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Abstract

We derive double coset formulae for the genus and extended genus of a finitely generated nilpotent

group G, using the notions of bounded and bounded above automorphisms of
∏

GS , which are defined

relative to a fixed fracture square for G.

1 Introduction

Let T, S and, for each i in some indexing set I, Ti be sets of primes such that T = ∪iTi and Ti ∩ Tj = S for

all i ̸= j. Suppose also that T ̸= S. Throughout, we let G be an fZT -nilpotent group and consider a fixed

reference diagram:

G
∏
GTi

GS (
∏
GTi

)S
∏
GS

(ψi)

σ ϕ

∏
ϕi

ω π̃

where each ψi is a localisation at Ti, ϕ is a localisation at S, σ is a localisation at S, ϕi is the unique

localisation at S such that ϕiψi = σ, ω is the localisation of (ψi) and π̃ is the unique map making the triangle

on the right commute. It follows from these definitions that π̃ω = ∆.

The purpose of this paper is to derive double coset formulae for the genus and extended genus of G, and we

begin by recalling the relevant definitions from [1]:

Definition 1.1: i) the genus of G is the set of isomorphism classes of fZT -nilpotent groups H such that for

every i ∈ I, HTi
∼= GTi

,

ii) the extended genus of G is the set of isomorphism classes of T-local nilpotent groups H such that for every

i ∈ I, HTi
∼= GTi .

We remark that these definitions depend on G being fZT -nilpotent, and the sets of primes Ti. The fact

that the extended genus is a set is a consequence of the fracture theorem, [1, Theorem 7.2.1 ii)], for T -local

nilpotent groups.
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In [1, Section 7.5], a map was defined which sends an automorphism α ∈
∏
Aut(GS) to the pullback of

α ◦
∏
ϕi along ∆, and it was claimed that this map was a surjection onto the extended genus of G. However,

it is not necessarily true that the image of this map is contained within the extended genus of G. To see this

consider the following fracture square for Z, where the product is indexed over the natural numbers, pi is the

ith prime number, and each of the undefined maps is the inclusion sending 1 to 1:

Z
∏

Z{pi}

Q
∏

Q

(ψi)

σ
∏
ϕi

∆

Consider the automorphism α =
∏
pi of

∏
Q, where pi also denotes multiplication pi. Then the image of

α ◦
∏
ϕi consists of elements (qi) ∈

∏
Q such that if qi =

ai
bi

with ai, bi coprime, then ai is divisible by pi.

In particular, the image of α ◦
∏
ϕi intersects the image of ∆ only at 0. Therefore, the pullback group of

α ◦
∏
ϕi along ∆ is 0, which does not localise to Z{pi} for any i.

Nevertheless, this example turns out to be instructive. Suppose, instead, that α =
∏
(ui

vi
) with ui and vi

coprime non-zero integers. Suppose that α is ’bounded’ in the sense that there are only finitely many primes

which divide some ui or vi. Then the induced pullback is isomorphic to Z, which is the unique abelian

group in the genus of Z. If, instead, α is only ’bounded above’ in the sense that there are only finitely many

primes which divide some ui, then the pullback turns out to be in the extended genus of Z and the maps

ψi are localisations at Ti. In fact, we will see that the pullback group is not finitely generated unless α is

’bounded’. Note that in the counterexample we formulated, the map α was neither ’bounded’ nor ’bounded

above’.

With this in mind, the purpose of this paper will be to prove the following pair of double coset results,

relating to the genus and extended genus of G respectively:

Theorem 1.2: The genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb(
∏
iGS)/

∏
iAut(GTi

)

where Autb(
∏
iGS) is the subgroup of automorphisms of the form

∏
i αi which are S-bounded, see Definition

4.1.

Theorem 1.3: The extended genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb.a.(
∏
iGS)/

∏
iAut(GTi)

where Autb.a.(
∏
iGS) is the monoid of automorphisms of the form

∏
i αi which are S-bounded above, see

Definition 3.1.
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We will begin in Section 2, with a review of the results about localisations of nilpotent groups that we will use

in this paper. Then, in Sections 3 and 4, we will derive our double coset formulae for the extended genus and

genus, respectively. We then conclude the paper in Section 5, by relating our results to the formal fracture

square, and deriving a double coset formula in that context.

