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Abstract:

Both leverage and interconnectedness are widely recognized as key factors for systemic risk
and may interact. The magnitude of network-based ampliÞcation of distress depends on
Þnancial exposure network structure, and may be crucially inßuenced for example by the
presence of destabilising feedback loops in an exposure network. It has been shown that the
number of feedback loops in a network, as well as the eigenvalues of associated matrices, are
related to a structural property called trophic coherence. In this paper we investigate the
impact of trophic coherenceon systemic risk - measured using DebtRank - and its interaction
with leverage in simulated networks of banks connected to each other by direct exposures.
The mechanism is simple: when a bank su!ers a loss, distress propagates to its creditors,
who in turn su!er losses, and so on. We show thattrophic coherencehas a crucial inßuence
on contagion dynamics: shock ampliÞcation is moderated even at high leverage in more
coherent networks; and high even where leverage is low in incoherent networks. This result
not only suggests that it may be worthwhile to monitor thetrophic coherenceof Þnancial
networks; but also implies that in principle systemic risk could be signiÞcantly reduced
simply by ÒrewiringÓ the interbank network (without any increase in capital requirements or
reduction in interbank loans). We propose a simple strategy to incentivise the self-organised
formation of more coherent network structures without impairing market functionality.
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1. Introduction

ÒThe di!cult task before market participants, policymakers, and regulators
with systemic risk responsibilities such as the Federal Reserve is to Þnd ways to
preserve the beneÞts of interconnectedness in Þnancial markets while managing
the potentially harmful side e"ects.Ó

Yellen (2013)

Intra-Þnancial assets and liabilities (e.g. interbank loans, and over-the-counter (OTC)
derivatives positions) account for a substantial portion of banksÕ balance sheets and connect
them in a complex network of Þnancial interdependencies. This interconnectedness gives
rise to systemic risk:

If a negative shock causes some institutions to default, imposing direct losses on their
counterparties, this could start a cascade of defaults (Allen and Gale, 2000; Eisenberg and
Noe, 2001; Elsinger et al., 2006; Upper and Worms, 2004; Nier et al., 2008; Roukny et al.,
2013; Acemoglu et al., 2015; Beale et al., 2011; Glasserman and Young, 2015). Meanwhile
losses may propagate even in the absence of defaults, since if some institutionsÕ equity
is depleted, this implies a decrease in the risk-adjusted value of their obligations, with the
potential to generate a cascade of mark-to-market losses (Battiston et al., 2012a; Glasserman
and Young, 2016; Tabak et al., 2013).1

Meanwhile on the liability side, since one bankÕs cash outßow is another bankÕs inßow,
failure to roll-over short-term funding or repay obligations when they fall due reduces coun-
terpartiesÕ cash inßows potentially generating a cascade of funding shortfalls, even if banks
are well capitalised (Gai et al., 2011; Lee, 2013; Ferrara et al., 2019; Fourel et al., 2013;
Galbiati and SoramŠki, 2010; Zawadowski and Zawadowski, 2011; Bardoscia et al., 2018).2

Stress on the asset side and on the liabilities side may of course interact in a number
of important ways (Diamond and Rajan, 2005; Lee, 2013) - for example fear of potential
credit losses may trigger liquidity hoarding and funding-withdrawal cascades (Davidovic
et al., 2019; Caballero and Simsek, 2013); banks that have su!ered solvency shocks may cut
lending to their counterparties; and liquidity withdrawal3 may trigger defaults.4

1For example, according to The Basel Committee on Banking Supervision, during the 2007-8 Þnancial
crisis, roughly two-thirds of losses attributed to counterparty credit risk were due to Credit Valuation
Adjustment (CVA) losses and only about one-third were due to actual defaultsBCBS (2009) (also see e.g.
estimates in FSA (2010)). Note the CVA framework is designed for OTC derivatives: CVA is the di!erence
between the risk-free portfolio value and the true portfolio value that takes into account the possibility of a
counterpartyÕs default.

2One interesting question is whether this sort of fragility is potentially exacerbated by increasing reliance
on time-critical liquidity in order to address credit-risk Marshall and Steigerwald (2013).

