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Abstract

We develop the theory of nilpotent G-spaces and their localizations, for G a compact Lie group, via

reduction to the non-equivariant case using Bousfield localization. One point of interest in the equivariant

setting is that we can choose to localize or complete at different sets of primes at different fixed point

spaces - and the theory works out just as well provided that you invert more primes at K ≤ G than

at H ≤ G, whenever K is subconjugate to H in G. We also develop the theory in an unbased context,

allowing us to extend the theory to G-spaces which are not G-connected.

Introduction

The purpose of this paper is to develop the theory of localizations and completions of nilpotent G-spaces at

sets of primes, where G is a compact Lie group. The main reference for the equivariant theory is [1, Ch. II],

which itself is a summary of the older papers [2] and [3], where it was explained how the foundations of the

theory could be developed using the same arguments as in the non-equivariant setting, with some additional

complications when G is compact Lie rather than just finite. Our approach is slightly different, in that we

use the theory of Bousfield localization to deduce the foundations of the theory from the non-equivariant

case. This approach leads to fewer difficulties in the compact Lie case, and allows us to use a more general

definition of a nilpotent G-space than in [1], see Definition 2.1.1. For example, we prove that a nilpotent

G-space X is p-complete iff all homotopy groups of the form πi(X
H) are p-complete. This fact was proved

in [3, Theorem 2], but only under the assumption that, for fixed i, the nilpotency classes of πi(X
H), as H

varies, have a common bound.

Another contribution of this paper is that we allow the set of primes we are localizing or completing at to

vary over the orbit category of G, and we show that this provides no extra difficulties provided that you

’invert more primes’ at K ≤ G than at H ≤ G, whenever K is subconjugate to H in G - we call this property

the poset condition. For example, we could localize at p at one subgroup and complete at p at another,

where, loosely speaking, completing at p ’inverts more primes’ than localizing at p. One might ask, why

consider these localizations? In the non-equivariant setting, Bousfield proved in [4, Theorem 1.1] that all

localizations at connective homology theories are equivalent to localizations with respect to either H(−;ZT )

or H(−;⊕p∈TFp) for some set of primes T . Therefore, in this paper we are considering localizations at

pointwise connective homology theories, where pointwise means we choose a connective homology theory for
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every closed subgroup H of G, and the localizations which satisfy the poset condition are precisely those

with the property that a G-space is local iff it is pointwise local.

We develop the theory in both a based and unbased context - with different parts of the theory working

better in each setting. For example, we derive fracture theorems for nilpotent G-spaces (Theorems 2.3.1 and

2.3.6), relate nilpotent G-spaces to equivariant Postnikov towers, and show that our homological approach

to the theory is equivalent to the classical cohomological appraoch of [2] and [3], all in the based context.

We use the unbased theory to extend our results on nilpotent G-spaces to G-spaces whose fixed point spaces

are disjoint unions of nilpotent spaces. This is especially pertinent in the equivariant setting, since there are

many examples of G-spaces which are non-equivariantly connected, but which have disconnected fixed point

spaces, or no possible choice of a G-fixed basepoint at all.

Notations and Prerequisites

We will work with the model categories of G-spaces and based G-spaces, where G is a compact Lie group,

basepoints are G-fixed, and the model structures are the Quillen or q-model structures. All subgroups of G

are assumed to be closed. Unless otherwise stated, we build G-CW complexes out of the maps (GH )+ ∧Sn+ →

(GH )+∧Dn
+ in the based context, rather than using based maps out of (GH )+∧Sn. The notation [A,B] denotes

homotopy classes of maps, which may be based/unbased/equivariant depending on the context.

This paper should be accessible to any reader who is familiar with the non-equivariant theory of nilpotent

spaces and their localizations, as well as the basics of equivariant homotopy theory.

1 Localization systems

1.1 Bousfield localization at the T-equivalences

In this section, we define localization systems, T, as well as the notion of a T-equivalence between based

G-spaces. We develop the basic properties of the T-equivalences, and then use the Bousfield cardinality

argument to show that there exists a model structure on the category of based G-spaces, where a map is a

weak equivalence iff it is a T-equivalence. We develop the basic properties of this model structure, including

Theorem 1.1.13 below, which is the key to deducing the equivariant theory of nilpotent G-spaces from the

non-equivariant theory.

Let P denote the poset of subsets of the set of prime numbers partially ordered by inclusion, and let O denote

the orbit category of a compact Lie group G.

Definition 1.1.1: A localization system is a functor T : Oop → Pop × 1, where we denote by 1 the category

with objects 0 and 1 and a single arrow from 0 to 1.

We think of T([G/H]) as a set of primes with coefficient, where the coefficient is either 0 or 1. If we drop
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the bold font on the T, then T ([G/H]) denotes only the underlying set of primes of T([G/H]). Recall that a

map of spaces is called a ZT -equivalence if it induces an isomorphism on homology with coefficients in ZT .

Similarly, a map is called an FT -equivalence if it induces an isomorphism on homology with coefficients in

Fp, for every p ∈ T . When the basepoints are nondegenerate, it is equivalent to define these equivalences

using the respective reduced homology theories instead.

Definition 1.1.2: Let T be a set of primes with coefficient and f : X → Y a map of spaces. If the coefficient

is 0, then we call f a T-equivalence if it is a ZT -equivalence. If the coefficient is 1, then we call f a

T-equivalence if it is an FT -equivalence.

Intuitively, a coefficient of 0 means we are localizing at T , and a coefficient of 1 means we are completing at

T . In a similar vein, we have:

Definition 1.1.3: Let T be a set of primes with coefficient and let X be a space. If the coefficient is 0, we

say that X is T-local if it is T -local after forgetting the coefficient. If the coefficient is 1, we say that X is

T-local if it is T -complete after forgetting the coefficient.

