A double coset formula for the genus of a nilpotent group
A. Ronan

Abstract

We derive double coset formulae for the genus and extended genus of a finitely generated nilpotent
group G, using the notions of bounded and bounded above automorphisms of [[ Gs, which are defined

relative to a fixed fracture square for G.

1 Introduction

Let T, S and, for each 4 in some indexing set I, T; be sets of primes such that T'= U;T; and T; NT; = S for
all i # j. Suppose also that T' # S. Throughout, we let G be an fZp-nilpotent group and consider a fixed

reference diagram:

where each 1; is a localisation at T;, ¢ is a localisation at S, o is a localisation at S, ¢; is the unique
localisation at S such that ¢;9; = o, w is the localisation of (1;) and 7 is the unique map making the triangle

on the right commute. It follows from these definitions that 7w = A.

The purpose of this paper is to derive double coset formulae for the genus and extended genus of G, and we

begin by recalling the relevant definitions from [1):

Definition 1.1: i) the genus of G is the set of isomorphism classes of fZr-nilpotent groups H such that for
every i € I, Hy, = Gr,,
it) the extended genus of G is the set of isomorphism classes of T-local nilpotent groups H such that for every

’Z€I, HTi gGTi,

We remark that these definitions depend on G being fZp-nilpotent, and the sets of primes T;. The fact
that the extended genus is a set is a consequence of the fracture theorem, |1, Theorem 7.2.1 ii)], for T-local

nilpotent groups.



In [1} Section 7.5], a map was defined which sends an automorphism « € [[ Aut(Ggs) to the pullback of
ao]] ¢; along A, and it was claimed that this map was a surjection onto the extended genus of G. However,
it is not necessarily true that the image of this map is contained within the extended genus of G. To see this
consider the following fracture square for Z, where the product is indexed over the natural numbers, p; is the

ith prime number, and each of the undefined maps is the inclusion sending 1 to 1:

(i)
7 — H Z{Pi}

{ |me:

Q ——1IIC

Consider the automorphism a = [[p; of [[Q, where p; also denotes multiplication p;. Then the image of
a o ] ¢; consists of elements (g;) € []Q such that if ¢; = Z—Z with a;, b; coprime, then a; is divisible by p;.
In particular, the image of « o [] ¢; intersects the image of A only at 0. Therefore, the pullback group of

ao]]¢; along A is 0, which does not localise to Z,,, for any i.

Nevertheless, this example turns out to be instructive. Suppose, instead, that o = []( g—;) with u; and v;
coprime non-zero integers. Suppose that a is ’bounded’ in the sense that there are only finitely many primes
which divide some u; or v;. Then the induced pullback is isomorphic to Z, which is the unique abelian
group in the genus of Z. If, instead, « is only ’bounded above’ in the sense that there are only finitely many
primes which divide some u;, then the pullback turns out to be in the extended genus of Z and the maps
1; are localisations at T;. In fact, we will see that the pullback group is not finitely generated unless « is
'bounded’. Note that in the counterexample we formulated, the map a was neither 'bounded’ nor ’bounded

above’.

With this in mind, the purpose of this paper will be to prove the following pair of double coset results,

relating to the genus and extended genus of G respectively:
Theorem 1.2: The genus of G is in 1-1 correspondence with the double coset:
Aut(Gs)\Auty(I[; Gs)/ 1; Aut(Gr,)

where Auty([ ], Gs) is the subgroup of automorphisms of the form [, a; which are S-bounded, see Definition
1

Theorem 1.3: The extended genus of G is in 1-1 correspondence with the double coset:

Aut(Gs)\Auty o (TT; Gs)/ 1, Aut(Gr,)

where Auty . ([[; Gs) is the monoid of automorphisms of the form [[, a; which are S-bounded above, see

Definition |3. 1.



We will begin in Section 2] with a review of the results about localisations of nilpotent groups that we will use
in this paper. Then, in Sections [3|and 4] we will derive our double coset formulae for the extended genus and
genus, respectively. We then conclude the paper in Section |5 by relating our results to the formal fracture

square, and deriving a double coset formula in that context.

Finally, for this introductory section, we will review some other notions of genus, and corresponding double
coset formulae, that can be found in the literature. Firstly, we adopt the following definition from [1, Definition

12.4.6):

Definition 1.4: Let G be an fZp-nilpotent group. The adelic genus of G is defined to be the set of isomor-

phism classes of fZr-nilpotent groups, H, such that Hy = Gy and ﬁp = @p for everyp e T.

