gain can be arbitrarily large. It is interesting to ask whether approximations to such
phenomena can occur in real financial markets through government or private spectulator interventions. A fuller
analysis of such cases is likely to require an extension of the present account to allow that different states have
different currencies, a point we touch on briefly in Section 21.1.

19 Trade

A key question that has motivated us from the outset is how to determine which trades are viable between two
economies. In the previous two sections, we have considered special cases through which a trader can extract
money from a pair of economies by exploiting differences in prices (Section 17) and differences in temperature
(Section 18). Now we are in a position to develop a general account of trade, whether mediated by a trader or
involving direct exchange between economies.

According to the present analysis, nett exchange of goods and money between two economies can occur if and
only if it does not decrease total entropy. Thus we obtain an analogue of the traditional notion of ‘gains of trade’.
Yet the gains might not benefit each economy individually. We distinguish trade that increases the entropy of all
parties by the term ‘mutually beneficial trade’, or MB trade for short. Note that the mutual benefit here is at
the level of economies, not individuals. So, for example, when economies at different temperatures are put into
financial contact, money will flow from the hotter to the cooler. This may be beneficial at an individual level
(because money has more value when transferred from the hotter to the cooler economy). But the outflow of
money will transfer entropy (aggregate utility) from the hotter economy to the cooler. Of course, if an economy
has a government, that government might try to maximize the aggregate utility of its own economy, and hence
might attempt to put restrictions on such “capital flight”.35 A goal of our theory is to provide a framework for
quantitative analysis of the benefits of trade, including finding which trade is mutually beneficial.

34Note that for refrigerators the coefficient of performance is conventionally measured instead as MC/MT , which is MH/MT − 1.
35There are also many other possibilities. For, example, an external trader could operate a Carnot cycle to exploit a temperature

difference and then use the proceeds to make unprofitable trades. Or it could operate a Carnot cycle to make or enhance temperature
differences by putting in money made from profitable trades. We amplify on this below, but first talk about MB trade.
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19.1 Mutually beneficial trade

For a single good and money, and infinitesimal trade maintaining equilibrium, there is a simple (and very natural)
criterion for the entropy of both economies to increase: the goods move from the economy with the lower market
price, say µA, to that with the higher market price µB , and the price for the trade is anything in between the
two. This results from positivity of temperature and equation (6), which we rewrite here as T dS = dM + µdG
for reversible changes. Note that in a sequence of trades the market prices might well change, so this condition
has to be satisfied at all stages of the trade.

Trades might involve more than one good and not necessarily include money. Our MB condition is again that
the entropy of both economies increase. Writing dS =

∑
i νidGi for reversible changes (where one of the goods

could be money, in which case its value νi is β), the condition for the package of transfers dGi (which can have
either sign, in particular that for money is likely to have opposite sign to most of those for goods) from A to B to
be MB is that

∑
i ν

A
i dGi < 0 and

∑
i ν

B
i dGi > 0. This does not have as simple an interpretation as in the case

of one good and money, but allows combinations that might not be MB pairwise. Trade can (and often does)
involve goods that do not exist originally in the receiving economy. It is natural to assign value ν = +∞ for an
unavailable good, but the value will become finite as soon as some of the good is imported.

Reversible trades must take place slowly—in particular, they are quasi-static, meaning that they occur slowly
enough for both economies to be at equilibrium throughout the trading process. But trades need not be quasistatic.
All that is required for MB is that the entropy of neither economy decreases.

MB trade is very similar to exchange between rational agents with preferences given by total preorders, often
illustrated by the “Edgeworth box” [St]. Here we obtain the same picture at the macroeconomic level, with the
preferences being given by the entropies of the two economies. It is illustrated in Figure 6(a) for the same pair of
economies as in Figure 3. The families of curves of constant entropy (isentropes) for the two economies (of which

Figure 6: (a) Edgeworth box plot for the two Cobb-Douglas economies of Figure 3. The orange and green
curves are isentropes for the first and second economy, respectively (i.e., entropy is constant along the curves).
The initial endowment is at their upper left intersection. The blue curve is the Pareto frontier of equal prices
in the two economies, i.e., the set of points where the isentropes for the two economies touch; it is thickened for
the part achievable by MB trade from the initial endowment. (b) The same plot with contours of total entropy
superimposed, from Figure 3; the maximum entropy point is inside the smallest contour of total entropy.

only one is shown for each here) are tangent to each other along a curve called the Pareto set. The tangency
condition of the isentropes is that the market prices are the same in both economies. This is the condition for
nett trade to stop (though equal and opposite trades may continue, at the common market price). It is important
to note that there is not a unique final state from given initial state: any point on the part of the Pareto curve of
tangencies of constant entropy curves between the initial constant entropy curves is a possible final state. Total
entropy maximisation (subject to the total goods and money) would select a particular point of the Pareto curve,
but it might not be in the allowed interval. Indeed for the chosen initial endowment of Figure 6, the maximum
entropy point is not in the allowed interval, as can be seen in Figure 6(b). So a purely macro analysis gives
no determinate answer to how prices will settle—presumably, factors such as the relative patience and skill of
the negotiators on each side will decide the outcome.36 Notice, in particular, that MB trade (without financial
contact and hence flow of money) does not require that the temperatures of the two economies become equal

36Or, according to the theory of the Edgeworth box, the final point ought to be the one on the Pareto curve from which the common
tangent to the isentropes goes through the initial endowment point, meaning that the whole sequence of trades is conducted at the price
corresponding to the slope of that straight line.
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(recall from Section 12 that for Cobb-Douglas economies, T = M
Nη

, so equal temperature corresponds to the ratio

M1 : M2 = N1η1 : N2η2, hence for N1 = 10, N2 = 20, η1 = 5
2
, η2 = 3

2
and M1 +M2 = 1, we get M1 = 5

11
,M2 = 6

11
,

which includes the maximum entropy state but nothing else on the Pareto curve).

19.2 General trade

Let us continue some more analysis of Figure 6(b), but dropping the requirement that trade must benefit both
economies. Now our only restriction is that trade must not decrease the entropy of the system overall. Thus, in
the “contour map” of overall entropy, trades can move only “up hill” or, as a limiting case, around the contours.
In particular, this allows trades to lead to final states in the region below the orange curve but inside the constant
total entropy curve through the initial state, where economy 1 loses entropy but economy 2 gains more. Notably,
in this example, that includes the maximum entropy state itself.

It is useful to classify the possible moves of the pair of economies in this simple case with money and one
good. We divide the state space into “quadrants” according to the signs of the temperature difference T2−T1 and
price difference µ2 − µ1. See Figure 7. Recall from the end of the previous subsection that in our toy economies,
T = M

Nη
, so the curve of equal temperatures is a line of constant M1, namely M1 = 5/11 for the chosen parameter

values. Recall also that the curve of equal prices is the Pareto curve. From a starting point other than that of

Figure 7: Figure 6(a) with the addition of the line of equal temperatures (red) and just one total isentrope
(mauve). The (red) line of equal temperatures and the (blue) curve of equal prices divide the space into four
quadrants. The top left quadrant (shaded in blue) is where T1 > T2 and µ1 > µ2. The acute-angled quadrant
(yellow) to the upper right is where T1 > T2 and µ1 < µ2. The lower right quadrant (green) is where T1 < T2

and µ1 < µ2. The lower left quadrant (red) is where T1 < T2 and µ1 > µ2.

maximum total entropy, the previously considered case of MB trade takes place in the cone of directions where
µ2dG1 < −dM1 < µ2dG1. Following the second law, this always points to higher entropy. Investment takes
place in the direction with (T2 − T1)dM1 > 0 and dG1 = 0. This, too, always points to higher entropy. Taking
convex combinations of the two we obtain a larger cone of possible directions, depending on the quadrant. But
the space of all directions that don’t decrease total entropy is a half-space, which raises the question of how to
achieve the remaining entropy-increasing directions. One way to achieve them is by allowing connection to a third
economy 3 under the control of an external trader T. T uses 3 to create a Carnot cycle to extract money from
the temperature difference between 1 and 2, or in reverse to move money against a temperature difference.

To see how this works in more detail, let us pick a particular set-up, for example, where T1 > T2 and µ1 > µ2

(this is the top left quadrant in Figure 7; the other quadrants can be dealt with similarly). Economy 1 can
invest money m in 3, which gets divided into em for 2 and an initial profit (1− e)m for our trader, T. The value
e ∈ (T2/T1, 1), which is the complement of the efficiency (i.e. the efficiency is 1 − e), can be arbitrarily close to
T2/T1 as we approach an ideally efficient Carnot cycle, but cannot exceed this value. T then uses the profit,
(1− e)m, to buy g goods from 1 at a price µ̃1 > µ1 and sell them to 2 at a price µ̃2 < µ2. Of course, the trader,
T, will lose money in doing so, specifically (µ̃1 − µ̃2)g. The trader may wish to break even, thus balancing the
initial profit (1 − e)m against this loss (µ̃1 − µ̃2)g, i.e., by choosing m and g so that m

g
= µ̃1−µ̃2

1−e . In bilateral
trade, of course, money and goods flow in opposite directions. But by the trader using a third economy, it has
managed to arrange a nett flow of money and goods in the same direction. Here there are both a nett money flow
m̃ = eµ̃1−µ̃2

1−e g from 1 to 2 and also a nett goods flow g from 1 to 2. By choice of e, µ̃1, µ̃2 in the indicated ranges,

the ratio m̃/g can be made anything greater than T2µ1−T1µ2
T1−T2

. The latter can be written as ν1−ν2
β2−β1

, which is the
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slope of the curve of constant total entropy. So the trader can achieve dG1 < 0, i.e., moving goods from 1 to 2,
with any slope steeper than the isentrope.