3E.g. Chairman of the Securities and Exchange Commission (SEC) Christopher Cox argued in a letter to
the Chairman of the Basel Committee on Banking Supervision (March 20, 2008) that a loss of liquidity due
to counterparty withdrawals and credit denials - and not inadequate capital - caused Bear StearnÕs demise
during the 2007-8 Þnancial crisis (see:www.sec.gov/news/press/2008/2008-48.htm). Similarly counterparty
withdrawals led to the collapse of Norther Rock, and e.g.Shin (2009) argues that these withdrawals were
more closely linked to pressures on Norther RockÕs creditors, than the quality of their own asset book.

4We note that the sort of direct counterparty based contagion dynamics we mention here may be further
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Capital and more recently liquidity requirements (BCBS, 2013a) designed to provide
bu!ers against lossesor liquidity shocks represent the cornerstone ofpost-2008prudential
regulations. As part of the Basel III post-crisis reforms The Basel Committee on Banking
Supervision has strengthened regulatory capital requirements (BCBS, 2011b,a),5 and intro-
duced a Liquidity Coverage Ratio (LCR) requirement, which stipulates that banks must
have an adequate stock of unencumbered high-quality liquid assets to meet their liquidity
needs for a 30-day liquidity stress scenario (BCBS, 2013a).

Although policy discussion in the immediate aftermath of the Þnancial crisis clearly iden-
tiÞed the signiÞcance of network-based risk, and raised the question whether capital bu!ers
might be calibrated to reßect this (see e.g.Bank of England (2009)), regulatory capital
requirements have focused mainly on the risk in individual institutionsÕ trading and lending
books, and their resilience to the direct ÒÞrst roundÓ impact of shocks. The indirect expo-
sures arising from the interconnected nature of the Þnancial system are not considered.The
newly introduced LCR is similarly calibrated according to individual institutionsÕ liquidity
risk, rather than systemic liquidity risk.

In this context, it has been widely argued that the regulatory capital and liquidity bu!ers
needed to limit systemic risk could be severely underestimated if not calibrated to reßect
the impact of endogenous shock ampliÞcation via network contagion (e.g.Battiston et al.
(2016b); Farmer et al. (2020)),6 and these genuinely systemic risks represent a key concern
for regulators (BCBS, 2013b) (for example Alex Brazier recently states ÒFeedback loops
within the system mean that the entities in the system can be individually resilient, but
still collectively overwhelmed by the stress scenario.Ó (Brazier, 2017, p.6), motivating work
on developing systemic approaches to stress testing (see for exampleAikman et al. (2019);
Fique (2017); Dees et al.(2017), as well as academic work includingCont and Schaanning
(2017), and Farmer et al. (2020)).

The magnitude of network-based ampliÞcation, however, is deeply dependent on the
pattern of connections among Þnancial institutions (that is, the topology of the interbank
network) and many contributions to the systemic risk literature investigate the e!ect of
network characteristics on systemic risk (Battiston et al., 2012a; Eisenberg and Noe, 2001;
Gai and Kapadia, 2010; Iori et al., 2006; Nier et al., 2008; Roukny et al., 2013).7

ampliÞed if asset losses interact with leverage or capital constraints forcing liquidation of assets, or if funding
shortages force liquidation of assets, with the potential, in turn, to a!ect market prices, leading to contagion
of losses (via overlapping portfolio contagion) and possibly subsequent rounds of Þre sales when portfolios
are marked to market (studied for example byCont and Schaanning(2017), seeShleifer and Vishny (2011,
1992)). However in this paper we focus on balance sheet contagion via direct counterparty exposures.

5Under the Basel III Accord the regulatory minimum capital requirements for Common Equity Tier 1
(CET1) have been increased from 2% to 4.5%, and Tier 1 Capital from 4% to 6% (BCBS, 2011a) and two
additional bu!ers are introduce; a capital conservation bu!er increasing CET1 and Tier 1 capital further to
7% and 8.5%, respectively; and a counter-cyclical bu!er (set by national authorities) in the range between
[0, 2.5%]. Global systemically important banks (GSIBs) have to meet additional CET1 requirements (in a
range of 1Ð2.5% (BCBS, 2011b).