We will restrict attention to the case where T is the set of all primes. In this case, Pickel has shown that
the adelic genus of a torsion free finitely generated nilpotent group is in 1-1 correspondence with a subset of
the double coset GFP\Ga/Gq, in [2, Proposition 3.2]. Our proofs of Theorems and will make heavy
use of the universal property of localisations; however, in the case of the adelic genus, proofs of double
coset formulae do not seem to hinge on the universal property of completion, but, instead, on the universal
property of extensions of scalars. To justify this, note that if A is abelian, then (flp)o is not p-complete,
but isa Q ® Zp—module. In the nilpotent setting, the notion of an R-module is replaced by the notion of a
nilpotent R-group, |3, Definition 10.4], and Warfield has shown that, if R is a binomial domain (eg Q, Qp, Zp),
then we can define the tensor product of a nilpotent group with R, with the universal property that a group
homomorphism from G to a nilpotent R-group H factors uniquely through G — G ® R, via an R-map
G ® R — H ([3| Theorem 10.14]).

Moving on to spaces, there is an entirely analogous definition of the genus and adelic genus of an fZp-
nilpotent space, and Wilkerson has derived a double coset formula for the adelic genus of a simply connected
CW-complex of finite type, in [4, Theorem 3.8]. Here, Sullivan’s formal completion, [5, page 76], takes the
place of the extension of scalars functor — ® Zp. In order to generalise Wilkerson’s double coset formula to
nilpotent spaces, it would be interesting if a homotopical adjoint functor theorem, such as those of [6] or [7],
could be used to construct the tensor product of a nilpotent space with a ring, with an appropriate universal
property. In theory, we want that, if X is an fZ-nilpotent space, then X — X ® Zp would be a p-completion

of X, and X — X ® Q would be a rationalisation.

We are not aware of a double coset formula for the extended adelic genus, or fully general double coset
formulae for the genus or extended genus of an fZp-nilpotent space. However, the special case where I is a
finite indexing set is worth mentioning. In this case, the genus and extended genus of an fZ-nilpotent space
are the same, and the formal arguments of 1| Proposition 7.5.2] go through to yield a double coset formula
for both. Moreover, in [8], this double coset formula is derived as an application of a general formula for

calculating conjugates in an oo-category. Finally, we remark that some other double coset formulae for the
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(adelic) genus of a nilpotent group/space are claimed in [4, Theorem 1.2] and [1, Proposition 8.5.10, Remark

12.4.8, Theorem 13.6.6], but the proofs are incorrect, or missing in detail.

2 Review of nilpotent groups and their localisations

In this short, introductory section, we recall some definitions and results about nilpotent groups and their
localisations which will help us on our way. The following result, which is an easy generalisation of a theorem

of Warfield, [3, Theorem 3.25], is used repeatedly throughout this paper:

Lemma 2.1: Let G be a nilpotent group of nilpotency class ¢, H a subgroup of G, and A a set of elements of
G such that there exists an s € N such that a € A = a® € H. Then, if g € G is in the subgroup generated

by elements of A and H, gsd € H where d = %C(C—F 1).

Proof. Let K be the subgroup of G generated by elements of A and H. Then K has nilpotency class e < c.

Let:
1=T¢KC..cT'"KcI'K =K

be the lower central series of K. Suppose that k € K is of the form xh where 2 € 'K and h € H. Recall
that % is an abelian group generated by commutators of the form [z, ...., z;] where each z; € AU H, [9,

Corollary 2.10]. Since the commutators are bilinear and % is a central subgroup of ﬁ, it follows that

ks = yh for some y € T"FIK, b’ € H. O
Moving on to localisations, recall that a nilpotent group is T-local iff it is uniquely p-divisible for all p € T'.
Recall, also, the following definitions from [1]:

Definition 2.2: If R is a set of primes, then an R-number is a natural number which is a product of primes

not in R.
Definition 2.3: Let f : G — H be a homomorphism between nilpotent groups. Then, we call f an:

i) R-monomorphism if f(g) =1 = there is an R-number, r, such that g" =1,
it) R-epimorphism if, for all h € H, there exists an R-number, r, such that h™ € im(f),

i11) R-isomorphism if it is both an R-monomorphism and an R-epimorphism.
Unsurprisingly, we have:
Lemma 2.4: A homomorphism between nilpotent groups, f, is an R-monomorphism/R-epimorphism/R-

isomorphism iff fr is a monomorphism/epimorphism/isomorphism, respectively.