Similarly, still in the case T1 > T2, µ1 > µ2, changes with dG1 > 0 and dM1 > −µ2dG1 can be made, up to
the slope of the isentrope. T buys goods g from 2 at price µ̃2 above µ2 and sells them to 1 at price µ̃1 below µ1,
but with µ̃1 > µ̃2. The profit m = (µ̃1 − µ̃2)g is used to drive money flow from 2 to 1 against the temperature
difference, causing money to flow into 1 of up to m/(1 − T2/T1). The nett money flow into 1 is then given by
subtracting µ̃1g that 1 paid the trader, T, for the goods. The result of this process is to increase the temperature
difference between 1 and 2—analogous to refrigeration in the context of physics, where the temperature difference
between the inside and outside of the fridge is increased by expending energy. Here, the expenditure of money is
required to increase the economic temperature difference between two economies. Choice of the efficiency of this
process of “refrigeration” and the prices µ̃j yields dM1/dG1 anywhere between −µ2 and the slope of the isentrope.

Let us consider entropy as a measure of the aggregate welfare of an economy, and consider a “benevolent social
planner” deciding whether trade should be allowed between two economies. Of course, if the trade were to reduce
the summed welfare between two economies, the social planner would disallow it—but we know that, in the present
set-up, this cannot happen: trade cannot decrease overall entropy, by the second law. The social planner might,
instead, allow only trades which benefit both economies (where the benefit for one may be 0)—this is, of course,
MB trade. But this may seem too restrictive. There may be trades that lead to large welfare benefits for one
economy, B, and only small losses, for the other economy, L. How can we make this precise? The thermoeconomic
framework has a simple answer: the social planner may allow trades for which the curve of constant total entropy
through the final state intersects the region where both economies gain entropy. This is because such a final state
could subsequently be moved along the isentrope (arbitrarily closely) to end up in the MB region. Such trading
outcomes are what we might call potentially-MB trades.37 An equivalent way to put the condition is that a trade
is potentially-MB if and only if the final entropy is not larger than the maximum entropy over the MB region.

Note that such compensation is not always possible: i.e., not all trades which increase overall entropy are
potentially-MB. Figure 6(b) provides an illustration. Suppose that the initial state of the two economies (before
trading is allowed) at the top left intersection of the orange and green curves moves to the maximum entropy
point or close to it, then no entropy-preserving change can move it to the other side of the orange curve. Thus
the entropy of economy 1 remains below its initial value as we move along the isentrope, and hence this trade is
not potentially-MB.

Does MB trade have an analogue in physics? It is usual in thermodynamics to consider increase of total entropy
as the sole principle. Yet consider a cylinder with an insulated movable partition between two gases (the famous
“piston problem” [Wr]). If the pressures Pj on the two sides are different then the the partition will move, thereby
transferring volume from one side to the other, and also the pressure difference will do work ((P1 −P2) dV in the
quasistatic case). But there is a continuum of choices for where the work goes. We could suppose the partition is
attached to a dry friction device (that produces resistive force independent of the speed of movement) located in
the left-hand side, whose friction force is controlled to be just less than the force on the piston resulting from the
pressure difference; then the work goes to heat the left-hand side. Or a dry friction device on the right-hand side,
or a combination of both. These situations correspond to MB trade.

In contrast, one could just let the partition fly and after some oscillations it would settle down to some division
of the volume and the energy between the two parts. In this case there is no reason that the individual entropies
should both increase. There is, for example, the maximum entropy state where in addition to the pressures
equalising, the temperatures also equalise. Even with a perfectly insulated piston, this will be achieved over a
long timescale via fluctuations in the position of the partition due to finite numbers of molecules on each side (this
effect is outside the domain of classical thermodynamics, but can be expected to apply to economics too). In the
case of a small or zero pressure difference between the two sides, the entropy of the initially hotter side decreases.

The economic analogue of the latter case is a free-for-all flow of goods and money with no restriction to
exchange at prices between the market prices and allowing money, or goods, to flow simply because they are more
valuable in another economy. The only constraint is that the total entropy can not decrease. For infinitesimal
transfers dMAB , dGAB this constraint reads as

(βB − βA) dMAB + (νB − νA) dGAB ≥ 0,

from (5), but it is possible that the entropy of one economy would decrease in the process.
In particular, we note that financial contact between economies does not lead to gains in entropy for both

economies, only for the one receiving money, as we saw in Section 12. To take a concrete example, suppose two
closed economies are identical, except regarding the amount of money available in each (say, one has ten times
the quantity of � than the other). This means that prices for all other goods will be higher in the economy with
more �. Indeed, if we suppose that � have no intrinsic use, aside from as a means of trade (unlike gold, which
can be crafted in jewelry, for example), then it is reasonable to assume that the prices in one economy will be
ten times higher than in the other, following Section 15). Then, if unlimited financial contact (but no trade) is

37Potentially-MB trades may remind the reader of the Kaldor-Hicks criterion in welfare economics. Here, though, compensation is
assessed in terms of transfers of utility—corresponding to reversible trades along an isentrope—rather than transfers of money.
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allowed between the economies, money will rapidly (i.e., not reversibly) flow from the economy with high prices
(the ‘low temperature’ economy) to the economy with low prices (the ‘high temperature’ economy), and the prices
of goods will fall in first economy and rise in the second. This corresponds to an increase in entropy in the first
economy, and a decrease in entropy in the second.

19.3 Gains of trade

One of the most fundamental questions in economics concerns the maximum potential gains from trade that can
be achieved by allowing trade between economies that were not previously in contact.

The present approach allows maximum gains from trade to be studied in a particularly simple way. We propose
that rather than trading directly, all trade is carried out via an intermediary—the now-familiar trader—who can
exchange goods for money with either economy. Trade of a bundle of goods (dGi)i∈I from A to B and suitable
amounts of money can be facilitated by the trader if

∑
i∈I(µ

B
i −µAi )dGi > 0, this being the maximum amount of

money that the trader siphons off, because the minimum money that A is willing to receive is
∑
i µ

A
i dGi and the

maximum that B is willing to pay is
∑
i µ

B
i dGi.

The trader can then simply donate the money that it has siphoned off to the two economies (in any proportions),
thus increasing the economic entropy of both to some extent. In this way, the gains of trade are split between the
two economies. This will also allow us to analyze the maximum increase in economic entropy that can be achieved
- which will be reached by donating the gains of trade to whichever economy is economically cooler, because by
definition the marginal aggregate utility of money will be greater in that economy.38 This will continue until the
two economies are the same temperature, after which the gains should be distributed between them to keep them
at equal temperatures.

We can simplify the problem of finding the maximum profit that the trader can extract by noting that this
must be via purely reversible trades, i.e., which will not change the economic entropy of the compound system
comprising the pair of economies (although it may shift economic entropy reversibly between one economy and
the other, as we note below). This follows because reversible trades will minimize the economic entropy of the
compound system. Thus any irreversible trades will lead to the compound system having a higher economic
entropy. Thus the trader can guide the system to any such state by first engaging in irreversible trades and then
raising the economic entropy of the compound system by donating some or all of its gains of trade. But in doing
so, the profit retained by the trader is thereby reduced. So we can conclude that, in order to retain the gains of
trade, the trader should use only reversible trades.

Note that this analysis extends to the case of many economies. If we have three economies, A, B and C, for
example, the maximum amount of money that can extracted by the trader will be determined in part by the
maximum amount that can be extracted by trading reversibly between A and B. This will yield a compound
system in which the prices and economic temperature are the same for A and B—if this were not so, then further
trading (or voluntary flows of money from the higher temperature economy to the lower temperature economy)
could yield more money for the trader–but by assumption the trader has extracted all money possible from the
pairwise trade. This compound system can then be conjoined with C and the trader can engage in further
reversible trades until A, B and C all have the same prices and temperature.

Interestingly, the maximum amount of money that the trader can extract by bringing A, B and C into
equilibrium is independent of the order or manner in which the trades are carried out. For examples, the trader
might directly make reversible trades between A, B and C. Or the trader might initially allow trade only between
B and C, and then trade with A; or the trader might interleave trades between A and B, with trades between A and
C; or trade in any other pattern, so long as the trader ultimately fully exploits any trading opportunities. That is,
while the trader can bring the economies into equilibrium with different equilibrium prices and temperature, only
one set of equilibrium prices and temperature will allow the trader to extract the maximum amount of money. For
suppose the contrary, that there are two distinct equilibria that the systems could fall into, which would both yield
this maximum. Then we could split the entire economy of A, B and C in half; extract this maximum amount of
money by shifting to the distinct equilibria in each half (thus extracting, supposedly, the maximum that the trader
can obtain). But then the trader could make reversible trades exploiting the price and/or temperature differences
between the two equilibria, thus extracting more money—contradicting the hypothesis that the equilibria had
allowed the trader to extract the greatest possible amount of money. Thus, the maximum amount of money that
can be extracted from a system of economies (once all reversible trades have been exploited) corresponds to a
single equilibrium of prices and temperatures for the entire system.