We can now make the following definition:

Definition 1.1.4: Let T be a localization system and f : X → Y be a map of based G-spaces. We say that

f is a T-equivalence if for all H ≤ G, fH : XH → Y H is a T([G/H])-equivalence.

We will need the following minimal list of properties of the T-equivalences, where a property is pointwise if

it holds for all fixed point spaces:

Lemma 1.1.5: i) The class of T-equivalences is closed under retracts, satisfies 2-out-of-3, and every weak

equivalence is a T-equivalence,

ii) the pushout of a T-equivalence that is a pointwise h-cofibration is a T-equivalence,

iii) the colimit of a transfinite sequence of T-equivalences which are closed inclusions is a T-equivalence.

Proof. i) is easy. For ii), since taking fixed points preserves pushouts along closed inclusions, we can work

pointwise and replace the spaces with nondegenerately based ones. The result then follows from consideration

of cofibre sequences. For iii), taking fixed points preserves transfinite colimits of closed inclusions, and so the

result follows from the fact that homology preserves these colimits.

We can use the Bousfield-Smith cardinality argument on the T-equivalences. The argument is essentially the

same as the classical case of localizing spaces with respect to homology theories, which is treated in [5, Section

19.3]. The key lemma is as follows:

Lemma 1.1.6: There exists a cardinal κ with the following property: if i : A → B is the inclusion of a

subcomplex into cell complex B which is also a T-equivalence, then, for any cell e of B, there is a subcomplex

C of size < κ containing e such that A ∩ C → C is a T-equivalence.
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Proof. Choose a regular cardinal, κ > ℵ0, with the following properties:

i) every cell of any cell complex is contained within a subcomplex of size < κ,

ii) if Z is a cell complex of size < κ, then
⊕
H∗(Z

H ;T([G/H])) has cardinality < κ,

iii) if W is any cell complex, then:

H∗(W ;T) = colim<κH∗(Z;T)

where H∗(W ;T) denotes the system of abelian groups with values H∗(W
H ;T([G/H])), and the colimit is over

all subcomplexes of size < κ. To start the proof, choose a subcomplex C0 of B of size < κ which contains

e, so we have a map C0 ∩ A → C0. By some c ∈ H∗(C0;T), we mean an element of Hn(C0;T)([G/H])

for some H and n. For each c ∈ H∗(C0;T), its image in H∗(B;T) is the image of an element, a, in the

homology of a < κ dimensional subcomplex of A, D. Moreover, there is a < κ dimensional subcomplex E of

B, containing C0 and D, such that the images of a and c in H∗(E;T) are equal. Define C1
0 by adding such a

subcomplex E to C0 for every c ∈ H∗(C0;T) - the conditions i) - iii) above ensure that C1
0 has size < κ. So

every element of H∗(C
1
0 ;T) which is in the image of H∗(C0;T) is also in the image of H∗(C

1
0 ∩ A;T). Now

if k ∈ H∗(C0 ∩ A;T) is sent to 0 in H∗(C0;T), it is also sent to 0 in H∗(B;T) and H∗(A;T), so there is a

< κ dimensional subcomplex of A, L, containing C0 ∩ A, such that the image of k in H∗(L;T) is 0. Define

C1 by adding such a subcomplex L to C1
0 , for every k ∈ H∗(C0 ∩ A;T) which is sent to 0 in H∗(C0;T). It

follows that if k ∈ H∗(C0 ∩ A;T) is sent to 0 in H∗(C0;T), it is also sent to 0 in H∗(C1 ∩ A;T). Moreover,

every element of H∗(C1;T) which is in the image of H∗(C0;T) is also in the image of H∗(C1 ∩ A;T). We

can repeat this process to form e ∈ C0 ⊂ C1 ⊂ C2 ⊂ ..., and we let C be the union of the Ci which still has

size < κ. Since homology preserves these sequential colimits, it follows that H∗(C ∩A;T) → H∗(C;T) is an

isomorphism, as desired.

We now deduce the standard consequences of Lemma 1.1.6. Firstly, using transfinite induction, we have:

Corollary 1.1.7: A map has the RLP with respect to all inclusions of cell complexes which are T-equivalences

iff it has the RLP with respect to all inclusion of cell complexes of dimension < κ which are T-equivalences.

Proof. See [6, Proposition 4.5.6].

Any map with the RLP with respect to inclusions of cell complexes that are T-equivalences is a q-fibration,

since the generating acyclic cofibrations (GH )+ ∧ (Dn)+ → (GH )+ ∧ (Dn× I)+ are inclusions of subcomplexes.

Therefore, using left properness we have:

Lemma 1.1.8: A map has the RLP with respect to all q-cofibrations which are T-equivalences iff it has the

RLP property with respect to all inclusions of cell complexes that are T-equivalences.

Proof. See [6, Proposition 13.2.1].
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If we call such a map a T-fibration, then we see that a T-fibration that is a T-equivalence is a q-acyclic

q-fibration by the retract argument. Using this and the small object argument we can now conclude:

Theorem 1.1.9: There is a left proper model structure on the category of based G-spaces where the weak

equivalences are the T-equivalences, the cofibrations are the q-cofibrations and the fibrations are the T-

fibrations.

This model structure is monoidal:

Lemma 1.1.10: If i : A → B and j : C → D are cofibrations, then i□j : A ∧ D ∪ B ∧ C → B ∧ D is a

cofibration which is a T-equivalence if either i or j is a T-equivalence.

Proof. The fact that i□j is a cofibration is classical and is a consequence of the fact that G
H × G

K is G-

homeomorphic to a G-CW complex. Similarly, since (GH )K is homeomorphic to a CW-complex, by [7,

Corollary 7.2] and [8, Ch. VI, Corollary 2.5], we have that a cofibration is a pointwise cofibration. Therefore,

for the remaining statement concerning T-equivalences we can assume that G is the trivial group. Note also

that the cofibre of i□j is homotopy equivalent to B
A ∧ D

C . Suppose that j is a T-equivalence and p is a T-

fibration. Then i□j has the left lifting property with respect to p iff i has the left lifting property with respect

to p□j . Therefore, it suffices to show that i□j is a T-equivalence in the case where i : (GH )+ ∧ (Sn−1)+ →

(GH )+ ∧ (Dn)+ and j is an inclusion of a subcomplex which is a T-equivalence. Since we are assuming that G

is trivial, the cofibre of i□j is homotopy equivalent to Sn ∧ D
C , which has vanishing reduced homology with

the required coefficients as desired.