6Battiston et al. (2016b) for example, Þnd that second-round e!ects are at least as large as Þrst-round
e!ects (the direct impact of a shock)

7Iori et al. (2006) studies homogeneous vs. heterogeneous banks and risk pooling vs. propagation;Nier
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Since the crisis international regulators have sought to calibrate capital bu!ers so as to
balance their social costs and beneÞts (based on the view that higher bank capital should
reduce the likelihood/frequency and severity of crises but may also reduce credit supply,
hence economic activity) (BCBS, 2010; Haldane, 2017). However if the pattern of network
connections is the underlying driver of network-based risk, it seems natural to ask whether
systemic risk could be e!ectively reduced by altering the underlying exposure network, as
an alternative to costly increases in capital requirements.

It has been shown that the stability of benchmark models of Þnancial contagion widely
studied in the literature (including FurÞne (FurÞne, 2003) and DebtRank (Bardoscia et al.,
2015, 2016; Battiston et al., 2012c)) depend on the leading eigenvalue of the interbank
exposure network (Bardoscia et al., 2015, 2017, 2016; Battiston et al., 2012c; Markose et al.,
2012). However, no simple relationship between the topology of a network and its leading
eigenvalue has been known until the recent paperJohnson et al.(2014), which is the starting
point for our present work.

May (1973) derives the maximum eigenvalue of a random network in terms of three
network parameters: the probability of connectivityp, the number of nodesN , and the
standard deviation of node weighted degree,! . The May (1973) result states that network
instability follows when

!
Np! > 1 and thus identiÞes a trade-o! between these parameters

in order for the network to remain stable (May, 1972, 1973).
This result has inßuenced work in the systemic risk literature, for example after the

Global Financial Crisis of 2007Ð2008, Andrew Haldane and Robert May argued for the rel-
evance of this insight to the stability of Þnancial systems (Haldane and May, 2011). Mean-
while Bardoscia et al. (2017) present results closely resembling the May-Wigner theorem
about the instability of model ecosystems (May, 1972): they show in a general model of
bank interaction via direct exposures, that enlarging the number of banks participating in
the Þnancial system (ÒintegrationÓ); and increasing the number of links between Þnancial
institutions (a proliferation of contracts, ÒdiversiÞcationÓ), may lead to instability as they
contribute to creating cyclical structures which tend to amplify Þnancial distress, thereby
undermining stability and making large crises more likely.8 The authors conclude Òa recom-
mendation that targets stability in terms of individual banks can actually lead to instability
because it neglects the systemic e!ect of cyclesÓ (Bardoscia et al., 2017, p.5).

Indeed a key result in the Þnancial networks literature has been the identiÞcation of a
trade-o! between the beneÞts from local risk diversiÞcation vs. the emergence of systemic

et al. (2008) in a default cascade model look at mean degree; capitalization/leverage; network size; and other
things; Gai and Kapadia (2010) look at impact of di!erent topologies, show/conclude "robust yet fragile"
characteristic; Battiston et al. (2012a) shows that a Þnancial network can be most resilient for intermediate
levels of risk diversiÞcation, and not when this is maximal;Roukny et al. (2013) in a default cascade model
analyse the stability of several benchmark topologies (scale free vs. homogeneous networks) under various
scenarios.

8Similar to the May-Wigner theorem about the instability of model ecosystems in which species interact
through a large Erdos-Renyi graph. The main di!erence is that interactions between banks are described by
the leverage matrix, which is non-negative, while the interactions between species in ecosystems are described
by a matrix whose entries are a zero-mean random variable.These results are obtained for random, scale-free
and core-periphery topologies.
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risk due to the contagion risk from more densely connected networks (Acemoglu et al., 2015;
Bardoscia et al., 2017; Battiston et al., 2012a,b; Cabrales and Vega-redondo, 2017; Elliott
et al., 2014; Gai et al., 2011; Glasserman and Young, 2015; Tasca and Battiston, 2008) as
well as a Òrobust yet fragileÓ property whereby higher interconnectedness results in larger
e!ects once the shock size has crossed a critical threshold (Acemoglu et al., 2015; Gai and
Kapadia, 2010; Ladley, 2013).