Proof. This is |1, Proposition 5.5.4]. O



We will also use:

Lemma 2.5: R-localisation preserves pullbacks.
Proof. This is 1} Lemma 5.5.7]. O

Recall that our reference group, G, is fZp-nilpotent. The next few results record some consequences of this,

starting with the observation that G is finitely T-generated in the following sense:

Definition 2.6: A nilpotent group G is said to be finitely T-generated if there exists a finite subset A of G

such that, for every g € G, there exists a T-number, t, such that g is in the subgroup generated by A.

Lemma 2.7: A nilpotent group G is finitely T-generated iff G is fZr-nilpotent.

Proof. Firstly, if G is finitely T-generated, then the images of a finite T-generating set for G give a finite
T-generating set for Gp. Conversely, if G is finitely T-generated, we can assume that the finite T-generating
set is contained in the image of G, by Lemma [2.1] Then, we can form a finite T-generating set for G by
picking an element in the preimage of each element of the finite T-generating set for G. The fact that this is
a finite T-generating set for G again follows from Lemma So we can assume that G is T-local, and this
case is already proved in |1, Proposition 5.6.5]. To sketch how the argument goes, if G is fZr-nilpotent, it
is straightforward use a central series to inductively show that G is finitely T-generated, using Lemma [2.1
Conversely, if G is finitely T-generated, then it is clear that Ab(G) = ﬁ is an fZp-module, and so we can
use the epimorphisms Ab(G)®...® Ab(G) — Fl;:i?G onto the quotients of the lower central series, [9, Corollary

2.10], to conclude that the lower central series expresses G as an fZr-nilpotent group. O

Lemma 2.8: Let G be an fZr-nilpotent group with reference diagram as in the introduction. Then:

i) G is T-Noetherian; that is G satisfies the ascending chain condition for T-local subgroups,

it) T is a monomorphism,

iii) G, has no (T; — S)-torsion for all but finitely many i. Equivalently, ¢; is a monomorphism for all but

finitely many 1.

Proof. i) This follows in the abelian case from the fact that Zr is Noetherian, and the general nilpotent case
follows via induction up a central series.

ii) It suffices to prove that [[¢; : [[ G, — [[ Gs is an S-monomorphism. This will follow from iii) and the
fact that each ¢; is an S-monomorphism,

iii) Let P = {p1, ..., px} be a finite set of prime numbers and define:

GF ={g € G| g*» =1 for some product p of primes in P}



Then GT is a T-local subgroup of G, by Lemma Since G is T-Noetherian it follows that there is a finite
set of primes @ such that if g" = 1 for some n € N, then ¢g? = 1 for some product of primes in Q. Now
suppose that T; does not contain any primes in Q). If a € G, is such that a® = 1 for some product of primes
in (T; — S), let t; be a Ty-number such that a’* = 1;(g) for some g € G. We have that 1;(¢%) = 1 and so
there is a Tj-number t5 such that g2 = 1. Since s is coprime to each of the primes in @, it follows that

g'* =1 and, therefore, that a’'2 = 1. Since G, is T;-local, it follows that a = 1, as desired. O

3 A double coset formula for the extended genus

The aim of this section is to show that if @ = [] «; is an automorphism of [[ G g, then in the pullback diagram

below:

H (‘P7) HGTI
'ul ll_[ ;i
GS T> HGS

p; is a Ty-localisation for all i iff o is S-bounded above in the following sense:

Definition 3.1: An automorphism o = [[ o, € [[ Aut(Gg) is said to be S-bounded above if there exists an

S-number s such that for all i and for all g; € G, a;lgﬁi(gf) € im(e;).

From this, the double coset formula for the extended genus will follow in the expected manner. We start

with:

Lemma 3.2: If p; is a T;-localisation for all i, then o is S-bounded above.