We have the following characterisation of the fibrant objects:

Lemma 1.1.11: A based G-space Z is T-local (that is fibrant in the model structure of Theorem 1.1.9) iff

for all T-equivalences f : A→ B between cofibrant objects, the map f∗ : [B,Z] → [A,Z] is a bijection.

Proof. If for all T-equivalences f : A→ B between cofibrant objects, the map [B,Z] → [A,Z] is a bijection,

then it is easy to show that Z → ∗ has the right lifting property with respect to any inclusion of cell complexes

that is a T-equivalence, using the fact that inclusions of cell complexes are h-cofibrations, and so Z is T-local

by Lemma 1.1.8. On the other hand, if Z is T-local, we can assume that f is a cofibration. Considering lifts

of Z → ∗ with respect to f shows that f∗ is surjective, and considering lifts with respect to f□i, where i is

the inclusion {0, 1}+ → I+, shows that f
∗ is injective.

The next lemma is the key to deducing our results on nilpotent G-spaces from the non-equivariant theory.

It is also the first lemma to make use of the fact that T is a localization system rather than just an arbitrary

choice of abelian group at each subgroup of G.

Lemma 1.1.12: If a based G-space Z is T-local, then ZH is T([G/H])-local for every H ≤ G.
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Proof. Let f : A → B be a T([G/H])-equivalence between cofibrant spaces. Let g = 1 ∧ f : (G/H)+ ∧ A →

(G/H)+ ∧B. We have (G/H)K+ = O([G/K], [G/H])+, and it follows that g is a T-equivalence by Lemma 1.1.10,

the fact that T is a localization system and the following observations:

i) if S ⊂ T , then a ZT -equivalence is a ZS-equivalence,

ii) if S ⊂ T , then an FT -equivalence is an FS-equivalence,

iii) a ZT -equivalence is an FT -equivalence.

It follows that g∗ : [(G/H)+ ∧B,Z] → [(G/H)+ ∧A,Z] is a bijection. This is equivalent to [B,ZH ] → [A,ZH ]

being a bijection, and it follows that ZH is T([G/H])-local.

Using Lemma 1.1.12, we can deduce:

Theorem 1.1.13: i) A based G-space Z is T-local iff ZH is T([G/H])-local for every H ≤ G,

ii) A map of based G-spaces X → Y is a T-localization iff XH → Y H is a T([G/H])-localization for every

H ≤ G.

Proof. i) For the direction we haven’t already proved, let Z be a based G-space such that ZH is T([G/H])-local

for every H ≤ G. Consider a T-localization Z → W . Then, each map ZH → WH is a T([G/H])-equivalence

between T([G/H])-local objects, and so a weak equivalence as desired.

ii) This follows from i).

To end this subsection, we quickly give a counterexample to indicate what can happen if T is not a localization

system. Let G = C2, and define a T-equivalence to be a map of based G-spaces, f : X → Y , such that

H∗(f
e;Z[p−1]) and H∗(f

G;Z[p−1, q−1]) are isomorphisms, where p and q are distinct primes. If T-local G-

spaces were always pointwise local, then the analogue of Theorem 1.1.13 would also have to hold. Consider

the map K(Z[p−1], 1) → K(Z[p−1, q−1], 1). Since K(Z[p−1, q−1], 1) would be T-local, the factorisation of the

map through K(Z[p−1], 1)T would result in a commutative diagram:

Z[p−1, q−1] Z[p−1]

Z[p−1, q−1] Z[p−1, q−1]

1

1

Since the top map has to be zero, this is a contradiction. Therefore, a T-local space is not necessarily

pointwise local.

1.2 Unbased T-localizations

The theory described in Section 1.1 goes through essentially unchanged in the unbased context. We have:
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Theorem 1.2.1: Let T be a localization system. There is a left proper, monoidal model structure on the

category of G-spaces where the weak equivalences are the T-equivalences, the cofibrations are the q-cofibrations

and the fibrations are the T-fibrations (which are defined as in Lemma 1.1.8). A G-space Z is T-local (that

is fibrant in this model structure) iff for all T-equivalences f : A → B between cofibrant objects, the map

f∗ : [B,Z] → [A,Z] is a bijection.

Proof. The existence of the left proper model structure follows from the Bousfield cardinality argument as

in Section 1.1. If i : A → B is a cofibration and f : X → Y is a cofibration which is a T-equivalence,

then A × Y ∪ B × X → B × Y is a cofibration as in Lemma 1.1.10 and it will be a T-equivalence if

(A × Y ∪ B × X)+ → (B × Y )+ is a T-equivalence. The latter map can be identified with i+□f+, which

is a T-equivalence by Lemma 1.1.10. The characterisation of the fibrant objects now follows as in Lemma

1.1.11.

Since T is a localization system, the arguments of Lemma 1.1.12 and Theorem 1.1.13 show:

Theorem 1.2.2: i) A G-space Z is T-local iff ZH is T([G/H])-local for every H ≤ G,

ii) A map of G-spaces X → Y is a T-localization iff XH → Y H is a T([G/H])-localization for every H ≤ G.

At this point, it is helpful to compare based and unbased localizations in the non-equivariant setting. We

have:

Lemma 1.2.3: Let Z be an unbased space. Then:

i) Z is T-local iff f∗ : [B,Z] → [A,Z] is a bijection for all T-equivalences, f : A → B, between connected

cofibrant spaces,

ii) if Z = ⊔i∈IZi, then Z is T-local iff Zi is T-local for every i. In particular, a map of spaces which induces

a bijection on connected components is a T-localization iff each component is a T-localization.