However, since Þnancial networks are by their very nature large and, in particular, highly
connected, network size and connectivity may not provide practical control parameters for
managing systemic risk, and the challenge must surely be to Þnd ways to preserve the
beneÞts of interconnectedness in Þnancial markets while managing the potentially harmful
side e!ects (as called for e.g. by then Chair of the U.S. FED, Janet YellenYellen (2013) Ð
see opening quotation).

Bardoscia et al.(2017) argue it is not the network parameters studied (e.g. the number
of links) per se that lead to loss of linear stability, but the cycle structure that emerges
in random networks as additional links are added (cyclic structure is also emphasized by
Battiston et al. (2012a)).9 Silva et al. (2017) also emphasize the role of cycles as well as
multiple vulnerability routes in amplifying systemic risk, tracking how network cyclicality10

grows with network density.11

But of course it is possible to have sparse networks of the same size and connectivity
with di!erent cycle structures. Indeed, it has been shown (outside of the Þnancial network
literature) that the number of feedback loops in a network, as well as the eigenvalues of
associated matrices, are related to a structural property calledtrophic coherence: a measure
of how neatly the edges in a network align in an overall direction (Johnson and Jones, 2017;
MacKay et al., 2020). Results suggest thatif su"ciently trophic-coherent, networks can
become more stable with size and complexity (not less), andtrophic coherenceis a better
statistical predictor of linear stability than size or density (Johnson et al., 2014).

In this paper, we study how in Þnancial networks with some given level of interconnect-
edness, systemic risk may be inßuenced by thetrophic coherenceof the network.

Following the Þnancial contagion literature we construct simulated banking systems that
are composed of a number of banks that are connected by interbanklending or similar
bilateral Þnancial connections such as over-the counter (OTC) derivatives positionsÐ a
direct exposure network such as those widely studied in the interbank market literature.
We employ a benchmark model of contagion to assess the response of the system to an
exogenous shock to bank asset values: the level of systemic risk of a network is quantiÞed
using DebtRank (Bardoscia et al., 2015; Battiston et al., 2012c).

DebtRank is a widely used and accepted benchmark model of Þnancial contagion: it has

9Other literature has identiÞed cyclic structure as source of indeterminacy in Þnancial networks and
systemic risk (Roukny et al., 2018; Fischer, 2014; Stiglitz , 2003).

10Measured according to the notion of cyclicality introduced byKim and Kim (2005), based on considering
cycles of all orders from 3 up to inÞnity.

11In a comparison of the original DebtRank algorithm of Battiston et al. (2012c) and ÒDi!erential Debt-
RankÓ (Bardoscia et al., 2015; Silva et al., 2017) which can account for cycles or multiple routes in an
exposure network.
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been applied to several empirical contexts (Battiston et al., 2012c; di Iasio et al., 2013; Fink
et al., 2014; Hideaki and Battiston, 2013; Poledna and Thurner, 2016; Puliga et al., 2014;
Tabak et al., 2013); embedded into a stress-test framework (Battiston et al., 2016a); and
employed in risk monitoring (e.g. it is made available by network-risk analytics Þrm FNA
as part of their suite of tools on their platform).12

The importance of the interbank leverage matrix in the context of distress propagation
has been already highlighted (Bardoscia et al., 2015, 2016; Battiston et al., 2016a,b; Markose
et al., 2012). By systematically varying both the trophic structure of the interbank exposure
networks, as well as levels of bank leverage assumed in our DebtRank simulations, we are able
to study the interaction between balance sheetstructure (leverage) and network structure
(trophic coherence): we show thattrophic coherencehas a crucial inßuence on the dynamics
of the system. In particular the potential systemic loss for a given level of capitalisation is
lower for more (trophically) coherent interbank networks.

This is consistent with more coherent structures having fewer cycles (note that where
e.g. Silva et al. (2017) measure how cyclicality changes withnetwork density for random
networks, we vary trophic coherencefor a given density). Moreover we further show that
shock ampliÞcation is also increased byfeed-forward structure (which also reduces network
trophic coherence) in the interbank exposure network.