Finally, for this introductory section, we will review some other notions of genus, and corresponding double

coset formulae, that can be found in the literature. Firstly, we adopt the following definition from [1, Definition

12.4.6]:

Definition 1.4: Let G be an fZT -nilpotent group. The adelic genus of G is defined to be the set of isomor-

phism classes of fZT -nilpotent groups, H, such that H0 = G0 and Ĥp = Ĝp for every p ∈ T .

We will restrict attention to the case where T is the set of all primes. In this case, Pickel has shown that

the adelic genus of a torsion free finitely generated nilpotent group is in 1-1 correspondence with a subset of

the double coset G∞
A \GA/GQ, in [2, Proposition 3.2]. Our proofs of Theorems 1.2 and 1.3 will make heavy

use of the universal property of localisations; however, in the case of the adelic genus, proofs of double

coset formulae do not seem to hinge on the universal property of completion, but, instead, on the universal

property of extensions of scalars. To justify this, note that if A is abelian, then (Âp)0 is not p-complete,

but is a Q ⊗ Ẑp-module. In the nilpotent setting, the notion of an R-module is replaced by the notion of a

nilpotent R-group, [3, Definition 10.4], and Warfield has shown that, if R is a binomial domain (eg Q, Q̂p, Ẑp),

then we can define the tensor product of a nilpotent group with R, with the universal property that a group

homomorphism from G to a nilpotent R-group H factors uniquely through G → G ⊗ R, via an R-map

G⊗R→ H ( [3, Theorem 10.14]).

Moving on to spaces, there is an entirely analogous definition of the genus and adelic genus of an fZT -

nilpotent space, and Wilkerson has derived a double coset formula for the adelic genus of a simply connected

CW-complex of finite type, in [4, Theorem 3.8]. Here, Sullivan’s formal completion, [5, page 76], takes the

place of the extension of scalars functor − ⊗ Ẑp. In order to generalise Wilkerson’s double coset formula to

nilpotent spaces, it would be interesting if a homotopical adjoint functor theorem, such as those of [6] or [7],

could be used to construct the tensor product of a nilpotent space with a ring, with an appropriate universal

property. In theory, we want that, if X is an fZ-nilpotent space, then X → X ⊗ Ẑp would be a p-completion

of X, and X → X ⊗Q would be a rationalisation.

We are not aware of a double coset formula for the extended adelic genus, or fully general double coset

formulae for the genus or extended genus of an fZT -nilpotent space. However, the special case where I is a

finite indexing set is worth mentioning. In this case, the genus and extended genus of an fZT -nilpotent space

are the same, and the formal arguments of [1, Proposition 7.5.2] go through to yield a double coset formula

for both. Moreover, in [8], this double coset formula is derived as an application of a general formula for

calculating conjugates in an ∞-category. Finally, we remark that some other double coset formulae for the

3



(adelic) genus of a nilpotent group/space are claimed in [4, Theorem 1.2] and [1, Proposition 8.5.10, Remark

12.4.8, Theorem 13.6.6], but the proofs are incorrect, or missing in detail.

2 Review of nilpotent groups and their localisations

In this short, introductory section, we recall some definitions and results about nilpotent groups and their

localisations which will help us on our way. The following result, which is an easy generalisation of a theorem

of Warfield, [3, Theorem 3.25], is used repeatedly throughout this paper:

Lemma 2.1: Let G be a nilpotent group of nilpotency class c, H a subgroup of G, and A a set of elements of

G such that there exists an s ∈ N such that a ∈ A =⇒ as ∈ H. Then, if g ∈ G is in the subgroup generated

by elements of A and H, gs
d ∈ H where d = 1

2c(c+ 1).

Proof. Let K be the subgroup of G generated by elements of A and H. Then K has nilpotency class e ≤ c.

Let:

1 = ΓeK ⊂ ... ⊂ Γ1K ⊂ Γ0K = K

be the lower central series of K. Suppose that k ∈ K is of the form xh where x ∈ ΓiK and h ∈ H. Recall

that ΓiK
Γi+1K is an abelian group generated by commutators of the form [z0, ...., zi] where each zi ∈ A ∪H, [9,

Corollary 2.10]. Since the commutators are bilinear and ΓiK
Γi+1K is a central subgroup of K

Γi+1K , it follows that

ks
i+1

= yh
′
for some y ∈ Γi+1K, h

′ ∈ H.