Proof. If f : A → B is a T-equivalence between cofibrant spaces, then f induces a bijection between the

connected components of A and B, so f is a disjoint union of T-equivalences Ai → Bi, for i in the set of

connected components of A. Now, [⊔Ai, Z] =
∏
i[Ai, Z], and i) follows. For ii), if A is connected we have

[A,⊔iZi] = ⊔i[A,Zi], and so ii) follows from i).

Lemma 1.2.4: Let f : X → Y be a map of unbased spaces, with X non-empty. Then the following are

equivalent:

i) f is an unbased T-localization,

ii) f is a based T-localization for some x ∈ X,

iii) f is a based T-localization for all x ∈ X,

iv) f+ is a based T-localization, with respect to the adjoined basepoint +.
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Proof. The key point is that if Z is a T-local based space, then it is also T-local as an unbased space.

This is a consequence of the fact that unbased homotopy classes [A,Z] are equivalent to based homotopy

classes [A+, Z], and the observation that if A→ B is a T-equivalence between cofibrant unbased spaces, then

A+ → B+ is a T-equivalence between cofibrant based spaces. Now, iii) =⇒ ii) is trivial, and ii) =⇒ i)

follows from the above. For i) =⇒ iii), let x ∈ X. Since T-localizations are preserved by composing with

weak equivalences, we can assume that X is a CW-complex and f is a cofibration. Let fT : X → XT be

a based T-localization. Then fT is also an unbased T-localization, since ii) =⇒ i). Therefore, there is a

weak equivalence, g, such that gf = fT, and so f is also a based T-localization, as desired. The fact that

iv) =⇒ i) follows from ii) =⇒ i) and Lemma 1.2.3ii), and i) =⇒ iv) follows from Lemma 1.2.3ii) and

i) =⇒ iii).

Returning to the equivariant setting, we have the following consequence:

Theorem 1.2.5: i) if f : X → Y is a based T-localization, then it is also an unbased T-localization,

ii) if f : X → Y is a map of unbased G-spaces, then f is a T-localization iff f+ is a based T-localization.

Moreover, if XG is non-empty, then f is a T-localization iff f is a based T-localization with respect to any

G-fixed basepoint iff f is a based T-localization with respect to all G-fixed basepoints.

1.3 An algebraic analogue

Before moving on to the theory of nilpotent G-spaces, we record the following result, which can be viewed

as an algebraic analogue of the above theory. Recall that coefficient systems are functors hOop → Ab, and

there are free coefficient systems defined by:

Definition 1.3.1: The free coefficient system associated to the object [G/H] is defined by F[G/H]([G/K]) =⊕
hO([G/K],[G/H]) Z along with the evident definition on morphisms.

The free coefficient systems have the property that Hom[hOop,Ab](A ⊗ F[G/H],L) ∼= HomAb(A,L([G/H])),

where A is any abelian group.

Lemma 1.3.2: Let T be a localization system and let A and B be coefficient systems such that:

i) if the coefficient of T([G/H]) is 0, then A([G/H])⊗ ZT ([G/H]) = 0 and B([G/H]) is T ([G/H])-local,

ii) if the coefficient of T([G/H]) is 1, then A([G/H]) is a Z[T ([G/H])−1]-module and B([G/H]) is T ([G/H])-

complete.

Then Exti[hOop,Ab](A,B) = 0 for all i ≥ 0.

Proof. We first claim that if T([G/H]) has coefficient 0, and n is a product of primes not in T ([G/H]), then

Exti[hOop,Ab](F[G/H] ⊗ Z/nZ,B) = 0 for all i ≥ 0. The category [hOop,Ab] has enough injectives, [9, Exercise

2.3.7], so we can calculate this by taking an injective resolution {Qi} of B. Such a resolution is an objectwise
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injective resolution of B([G/H]), and Hom[hOop,Ab](F[G/H] ⊗ Z/nZ,Qi) = HomAb(Z/nZ,Qi([G/H])), so taking

homology calculates Exti(Z/nZ,B([G/H])), which vanishes by the non-equivariant case. Similarly, if T([G/H])

has coefficient 1, then Exti[hOop,Ab](F[G/H] ⊗ Z[T([G/H])−1],B) = 0 by [5, 10.1.22].

We will use this to define a Hom[hOop,Ab](−,B)-acyclic resolution, {Pi}, of A. If T([G/H]) has coefficient 0,

there is a coproduct, K[G/H], of functors of the form F[G/H] ⊗ Z/nZ, with n being a product of primes not in

T ([G/H]), such that there is a natural transformation K[G/H] → A which is a surjection at [G/H]. If T([G/H])

has coefficient 0, then there is a coproduct, K[G/H], of functors of the form F[G/H] ⊗Z[T([G/H])−1], such that

there is a natural transformation K[G/H] → A which is a surjection at [G/H]. We define P0 :=
⊕

[G/H] K[G/H],

so we have a surjection P0 → A, and P0 is Hom[hOop,Ab](−,B)-acyclic by the previous paragraph.

The key point now is that the functor P0 satisfies the conditions in i) and ii) that A does, and this follows

from the fact that T is a localization system. In more detail, F[G/H]([G/K]) is only non-zero when there is a

map [G/K] → [G/H] in O, and then we have the following observations:

i) if S ⊂ T , then a torsion group with no T -torsion is also a torsion group with no S-torsion,

ii) if S ⊂ T , then a Z[T−1]-module is a Z[S−1]-module,

iii) a torsion group with no T -torsion is a Z[T−1]-module.

Therefore, we can inductively construct a Hom[hOop,Ab](−,B)-acyclic resolution {Pi} of A, since the kernel

of P0 → A also satisfies i) and ii) in the statement of the lemma. Using the first paragraph of the proof, we

can use this acyclic resolution to compute Exti[hOop,Ab](A,B) = 0 for all i ≥ 0, as desired.