Proof. Let A be a finite T-generating set for G. Since the ¢; are T;-localisations, p is an S-localisation. It
follows that there exists an S-number s such that for all a € A, o(a®) € im(p) C im(oy¢;) for all 4. Since
1;(A) is a finite T;-generating set for Gr,, it follows from Lemmathat if g; € G, then ¢; (gfd) € im(oip;),

where d = 1¢(c+ 1), for ¢ the nilpotency class of G. O

For the reverse direction, we start with the following observation which does not require « to be S-bounded
above:
Lemma 3.3: y is an S-monomorphism.

Proof. By Lemma [1¢: is an S-monomorphism, and, therefore, so is [] a;¢;. The result follows since
the pullback of an S-monomorphism is an S-monomorphism, by Lemmas [2.4] and O

Lemma 3.4: If o is S-bounded above, then u is an S-epimorphism, hence an S-localisation.
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Proof. If x € Gg, then since o is an S-localisation, there exists an S-number r such that " € im(co) C im(¢;)
for all 4. Since a is S-bounded, there exists an S-number s such that " € im(a;¢;) for all i. It follows that

"% is in the image of p by the definition of a pullback. O

We now have:

Lemma 3.5: If o is S-bounded above, then p; is a T;-localisation for all i.

Proof. f h € H and ¢;(h) = 1, then u(h) = 1 and so there exists an S-number s such that h® = 1. Write
s as a product of a T;-number ¢ and a product of primes in T, 7. Then, if j # 4, p;(h') = 1, since Gr; is

Tj-local and T; N1 = S. Clearly ©i(ht) =1, so it follows that ¢; is a T;-monomorphism.

Now suppose that g; € Gr, and let © = a;¢;(g;). Since u is an S-localisation, there exists an S-number s
and h € H such that 2° = u(h). Write s as a product of a T;-number ¢ and a product of primes in Ty, r. If
t

j # i, then the image of a;¢; is a Tj-local subgroup of Gg and so z' € im(a;¢;) for all j # i. Since z' is

also in im(a;¢;), it follows that g! is in the image of ¢; by the definition of a pullback. O

In order to state a double coset formula for the extended genus, we need to show that []a is S-bounded
above, for o € Aut(Gg). In fact, we will prove the stronger result that [] « is S-bounded, and the reader is

invited to skip ahead and read the definition of an S-bounded automorphism in Definition

Lemma 3.6: If o € Aut(Gg), then [ a is S-bounded.

Proof. Let A be a finite set of T-generators for G. Since o is an S-localisation, there exists an S-number
s such that for all a € A, ao(a®),a"to(a®) € im(c). Since, for all i, 0 = ¢;1); and ;(A) is a finite set of
T; generators for Gr,, this implies, by Lemma that for all g; € Gr,, aqﬁi(gfd) and o~ '¢; (gfd) € im(¢;),

where d = Z¢(c+ 1) is independent of . It follows that [] v is S-bounded. O

It is clear than an automorphism of the form [], 8; € [[; Aut(Gr,) also induces an S-bounded automorphism

of [], Gs, and we can now prove:

Theorem 3.7: The extended genus of G is in 1-1 correspondence with the double coset:
Aut(Gs)\Auty.o (IT, Gs)/ T1, Aut(Gr,)

where Auty o ([]; Gs) is the monoid of automorphisms of the form ], a; which are S-bounded above. The

correspondence sends an S-bounded above automorphism « to the pullback group of aco ([ ¢:) along A.

Proof. The fact that the map factors through the double coset follows from the commutative diagram, in

which all vertical maps are isomorphisms:



Ggs A4, [1Gs M [1Gr,

ai |t |

Gg — [[|Gg +—— [ G~
s =1 Sl‘[aai(ﬁi)glmn T

where [[o; € Autyo ([[; Gs), @ € Aut(Gs) and, for every i, 3; € Aut(Gr,).

For surjectivity, if H is in the extended genus of GG, then we can form a diagram:

H % HGTi

|

Gs —;> ([1Gn)s —— [1Gs

Here, each ¢; is a T;-localisation, u is a S-localisation, and wy is then defined as the localisation of (;).
By [1, Theorem 7.2.1ii)], the left hand square is a pullback, and, since 7 is a monomorphism, by Lemma
i), so is the larger square with base 7wgy. Now 7wy # A, in general. Instead, it is the product of
localisations of each ¢; - that is, 7wy = (o), where each «; is an automorphism of Gg. Let a := []ay.
Rearranging the pullback, we see that H is isomorphic to the pullback of a=! o []¢; along A, and o~ ! is
S-bounded above by Lemma [3.2]