Moreover, the path of trades by which the prior states of A, B and C are shifted to that equilibrium by
reversible trades does not affect the amount of money extracted by the trader. Again we can prove this by
contradiction. Suppose that the trader could obtain the maximum M money by following one path of reversible
trades, but only M ′ < M by some other path of reversible trades. Then there would be a “loop” of reversible
trades which would take the initial state of the system to the equilibrium, and back to its original state, as follows:
follow the path yielding M to be trader and then follow the other path in reverse, yielding −M ′ to the trader.

38Donating money to an economy of finite size will raise its economic temperature, because we proved that money capacity is positive.
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Thus, by following this loop, the system ends where it started, and the trader has gained M −M ′ > 0. But this
is impossible, because money has been created and given to the trader “from thin air.”39

Thus, we can define “gains of trade” between any set of economies as the maximum amount of money that
can extracted by the trader by effecting trade between these economies. This gain of trade also measures the
“benefit” that can be obtained through direct trading between economies, without the trader siphoning off any
of the surplus (noting, as above, that any entropy-increasing set of trades can be achieved by the trader by
first extracting a profit by making reversible trades, and then distributing that profit to the various economies).
Where, for example, there is free-for-all direct trading between economies, the gain of trade generates changes in
entropy in the constituent economies (which, in sum, will be non-negative, although one or more economies may
lose entropy).

Summarising the above discussion, various natural economic results follow, albeit only in the context of
exchange economies. On the “positive” side for the benefits of trade:

1. First, gains of trade, as defined above, are always non-negative for the union of two or more countries, and
will almost always be positive. These gains are independent of the order in which trades are carried out.

2. Second, the gains of trade for many countries trading together is at least as large as the gains of trade for
any partition of those countries into “trading blocks.”

But on the negative side, none of these benefits need arise from spontaneously free-for-all trade between
economies.

1. Free-for-all trade may lead to disbenefits (i.e., loss of entropy) for some economies (even though the set of
economies as a whole will gain).

2. Such free-for-all trade can sometimes, but not always, be compensated by a benevolent social planner who
can engage in reversible trades (which therefore don’t affect the entropy of the system as a whole), such that
trade becomes mutually beneficial.

The notion of gains of trade can be viewed as analogous to a generalization of the notion of “available energy”
in physics or “exergy” in engineering: i.e., the amount of work that a physical system can do by bringing it
into equilibrium with a large reference environment (see [M20] for a pedagogical introduction). By extracting
money from one or more economies, the trader is, analogously, extracting value in a usable form, i.e., which could
potentially be used to buy goods from some other party. A difference is that we do not assume interaction with
a large environment, just interaction of two or more economies; the same can be done in physics and engineering
but one tends there to think of the environment as large.

Another concept in physics is “free energy”. This applies to systems that are maintained at a given temperature
(Helmholtz free energy) or temperature and pressure (Gibbs free energy). It quantifies the amount of work that
can be done by the system, this time because some other aspects, like chemical reactions, are not yet in equilibrium.
This is likely to be relevant in economics too, when we reach the stage of considering manufacturing. We briefly
discuss this further below in Section 21.4.

In engineering, exergy is often useful for making calculations (e.g. of the capacity of an energy store), and it
is likely that this will be true also in the economic contexts. Note, though, that no new principle is being invoked
here, over and above the operation of the second law.

A key issue in this idealized world of exchange economies (and one relevant to real-world economic policy)
is the impact of trade barriers on gains of trade. Suppose that the barriers are sufficiently sparse that, for all
goods, Gi and all pairs of economies, Ej , Ek, there is possible sequence of allowable bilateral trades (possibly via
intermediate economies) by which a Gi in Ej can be exchanged for money in the Ek and vice versa. We suppose
also that money can flow from any economy to any other (possibly via intermediate economies). This will be
sufficient to ensure that the system of economies reaches equilibrium prices and temperature. This will be the
same equilibrium as if there were no barriers in place, and the gains of trade are unaffected. We consider a weaker
form of trade barrier, in the form of tariffs, below.

Let us compute the maximum profit that a trader can make from the two Cobb-Douglas economies of Figure 2
without decreasing the entropy of either economy. Maximum profit is made by restricting to no change in either
entropy S1, S2. Then this is a curve on the boundary of the accessible region. See Figure 8. The maximum
profit is given by the tangency of this curve to a plane M1 +M2 = cst. A computation with Lagrange multipliers
(allowing different exponents αi and ηi) yields the tangency at the state with

G1 =
α1M1/η1

α1M1/η1 + α2M2/η2
G, Gα1

1 Mη1
1 = eS1/N1 , and (G−G1)α1Mη2

2 = eS2/N2 .

This does not have an explicit solution (M1,M2), but the trader’s profit is given by the difference between the
initial and final M1 +M2.

39Comparing with physics, this is analogous to finding a way of generating energy “for free,” thus violating the conservation of energy.
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Figure 8: The intersection of surfaces of constant entropy for the two economies. It lies in the surface of constant
total entropy shown in Figure 2.

In the case that economy A is large compared to B, the maximum profit (not respecting non-decrease of entropy
in either economy) that can be made is, as noted above, given by the ‘exergy’ of B relative to the temperature
and value for A:

W = MB −Me
B − TA(SB − SeB) + µA(GB −GeB),

where superscript e denote the values if TB = TA and µB = µA. But again, the entropy of one of A and B will
decrease, because the total entropy remains constant for maximum extraction of money.

For two economies of general sizes, the trader makes maximum profit by conserving total entropy while
extracting money to bring the pair to a state of equal temperatures and prices, where they can be merged. As
an example, for two Cobb-Douglas economies with the same exponents α and η, the maximum money that can
be extracted is given by minimising M1 + M2 over the surface S(M1,M2, G) = S0 shown in Figure 2, where S0

is the initial entropy. This is given by the point of contact of the tangent plane M1 +M2 = cst with the surface,
equivalently by the conditions β1 = β2 and ν1 = ν2. We can solve this even if the two economies have different
αi, ηi, as follows. Gi = piG, where pi = αiNi

α1N1+α2N2
. Mi = ηiNiT , where T denotes the final temperature, to be

determined by making S = S0. Denoting qi = ηiNi and initial values by superscript 0, we obtain

(q1 + q2) log T =
∑
i=1,2

αiNi log
G0
i

piG
+ qi log

M0
i

qi
.

Thus

T =

[ ∏
i=1,2

(
G0
i

piG

)αiNi
(
M0
i

qi

)qi] 1
q1+q2

.

The final amount of money in the system is

Mf = (q1 + q2)T =

[ ∏
i=1,2

(
G0
i

piG

)αiNi
(
M0
i

qiM̄

)qi] 1
q1+q2

M0,

where M0 = M0
1 +M0

2 and M̄ = M0/(q1 + q2). This is at most M0 and the difference is the trader’s profit.

19.4 Tariffs

The possibility that trade may not be mutually beneficial, and can reduce the economic entropy of a participating
economy, raises the question of how governments might seek to control such trade, e.g., using tariffs or subsidies.40

We introduce an unusual form of tariff to make the analysis more straightforward, which we call the reversible
tariff. If an economy A imposes a tariff τAi per unit of good Gi arriving in A, it also gives a rebate of τAi per unit
of good i leaving A. Similarly, economy B will apply a reversible tariff of τBi per unit of good Gi. This means
that the amount of revenue collected depends only on the change of distribution of goods before and after trade
occurs. The tariffs may be negative, i.e. subsidies for import.

40Of course, the government might also imposes tariffs or quotas in response to special interests or simply to raise revenue
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If trade goes to maximum entropy (i.e. with money flows not necessarily related to purchases), then the
equilibrium after trade is that the value of one � will be the same in both economies and prices including the
tariff will be equal in both economies, so that for each good i: µAi + τAi = µBi + τBi .41

The revenue raised (or subsidy paid, if negative) by each government depends on the volumes ∆Gi of goods
of type i that have moved from economy A to B, and the imposed tariffs. Explicitly, the revenues RA, RB raised
by the governments of A,B, respectively, are

RA = −
∑
i

∆Giτ
A
i , RB =

∑
i

∆Giτ
B
i .

One could ask what is the optimal set of tariffs for a government. One objective is for the government to
maximise the entropy of its own economy, assuming that the tariffs imposed by other governments are either
absent or have some fixed value. Such tariffs may, of course, be to the detriment of other economies with which
trade is being conducted. It is also interesting to consider the strategic setting in which multiple governments each
set tariffs to maximize the entropy of their own economies, in the light of the tariffs of the others—which is likely
to require a game-theoretic analysis. A further interesting variation is where the government aims to maximize
the entropy of its economy, while raising some required amount of revenue. The latter question relates, of course,
to the problem of optimal taxation, where a government wants to raise some amount tax while minimising the
reduction in entropy of its economy.42 Such questions have, of course, been subject to extensive analysis using
standard economics (e.g., [Ram]), and it will be interesting to explore them in the present framework. We leave
these topics for future study.

19.5 Trade frictions

In reality, trade involves irreversible costs, for example, for transport of goods or money-transfer fees. The
corresponding money goes to agents in one or both economies or to an external trader. This implies that MB
trade requires a sufficient gap between the prices to cover the costs. It also implies a reduction in the amount of
money that an external trader can make from facilitating trade.

Irreversible effects also occur when large trades are made. For example, the prices an external trader proposes to
two economies for a large quantity of goods have to be different from the market prices, which are for infinitesimal
amounts of good. By convexity, the trader makes at most as much money as by slow continuous trading, and
typically strictly less money.