2 Nilpotent G-Spaces

2.1 The main theorems

We now move on to the theory of nilpotent G-spaces and we begin with the definition of a nilpotent G-

space. This differs from the definition given in [1, Ch. II] in that we do not require a common bound on

the nilpotency classes at each fixed point space. To understand this, we will show in Subsection 2.4 that any

nilpotent G-space can be approximated by a weak Postnikov tower, but if we assume a common bound on the

nilpotency classes, then a nilpotent G-space can be approximated by a (strict) Postnikov tower, a distinction

which becomes important when using co-HELP to deduce theorems about nilpotent spaces, as in [5, Section

3.3].

Definition 2.1.1: A based G-space X is said to be nilpotent if XH is a connected nilpotent space for all

subgroups H of G.

In the unbased context, we have the following definition:

Definition 2.1.2: An unbased G-space X is said to be componentwise nilpotent if for every subgroup H of
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G, every component of XH is a nilpotent space.

In general, if we speak about componentwise nilpotent G-spaces we are working in an unbased context, and

if we speak about nilpotent G-spaces we are working in a based context.

By reduction to fixed point spaces, we can immediately deduce one of the most important properties of

localizations of componentwise nilpotent G-spaces:

Theorem 2.1.3: Let T be a localization system where all the coefficients are 0. Let f : X → Y be a map

from a componentwise nilpotent G-space X to a T-local unbased G-space Y , such that for every H ≤ G, fH

induces a bijection on connected components. Then, the following are equivalent:

i) f is a T-localization,

ii) for all H ≤ G, ∗ ≥ 1, and b ∈ XH , fH∗ : π∗(X
H , b) → π∗(Y

H , fH(b)) is a T([G/H])-localization of

nilpotent groups,

iii) for all H ≤ G and ∗ ≥ 1, fH∗ : H∗(X
H) → H∗(Y

H) is a direct sum of T([G/H])-localizations, where the

sum ranges over the connected components of XH .

Proof. This follows from [5, Theorem 6.1.2], as well as Lemma 1.2.3ii).

Recall that if T is a set of primes and A is an abelian group, then ETA and HTA denote the zeroth and first

derived functors of T -completion applied to A, respectively. These functors can be extended to take nilpotent

groups as input by using the homotopy groups of completions of Eilenberg-Maclane spaces. In the current

context, we use the above definition of ETG and HTG for sets of primes with coefficient 1. If, instead, T

is a set of primes with coefficient 0, and G is a nilpotent group, we define ETG = GT and HTG = 0. This

corresponds to using the homotopy groups of localizations of Eilenberg-Maclane spaces. A system of nilpotent

groups, G, is a continuous functor from Oop to the category of nilpotent groups, and we call such a system

T-local if it is pointwise T([G/H])-local. The T-localization K(G, 1) → K(G, 1)T specifies a homomorphism

G → ET(G) and the, up to homotopy, universal property of T-localization implies the following universal

property:

Lemma 2.1.4: Let G and H be systems of nilpotent groups, with H T-local. Then any homomorphism

f : G→ H factors uniquely through the T-localization G→ ETG.

Proof. This follows from the fact that [K(G, 1)T,K(H, 1)] ∼= [K(G, 1),K(H, 1)].

If X is a nilpotent G-space, then this universal property defines a map from ETπi(X) → πi(XT) and we

have the following theorem:

Theorem 2.1.5: If X is a nilpotent G-space, then there is a natural short exact sequence:

1 → ETπi(X) → πi(XT) → HTπi−1(X) → 1

10



If f : X → Y is a map between componentwise nilpotent G-spaces such that each fH induces a bijection on

connected components, and HT([G/H])(πi(X
H , x)) = 0 for all H ≤ G, i ≥ 1 and x ∈ XH , then the following

are equivalent:

i) f is a T-localization,

ii) for all i ≥ 1, H ≤ G and x ∈ XH , πi(X
H , x) → πi(Y

H , fH(x)) is a T([G/H])-localization.

For example, the hypothesis holds if, for all H, XH
T([G/H]) is a disjoint union of fZT ([G/H])-nilpotent spaces.

Proof. This follows from [5, Theorem 11.1.2, Proposition 10.1.23], as well as Lemma 1.2.3.

Non-equivariantly, the fact that Ext(HTB,ETA) = 0, [5, Corollary 10.4.9], implies that the short exact se-

quence of Theorem 2.1.5 splits, however, equivariantly the sequence does not necessarily split as the following

example shows. Take G = C2. Then, consideration of Elmendorf’s theorem, [1, Ch. V, Theorem 3.2], shows

that to find a counterexample to the splitting, we can use the following counterexample to the naturality of

the splitting in the non-equivariant case. For this, we let X = K(Z[p
−1]
Z , 1), so that X̂p = K(Ẑp, 2), and a

map X → K(Ẑp, 2) is equivalent to a homomorphism Ẑp → Ẑp. Then, any non-zero homomorphism, such as

the identity, suffices to show that the splitting cannot be natural.

2.2 T-localization and fibre squares

From now on, we work in a based context. In this section, we discuss how T-localization interacts with

fibre sequences and homotopy pullbacks. Let N(f, g) denote the double mapping path space of f and g. We

have:

Theorem 2.2.1: Let f : X → Z and g : Y → Z be maps of nilpotent G-spaces such that N(f, g) is

G-connected. If we have a commutative diagram:

X Z Y

X
′

Z
′

Y
′

f g

f
′

g
′

such that the vertical maps are T-localizations, then the induced map N(f, g) → N(f
′
, g

′
) is a T-localization.

Proof. This follows from [10, Proposition 3.1.2].