For injectivity, suppose that a = [ e, 8 = [] 8 are S-bounded above automorphisms and we have pullbacks:

P Gy RSN y e
ul ln cidi ﬂl ll'[ b1
GS T> HGS GS’ T> HGS

By uniqueness of localisations, there is an automorphism v = [[v; of [[ Gr, such that v(¢;) = (@;). There-
fore, since we only care about equivalence classes in the double coset we may assume that @; = @; for all 4.
Similarly, there is an automorphism 'y/ of Gg such that vlu = [i, and so we can reduce to the case p = [i.
Now, for all i, ai;¢p; and B;¢; are both the unique factorisation of p through ¢;. By uniqueness of factorisation

through ¢;, we must have a; = 3;, as desired. O

4 A double coset formula for the genus of G

The purpose of this section is to prove that if we restrict the map of Theorem [3.7] to the S-bounded auto-
morphisms, defined as follows, then its image is precisely the genus of G.

Definition 4.1: An automorphism o = [[a; € [[ Aut(Gs) is said to be S-bounded if there exists an S-
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number s such that for all (g;) € [[Gr,, ao ([19:)(g) € im([](#:)) and a=t o ([1¢:)(g:) € im(I](¢4))-
We begin with the following observation, which is also |1, Proposition 7.4.3]:

Lemma 4.2: If I is a finite indexing set and H is a T-local nilpotent group such that Hr, is finitely T;-

generated for all i € I, then H is finitely T-generated.

Proof. Let Hy C H; C ... be an ascending chain of T-local subgroups of H. For each i, let 1; denote a
T;-localisation of H and let sz denote the Tj-local subgroup of Hr, generated by ;(H;). Choose an integer
N such that Hé C Hi C ... terminates at H}V for all i. Now let n > N; we claim that H,, = Hy. If h € H,,
then there exists a Tj-number ¢; and a k € Hy such that 1; (k%) = 1;(k). Tt follows that there is a T;-number
s; such that (htik’l)si = 1. Since the set of g € H such that there exists a T;-number s such that ¢° € Hy
is a subgroup of G which contains h*k~! and k, it follows that there is a Tj-number 7; such that h™ € Hy.
Now any common factor of each of the r; lies outside of T and so there is a T-number r such that h” € H .
Since Hp is T-local, it follows that h € H as desired. So H is T-Noetherian, which implies that H is finitely

T-generated. O

Now suppose that H is in the image of an S-bounded automorphism. We consider the finite subset, F', of I

consisting of 7 such that ¢; is not a monomorphism. Then H fits into a diagram of the form:

B (HigF Gr,) x (Il er G1;)

il
l lIX(H(amj))
P

— (Hi¢F Gr,) x ([ljer Gs) — HigF Gr,

J{(H(%%))Xl J{

Gs —xr ULigr Gs) x (Iljer Gs) —— ILigr Gs

where a = [] «; is S-bounded, and each of the squares is a pullback. Consider the localisation of the diagram
at T = UigrT;. The groups in the bottom two rows are all T -local. IfjeF,1I;N T = S, s0 ajp; is a
T -localisation. It follows that P is a T’ -localisation of H. In light of Lemma if we want to show that
H is finitely T-generated, it suffices to show that P is finitely T/—generated. Note also that P is the image
of an S-bounded automorphism in the extended genus of G. In this way we can reduce the next lemma to

the case where ¢; is a monomorphism for all 4.

Lemma 4.3: If H is the image of an S-bounded automorphism, then H is finitely T-generated.

Proof. As discussed above, we can reduce to the case where ¢; is a monomorphism for all i. Let o = [] oy

be an S-bounded automorphism such that we have a pullback square:



H—— HGTi

l |,

Gs ——~ 11Gs

Let K be the T-local subgroup of H consisting of pairs (z, (g;)) with z € Gg,g; € Gr,, such that, for all
i, a;¢;(g;) = = and = € im(¢;), say © = ¢;(a;). Then there is an injective group homomorphism K — G
sending (x,(g;)) to (z,(a;)). Since G is finitely T-generated so is K, and since « is S-bounded there exists

an S-number s such that if h € H, then h® € K. Consider a T-subnormal series for K:

K=KycKiCc..CcK,=H

If we localise at T, then all of the groups in the chain become finitely T;-generated. Moreover, (Kl’jl ), is
J

a finitely T;-generated nilpotent group such that if k € (KI”'(fl )1,, then k* = 1. For all but finitely many ¢
J
this implies that (%)T is trivial. For the remaining i, (KIJ(—T)T is finitely T;-generated (in fact it is finite).