Moving on to localisations, recall that a nilpotent group is T -local iff it is uniquely p-divisible for all p ∈ T .

Recall, also, the following definitions from [1]:

Definition 2.2: If R is a set of primes, then an R-number is a natural number which is a product of primes

not in R.

Definition 2.3: Let f : G→ H be a homomorphism between nilpotent groups. Then, we call f an:

i) R-monomorphism if f(g) = 1 =⇒ there is an R-number, r, such that gr = 1,

ii) R-epimorphism if, for all h ∈ H, there exists an R-number, r, such that hr ∈ im(f),

iii) R-isomorphism if it is both an R-monomorphism and an R-epimorphism.

Unsurprisingly, we have:

Lemma 2.4: A homomorphism between nilpotent groups, f , is an R-monomorphism/R-epimorphism/R-

isomorphism iff fR is a monomorphism/epimorphism/isomorphism, respectively.

Proof. This is [1, Proposition 5.5.4].
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We will also use:

Lemma 2.5: R-localisation preserves pullbacks.

Proof. This is [1, Lemma 5.5.7].

Recall that our reference group, G, is fZT -nilpotent. The next few results record some consequences of this,

starting with the observation that G is finitely T-generated in the following sense:

Definition 2.6: A nilpotent group G is said to be finitely T-generated if there exists a finite subset A of G

such that, for every g ∈ G, there exists a T -number, t, such that gt is in the subgroup generated by A.

Lemma 2.7: A nilpotent group G is finitely T-generated iff GT is fZT -nilpotent.

Proof. Firstly, if G is finitely T-generated, then the images of a finite T-generating set for G give a finite

T-generating set for GT . Conversely, if GT is finitely T-generated, we can assume that the finite T-generating

set is contained in the image of G, by Lemma 2.1. Then, we can form a finite T-generating set for G by

picking an element in the preimage of each element of the finite T-generating set for G. The fact that this is

a finite T-generating set for G again follows from Lemma 2.1. So we can assume that G is T-local, and this

case is already proved in [1, Proposition 5.6.5]. To sketch how the argument goes, if G is fZT -nilpotent, it

is straightforward use a central series to inductively show that G is finitely T -generated, using Lemma 2.1.

Conversely, if G is finitely T -generated, then it is clear that Ab(G) = G
[G,G] is an fZT -module, and so we can

use the epimorphisms Ab(G)⊗ ...⊗Ab(G) → ΓiG
Γi+1G onto the quotients of the lower central series, [9, Corollary

2.10], to conclude that the lower central series expresses G as an fZT -nilpotent group.

Lemma 2.8: Let G be an fZT -nilpotent group with reference diagram as in the introduction. Then:

i) G is T -Noetherian; that is G satisfies the ascending chain condition for T -local subgroups,

ii) π̃ is a monomorphism,

iii) GTi
has no (Ti − S)-torsion for all but finitely many i. Equivalently, ϕi is a monomorphism for all but

finitely many i.

Proof. i) This follows in the abelian case from the fact that ZT is Noetherian, and the general nilpotent case

follows via induction up a central series.

ii) It suffices to prove that
∏
ϕi :

∏
GTi

→
∏
GS is an S-monomorphism. This will follow from iii) and the

fact that each ϕi is an S-monomorphism,

iii) Let P = {p1, ..., pk} be a finite set of prime numbers and define:

GP = {g ∈ G| gp = 1 for some product p of primes in P}
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Then GP is a T -local subgroup of G, by Lemma 2.1. Since G is T -Noetherian it follows that there is a finite

set of primes Q such that if gn = 1 for some n ∈ N, then gq = 1 for some product of primes in Q. Now

suppose that Ti does not contain any primes in Q. If a ∈ GTi
is such that as = 1 for some product of primes

in (Ti − S), let t1 be a Ti-number such that at1 = ψi(g) for some g ∈ G. We have that ψi(g
s) = 1 and so

there is a Ti-number t2 such that gst2 = 1. Since s is coprime to each of the primes in Q, it follows that

gt2 = 1 and, therefore, that at1t2 = 1. Since GTi
is Ti-local, it follows that a = 1, as desired.