It follows that any functorial T-localization, such as one obtained via the small object argument applied to

the model structure of Theorem 1.1.9, preserves homotopy fibre squares of nilpotent G-spaces. The special

case where Y = Y
′
= ∗ results in the connected fibre lemma.
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2.3 Fracture Theorems

In this section, we move on to discuss fracture squares associated to nilpotentG-spaces. In the non-equivariant

setting, we have fracture squares relating to localization and completion, [5, Theorem 8.1.3, Theorem 13.1.4],

and we would like to generalise these results to the equivariant setting, perhaps localizing and completing at

different sets of primes at each fixed point space. For example, the following two squares are homotopy fibre

squares associated to a T-local connected nilpotent space X, where T is a set of primes containing 7:

X X̂T

X0 (X̂T )0

(1)

X (
∏
p∈T\{7}Xp)× X̂7

X0 (
∏
p∈T\{7}Xp)0 × (X̂7)0

(2)

In 2, we complete at 7 to illustrate to point that there are an abundance of fracture squares that we can ask

for, especially in the equivariant case. With this in mind, the following theorem subsumes all of the examples

that we are aware of:

Theorem 2.3.1: Consider a commutative square of nilpotent G-spaces:

X Y

A B

f

ϕ ψ

g

such that, for each subgroup H of G, there are sets of primes TH , SH satisfying:

i) XH , Y H are TH-local and AH , BH are SH-local,

ii) fH is an FTH
-equivalence and gH is an FSH

-equivalence,

iii) ϕH , ψH are Q-equivalences.

Then the square is a homotopy fibre square.

Proof. Since taking fixed points detects homotopy fibre squares, we can reduce the theorem to a pointwise

statement with sets of primes T and S. In this case, the theorem follows from (1) and successive applications

of the pasting lemma for homotopy pullbacks, [6, Proposition 13.3.15].

When T is a constant localization system, we can derive, as in [5, Theorem 13.1.1], a fracture square for
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homotopy classes [K,X], under certain finiteness hypotheses on K and X. In particular, K will always be

a finite based G-CW complex, by which we mean that K is built by starting with a G-fixed basepoint and

attaching finitely many cells along based maps out of G-spaces of the form (GH )+∧Sn, with n ≥ 0. In order to

give what we feel is the cleanest exposition of our main result, and the corresponding counterexample when T

is not a constant localization system, we begin by recalling some preliminaries on homotopy pullbacks.

Definition 2.3.2: Let f : K → X be a map of G-spaces. We define [K ∧ (In)+, f ] to be the set of homotopy

classes of maps K ∧ (In)+ → X relative to the boundary K ∧ (∂In)+, where at each point on the boundary

∂In, the induced map is equal to f .

Lemma 2.3.3: Let A →i B → Ci be a cofibre sequence of G-spaces, and f : Ci → X a map of G-spaces.

Then there is a natural long exact sequence of groups:

...→ [B ∧ (I2)+, f ] → [Σ2A,X] → [Ci ∧ I+, f ] → [B ∧ I+, f ] → [ΣA,X]

Moreover, the image of [Σ2A,X] in [Ci ∧ I+, f ] is central.

Proof. Modify f so that it is radially constant in a neighbourhood of the boundary of the cone. Consider the

sequence of based maps:

...→ ΩMap(A,X) →∂ Map(Ci,X) →j∗ Map(B,X) →i∗ Map(A,X)

where the spaces are given basepoints f and the constant loop to f . The fact that f is radially constant in a

neighbourhood of the boundary of the cone allows us to define a based map, which is also a weak equivalence,

Fi∗ →Map(Ci,X). The map ∂ is then induced by a comparison of the fibre sequences associated to j∗ and

Fi∗ →Map(B,X). It follows that [S1,−] takes the above sequence of maps to an exact sequence of groups,

since it does so for the homotopy fibre sequence induced by i∗. The fact that the image of π1(∂) is central

follows from [5, Lemma 1.4.7 v).].

Let N(f, g) denote the double mapping path space associated to maps f : X → A and g : Y → A. We will

make use of the following result on homotopy classes of maps into a homotopy pullback:

Lemma 2.3.4: Let K be a based G-CW complex. Then the natural map of pointed sets:

[K,N(f, g)] → [K,X]×[K,A] [K,Y ]

is a surjection. Suppose that f is a fibration, so that every element of [K,X]×[K,A] [K,Y ] can be represented

by a pair of maps u : K → X, v : K → Y such that fu = gv := w. Then the preimage of (u, v) is isomorphic
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to the set of orbits of [K ∧ I+, w] under the right action of the group [K ∧ I+, u]× [K ∧ I+, v]. In particular,

the map is injective iff each of the functions [K ∧ I+, u]× [K ∧ I+, v] → [K ∧ I+, w] is surjective.

Proof. This follows from the same arguments as in [5, Proposition 2.2.2], where the result is proved in the

special case when u and v are nullhomotopic.

Next, we seek to understand how the groups [K ∧ I+, f ] behave with respect to T-localization.

Lemma 2.3.5: Let T be a constant localization system. Let K be a finite based G-CW complex, let X be a

nilpotent G-space, and let f : K → X be a map. Then:

i) [K ∧ I+, f ] is a nilpotent group, which is finitely T -generated (see [5, Definition 5.6.3]) if, for each i ≥ 2,

πi(X
H) is finitely T -generated,

ii) if the coefficient of T is 0, then [K ∧ I+, f ] → [K ∧ I+, ϕTf ] is T -localization, where ϕT is a T-localization

of X,

iii) if the coefficient of T is 1, HTπ1(X) = 0, and, for each i ≥ 2, πi(X
H) is finitely T -generated, then

[K ∧ I+, f ] → [K ∧ I+, ϕTf ] is T -completion.

Proof. This follows by induction using Lemma 2.3.3. In more detail, part i) follows from [5, Lemma 3.1.3]

and the fact that a nilpotent group G is finitely T-generated iff GT is fZT -nilpotent. Part ii) follows

from [5, Corollary 5.4.11]. Part iii) follows from [5, Corollary 10.4.5], and the condition that HTπ1(X) = 0

ensures that π2(X) → π2(XT) is T-localization, by Theorem 2.1.5.