Therefore, using the fracture square |1, Theorem 7.2.1ii)], we see that KI’XI is finitely T-generated (in fact it
J

is finite). Inductively, it follows that H is finitely T-generated (and K is a subgroup of finite index in H). O

It remains to prove that every element of the genus is the image of an S-bounded automorphism. We start

with the following observation:

Lemma 4.4: If H is in the genus of G, then there is a finite subset F' of I such that if T = UigrTi, then

G = Hyp.

Proof. By [10, Theorem 1.3.3], since Gg = Hg, there is a finitely T-generated nilpotent group P equipped

with S-isomorphisms f: P — G and g : P — H. In fact, we just need to consider the pullback:

P—G

| Jos

H%Gs
s

to get the desired maps, where ¢s denotes a localisation at S. Since G, H and P are finitely T-generated,
we can use Lemma [2.1] to show that there exists an S-number s such that if p € ker(f) or p € ker(g), then
p* =1and, if g € G,h € H, then g* € im(f),h* € im(g). This implies that if we take 7" to be the union
of the T; which don’t contain any prime factors of s, then both f and g are T,-isomorphisms7 which implies

the result. 0

We can now prove:
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Lemma 4.5: If H is in the genus of G, then H is the image of an S-bounded automorphism.

Proof. Let F be a finite subset of I such that if 7" = U;¢pT;, then Hyy = Gpr. Let p: H — G and
€: G = Gp be T -localisations. Then there are unique factorisations of o and ;, for i ¢ F', through e;
denote them by o, w;. Note that qﬁiw; = O’;. Since H is finitely T-generated, we can form a global to local

fracture square, |1, Theorem 7.2.1 iii)], of the form:

(1) % ()
H —————"= ([Ligr G.) x ([1;er G1;)

O’/[LJ/ J{(@) X (cvjby)

Gs —AxAa (Hing Gs) x (HjeF Gs)

where ¢; is any T)-localisation of H and «; € Aut(Gg). Since F is finite, 1 x («;) is S-bounded, which can
be seen directly or via Lemma of the next section, as desired. O
We can now prove our double coset formula for the genus of G:
Theorem 4.6: The genus of G is in 1-1 correspondence with the double coset:

Aut(Gs)\Auty(T, Gs)/ TT, Aut(Gr,)
where Auty([[, Gs) is the subgroup of automorphisms of the form [, o which are S-bounded. The corre-

spondence sends an S-bounded automorphism « to the pullback group of avo ([] ¢i) along A.

Proof. We have already shown that the correspondence is well-defined and surjective in Lemmas and

It is injective by Theorem O

5 Relationship to the formal fracture square

So far we have phrased our results in terms of the fracture square [1, Theorem 7.2.1 iii)] with the diagonal
map as the base. In this section, we investigate what happens if we try to define a double coset formula

relative to the fracture square:

b

Gs —w (H GT«;)S

It turns out that this fracture square only sees the genus of G, and not the whole of the extended genus. Recall

that we have previously considered ’diagonal’ automorphisms of [ Gg of the form [] «;, for a; € Aut(Gg).
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We first define the analogue of a diagonal automorphism in Aut(([[ Gr,)s):

Definition 5.1: DAut(([[ Gr,)s) is the subgroup of Aut((I[Gr,)s) consisting of automorphisms o such
that, for every j € I, under the identification of (I] Gr,)s with G, x (H#j Gr,)s determined by ¢ and any
S-localisation of G, X (Hﬁéj Gr,) of the form ¢; x d); , = X B for some automorphisms aj of Gg and

B of (ILix; Gr.)s-

Note that the subgroup of diagonal automorphisms, DAut(([[ Gr,)s), is independent of the choice of the
collection {gb; }jer. Also, note that if « is a diagonal automorphism of ([[ Gr1,)s, then there is a commutative

diagram:

(H GTi)S L HGS'

| e

(I1Gr)s —— TIGs

Since 7 is a monomorphism, it follows that there is an injective homomorphism D Aut(([[ Gr,)s) — [[ Aut(Gs).
We will now show that the image of this map is the subgroup of S-bounded automorphisms of [[Gg. It
follows, from Lemma that Aut(Gg) defines a subgroup of DAut(([[ Gr,)s)-

Lemma 5.2: An automorphism o € [[ Aut(Gg) is the image of a diagonal automorphism B iff o is S-

bounded.