3 A double coset formula for the extended genus

The aim of this section is to show that if α =
∏
αi is an automorphism of

∏
GS , then in the pullback diagram

below:

H
∏
GTi

GS
∏
GS

(φi)

µ ∏
αiϕi

∆

φi is a Ti-localisation for all i iff α is S-bounded above in the following sense:

Definition 3.1: An automorphism α =
∏
αi ∈

∏
Aut(GS) is said to be S-bounded above if there exists an

S-number s such that for all i and for all gi ∈ GTi
, α−1

i ϕi(g
s
i ) ∈ im(ϕi).

From this, the double coset formula for the extended genus will follow in the expected manner. We start

with:

Lemma 3.2: If φi is a Ti-localisation for all i, then α is S-bounded above.

Proof. Let A be a finite T -generating set for G. Since the φi are Ti-localisations, µ is an S-localisation. It

follows that there exists an S-number s such that for all a ∈ A, σ(as) ∈ im(µ) ⊂ im(αiϕi) for all i. Since

ψi(A) is a finite Ti-generating set for GTi
, it follows from Lemma 2.1 that if gi ∈ GTi

, then ϕi(g
sd

i ) ∈ im(αiϕi),

where d = 1
2c(c+ 1), for c the nilpotency class of G.

For the reverse direction, we start with the following observation which does not require α to be S-bounded

above:

Lemma 3.3: µ is an S-monomorphism.

Proof. By Lemma 2.8,
∏
ϕi is an S-monomorphism, and, therefore, so is

∏
αiϕi. The result follows since

the pullback of an S-monomorphism is an S-monomorphism, by Lemmas 2.4 and 2.5.

Lemma 3.4: If α is S-bounded above, then µ is an S-epimorphism, hence an S-localisation.
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Proof. If x ∈ GS , then since σ is an S-localisation, there exists an S-number r such that xr ∈ im(σ) ⊂ im(ϕi)

for all i. Since α is S-bounded, there exists an S-number s such that xrs ∈ im(αiϕi) for all i. It follows that

xrs is in the image of µ by the definition of a pullback.

We now have:

Lemma 3.5: If α is S-bounded above, then φi is a Ti-localisation for all i.

Proof. If h ∈ H and φi(h) = 1, then µ(h) = 1 and so there exists an S-number s such that hs = 1. Write

s as a product of a Ti-number t and a product of primes in Ti, r. Then, if j ̸= i, φj(h
t) = 1, since GTj is

Tj-local and Ti ∩ Tj = S. Clearly φi(h
t) = 1, so it follows that φi is a Ti-monomorphism.

Now suppose that gi ∈ GTi
and let x = αiϕi(gi). Since µ is an S-localisation, there exists an S-number s

and h ∈ H such that xs = µ(h). Write s as a product of a Ti-number t and a product of primes in Ti, r. If

j ̸= i, then the image of αjϕj is a Tj-local subgroup of GS and so xt ∈ im(αjϕj) for all j ̸= i. Since xt is

also in im(αiϕi), it follows that g
t
i is in the image of φi by the definition of a pullback.

In order to state a double coset formula for the extended genus, we need to show that
∏
α is S-bounded

above, for α ∈ Aut(GS). In fact, we will prove the stronger result that
∏
α is S-bounded, and the reader is

invited to skip ahead and read the definition of an S-bounded automorphism in Definition 4.1.

Lemma 3.6: If α ∈ Aut(GS), then
∏
α is S-bounded.

Proof. Let A be a finite set of T -generators for G. Since σ is an S-localisation, there exists an S-number

s such that for all a ∈ A, ασ(as), α−1σ(as) ∈ im(σ). Since, for all i, σ = ϕiψi and ψi(A) is a finite set of

Ti generators for GTi
, this implies, by Lemma 2.1, that for all gi ∈ GTi

, αϕi(g
sd

i ) and α−1ϕi(g
sd

i ) ∈ im(ϕi),

where d = 1
2c(c+ 1) is independent of i. It follows that

∏
α is S-bounded.