We can now state our main fracture theorem for homotopy classes of maps:

Theorem 2.3.6: Let T,S, and, for each i in some indexing set I, Ti be constant localization systems such

that T and S have coefficient 0, T = ∪iTi and Ti ∩ Tj = S, for all i ̸= j. Let K be a finite based G-CW

complex and let X be a T -local nilpotent G-space such that, if Ti has coefficient 1, then for every subgroup

H of G, HTi
π1(X

H) = 0, and for each i ≥ 2, πi(X
H) is finitely Ti-generated. Then the following diagram is

a pullback of sets:

[K,X] [K,
∏
iXTi

]

[K,XS] [K, (
∏
iXTi

)S]

Proof. The map from [K,X] to the pullback is surjective by Theorem 2.3.1 and Lemma 2.3.4. The map is

injective by Lemma 2.3.4 and Lemma 2.3.5. In more detail, to see that the surjectivity hypothesis in the final

sentence of Lemma 2.3.4 is satisfied, surjectivity tells us that we can find a map µ : K → X projecting onto

a representative (u, v) of any element of the pullback. Then we can apply Theorem 2.3.1 to give a fracture
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square for K([K ∧ I+, µ], 1), and the fact that K([K ∧ I+, µ], 1) is connected tells us that the required map

is surjective, via use of Lemma 2.3.5.

Note that the fracture theorems for nilpotent groups given in [5, Theorem 7.2.1 ii), Theorem 12.3.2], are both

consequences of Theorem 2.3.6.

To finish this section, we give an example to show that the square:

[K,X] [K,XT]

[K,X0] [K, (XT)0]

need not be a pullback of sets if T is not a constant localization system, where K is a finite based G-

CW complex and, for every H, XH is fZT ([G/H])-nilpotent. Of course, the comparison map [K,X] →

[K,XT]×[K,(XT)0] [K,X0] is always a surjection by Theorem 2.3.1 and Lemma 2.3.4. We let G = C2, and let

T([G/G]) = ({p, q}, 1), and T([G/e]) = ({p}, 1). We let X = K(Z, n+ 2)T , where Z is the constant coefficient

system to Z, and so XG = K(Z{p,q}, n+ 2) and Xe = K(Z{p}, n+ 2). We let K be the cofibre:

ΣSn ∧ (G+) → ΣSn ∧ (e+) → K

where the first map is induced by the constant map G→ e. The cofibre sequence implies that there is a map

of short exact sequences:

0 [ΣK,XT]⊕ [ΣK,X0] Ẑ{p,q} ⊕Q Ẑp ⊕Q 0

0 [ΣK, (XT)0] Q̂{p,q} Q̂p 0

It follows that the map [ΣK,XT] ⊕ [ΣK,X0] → [ΣK, (XT)0] can be identified with the rationalisation

Ẑq → Q̂q which is not surjective. It follows that the square above is not a pullback of sets. In particular,

there exist maps f, g : K → X, such that fT ≃ gT and f0 ≃ g0, but f and g are not homotopic.

2.4 Nilpotent G-spaces and Postnikov towers

We now discuss the relationship between nilpotent G-spaces and towers of principal fibrations. First, we will

define what it means for a system of π-groups to be B-nilpotent, where B is a class of coefficient systems.

Then we will define the analogue of Postnikov towers in the equivariant setting, and we will show that a space,

X, is equivalent to a weak Postnikov B-tower iff its homotopy groups are B-nilpotent systems of π-groups,
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where π = π1(X). Finally, we will show that T-local nilpotent G-spaces are equivalent to weak Postnikov

BT-towers, where BT is the class of T-local coefficient systems.

Definition 2.4.1: Let B be a class of coefficient systems of abelian groups. Let π be a coefficient system of

groups and let G be a coefficient system of groups admitting an action of π by automorphisms. We say that

G is a B-nilpotent π-group if there is a descending sequence of normal π-subgroups:

G = G0 ⊇ G1 ⊇ G2 ⊇ ...

such that:

i) π acts trivially on Gi−1

Gi
,

ii) Gi−1

Gi
∈ B,

iii) for every H, Gi−1

Gi
([G/H]) → G

Gi
([G/H]) has central image,

iv) for every H, Gi−1

Gi
([G/H]) = 0 for all but finitely many i.

Definition 2.4.2: Call a B-nilpotent π-group bounded if the filtration in Definition 2.4.1 can be replaced by

a finite filtration terminating at 1.

Definition 2.4.3: We call a G-space X B-nilpotent if it is G-connected and, for all i ≥ 1, πi(X) is a B-

nilpotent π1(X)-group. We say that a B-nilpotent G-space, X, is bounded if the homotopy groups πi(X) are

all bounded B-nilpotent π1(X)-groups

Note that a G-space is nilpotent iff it is A-nilpotent, where A is the class of all coefficient systems of abelian

groups. This follows from the fact that if X is a nilpotent space, then there are functorial filtrations of πi(X)

satisying the conditions of the previous definition - the lower central series when i = 1, and the filtration

induced by the augmentation ideal, {Inπi(X)}, for i ≥ 2.

Definition 2.4.4: A map of G-spaces, f : X → Y , is called a principal K(A,n)-fibration if it is the pullback

of the path-space fibration along a map k : Y → K(A,n+1). In particular, f is a fibration with fibre K(A,n).

Definition 2.4.5: Let Q be the totally ordered set consisting of pairs of natural numbers ordered by (m,n) ≤

(p, q) iff m < p or m = p and n ≤ q. A weak Postnikov B-tower is a functor Q → G− Sp, satisfying:

i) X1,1 = ∗,

ii) Xn+1,1 → limiXn,i is a weak equivalence,

iii) The map Xn,i+1 → Xn,i is a principal K(Bn,i, n)-fibration for some Bn,i ∈ B,

iv) for every n and H, XH
n,i+1 → XH

n,i is a weak equivalence for all but finitely many i.