Proof. First suppose that « is the image of a diagonal automorphism . Let A be a finite set of T-generators
for G. Since ¢ is an S-epimorphism, there exists an S-number s such that for all a € A, fwo(a®) and
B two(a®) € im(¢). Now 1;(A) is a finite set of T; generators for G, and im(¢;) is a Tj-local subgroup of
Ggs. It follows, by Lemma that if g; € G, then aiqbi(gfd),ai_l(bi(gfd) € im(¢;), where d = 1c(c+ 1), for

c the nilpotency class of G. Since d is independent of i, it follows that « is S-bounded as desired.

Now suppose that « is S-bounded. Let F' C I be the finite subset of I such that ¢; is not a monomorphism
fori e F. If i ¢ F, let H; be the subgroup of G, consisting of g; such that a;¢;(g;) € im(¢;). Define unique

homomorphisms, f;, such that the following square commutes:

I1f:
[Ligrp Hi — ILigr Gr.
(M e0e:| |me:
[LigrGs e [Ligr Gs

where ¢ is the inclusion of [[ H; into [[ Gr,. Since « is S-bounded, ¢ is an S-isomorphism. Similarly, the

image of the monomorphism f := [] fi is {(¢;) | Vi ;' ¢i(g:) € im(#;)} and so, since a is S-bounded, f
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is also an S-isomorphism. Let ¢;/p be an S-localisation of Hi¢ » G, so there is an induced isomorphism
(I1G1)s =7 [licr Gs x (Iligr G1i)s induced by ¢ and (J[;cx ¢i) X ¢1/p. Since the vertical arrows in the

diagram below are S-localisations, there is a unique map fg making the diagram commute:

Since f is an S-isomorphism, (J] ;) X fg defines an automorphism of [[;c p Gs X (I[,¢p G1,)s- Noting that
the S-localisation of f; with respect to ¢; o ¢; and ¢; is «;, it follows that if we define 8 € Aut(([[Gr,)s)
to correspond to (] «;)icr X fs under the isomorphism, 7, given above, then § is a diagonal automorphism

whose image is o. 0

It is now an easy matter to reformulate our double coset formula for the genus of G in terms of the formal

fracture square:

Theorem 5.3: There is a 1-1 correspondence between the genus of G and the double coset:

Aut(Gs) \ DAut(T]Gz)s) / T1 Aut(Gr,)

The correspondence sends a diagonal automorphism a to the pullback group of a¢ along w.

Proof. By Theorem and Lemma [5.2] it is immediate that there is a 1-1 correspondence between the
double coset and the genus of G, sending « to the pullback group of [] «;¢; along A. This is equivalent to

sending « to the pullback group of a¢ along w, since 7 is a monomorphism. O

Our final result tells us that a nilpotent group, H, in the extended genus of G, is finitely T-generated iff the

S-localisation of the map H — [] G, is equivalent to w. To make this precise, we have:

Definition 5.4: Define Orb(Gs, ([ Gr,)s) to be the set of orbits of Hom(Gs, (] Gt,)s) under the action
of the group Aut(Gs) x DAut(([[Gr,)s)-

If E(G) denotes the extended genus of G, then we have a map L : E(G) — Orb(Ggs, ([ Gr,)s) defined
by sending H to the S-localisation of some product of T;-localisations, (¢;) : H — [[ Gr,, with respect to
some S-localisation p : H — Gg, and ¢. By definition, L(H) is independent of the choices of p and ¢;. We

have:

Lemma 5.5: The genus of G is equal to L=(Orb(w)).

Proof. If H € L™1(Orb(w)), then the fracture square, |1, Theorem 7.2.1], exhibits H as the pullback of a¢

along w, for some diagonal automorphism «. So H is in the genus of G, by Theorem Conversely, if H is
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in the genus of G, then, by Theorem we can view H as the pullback of aw along ¢, for some diagonal

automorphism «a, so L(H) = Orb(w). O
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