It is clear than an automorphism of the form
∏
i βi ∈

∏
iAut(GTi

) also induces an S-bounded automorphism

of
∏
iGS , and we can now prove:

Theorem 3.7: The extended genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb.a.(
∏
iGS)/

∏
iAut(GTi

)

where Autb.a.(
∏
iGS) is the monoid of automorphisms of the form

∏
i αi which are S-bounded above. The

correspondence sends an S-bounded above automorphism α to the pullback group of α ◦ (
∏
ϕi) along ∆.

Proof. The fact that the map factors through the double coset follows from the commutative diagram, in

which all vertical maps are isomorphisms:
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GS
∏
GS

∏
GTi

GS
∏
GS

∏
GTi

∆

α
∏
α

∏
αiϕi

∏
βi

∆ ∏
ααi(βi)

−1
S ϕi

where
∏
αi ∈ Autb.a.(

∏
iGS), α ∈ Aut(GS) and, for every i, βi ∈ Aut(GTi

).

For surjectivity, if H is in the extended genus of G, then we can form a diagram:

H
∏
GTi

GS (
∏
GTi

)S
∏
GS

(ϵi)

µ ϕ

∏
ϕi

ωH π̃

Here, each ϵi is a Ti-localisation, µ is a S-localisation, and ωH is then defined as the localisation of (ϵi).

By [1, Theorem 7.2.1ii)], the left hand square is a pullback, and, since π̃ is a monomorphism, by Lemma

2.8ii), so is the larger square with base π̃ωH . Now π̃ωH ̸= ∆, in general. Instead, it is the product of

localisations of each ϵi - that is, π̃ωH = (αi), where each αi is an automorphism of GS . Let α :=
∏
αi.

Rearranging the pullback, we see that H is isomorphic to the pullback of α−1 ◦
∏
ϕi along ∆, and α−1 is

S-bounded above by Lemma 3.2.

For injectivity, suppose that α =
∏
αi, β =

∏
βi are S-bounded above automorphisms and we have pullbacks:

P
∏
GTi

P
∏
GTi

GS
∏
GS GS

∏
GS

(φi)

µ ∏
αiϕi

(φ̄i)

µ̄
∏
βiϕi

∆ ∆

By uniqueness of localisations, there is an automorphism γ =
∏
γi of

∏
GTi

such that γ(φi) = (φ̄i). There-

fore, since we only care about equivalence classes in the double coset we may assume that φi = φ̄i for all i.

Similarly, there is an automorphism γ
′
of GS such that γ

′
µ = µ̄, and so we can reduce to the case µ = µ̄.

Now, for all i, αiϕi and βiϕi are both the unique factorisation of µ through φi. By uniqueness of factorisation

through ϕi, we must have αi = βi, as desired.

4 A double coset formula for the genus of G

The purpose of this section is to prove that if we restrict the map of Theorem 3.7 to the S-bounded auto-

morphisms, defined as follows, then its image is precisely the genus of G.

Definition 4.1: An automorphism α =
∏
αi ∈

∏
Aut(GS) is said to be S-bounded if there exists an S-
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number s such that for all (gi) ∈
∏
GTi , α ◦ (

∏
ϕi)(g

s
i ) ∈ im(

∏
(ϕi)) and α

−1 ◦ (
∏
ϕi)(g

s
i ) ∈ im(

∏
(ϕi)).

We begin with the following observation, which is also [1, Proposition 7.4.3]:

Lemma 4.2: If I is a finite indexing set and H is a T -local nilpotent group such that HTi is finitely Ti-

generated for all i ∈ I, then H is finitely T -generated.

Proof. Let H0 ⊂ H1 ⊂ ... be an ascending chain of T -local subgroups of H. For each i, let ψi denote a

Ti-localisation of H and let Hi
j denote the Ti-local subgroup of HTi generated by ψi(Hj). Choose an integer

N such that Hi
0 ⊂ Hi

1 ⊂ ... terminates at Hi
N for all i. Now let n ≥ N ; we claim that Hn = HN . If h ∈ Hn,

then there exists a Ti-number ti and a k ∈ HN such that ψi(h
ti) = ψi(k). It follows that there is a Ti-number

si such that (htik−1)si = 1. Since the set of g ∈ H such that there exists a Ti-number s such that gs ∈ HN

is a subgroup of G which contains htik−1 and k, it follows that there is a Ti-number ri such that hri ∈ HN .