20 Relations between partial derivatives: analogues of principles
of Le Chatelier, Hotelling, Slutsky and more

A central theme of Samuelson’s Nobel Lecture [S72] is the power of explanation based on maximization in eco-
nomics. Contrasting his viewpoint with what he considers vague appeals to optimization or rationality in other
social sciences, he highlights that it has been possible to find testable, quantifiable relationships from the assump-
tion that economic agents are maximizers. His examples focus on individual economic agents as maximizers.

In the light of the second law of thermoeconomics, the present analysis allows all of those relations (and more)
to be derived at the level of whole economies, where what is maximized is entropy/aggregate utility. We outline
these results here, with a variety of natural extensions. As we noted in Section 2, Samuelson was sceptical of any
analogue of entropy to be maximized by the economy as a whole; but it turns out that the maximization analysis
that Samuelson provided at the level of individual agents can be extended in this way. Specifically, here we explore
the consequences of existence and concavity of aggregate utility S on partial derivatives. In economics the partial
derivatives most commonly studied are “elasticities”: change in demand for a change in price, but we consider it
more appropriate to treat the inverse matrix, change in price for a change in amounts, known as “flexibilities”
(and are not alone in this [Hou]).

First, we show that the concavity of the entropy (aggregate utility) function leads to non-positivity of many
partial derivatives, and signs for other suitable combinations of them. These are analogous to Le Chatelier’s
principle in physics, that the response to an external change is to oppose the change. They are also analogous
to results obtained by Samuelson for the effects of prices on demands, but our results are for an economy in
aggregate, rather than a single agent.

Second, the symmetry of second partial derivatives leads to relations between various first partial derivatives.
In thermodynamics, these are known as Maxwell relations. In economics, similar symmetries of cross-elasticities

41To prove this, write the changes in money in A and B as dMA = −τAdGAB − dMAB and dMB = τBdGAB + dMAB , where dGAB
and dMAB are the amounts of goods and money moved from A to B (with sign), and for notational simplicity we suppose a single type
of good. Then dS = βA(−τAdGAB − dMAB)− νAdGAB + βB(τBdGAB + dMAB + νBdGAB . Taking the variation with respect to MAB

yields βA = βB . Taking the variation with respect to GAB yields βAτA − βBτB + νA − νB = 0. Using βA = βB leads to the result.
42In our exchange economy, the most natural tax is applied to the stock of goods, and we can ask how to determine the optimal tax

rates across the different types of good.
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follow from existence of a utility function, which Samuelson called the Hotelling conditions [Hot] (though they
appear to go back to Slutsky [Sl15]). Again, however, the Hotelling conditions apply to individual agents (or
firms), whereas our relations apply at the level of the macro-economy.43

Third, we derive relations between partial derivatives holding different variables constant. These are analo-
gous to Slutsky’s equation relating compensated to uncompensated demand, and to Samuelson’s extension of Le
Chatelier’s principle.

In the following subsections, we treat these three aspects, and make some additional remarks about symplectic
structure and areas.

20.1 Non-positivity results

We begin with the dependence of values of goods on their quantities. Recall that the values νi for goods of type
i are defined by νi = ∂S

∂Gi
(including that for money, which we denote by β). The value for a good quantifies the

marginal utility for one unit of the good. It follows from concavity of S that

∂νi
∂Gi

≤ 0. (7)

It says that the value for a type of good decreases (strictly speaking, does not increase, but we will not always
repeat this for simplicity) if the amount of the good is increased. For money, this gives ∂β

∂M
≤ 0, which says the

marginal utility of money decreases if the amount of money increases. We have already seen in Section 13 that
this can be rewritten as non-negativity of money capacity, C = ∂T

∂M
≥ 0, because the economic temperature T is

the reciprocal of β.
These results extend to any principal minor of the second derivative of the entropy (namely, minors of odd

order are less than or equal to zero, those of even order are greater than or equal to zero). Thus, for example, for
a single type of good,

∂β

∂M

∂ν

∂G
≥
(
∂β

∂G

)2

. (8)

The results of the last two paragraphs can be classed as examples of Le Chatelier’s principle. Originally
formulated for physical systems, it says that in response to an external change, a system adjusts to counter-act
the change. Samuelson derived such relations for a profit-making monopolist [S72], considering prices as external
and the amount of goods bought as response, and then went on to derive refinements, which we’ll mention below.
Our relations are for macro-economies and we consider amounts of goods as the external variables and the values
as responses (which seems reasonable given that at a macro level prices can respond rapidly but volumes of goods
changes only slowly), but if the entropy is strongly concave (i.e. its second derivative is negative-definite) then
one can invert the second derivative and the inverse is also negative-definite.

We next extend this result to prices instead of values. To interpret (7) for a good other than money, recall
that the values νi determine prices µi by µi = νi/β. So for a good other than money the inequality can be written
as

µi
∂β

∂Gi
+ β

∂µi
∂Gi

≤ 0.

It is conventional in economics to think about “demand” as a function of prices, i.e., to ask how the amount of goods
possessed by an agent depends on prices. As we are considering a whole economy, where prices are determined
endogenously, here it is more natural to consider how prices depend on amounts of goods. Nevertheless, if
invertible, one can invert matrices of partial derivatives to deduce how amounts of goods depend on prices.

Extending the consequences of concavity a further, we consider infinitesimal variation of any combination
of goods and money. Since νi = ∂S

∂Gi
(i including money here), the infinitesimal change δνi is given by δνi =∑

j
∂2S

∂Gi∂Gj
δGj . From concavity of S we deduce that∑

i

δνi δGi ≤ 0. (9)

This equation has the units of entropy and it includes a term δβ δM (because, for these purposes, money is just
one more good). This is analogous to the formula Samuelson obtained thanks to the lectures by Wilson, mentioned
in Section 2 [S72], but again for a whole economy rather than a single agent, and for prices rather than values (he
was treating a revenue function rather than our entropy). It has the advantage that it expresses the relation in a
way that treats values and amounts of goods symmetrically.

Converting (9) from values to prices for goods other than money by δνi = β δµi + µiδβ, we obtain

δβ(δM +
∑
i 6=M

µiδGi) + β
∑
i6=M

δµi δGi ≤ 0.

43This parallel between Maxwell and Slutsky’s results has been noted in the context of individual agents, e.g., [S72].
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This can be rewritten as ∑
i 6=M

δµi δGi ≤
δT

T
(δM +

∑
i 6=M

µiδGi).

The expression in parentheses is the monetary value of the infinitesimal change. If the changes are made at market
prices then it is zero, so in this case we deduce that∑

i6=M

δµi δGi ≤ 0, (10)

just as Samuelson’s formula.
We discuss possible significance of equation (10). It is relevant to the question of motion on isentropes of a

system, at market prices. In this case, the inequality becomes an equality, because the lefthand side is the second
variation of the entropy. In the language of symplectic geometry, we deduce that the isentrope in the space of
(µi, Gi) is a Lagrangian submanifold:

∑
i dµi ∧ dGi = 0 on tangents to the isentrope. One way to say what this

means is that the amount of money one can extract by moving along it is independent of path (which we touched
on earlier in our discussion of gains of trade in Section 19.3). This is because dM = −

∑
µidGi. This view takes

ideas of Samuelson from micro-economics that have been developed by Russell and Cooper [Ru, CR01, CR11],
to macro-economics. It may be particularly relevant for a multi-part economy, where moving along an isentrope
could correspond to reversible trade or the (infinitesimally) slow flow of money from one economy to another.

20.2 Symmetry results

Let us now consider the consequences of the symmetry of second derivatives. For example, β = ∂S
∂M |G

and

(considering just a single other good, for notational simplicity) ν = ∂S
∂G |M

, so

∂β

∂G |M
=

∂ν

∂M |G
. (11)

Using β = 1
T

, µ = ν
β

and C = ∂M
∂T |G

, this can be written as

∂T

∂G |M
=
µ

C
− T ∂µ

∂M |G
,

which is non-trivial and testable. It relates inflation (the increase in the temperature T ), on introducing more of
a good, to the market price, the money capacity and the change in the market price on introducing more money.
An interesting question is whether one can say something about its sign. If a good is desirable (µ > 0) one might
expect its price to go up if more money is added to the economy; but this would still not settle the sign of ∂T

∂G |M
.

It is plausible that if a good is desirable, then when more is added to an economy, its price will go down—which
will drag down all prices to stay in equilibrium, so money becomes more valuable, i.e., T goes down: ∂T

∂G |M
≤ 0;

but it is not clear that this is always right. We think one could make examples with either sign. We already have
examples where it is zero (our toy economy or indeed any economy with pure money). The only constraint we
see is (8).

Similarly, one can consider the effect on the temperature of changing the amount of a good by purchase at the
market price. We denote such a derivative by

d

dG
=

∂

∂G
− µ ∂

∂M
(12)

(called a “compensated” derivative in economics, and derivative at constant entropy in physics). From dβ
dG

=
∂β
∂G
− µ ∂β

∂M
, µ = ν/β, β = 1/T and (11), we obtain

dT

dG
= −T ∂µ

∂M
.

