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1 Simplicial Spaces and Fibrations

Since geometric realisation of simplicial spaces preserves finite limits, it would not be too surprising if geo-

metric realisation takes ’locally trivial’ maps of simplicial spaces to locally trivial Hurewicz fibrations. The

purpose of this article is to prove such a theorem, which reads as follows:

Theorem 1.0.1: If p : X → Y is a locally F -trivial map of simplicial spaces, and Y is a proper simplicial

space, then |p| is a Hurewicz fibration.

The proof we give is inspired by the proof of Goerss and Jardine that geometric realisation takes minimal

fibrations to Hurewicz fibrations, [1, Ch. I. Theorem 10.9]. In that context, Theorem 10.9 is the key to

showing that geometric realisation takes Kan fibrations to Serre fibrations, which in turn plays a crucial role

in the derivation in [1] of the Quillen model structure on simplicial sets. As an application of Theorem 1.0.1,

we recover the theorem:

Theorem 1.0.2: If G is a topological group with a nondegenerate basepoint, then, for any spaces X and Y ,

B(Y,G,X) → B(Y,G, ∗) is a Hurewicz fibration.

For a more direct proof, see [4, Theorem 8.2] and corollaries. Taking Y = ∗ and X = G, we can deduce that

the orbit map EG → BG is a Hurewicz fibration, whenever G is a topological group with a nondegenerate

basepoint.

1.1 CGWH spaces

We begin by recalling some results about the category of CGWH spaces that we will use in this article. Since

these results are not the main focus of the article, we do not provide all of the proofs, instead referring to

Strickland’s notes on CGWH spaces, [2], for the details. Firstly, a useful criterion for recognising when a

continuous bijection of CGWH spaces is a homeomorphism is:

Lemma 1.1.1: If f : X → Y is a proper (the preimages of compact subspaces are compact) continuous

bjiection between CGWH spaces, then it is a homeomorphism.

Proof. This is [2, Proposition 3.17].

Lemma 1.1.2: In the category of CGWH spaces, the pullback of a quotient map is a quotient map.
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Proof. This is [2, Proposition 2.36].

Lemma 1.1.3: If we have a commutative diagram of CGWH spaces:

A1 B1

X1 Y1

A0 B0

X0 Y0

j

i

such that the bottom square is a pushout, the vertical squares are pullbacks, and the map A0 → X0 is a closed

inclusion, then the top square is a pushout.

Proof. Since i is a closed inclusion, the categorical pushout of i agrees with the usual quotient of X0⊔B0, [3,

pg.40], and, since closed inclusions are preserved by pullbacks, [2, Proposition 2.33], the pushout of j is also

given by the usual quotient. Therefore, we have a pullback:

X1 ⊔B1 Y1

X0 ⊔B0 Y0

where the bottom map is a quotient. Therefore, by Lemma 1.1.2, the top arrow is also a quotient map. There

are two equivalence relations on X1⊔B1 that we care about. The first identifies u ∼1 v if u, v ∈ X1⊔B1 have

the same image in Y1. The second is the smallest equivalence relation ∼2 generated by the relations x1 ∼2 b1

whenever there exists some a1 ∈ A1 with images x1 ∈ X1 and b1 ∈ B1. We want to show both of these

equivalence relations are equal. Since x1 ∼1 b1 whenever there is such an a1, we have that u ∼2 v =⇒ u ∼1 v.

If u ∼1 v, write u0 and v0 for the images of u and v in X0 ⊔ B0. Since their images in Y0 are equal, there

is a sequence u0 = e0, e1, ..., en = v0, with n ≥ 0, of elements of X0 ⊔ B0 such that for every i < n, there is

some ai ∈ A0 such that ei and ei+1 are images of ai. It follows that each ei has the same image in Y0, which

corresponds to the image of y, where y is the image of u and v in Y1. So (ai, y) is a well-defined element of

A1, and both (ei, y) ∈ X1 ⊔B1 and (ei+1, y) ∈ X1 ⊔B1 are images of (ai, y). So u ∼2 v.
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1.2 Locally trivial maps of spaces

Definition 1.2.1: Let F be a space. We call a map f : X → Y locally F -trivial over a subspace A of Y if

there is a homeomorphism ϕA : f−1(A) → A× F over A:

f−1(A) A× F

A
f

ϕA

∼=

πA

Clearly, we have:

Lemma 1.2.2: If Y has a numerable, locally finite open cover, {Ui}, such that f is locally F -trivial over

each Ui, then f is a Hurewicz fibration.

Proof. See [3, pg. 51].

The next lemma is central to our main theorem:

Lemma 1.2.3: Let F be a space, let f : X → Y be a map, and let A,B be subspaces of Y such that A ⊂ B,

A is a retract of B, and f is locally F -trivial over A and B via homeomorphisms ϕA and ϕB respectively.

Then f is locally F -trivial over B via a homeomorphism ϕ
′

B which agrees with ϕA on f−1(A).