Now any common factor of each of the ri lies outside of T and so there is a T -number r such that hr ∈ HN .

Since HN is T -local, it follows that h ∈ HN as desired. So H is T -Noetherian, which implies that H is finitely

T -generated.

Now suppose that H is in the image of an S-bounded automorphism. We consider the finite subset, F , of I

consisting of i such that ϕi is not a monomorphism. Then H fits into a diagram of the form:

H (
∏
i/∈F GTi

)× (
∏
j∈F GTj

)

P (
∏
i/∈F GTi

)× (
∏
j∈F GS)

∏
i/∈F GTi

GS (
∏
i/∈F GS)× (

∏
j∈F GS)

∏
i/∈F GS

1×(
∏

(αjϕj))

(
∏

(αiϕi))×1

∆×∆

where α =
∏
αi is S-bounded, and each of the squares is a pullback. Consider the localisation of the diagram

at T
′
= ∪i/∈FTi. The groups in the bottom two rows are all T

′
-local. If j ∈ F , Tj ∩ T

′
= S, so αjϕj is a

T
′
-localisation. It follows that P is a T

′
-localisation of H. In light of Lemma 4.2, if we want to show that

H is finitely T -generated, it suffices to show that P is finitely T
′
-generated. Note also that P is the image

of an S-bounded automorphism in the extended genus of GT ′ . In this way we can reduce the next lemma to

the case where ϕi is a monomorphism for all i.

Lemma 4.3: If H is the image of an S-bounded automorphism, then H is finitely T -generated.

Proof. As discussed above, we can reduce to the case where ϕi is a monomorphism for all i. Let α =
∏
αi

be an S-bounded automorphism such that we have a pullback square:
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H
∏
GTi

GS
∏
GS

∏
αiϕi

∆

Let K be the T -local subgroup of H consisting of pairs (x, (gi)) with x ∈ GS , gi ∈ GTi , such that, for all

i, αiϕi(gi) = x and x ∈ im(ϕi), say x = ϕi(ai). Then there is an injective group homomorphism K → G

sending (x, (gi)) to (x, (ai)). Since G is finitely T -generated so is K, and since α is S-bounded there exists

an S-number s such that if h ∈ H, then hs ∈ K. Consider a T -subnormal series for K:

K = K0 ⊂ K1 ⊂ ... ⊂ Km = H

If we localise at Ti, then all of the groups in the chain become finitely Ti-generated. Moreover, (
Kj+1

Kj
)Ti is

a finitely Ti-generated nilpotent group such that if k ∈ (
Kj+1

Kj
)Ti

, then ks = 1. For all but finitely many i

this implies that (
Kj+1

Kj
)Ti

is trivial. For the remaining i, (
Kj+1

Kj
)Ti

is finitely Ti-generated (in fact it is finite).

Therefore, using the fracture square [1, Theorem 7.2.1ii)], we see that
Kj+1

Kj
is finitely T -generated (in fact it

is finite). Inductively, it follows that H is finitely T -generated (and K is a subgroup of finite index in H).

It remains to prove that every element of the genus is the image of an S-bounded automorphism. We start

with the following observation:

Lemma 4.4: If H is in the genus of G, then there is a finite subset F of I such that if T
′
= ∪i/∈FTi, then

GT ′ ∼= HT ′ .

Proof. By [10, Theorem I.3.3], since GS ∼= HS , there is a finitely T -generated nilpotent group P equipped

with S-isomorphisms f : P → G and g : P → H. In fact, we just need to consider the pullback:

P G

H GS

ϕS

ϕS

to get the desired maps, where ϕS denotes a localisation at S. Since G,H and P are finitely T -generated,

we can use Lemma 2.1 to show that there exists an S-number s such that if p ∈ ker(f) or p ∈ ker(g), then

ps = 1 and, if g ∈ G, h ∈ H, then gs ∈ im(f), hs ∈ im(g). This implies that if we take T
′
to be the union

of the Ti which don’t contain any prime factors of s, then both f and g are T
′
-isomorphisms, which implies

the result.