Intuitively again for a desirable good, the righthand side looks negative (if we add more money to an economy but
keep the amounts of goods fixed, we might expect prices to increase). We can prove this if money is pure: using

µ = ν/β, we deduce ∂µ
∂M

= T ( ∂2S
∂M∂G

− µ ∂β
∂M

). For pure money the mixed second derivative is zero. Concavity

of entropy implies that ∂β
∂M
≤ 0. So we would deduce that purchase of new goods is deflationary. On the other

hand, it might be that the good is substitutable for money but people prefer money, in which case the price of
the good might go down if money increases. Thus we can not in general deduce a sign for dT

dG
. Rather fancifully,

we can imagine a prison economy in which the supply of currency, Au, is drastically restricted, and people trade
primarily with, say, matchsticks. If aurums are allowed to flow into the prison, then matchsticks may no longer be
used for trading at all, and their value may collapse to be close to zero. In such circumstances, it may be possible
that the price of matchsticks, measured in Au, may actually fall when more money is added to the economy.
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As another example of consequences of symmetry of second derivatives, we obtain the identity

∂µ

∂T |G
=
∂S

∂G |T
,

where the amount of money is allowed to change to accommodate the indicated variations. The proof is to write
d(TS −M) = S dT + µ dG, and use symmetry of the second derivatives of TS −M .44 This identity tells us that
the marginal change in price of a good, given a change in financial “temperature” (fixing the amount of the good),
is the same as the marginal change in the aggregate utility, given a change in the amount of that good (fixing the
value of money). One can extend this to multiple types of good, obtaining symmetry of the derivatives ∂µi

∂Gj |T
.

Next we consider the changes in prices resulting from purchases of goods, possibly of a different type. Suppose
an additional quantity of goods of type j is bought by the economy from elsewhere at market price. How much
does the market price of type i of good change? This means we want to know the “flexibilities”

Mij =
dµi
dGj

=

(
∂

∂Gj
− µj

∂

∂M

)
µi, (13)

using the above compensated derivatives. This is a variant of the Slutsky equation, which normally describes the
effect on demand of a change in prices, taking into account the concomitant change in money, but here we are
considering the effect on prices of a change in amounts of goods. Using µi = νi/β, νi = ∂S

∂Gi
, β = ∂S

∂M
, after some

manipulations we obtain

βMij =
∂2S

∂Gj∂Gi
− ∂

∂M

(
νiνj
β

)
. (14)

We see that this is symmetric in i and j.
One may also ask about the sign of the diagonal components of M. They are non-positive, because for i = j

the right hand side of (14) can be written (suppressing the indices) as

[
1 −µ

] [ ∂2S
∂G2

∂2S
∂G∂M

∂2S
∂M∂G

∂2S
∂M2

] [
1
−µ

]
≤ 0, (15)

by concavity of S. Thus ∂µ
∂G |S

is T times this and so is non-positive.

Furthermore, we deduce that the flexibility matrixM is negative semi-definite, because for any vector x with
coordinates corresponding to types of goods,

β xTMx =
[
xT −x · µ

] [
D2S

] [ x
−x · µ

]
≤ 0, (16)

where D2S is the matrix of second derivatives including with respect to money as the last coordinate.
These observations are reminiscent of some standard results in economics. Firstly, for a profit-maximiser who

chooses prices as a function of demands for goods, the flexibilities are shown to form a symmetric negative semi-
definite matrix, just as we have obtained here for how prices respond to amounts of goods in a macro-economy.
Secondly, for a utility-maximising agent, where prices are considered as independent variables and demands as
responses, the elasticities (derivatives of demands with respect to prices) are shown to form a symmetric negative
semi-definite matrix. We will derive the analogue of the second result for a macro-economy next under a non-
degeneracy condition.

If S is strongly concave (D2S invertible) then for x 6= 0 we obtain strict inequality in (16). Furthermore, we
obtain that M is invertible and its inverse M−1 is negative-definite. M−1 describes how amounts of goods in
an economy depend on prices. In particular, the cross-elasticities are symmetric and the diagonal components of
M−1 are negative.

The use of the above assumption of strong concavity raises the question of whether there is an economic
analogue of the phase transitions that are so important in physics, where a continuous change in parameters
of a system leads to an abrupt change in its properties (e.g., the cooling of water leading it to turn into ice).
Phase transitions will occur where S is not strictly concave. If the quantity of goods is in an interval of non-
strict concavity then the population may partition into one fraction with average goods per agent at one end of
the interval and another fraction with average goods per agent at the other end (by analogy with liquid/vapour
coexistence in chemistry). Exploring this type of phenomenon in an economic context is an interesting direction
for future work. Note that the other apparent way in which phase transitions might arise, through a jump in
derivative of the entropy, is ruled out in the current model by the proof of differentiability of entropy.

44Spelling this out in more detail, we know that in general d(TS −M) = S dT + T dS + µ dG. But when trading at market prices,
entropy will be unchanged, so that dS = 0. Trading at market prices also implies that the change in money dM is precisely balanced by
the change in the quantity of the good, dG multiplied by its price µ. This gives d(TS −M) = S dT + µ dG. The first partial derivatives

are therefore:
∂(TS−M))

∂G |T
= µ and

∂(TS−M)
∂T |G

= S. Using the symmetry of second derivatives (
∂2(TS−M)
∂T∂G

=
∂2(TS−M)
∂G∂T

), gives the

required result that: ∂µ
∂T |G

= ∂S
∂G |T

.
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20.3 Partial derivatives under different constraints

Returning to the discussion of results on partial derivatives, we derive two more results analogous to a result of
Samuelson’s that he called the Le Chatelier-Samuelson principle.

The first result compares the dependence of value for a good on the amount of the good under two condi-
tions: fixed money or fixed temperature. The result is that if ∂β

∂M
6= 0 (else it might not be possible to hold

temperature fixed) then
∂ν

∂G |M
≤ ∂ν

∂G |T
≤ 0.

The proof is that fixed temperature requires 0 = dβ = ∂β
∂G
dG+ ∂β

∂M
dM (where unless indicated, partial derivatives

are at constant M or G respectively), so dM = − ∂β
∂G
/ ∂β
∂M

dG. Then

dν =
∂ν

∂G
dG+

∂ν

∂M
dM =

(
∂ν

∂G
− ∂ν

∂M

∂β

∂G
/
∂β

∂M

)
dG.

So
∂ν

∂G |T
=
∂ν

∂G
− ∂ν

∂M

∂β

∂G
/
∂β

∂M
.

The factors in the numerator of the second term on the right are equal by symmetry and the denominator is
negative. Hence ∂ν

∂G |T
≥ ∂ν

∂G |M
. But also the righthand side can be recognised as the quotient of a 2-dimensional

minor of D2S (non-negative) by ∂β
∂M

(negative), hence ∂ν
∂G |T

≤ 0.

For the second result, we consider two or more types of good and take into account changes in money required
to purchase or sell goods. As before, we consider the amounts of goods as the independent variables and the
prices as dependent. The result is that

dµ1

dG1 |G2

≤ dµ1

dG1 |µ2

≤ 0. (17)

The partial derivatives here are those that take into account compensation by the change in money, as in (13),
but holding µ2 fixed in the second instead of G2. For notational simplicity, we will indicate which variables are
held fixed only when they are not just the other goods. We assume that dµ2

dG2
6= 0 (hence negative, by (15)), else

it might not be possible to hold µ2 fixed. The proof is similar to the first result. We use dµi =
∑
j
dµi
dGj

dGj , to

show that if dµ2 = 0 then dG2 = − dµ2
dG1

/ dµ2
dG2

dG1 and then

dµ1

dG1 |µ2

=
dµ1

dG1
− dµ1

dG2

dµ2

dG1
/
dµ2

dG2
.

By symmetry of the partial derivatives, the numerator in the second term is non-negative, and by negativity of
the denominator we deduce the first inequality in (17). The second inequality comes by recognising the righthand
side as the quotient of a 2-dimensional minor of M by dµ2

dG2
.

Samuelson (and commentators such as [MR]) frame discussion of his relations in terms of short- and long-term,
but they seem to us to depend simply on whether goods or prices are held fixed.

Note that many of these cross-relations simplify if money is pure (in the sense of Section 15). In particular,
all the cross-derivatives between money and goods are zero. In more detail, if money is pure, one observation is
that T = M/K and so the money capacity C = K. Another is that the compensated derivative dT

dG
= −Cµ. A

third is that in the Le Chatelier-Samuelson principle, ∂ν
∂G |T

= ∂ν
∂G |M

.

There is a further economic consequence that follows nicely in the present thermoeconomic account—perhaps
not surprisingly, as Samuelson derived it by analogy with thermodynamic considerations. In his Nobel lecture, he
notes “While reading Clerk Maxwell’s charming introduction to thermodynamics..., I found that his explanation
of the existence of the same absolute temperature scale in every body could be true only if on the p− v diagram
that I earlier referred to in connection with LeChatelier’s Principle, the two families of curves—steep and light
or less-steep and heavy—formed parallelograms like a, b, c, d in Figure 2 which everywhere have the property
that Area a/Area b = Area c/Area d. And so it is with the two different economic curves. It is a consequence of
the Hotelling integrability conditions...” Samuelson then draws out the economic parallel: that a price change for
some good has less influence on the quantities of good held when the quantities of other goods can change (but
with fixed prices), than when the quantity of those other goods is fixed.

Samuelson applies his analysis to an individual agent: specifically a “profit maximizing monopolist” who
adjusts the inputs required in production. In our account, as usual, we instead focus on the economy as a
whole. In particular, we consider Carnot cycles running around the periphery of the areas A, B, C and D which
Samuelson identifies. The amount of money that can be extracted by the trader in one turn of the Carnot
cycle is represented by the area

∫
PdV of the region whose boundary is enclosed by the path. Replotting in TS

coordinates, the Carnot cycle now corresponds to running round the sides of rectangles of a grid. The areas are
preserved in the re-plotting. That is, in TS coordinates the amount of money extracted by the trader by going
round the Carnot cycle is represented by the area

∫
TdS: i.e., AreaA = Area′A, AreaB = Area′B , etc. In the
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TS plot, it is immediately clear that Area′A/Area
′
C = Area′B/Area

′
D, hence giving Samuelson’s result for PV

coordinates: AreaA/AreaC = AreaB/AreaD. See Figure 9. Note, again, that while Samuelson’s result applies
only for an individual maximizing agent, the present result holds for the economy as a whole.