Definition 2.4.6: A Postnikov B-tower is a weak Postnikov B-tower such that the maps Xn+1,1 → limiXn,i

of condition ii) above are G-homeomorphisms.

We have the principal fibration lemma:
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Lemma 2.4.7: Let f : X → Y be a map of well-pointed G-connected G-spaces with the homotopy type of a

G-CW complex, such that Ff ≃ K(A,n) for some coefficient system A and n ≥ 1. Then π1(X) acts trivially

on π∗(Ff) iff there is a weak equivalence X → Fk over Y , for some cofibration k : Y → K(A,n+ 1).

Proof. See [10, Lemma 2.2.2].

Lemma 2.4.8: A G-space is B-nilpotent iff it is weakly equivalent to a weak Postnikov B-tower.

Proof. To see that weak Postnikov B-towers are B-nilpotent, it suffices to show that πn(X) is a B-nilpotent

π1(X)-group. Let Gi be the kernel of πn(X) → πn(Xn,i+1). The quotients
Gi−1

Gi
correspond to the coefficient

systems Bn,i appearing in the tower, and so these are in B by assumption. π1(X) acts trivially on Gi−1

Gi

by Lemma 2.4.7, and the required inclusions are central for the same reason as in the non-equivariant case,

namely [5, Lemma 1.4.7 v)]. Finally, Gi−1

Gi
([G/H]) = 0 for all but finitely many i, since XH

n,i+1 → XH
n,i is a

weak equivalence for all but finitely many i.

Next assume that a G-CW complex, X, is B-nilpotent. So, for each n, we have a filtration of πn(X), {Gn
i },

satisfying the conditions of Definition 2.4.1. We define X0
n,i+1 by first attaching cells to X along all possible

maps (GH )+ ∧ Sn → X representing an element of Gn
i ([G/H]), for some H ≤ G. Then, inductively define

Xj
n,i+1, for each j ≥ 1, by attaching a cell to Xj−1

n,i+1 along every possible map (GH )+ ∧ Sn+j → Xj
n,i+1, for

any H ≤ G. Define Xn,i+1 as the union of the Xj
n,i+1. Then:

i) πj(Xn,i+1) = πj(X) for j < n,

ii) πn(Xn,i+1) =
πn(X)
Gi

,

iii) πj(Xn,i+1) = 0 for j > n.

Moreover, we have an inclusion Xn,i → Xm,j , whenever (m, j) ≤ (n, i) in Q. Since the action of π1(X) is

trivial on each Gi−1

Gi
, each of the maps Xn,i+1 → Xn,i is equivalent to a K(Bn,i, n)-principal fibration, with

Bn,i ∈ B. To define the weak Postnikov B-tower, we keep each Xn,1 fixed, and inductively replace each Xn,i,

for i ≥ 2, using Lemma 2.4.7. Results of Waner, [11, Corollary 4.14], imply that by doing this we never leave

the category of well-pointed G-spaces with the homotopy type of a G-CW complex. Unfortunately, we could

leave this category by taking inverse limits, which is why we leave each Xn,1 fixed and only require a weak

equivalence in Definition 2.4.5 ii).

If we restrict attention to bounded B-nilpotent G-spaces, such as pointwise simply connected G-spaces, then

the same proof shows:

Lemma 2.4.9: A bounded B-nilpotent G-space is weakly equivalent to a Postnikov B-tower.

As promised, we have the following characterisation of T-local nilpotent spaces:
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Lemma 2.4.10: A nilpotent G-space is T-local iff it is BT-nilpotent, where BT is the class of T-local coeffi-

cient systems. A G-space is a T-local bounded A-nilpotent G-space iff it is bounded BT-nilpotent.

Proof. If X is BT-nilpotent it is easily verified that all of the homotopy groups of XH are T([G/H])-local,

which implies that X is T-local. Suppose that X is T-local. Recall that we have a central π1(X)-series for

πi(X) induced by the functorial lower central series when i = 1, or the functorial augmentation ideal series

when i ≥ 2. Localizing these series at T, and considering their images in πi(X), expresses each πi(X) as a

BT-nilpotent π1(X)-series, and so X is BT-nilpotent. If X is bounded A-nilpotent, then the lower central

series terminates after finitely many stages and so X is bounded BT-nilpotent.

2.5 Localization at equivariant cohomology theories

We end this paper by tying up the following loose end. Namely, in [1, Ch. II], localizations of nilpotent

G-spaces were defined relative to equivariant cohomology theories, and we would like to compare this to our

localizations relative to T-equivalences.

Definition 2.5.1: A map of G-spaces, f : X → Y , is a cohomology T-equivalence if for all T-local coefficient

systems A, f∗ : H∗(Y ;A) → H∗(X;A) is an isomorphism.

We have:

Theorem 2.5.2: A map of G-spaces, f : X → Y , is a T-equivalence iff it is a cohomology T-equivalence.

Proof. If f is a T-equivalence, then each K(A,n) is T-local for every T-local coefficient system A, so f is a

cohomology T-equivalence.

If f is a cohomology T-equivalence, then we can assume that X,Y are well-pointed. Now, Σ2f : Σ2X → Σ2Y

is a cohomology T-equivalence between pointwise simply connected G-spaces. By the first part, (Σ2f)T is

also a cohomology T-equivalence between pointwise simply connected T-local G-spaces. Simply connected T-

local G-spaces are weakly equivalent to strict Postnikov BT-towers by the previous section, so the equivariant

analogue of co-HELP, [5, Theorem 3.3.7], implies that (Σ2f)T is a weak equivalence and, therefore, that Σ2f

is a T-equivalence. It follows that f is a T-equivalence.

Corollary 2.5.3: Localization with respect to T-equivalences is equivalent to localization with respect to

cohomology T-equivalences.
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