We can now prove:
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Lemma 4.5: If H is in the genus of G, then H is the image of an S-bounded automorphism.

Proof. Let F be a finite subset of I such that if T ′ = ∪i/∈FTi, then HT ′ ∼= GT ′ . Let µ : H → GT ′ and

ϵ : G → GT ′ be T
′
-localisations. Then there are unique factorisations of σ and ψi, for i /∈ F , through ϵ;

denote them by σ
′
, ψ

′

i. Note that ϕiψ
′

i = σ
′

i. Since H is finitely T -generated, we can form a global to local

fracture square, [1, Theorem 7.2.1 iii)], of the form:

H (
∏
i/∈F GTi

)× (
∏
j∈F GTj

)

GS (
∏
i/∈F GS)× (

∏
j∈F GS)

(ψ
′
iµ)×(φj)

σ
′
µ (ϕi)×(αjϕj)

∆×∆

where φj is any Tj-localisation of H and αj ∈ Aut(GS). Since F is finite, 1× (αj) is S-bounded, which can

be seen directly or via Lemma 5.2 of the next section, as desired.

We can now prove our double coset formula for the genus of G:

Theorem 4.6: The genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb(
∏
iGS)/

∏
iAut(GTi

)

where Autb(
∏
iGS) is the subgroup of automorphisms of the form

∏
i αi which are S-bounded. The corre-

spondence sends an S-bounded automorphism α to the pullback group of α ◦ (
∏
ϕi) along ∆.

Proof. We have already shown that the correspondence is well-defined and surjective in Lemmas 4.3 and 4.5.

It is injective by Theorem 3.7.

5 Relationship to the formal fracture square

So far we have phrased our results in terms of the fracture square [1, Theorem 7.2.1 iii)] with the diagonal

map as the base. In this section, we investigate what happens if we try to define a double coset formula

relative to the fracture square:

G
∏
GTi

GS (
∏
GTi

)S

(ψi)

σ ϕ

ω

It turns out that this fracture square only sees the genus of G, and not the whole of the extended genus. Recall

that we have previously considered ’diagonal’ automorphisms of
∏
GS of the form

∏
αi, for αi ∈ Aut(GS).
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We first define the analogue of a diagonal automorphism in Aut((
∏
GTi)S):

Definition 5.1: DAut((
∏
GTi)S) is the subgroup of Aut((

∏
GTi)S) consisting of automorphisms α such

that, for every j ∈ I, under the identification of (
∏
GTi

)S with GTj
× (

∏
i̸=j GTi

)S determined by ϕ and any

S-localisation of GTj
× (

∏
i ̸=j GTi

) of the form ϕj × ϕ
′

j , α = αj × β for some automorphisms αj of GS and

β of (
∏
i ̸=j GTi)S.

Note that the subgroup of diagonal automorphisms, DAut((
∏
GTi)S), is independent of the choice of the

collection {ϕ′

j}j∈I . Also, note that if α is a diagonal automorphism of (
∏
GTi

)S , then there is a commutative

diagram:

(
∏
GTi)S

∏
GS

(
∏
GTi

)S
∏
GS

π̃

α
∏
αi

π̃

Since π̃ is a monomorphism, it follows that there is an injective homomorphismDAut((
∏
GTi

)S) →
∏
Aut(GS).

We will now show that the image of this map is the subgroup of S-bounded automorphisms of
∏
GS . It

follows, from Lemma 3.6, that Aut(GS) defines a subgroup of DAut((
∏
GTi

)S).

Lemma 5.2: An automorphism α ∈
∏
Aut(GS) is the image of a diagonal automorphism β iff α is S-

bounded.

Proof. First suppose that α is the image of a diagonal automorphism β. Let A be a finite set of T -generators

for G. Since ϕ is an S-epimorphism, there exists an S-number s such that for all a ∈ A, βωσ(as) and

β−1ωσ(as) ∈ im(ϕ). Now ψi(A) is a finite set of Ti generators for GTi and im(ϕi) is a Ti-local subgroup of

GS . It follows, by Lemma 2.1, that if gi ∈ GTi
then αiϕi(g

sd

i ), α−1
i ϕi(g

sd

i ) ∈ im(ϕi), where d = 1
2c(c+1), for

c the nilpotency class of G. Since d is independent of i, it follows that α is S-bounded as desired.