Figure 9: Relationship between volume (quantity of goods) and price, with changes at a constant temperature
(light lines) and entropy (heavy lines). The same graph replotted in temperature-entropy coordinates, so that
the changes move the system along the lines of a grid. The amount of money that the trader can extract by
reversibly running a Carnot cycle along these areas is

∫
PdV =

∫
TdS—thus the areas A, B, C and D are the

same as the corresponding areas A′, B′, C′ and D′. The equal area rule clearly applies to the areas on the grid
in TS coordinates, and hence in the original PV coordinates in Samuelson’s discussion.

21 Further considerations for exchange economies

Here we raise some further aspects of exchange economies that seem natural topics for future work extending the
thermoeconomic framework.

21.1 More than one currency

We have so far restricted ourselves to considering a single currency, the Aurum Au. How can the thermoeconomic
approach be extended to deal with multiple currencies, either within a single economy or between economies?

There are various cases in which multiple currencies are used in a single economy, e.g. in the long and contro-
versial history of “bimetallism” in Europe, the U.S. and elsewhere, where two forms of money, typically silver and
gold, are used in parallel (see [Fay]), and in the recent proliferation of cryptocurrencies, though these are only
rarely used for trading.45 In the thermoeconomic framework, we can simply view the currencies as different forms
of good. Then as with any other goods there will be a market exchange rate, generalising the notion of market
price, as in Section 14. This is the exchange rate that if posted by an external trader would lead to no nett flow
of either currency to or from the trader.46

The market exchange rate between two currencies within an economy will change depending on the quantities
available—for example, the discovery of large new silver deposits would tend to lower the value of silver currency
in relation to gold. The case in which an economy has two forms of pure money is particularly easy to analyze.
Then S = k1 logM1 +k2 logM2 +F (G), for some constants k1, k2 and function F of amounts G of all other goods.
It follows that the price µi of a good using currency i is νMi

ki
. So if the amounts of the two currencies are fixed,

the ratio µ1/µ2 of prices for a given good is constant (M1k2
M2k1

).
In the second context, where two economies use different currencies but currency flow between economies is

allowed, then currency exchange is a special case of trade, in which economy A can only buy goods in economy
B in two steps: first exchanging currency A currency for currency B, and then using currency B to purchase the
good. Thus, the currencies play a key intermediary role in trade. When two or more economies with different
currencies are in equilibrium, the prices of goods will be the same in all economies (taking account of any tariffs,
as above) up to a scale-factor depending on the exchange rates between those currencies. The market exchange
rate between economies will such that rate there is no nett flow of currency between economies. These conclusions

45Although bitcoin has been made legal tender in El Salvador: https://www.bbc.co.uk/news/world-latin-america-57398274
46In practice, of course, bimetallism typically involved the government setting a fixed exchange rate between gold and silver.
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follow directly from the analysis of trade outlined above: while we discussed trade above in the context of a single
common currency, but that was not really necessary (indeed, the analysis of trade still applies where one allows
exchanges of bundles of goods that do not involve any currency). We leave the extension of this type of analysis
to more complex cases, including the impact of fixed exchange, currency controls, and so on for future work.

A further direction to explore systematically is the impact of the choice of the goods or goods that are
treated as currencies. We noted in Section 9 that entropy does not depend on the choice of numeraire, but
other economically relevant quantities, such as temperature and of course prices, will do so. Moreover, if we take
“frictions” in exchange seriously (which will make perfectly reversible trades impossible) then it is interesting to
ask how (and to what extent) the existence of money reduces these frictions, which may in turn throw light on
which numeraires are “good” choices to serve as currency. Another direction for future work is to consider the
economic significance of different forms of money, from commodity money such as gold or silver, to paper money
and purely digital currencies; and the impact of IOUs, cheques, the existence of credit, and so on. These and
related questions appear tractable within a thermoeconomic framework, but the details remain to be worked out.

21.2 Spatial inhomogeneity

An important feature of real economic systems is that they are geographically and sociologically inhomogeneous.
How does this affect temperature and prices? According to our theory, if in equilibrium then temperature and
prices should not depend on position in the economy. But let’s compare with physics. For an atmosphere in a
gravitational field, if it is in equilibrium (in particular, with no input or output fluxes of radiation) then indeed the
temperature becomes constant. But the pressure p does not. Instead it is p+ gρh that becomes constant (where
ρ is the density, g the gravitational field and h the height). So do prices require some analogous correction?

21.3 Heat and work

In thermodynamics the distinction between heat and work is usually important. Is there an analogue in economics?
It seems that money transfer for goods at market prices should qualify as work and any other money transfer as
heat. Concretely, dM = T dS + µdG for quasi-static changes. So sale of goods at market price can be regarded
as work µdG done on the system and all other money flow T dS as heat flow into the system.

Heat flow and work have different consequences. Work is that component of the trade or other interaction that
is reversible: it moves the system on an isentrope, and thus leaves the aggregate utility of the system unchanged.
Moving the system isentropically will, though, typically involve the system losing or gaining money, which may
be captured, or provided, by some external system, such as our trader. By contrast, “heat flow” into a system
is not reversible: the system moves to a state with higher entropy, i.e., moving to a new isentrope, with higher
aggregate utility.

Thus, in the context of trade between two economies, we can see the gains of trade being split, in some
proportions, between the trader (or, more generally, any intermediary or system of intermediaries as a real
economy with importers, wholesalers, retailers and so on) (work) and the agents in the economies (heat flow). At
one extreme, the trader trades slowly at market prices and captures all the gains of trade; at the other extreme,
there is a free-for-all of direct exchange, leading to new equilibrium prices, and the entire gains of trade are
assimilated as “heat flow” by the agents in the economy itself (where the amount gained depends purely on the
final equilibrium, and not the path by which it is reached).

21.4 Free energy

As touched on in Section 19.3, it is common in physical thermodynamics to consider systems in thermal equilibrium
at a temperature T , and then to replace the principle of non-decrease of entropy S by that of non-increase of free
energy F = E − TS. If a network of economies is in financial equilibrium, as one could presume is the case for
those with no currency controls, then our theory would give the same temperature (fluxes of inputs and outputs
are neglected here). It then becomes natural to consider the global economy to be at a given temperature and
individual economies are then more simply described by F = M − TS, considered as a function of T and G. The
principle of maximising entropy is replaced by minimising F . Similarly, if goods were freely traded, one could
expect a common price, and it becomes simpler to minimise M − TS + µG as a function of T and µ. From this
perspective, an economy whose free energy can be reduced is one that can effect useful changes.

While notions of free energy, exergy and their generalizations may be useful for analyzing special cases in
economics, it is likely to be more useful in general just to look at potential increases in entropy. For a single
economy at equilibrium, of course, it is already at maximum entropy and no increases are possible. But for a
composite economy, one can look at the possible increases, as discussed in Section 19.
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21.5 Entropy as liberty

John Stuart Mill’s great works of political philosophy, On Liberty [MillL] and Utilitarianism [MillU], attempt
to promote the idea that a free society, where liberty is maximized, will also maximize welfare.47 But the link
between maximizing liberty and welfare has been controversial ever since.

The thermoeconomic framework provides a potentially interesting perspective on the relation between ideas of
utility and liberty, by drawing a parallel with the “macro” interpretation of entropy of classical thermodynamics
and the “micro” interpretation of entropy provided by statistical mechanics. In statistical mechanics, entropy gains
a concrete interpretation as the logarithm of the available volume corresponding to given macro-state. Volume
is measured using Liouville measure in phase space [Set] or its quantum analogue (commonly done by counting
eigenstates, but more generally by using Fubini-Study metric [BH]). Is there an interpretation of economic entropy
as the logarithm of the available volume of a macro-state? This would connect to ideas of maximising liberty: the
volume at the “micro-level” associated with a macro-state corresponds, intuitively, to the number of different
micro-states are compatible with that macro-state. Thus, higher entropy macro-states impose fewer constraints
at the micro-level, leaving economic agents greater “freedom of choice.”

For the toy economy of Section 10, the natural notion of volume is the normalisation constant Z. To leading
order in N , the logarithm of Z depends on G and M as N logGαMη, so indeed the entropy corresponds to
logarithm of available volume. If a scale for entropy can be chosen so that it is logarithm of available volume then
the fluctuation formulae from statistical mechanics carry over (mentioned in Section 16). In the simple context
of an exchange economy, maximizing liberty is maximizing the number of ways of in which goods and money
can be distributed across agents. For example, if we have two economies, A with only apples and money, and B
the other with bananas and money, and then allow them to trade, then the volume of possible stocks of goods
increases—each agent in both A and B is now “free” to have non-zero stocks of apples, bananas and money. Thus,
allowing trade can be viewed as increasing the liberty of agents, and this remains true independent of the details
of the preference or decision-making mechanisms of those agents. Indeed, increasing liberty might be viewed as a
virtue of trade, and indeed markets more generally, irrespective of whether agents have coherent preferences (and
hence well-defined utility functions at the level of individual agents).