Proof. Form the diagram:

f−1(A) A× F A× F

f−1(B) B × F B × F

B B B

ϕA

ϕB
σ

ϕB
ϵ

1 1

where σ = ϕAϕ
−1
B and ϵ(b, f) = (b, πFσ(r(b), f)). Then all horizontal arrows are homeomorphisms, and we

can define ϕ
′

B = ϵϕB .

Corollary 1.2.4: Let F be a space, f : X → Y be a map, and A,B closed subspaces of Y such that f is

locally F -trivial over A and B. If A ∩ B is a retract of B, then f is locally F -trivial over A ∪ B via a

homeomorphism ϕA∪B which agrees with ϕA on f−1(A).

As a quick application we have:
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Lemma 1.2.5: IF Y is a CW complex, and f : X → Y is a map which is locally F -trivial over the images

of every cell, ϵ(Dn), then f is a Hurewicz fibration.

Proof. We can express Y as the transfinite composite of maps Yλ → Yλ+1 where each Yλ+1 is obtained from

Yλ by attaching a single cell. Given a pair of subspaces (A,U) of some Yλ such that U ⊂ A, A is closed, U is

open and numerable, and p is locally F -trivial over A, we can extend (A,U) to such a pair, (Ã, Ũ), on Y by

using open/closed collars around U and A respectively corresponding to half the radius of each attached cell,

Dn. It follows by induction that Ã is locally F -trivial, using Corollary 1.2.4, and that Ũ is numerable. If we

single out the pairs (A,U) of the form (B̄(0, 1
2 ), B(0, 1

2 )) corresponding to interior balls of half the radius in

each cell, then the corresponding cover of Y by the induced Ũ is a locally finite numerable open cover of Y

such that p is locally F -trivial over each Ũ . The result now follows from Lemma 1.2.2.

1.3 Locally trivial maps of simplicial spaces

We now move onto the main theorem, starting with the following definition:

Definition 1.3.1: Let F be a simplicial space and f : X → Y a map of simplicial spaces. Define Pn to be

the pullback:

Pn X

Yn ×∆n Y

⌟
f

where an underline denotes the constant simplicial space on the underlined space. We say that f is locally

F -trivial if, for every n ≥ 0, there is an homeomorphism of simplicial spaces Yn×∆n×F → Pn over Yn×∆n:

Yn ×∆n × F Pn

Yn ×∆n

∼=

If p : X → Y is any map of simplicial spaces, then upon passage to geometric realisations we have a

diagram:
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P∂ p−1(Fn−1Y )

P∆ p−1(FnY )

s(Yn−1)×∆n ∪ Yn × ∂∆n Fn−1Y

Yn ×∆n FnY

q

p

q α

ϵ

p

where the bottom square is a pushout and the vertical squares are pullbacks. By Lemma 1.1.3, the top

square is also a pushout, since s(Yn−1) → Yn is a closed inclusion. If p is locally F -trivial, then we have

P∆
∼= Yn ×∆n ×F over Yn ×∆n, and P∂

∼= (s(Yn−1)×∆n ∪ Yn × ∂∆n)×F over s(Yn−1)×∆n ∪ Yn × ∂∆n.

Recall that a simplicial space is proper if, for every n, s(Yn−1) → Yn is a Hurewicz cofibration. In this case,

let (H,λ) denote (Yn ×∆n, s(Yn−1)×∆n ∪ Yn × ∂∆n) as an NDR-pair. Then, H(−, 1) defines a retraction

r : λ̄−1([0, 1)) → s(Yn−1) ×∆n ∪ Yn × ∂∆n, where λ̄−1([0, 1)) denotes the closure of λ−1([0, 1)). Our main

theorem now states:

Theorem 1.3.2: If p : X → Y is a locally F -trivial map of simplicial spaces, and Y is a proper simplicial

space, then |p| is a Hurewicz fibration.

Proof. Suppose inductively that we have a locally finite numerable open cover {Ui}i∈I of Fn−1Y such that

p is locally F -trivial over each Ui. For each i ∈ I, let V
′

i = r−1α−1(Ui) ∩ λ−1((0, 1)), where r, λ and α are

as defined above. Let Wi = ϵ(V
′

i ) ∪ Ui, which can be viewed as a collar around Ui. Then Wi is open in

FnY , since Ui is open in Fn−1Y . We’ll show that p is locally F -trivial over Wi. By assumption, we have a

trivialisation:

p−1(Ui) Ui × F

Ui

ϕUi

∼=

Letting U
′

i = α−1(Ui), pulling back along α induces a trivialisation:

q−1(U
′

i ) U
′

i × F

U
′

i

ϕ
U

′
i

∼=
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Since q is locally F -trivial over V
′

i , Lemma 1.2.4 implies that there is a trivialisation of q over V
′

i which

agrees with ϕU
′
i
on q−1(U

′

i ), call it ϕV
′
i
:

q−1(V
′

i ) V
′

i × F

V
′

i

ϕ
V

′
i

∼=

By Lemma 1.1.3, p−1(Wi) is the pushout of the maps q−1(U
′

i ) → q−1(V
′

i ) and q−1(U
′

i ) → p−1(Ui). Similarly,

since left adjoints preserves colimits, Wi×F is the pushout of the maps U
′

i×F → V
′

i ×F and U
′

i×F → Ui×F .