Now suppose that α is S-bounded. Let F ⊂ I be the finite subset of I such that ϕi is not a monomorphism

for i ∈ F . If i /∈ F , let Hi be the subgroup of GTi consisting of gi such that αiϕi(gi) ∈ im(ϕi). Define unique

homomorphisms, fi, such that the following square commutes:

∏
i/∈F Hi

∏
i/∈F GTi

∏
i/∈F GS

∏
i/∈F GS

∏
fi

(
∏
ϕi)◦ι

∏
ϕi

∏
αi

where ι is the inclusion of
∏
Hi into

∏
GTi

. Since α is S-bounded, ι is an S-isomorphism. Similarly, the

image of the monomorphism f :=
∏
fi is {(gi) | ∀i α−1

i ϕi(gi) ∈ im(ϕi)} and so, since α is S-bounded, f
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is also an S-isomorphism. Let ϕI/F be an S-localisation of
∏
i/∈F GTi , so there is an induced isomorphism

(
∏
GTi

)S ∼=τ
∏
i∈F GS × (

∏
i/∈F GTi

)S induced by ϕ and (
∏
i∈F ϕi)× ϕI/F . Since the vertical arrows in the

diagram below are S-localisations, there is a unique map fS making the diagram commute:

∏
i/∈F Hi

∏
i/∈F GTi

(
∏
i/∈F GTi

)S (
∏
i/∈F GTi

)S

f

ϕI/F ι ϕI/F

fS

Since f is an S-isomorphism, (
∏
αi)× fS defines an automorphism of

∏
i∈F GS × (

∏
i/∈F GTi

)S . Noting that

the S-localisation of fi with respect to ϕi ◦ ιi and ϕi is αi, it follows that if we define β ∈ Aut((
∏
GTi)S)

to correspond to (
∏
αi)i∈F × fS under the isomorphism, τ , given above, then β is a diagonal automorphism

whose image is α.

It is now an easy matter to reformulate our double coset formula for the genus of G in terms of the formal

fracture square:

Theorem 5.3: There is a 1-1 correspondence between the genus of G and the double coset:

Aut(GS) \ DAut((
∏
GTi

)S) /
∏
Aut(GTi

)

The correspondence sends a diagonal automorphism α to the pullback group of αϕ along ω.

Proof. By Theorem 4.6 and Lemma 5.2, it is immediate that there is a 1-1 correspondence between the

double coset and the genus of G, sending α to the pullback group of
∏
αiϕi along ∆. This is equivalent to

sending α to the pullback group of αϕ along ω, since π̃ is a monomorphism.

Our final result tells us that a nilpotent group, H, in the extended genus of G, is finitely T -generated iff the

S-localisation of the map H →
∏
GTi

is equivalent to ω. To make this precise, we have:

Definition 5.4: Define Orb(GS , (
∏
GTi

)S) to be the set of orbits of Hom(GS , (
∏
GTi

)S) under the action

of the group Aut(GS)×DAut((
∏
GTi

)S).

If E(G) denotes the extended genus of G, then we have a map L : E(G) → Orb(GS , (
∏
GTi

)S) defined

by sending H to the S-localisation of some product of Ti-localisations, (ϵi) : H →
∏
GTi , with respect to

some S-localisation µ : H → GS , and ϕ. By definition, L(H) is independent of the choices of µ and ϵi. We

have:

Lemma 5.5: The genus of G is equal to L−1(Orb(ω)).

Proof. If H ∈ L−1(Orb(ω)), then the fracture square, [1, Theorem 7.2.1], exhibits H as the pullback of αϕ

along ω, for some diagonal automorphism α. So H is in the genus of G, by Theorem 5.3. Conversely, if H is

13



in the genus of G, then, by Theorem 5.3, we can view H as the pullback of αω along ϕ, for some diagonal

automorphism α, so L(H) = Orb(ω).
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