There is a potentially interesting parallel with Sugden’s [Su04] opportunity criterion defence of the market. He
argues that the virtue of markets in an exchange economy such as we have described here is that they maximize
the possible alternative bundles of goods that an agent can hold in exchange for their current bundle. This
is very close to the present perspective. Sugden is considering maximizing the number of potential exchanges
for each agent, using deterministic agents in a competitive equilibrium. By contrast, the statistical mechanics
viewpoint sketched here considers the volume of states generated by actual exchanges in statistical equilibrium
considering the economy as a whole. We leave exploring potential links for future work, but note that the present
approach potentially yields an “opportunity criterion” justification not just for individual markets but for any
entropy-increasing transition. That is, certain types of economic processes (e.g., trade, financial contact) may
be justified on the grounds that they lead to increased “opportunity sets” for consumers, in the terminology of
[Su04]. This analysis may also help clarify the alignments, and divergences, between the utilitarian and liberal
political objectives that trace back to Mill.48

21.6 Migration

We have considered each economy as consisting of a fixed number of agents. But suppose we allow them to move
between economies. An immediate question is how to define a reversible change, which would thus leave entropy
unchanged. A natural approach is for our trader to mediate, as before, but now charging people entry when
moving from one country to another (the charge could be negative, incentivising people to move to a country).
The trader would the extract money from a system of several countries by facilitating “migratory contact” between
economies, and extracting the maximum possible amount of money by slowly reducing the charge until there is no
nett flow of people. The process could then be reversed by the trader slowly levying the same charges, but with
opposite sign. The “gain of trade” extracted by the trader will behave as gains of trade when goods are exchanged,
i.e., depending purely on the initial and final state. That is, that the amount of profit the trader can extract will
be independent of the order in which migrations occur. Moreover, when there is free movement of people, and thus
no charge from the trader, the entropy of the system will increase (not necessarily to the mutual benefit of each
economy). There will, of course, be interesting interactions between migrations of people and flows of money and
exchanges of goods. So, for example, suppose that the distribution of preferences might differ across economies,
such that in economy 1 people mostly prefer apples to bananas but the opposite in the otherwise identical economy
2. Then we should expect a mutually beneficial exchange of apples and bananas between the economies (which
could be used to harness a gain of trade, by our trader). But alternatively, if migration is allowed, some people

47The welfare theorems of conventional economics take a step in this direction, if we assume that competitive equilibria are the result
of maximally free choice in trading of goods and a Pareto optimum is at least a local optimum in utility for individual agents (though
not necessarily for their summed utilities).

48Connections can also be made with “future state maximisation” models of control process underlying animal collective behaviour, as
outlined in [CT], according to which each animal acts to maximize the variety of its possible future sensory states.
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might leave economy 1 for economy 2 (attracted by the availability of bananas), while people might move from
economy 2 to economy 1 (attracted by the availability of apples). Here trade and migration are, to an extent,
substitutes. With sufficient migration before trading begins, the difference in tastes between the economies could
be eliminated entirely (perhaps generated a large profit for the trader in the process); but if so there will be no
further nett trade (and no gains of trade for the trader to exploit). Conversely, sufficient trade will equalize the
prevalence and prices of apples and bananas in each economy, reducing or eliminating the incentive to migrate.
Clearly any mix of trade and migration is possible—and the gains of trade (and, relatedly, the entropy gain for
the pair of economies as a whole) will depend only on the final state (the stock of people, money and goods in the
economies), and will be independent of the path by which this state is achieved (e.g., migration first, then trade;
the opposite; or any other variation).

We leave further exploration of migration to future work, including the crucial question of taking account of
the “frictions” involved. Note, though, that it is possible to make progress (e.g., establishing the aggregate utility
increase arising from the movement of people, in this idealized setting) without needing to make microfoundational
assumptions about the distribution of preferences, or decision-making procedures, of individual agents.

21.7 Non-extensivity

We made explicit in Section 8 that the present analysis assumes scaling symmetry—i.e., that economies can be
divided into identical copies with the same properties apart from scale. It seems unlikely that this is a good
approximation. For example, as we noted earlier, economies will contain organizations at many scales, and some
industries will not be viable at a small scale. Nonetheless, there are robust power-law scaling laws throughout
many aspects of the economy [Gab], so it is possible that a more general notion of entropy, such as Tsallis entropies,
can be applied [Ts]. Recent work in non-extensive statistical mechanics (e.g. the special issue [B+]) may provide
a useful starting point.

21.8 Externalities

A particularly important application of the framework will be to consider externalities, where (in our simple
exchange economy) the goods held by an agent affect not only that agent’s welfare, but indirectly affect the
welfare of others (either positively or negatively). So, for example, we might imagine an economy of leisure
activities around a small lake, where people can buy and sell fishing rods among other things. But buying (and,
presumably using) a fishing rod will reduce the utility of fishing for others, by reducing the number of fish for
them to catch. The trader can slowly and hence reversibly sell fishing rods to the lakeside economy until the price
of a fishing rod is near zero49. At this point there are almost no fish and almost no utility to be gained from
owning a fishing rod.

Thus, when fishing rods are few, a subset of people enjoy fishing (so that the summed utility for fishers may be
large); but when the number of fishing rods is high, the summed utility for fishers may be much lower. Thus, the
existence of externalities breaks the relationship between entropy and “utility” in any sense relevant to the welfare
of individual agents. This is analogous to the breakdown of the welfare theorems in conventional microeconomics.
The connection between the equililbrium outcomes of a competitive market and Pareto optimality requires that
there are no externalities, and does not hold otherwise.

Following conventional economic analysis, we can address the problem of externalities in our lakeside economy
by, for example, having a market for a fixed number of fishing permits (a “cap and trade” scheme), or simply
fixing the number of fishing rods, so that voluntary exchanges involving fishing rods no longer harms other agents.
Notice that the present approach still provides a potential route to analyse whether one set of rules in an economy
is “better” than another, without having to measure and sum the utilities of individual agents. Specifically, we
can make clones of our lakeside economy, each governed by different rules; and then put these in contact and ask
about the direction of the flow money when the clones are put in financial contact50. A natural assumption is
that money will flow to the clone with the “best” set of rules—which imply that an economy with such a set of
rules would have a lower temperature (and thus that the marginal utility of money will be greater). We leave this
and related cases (e.g., dealing with positive externalities) for future work.

We see the fact that the thermoeconomic framework applies straightforwardly in the context of externalities
as a significant strength: economies will be governed by the second law whether there are externalities or not. All
that changes is the interpretation of entropy as corresponding to aggregate welfare. Indeed, by operating at the
macro-level, the thermoeconomic approach, and the second law in particular, applies irrespective of the micro-
foundations concerning agents and their interactions, so long as the macro-level axioms hold. So, for example,
there are no requirements that agents make decisions based on consulting a utility function of any form, that
their preferences are transitive or complete, and so on. Moreover, an agent’s utility (if it has one) and behaviour

49Reversibility assumes, perhaps implausibly, that fish stocks would fully recover as the number of fishing rods reduces—though the
assumption is perhaps less implausible if we recall that reversible trades are required to be arbitrarily slow

50or indeed migration of people, if we include this in our analysis.
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may depend in complex ways on the utilities and behaviours of other agents [FF]51 or on comparisons with the
agent’s own prior or current experience [Vl]. Different microfoundations will, of course, change the properties of
the entropy function, just as in physics where different microscopic properties of a gas (for example, whether it
approximates an ideal gas in which molecules do not interact or whether the gas molecules are subject to van
der Waals forces) determine the entropy function. Crucially, though, the macro-level analysis can proceed and
macroscopic quantities such as prices, temperature and entropy can be measured, even when the microfoundations
are not known or are too complex to model.

22 Beyond exchange economies

We have developed our theory in the context of exchange economies. But this leaves out many features of real
economic systems. Here we sketch some possible future developments. We are optimistic that prior applications
of thermodynamics, which has been extended to deal with many complex processes ranging across physics, chem-
istry, atmospheric sciences, physiology, and ecology, may provide powerful tools and analogues in providing such
extensions.

A key feature of real economies is that some goods are produced and some are consumed. So, for example,
crops grow, and food is consumed. Also, money is printed by central banks. Thus it will be important to
extend thermoeconomics allow fluxes of goods and money into and out of a system. This appears to pose no
in-principle difficulties—indeed, it is a standard situation in physical thermodynamics, called non-equilibrium
thermodynamics. For small deviations from equilibrium it still produces a steady state, which to leading order
minimises the rate of entropy production, but for larger deviations it can produce time-dependent states, such as
cycles.

Another key feature of real economies is that goods are processed and combined to make other goods. To
include manufacture is a relatively simple extension from exchange economies. A combination of goods is put
together in some way to produce a new sort of good. Manufacturing bears strong resemblance to chemical reactions,
so we might expect to be able to carry over many results from chemical thermodynamics, which studies, among
other things, which reactions will spontaneously occur, and which cannot, because they would lead to decreasing
entropy. Chemical thermodynamics can treat cascade reactions, where the products of one reaction then drive
another; and competition for inputs between different reactions. These all seem to have natural analogues when
considering networks of manufacturing processes which may compete with, and feed into, one another.

Chemical reactions are typically assumed to be reversible, at least in principle. For example, the energy
released when chemical bonds are formed is assumed precisely to balance the amount of energy required to break
those bonds—so that both matter and energy are perfectly conserved. This might appear to contrast with the
economic case, where it “costs” money both to assemble a car from its component parts and to disassemble it
back into its component parts. But the contrast may be more real than apparent: energy is required (in the form
of heat) to bake a cake from flour, eggs, butter and sugar, but surely a great deal more energy is needed to go
through the extremely complex process of attempting to reconstitute the flour, eggs, butter and sugar from the
cake. Un-baking a cake no more releases energy than dismantling a car releases money.