Therefore, ϕV
′
i
and ϕUi

induce a homeomorphism ϕWi
:

p−1(Wi) Wi × F

Wi

ϕWi

∼=

which shows that p is locally F -trivial over Wi, as desired. We now explain how to complete the inductive

proof of the theorem. We define W
′
= λ−1(( 12 , 1]) ⊂ Yn × ∆n and let W = ϵ(W

′
). Then, W is an open

subspace of FnY and p is locally F -trivial over W , since W
′ → W is a homeomorphism, via Lemma 1.1.3.

It is clear that W is a numerable open subspace of FnY . We also need to check that each Wi is a numerable

subspace of FnY . If Ui = µ−1
i ((0, 1]), for some µi : Fn−1Y → I, we can define νi : FnY → I using the map

µi, and the map κ on Yn ×∆n defined by:

κ(y, t) =


(1− λ(y, t))µiαr(y, t), if (y, t) ∈ λ̄([0, 1))

0, if λ(y, t) = 1

So κ−1((0, 1]) = V
′

i and ν−1
i ((0, 1]) = Wi. Now observe that {Wi}i∈I along with W is a locally finite

numerable cover of FnY , and if y ∈ Fn−1Y has an open neighbourhood P in Fn−1Y intersecting Uj only if

j ∈ J ⊂ I, then there exists an open neighbourhood Q of y in FnY which intersects Wj only if j ∈ J and

doesn’t intersect W . Moreover, we can take Q ∩ Fn−1Y = P . Note also that Wi ∩ Fn−1Y = Ui, and ϕWi

agrees with ϕUi
on p−1(Ui). Therefore, we can iterate this procedure along the sequential colimit of the maps

FiY → Fi+1Y , and we will end up with a numerable locally finite open cover of Y , such that p is locally

F -trivial over each open set in the cover. It follows that p is a Hurewicz fibration by Lemma 1.2.2.

Finally, we apply Theorem 1.3.2 to prove that the orbit map EG → BG is a Hurewicz fibration, whenever G

is a group with a nondegenerate identity element, which we define to be the basepoint. It is straightforward
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to show that this condition ensures that B(Y,G,X) is a proper simplicial space, [4, Proposition 7.1]. We now

prove:

Theorem 1.3.3: If G is a topological group with a nondegenerate basepoint, then, for any spaces X and Y ,

B(Y,G,X) → B(Y,G, ∗) is a Hurewicz fibration.

Proof. We will show that the corresponding map of simplicial spaces is X-locally trivial. We have a commu-

tative square:

B(Y,G,X)
n
×∆n B(Y,G,X)

B(Y,G, ∗)
n
×∆n B(Y,G, ∗)

and, therefore, we have an induced map of simplicial spaces ϕ : B(Y,G,X)
n
× ∆n ∼= B(Y,G, ∗)

n
× X ×

∆n → Pn over B(Y,G, ∗)
n
× ∆n. It suffices to show that ϕ is a homeomorphism. A generic element of

B(Y,G, ∗)
n
×X ×∆n

m is of the form α = (ỹ, g̃1, ..., g̃n, x̃, ∂̃), where ∂̃ is a morphism from m → n in ∆. A

generic element of (Pn)m is of the form β = ((y, g1, ..., gn, ∂), (y
′
, g

′

1, ..., g
′

m, x
′
)), where ∂ is a morphismm → n

in ∆ and ∂(y, g1, ..., gn) = (y
′
, g

′

1, ..., g
′

m) in B(Y,G, ∗). Now β = ϕ(α) iff ỹ = y, g̃1 = g1, ..., g̃n = gn, ∂̃ = ∂

and x̃ = h−1x
′
where h is a product of the gi which depends on ∂. It follows that for every β there is a

unique α such that ϕ(α) = β, so ϕ is a continuous bijection. We will show that ϕ is proper, and then we will

be done by Lemma 1.1.1. Using the existence of inverses, and the fact that ∆n
m is a discrete space, we have

that B(Y,G,X)
n
×∆n → B(Y,G,X)×B(Y,G, ∗)

n
×∆n is the inclusion of a retract. It follows that if A is

compact in (Pn)m, then the closed subspace ϕ−1(A) is contained within a compact subspace, and therefore

is compact itself.

WhenG is a topological monoid with a nondegenerate basepoint, it is straightforward to check thatB(Y,G,X) →

B(Y,G, ∗) is not necessarily a Hurewicz fibration. However, as explained by May in [5], it is possible to use

an inductive argument of a similar nature to our proof of Theorem 1.3.2 to prove:

Theorem 1.3.4: If G is a grouplike topological monoid with a nondegenerate basepoint, then B(Y,G,X) →

B(Y,G, ∗) is a quasifibration.

Proof. See [5].
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