We see a close analogy between businesses and the technologies they deploy in economics and enzymes in
biochemistry. By introducing innovative processes for converting (less valuable) inputs to (more valuable) outputs,
businesses lower the cost of surmounting the barrier to making this transformation; this seems analogous to the
operation of enzymes that lower the energetic barrier (“activation energy”) required for a chemical reaction.
Biological systems involve cascades of enzyme-driven reactions of staggering complexity; and the enzymes are, of
course, themselves constructed through similarly complex processes. The emergence of complexity in biochemical
and economic systems may have interesting parallel aspects, which may potentially shed light on both.

Another direction to develop is theory for fluxes as a result of value differences. As we have seen, on putting
economies into contact, differences in values (including coolness) lead in general to flows between them. The flows
will depend on the nature of the contact. For small differences in value one can postulate a linear relation between
the value differences δν and the flows δF . In general this is given by a matrix L: δF = Lδν. The matrix can have
off-diagonal terms, e.g. a difference in coolness could drive a flow of a good different from money. This produces
entropy at rate σ =

∑
j δFjδνj = δνTLδν. In the physical context, an important observation by Onsager is that

because the total entropy can not decrease under the flows, the matrix L is symmetric and non-negative. The
same applies in economics. The significance of this result for economics needs exploring. For example, suppose
two types of good are more useful together than not, and one type can move between economies, the other not.
We suppose money can move between them also. Then if all moves that increase total entropy are permitted,
the mobile good will move to make the values for it equal, and money will move to make the temperatures equal.
Thus the prices for the mobile good will equalise. Do we get an economic analogue of osmotic pressure? One can

51Indeed, we can view the wide variety of social preferences, whether positive or negative, as particular forms of externality, and
as generating interdependencies between agents, which will not typically impact the “macro” assumptions that underpin the present
approach.
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also consider a continuum of economies, each in local thermodynamic equilibrium. Then small gradients in values
will produce fluxes.

Two key aspects of real economies which will require building on the thinking in terms of chemical reactions
and fluxes are labour and finance. Labour is, of course, fundamentally irreversible: it takes labour to make changes
and also to un-make them. Thus, a self-sustaining economic system with labour requires low entropy influxes and
high entropy outfluxes of materials, analogous to how the earth-system feeds off turning low entropy sunlight into
high entropy infrared radiation. Labour is, of course, also closely connected with the size of the population; a
more complete model will need to capture births, deaths and flows of population, as well as the process by which
people to enter or exit the labour market.

Finally, we note that questions of the capital, investment, interest rates, central banks and indeed the entire
financial system are absent from the exchange economy outlined here. Here again a perspective based on fluxes
is likely to be required.

23 Conclusion

The fundamental result of our paper is that extensive exchange economies have an entropy function that governs
the allowed changes in state on interaction between economies: they are the changes for which the total entropy
does not decrease. This is in distinction to the Pareto criterion in standard microeconomics, where the allowed
changes are those in which the utilities of neither agent decrease. Utility functions specify preferences but can not
in general be added meaningfully. In contrast, entropy can be added, thus allowing meaning to our principle that
total entropy can not decrease. One might ask how the entropy of one economy could decrease in an interaction,
but an answer is that agents can move money to the other economy where it is of more value to them, which is,
of course, a feature of the real world.

One perspective on our work is that it provides a justification for the “representative agent” of traditional
economics. In conventional economic analysis, while the objective is to understand aggregate behaviour of the
economy, the concept of utility applies primarily to individual agents. This creates a gap between macro and
micro analysis that is often fixed by postulating the existence of representative agents, with the assumption that
the behaviour of such agents should match the behaviour of the economy as a whole. In the thermoeconomic
framework, this rather convoluted line of reasoning is not needed: the whole economy behaves as if it were
maximizing a utility function and hence can be viewed as a rational utility-maximizing agent. On the other
hand, in interactions with other economies, the set of economies maximises their total utility, rather than each
attempting to maximise just its own, as mentioned above. The benefits of moving money to another economy are
not represented by the entropy of the originating economy.

Entropy leads to a variety of consequent quantities for an economy, like temperature, money capacity, market
prices, and relations between them. In particular, we introduce a notion of temperature for an economy. Tradi-
tional economics can be viewed as temperature zero. Thus, if real economies have positive temperature then we
have opened up an important new direction in economics. Some consequences are the nett direction of money
flow between economies is from hotter to cooler, the possibility of money pumps that can exploit temperature
differences or enhance them, and a definition of inflation as increase in temperature.

For a real economy, even an exchange economy, the entropy function will in general be unknown. But just as
in physics, one could try to measure it. For example, steam turbines operate on steam, which is far from an ideal
gas, but engineers use empirically-compiled steam tables to compute optimal operation. By analogy, we might
expect that a new branch of econometrics can be developed to measure temperature, money capacity, entropy
and other relevant quantities.

If permitted to exchange some types of good and/or money, nett trade can occur in any way that increases
the total entropy. This includes mutually beneficial trade, in which the entropies of all partners increase, but also
other trades where one gains and another loses entropy. Entropy allows one to compute the maximum amount of
money that a trader could make.

This paper makes only a start on the thermodynamics of economic systems. Much more can be done. In
particular, one should include production and consumption, manufacturing and recycling, enterprise, labour,
migration, births and deaths, interest rates, multiple currencies, non-extensivity, and consider the possibilities of
phase transitions and dynamical behaviour. Many of these directions reflect the fact that real economic systems
are not in equilibrium. Even if they might still be steady-state at the macro-level, they are subject to fluxes of
inputs and outputs. In the physical context, thermodynamics places limits on the rates at which processes can
occur, given the input and output fluxes (e.g. see [Kl] for the Earth system). The same can be expected to apply
to economics. Connections to recent developments in non-equilibrium thermodynamics of physical systems (e.g.,
[FE, Ma, MN]) are also likely to be relevant.

The theoretical and practical significance of thermodynamic ideas, originally developed for understanding
the efficiency of steam engines, has had a lasting impact across physics, chemistry, biology and engineering, the
ramifications of which are still being explored. This raises the possibility that establishing the relevance of a
parallel mathematical structure in an economic domain may, when more substantially worked out, have similarly
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far-reaching implications.
We hope that once fully developed, this theory may provide powerful methods for thinking about and quan-

tifying economic systems at the macroscopic level, and may have implications for practical matters such as trade
negotiations, management of an economy, and investment.
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A Derivation of entropy for the Cobb-Douglas economy

Here we derive the formula (4) for the entropy,

S = N log ḡαm̄η,

for the toy economy of Section 10, from the construction in the proof of Theorem 1 in [LY02], where N is the
number of agents, and ḡ = G/N and m̄ = M/N are the amounts of goods and money per agent.

We have to find which states (G,M) are reversibly accessible from a subdivision of the agents in the ratio
λ0 : λ1 (with λi > 0 and λ0 +λ1 = 1) into two parts with initial states (Gi,Mi), i = 0, 1. Then λ1 (up to an affine
transformation to take into account the choice of initial states) will be the entropy of state (G,M).

First we show that the trader can move each subsystem reversibly to any state (G,M) with the same value of
GαMη, by offering to buy and sell goods at a price µ just above or below

µc =
α

η

M

G
.

As in Section 10, the result is nett purchase of goods by the subsystem if µ < µc, sale if µ > µc. In the case of
equality, we have reversible accessibility of the states infinitesimally close along the price line ∆M + µc∆G = 0.
Integrating dM + µc dG = 0 produces GαMη = cst (this curve is therefore isentropic).

In the above process, the trader has to buy or sell goods, but we ask the trader to buy exactly the same
quantity of goods from one subsystem as it sells to the other. That way it may gain or lose money but will not
change its quantity of goods, so the resulting pair of states is reversibly accessible from the original pair.

We choose the movement by the trader of the two subsystems along their isentropic curves to end with the
money per agent in each subsystem becoming the same. This is feasible because the prices are positive and the
changes in amounts of goods in the two subsystems have opposite signs, so the changes in amounts of money in
the two subsystems have opposite signs.

Having achieved equal money per agent, we now put the two subsystems into financial contact and in contact
with the trader. The trader buys goods from one at its market price and sells them to the other at its market
price, in the direction to make the goods per agent the same in each, and in addition agents transfer money
according to their utility for money, which keeps the money m̄ per agent the same in both. This results in
d(M0 +M1) = −µ0dG0 − µ1dG1 with Mi = λim̄N and G0 +G1 constant. Then, using µi = α

η
Mi
Gi

, we obtain

dm̄

m̄
= −α

η

(
λ0
dG0

G0
+ λ1

dG1

G1

)
.

As a consequence,
η log m̄+ α(λ0 log ḡ0 + λ1 log ḡ1)

is conserved, where we took the opportunity to write Gi = λiNḡi.
The process ends when both subsystems have the same goods per agent, because they already have the same

money per agent and so can then be merged reversibly. It follows that

log ḡαm̄η = λ0 log ḡα0 m̄
η
0 + λ1 log ḡα1 m̄

η
1 ,

where all quantities are per agent.
Thus we deduce that X ∼ (λ0X0, λ1X1) iff the entropy is as above, up to affine transformation. To respect

scaling symmetry it must be linear in the number of agents. Hence, up to addition of a possible but irrelevant
constant per agent, we obtain the formula (4).
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