These results strongly suggest that systemic risk cannot be fully (or perhaps even ef-
fectively) controlled though balance sheet structure.Meanwhile our results imply that, in
principle, systemic risk could be signiÞcantly reduced, without increasing costly capital re-
quirements, ÔsimplyÕ by re-wiring the exposure network to achieve a more coherent pattern
of exposures.

Of course, network topologies emerge endogenously and may be hard to manipulate
exogenously. Many natural complex systems exhibit high levels of coherence (with the result
that the leading eigenvalues do not exhibit the generic dependence on size or link density
(Jacquet et al., 2016)) suggesting coherence-inducing mechanisms in the network formation
process (Johnson et al., 2014). While such mechanisms may be absent in Þnancial systems,
we ask: could Þnancial regulatorspotentially introduce coherence-inducing mechanisms in
order to increase the resilience of the Þnancial system to shocks without increasing capital
requirements?

Hypothetically, an additional transaction level regulatory capital requirement or tax (to
be described) proportional to the change introphic coherencethat a transaction would cause,
could incentivise the self-organised formation of a more coherentthus resilient topology,
reducing systemic risk without reducing the value of interbank lending, orthe need to raise
costly capital requirements.

In conclusion, we Þndtrophic coherenceprovides an easily calculated way of quantifying
cycles and feed-forward structure (a source of multiple pathways) in a Þnancial networkÕs
structure that may be a source of instabilityand provides a valuable link between structural
properties and dynamics. While feasibility and implications need much more thought, this

12See measures of systemic risk provided by FNA platform at:https://fna.Þ/technologies
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may suggest potential novelmarket infrastructure basedstrategies for removing systemic
risk by incentivising self-organised formation of more resilient network structure.

While in this paper we choose to study contagion via the asset side of bank balance sheets
(most extensively studied in the literature) and the results we present are for distress prop-
agation due to mark-to-market revaluation of contracts,we expectthat trophic incoherence
will also prove relevant to additional channels of contagion, such as systemic illiquidity.

The rest of the paper is organised as follows: we deÞne and introduce trophic incoherence
(section2.1); we describe our general model setup (section2.2); we describe our approach to
simulating a banking system including generating interbank exposure networks with a given
level of trophic incoherence (sections2.3-2.4); we describe how we quantify systemic risk
(DebtRank dynamics) (section2.5). We then present our analysis and results (section3).
Section4 discusses the policy relevance and implications of our results. Section5 concludes.

2. Framework

2.1. Trophic incoherence of a directed network
In a directed network, the ecological concept of Ôtrophic levelÕ (Levine, 1980) allows one

to assign a height to each node in such a way that on average the height goes up by one
along each edge. This is equivalent to measures of ÒupstreamnessÓ (Antrˆs et al. , 2012)
widely employed in the study of production and trade networks in economics.

The standard deviation of the distribution of height di!erences along edges gives a mea-
sure of the extent to which the directed edges fail to line up, called the Òtrophic incoherenceÓ
(Johnson et al., 2014).

Both feed-back (cycles in the network) and feed-forward structures (Figure1) contribute
to network incoherence, which has been related to stability, percolation, cycles, normality
and various other system properties (Dom et al., 2016; Johnson, 2020; Klaise and Johnson,
2016, 2017).

Figure 1: feed-back loop (FBL) and feed-forward loop (FFL) motifs. The presence of feed-back and feed-
forward structure reduces thetrophic coherenceof a network.

We are interested in whether trophic incoherence may also inßuence Þnancial contagion
processes, thus be relevant for understanding and potentially for controlling network-based
sources of systemic risk.
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These standard deÞnitions of trophic level and incoherence (Levine, 1980; Johnson et al.,
2014) require the network to have a basal node (a node with no incoming edges), making
them unsuitable for studying Þnancial networks such as interbank networks. However, deÞ-
nitions which overcome this (and other) limitations (but continue to be related to stability,
cycles and normality) were recently introduced byMacKay et al. (2020).

Following MacKay et al. (2020), denote the weight of the directed edge from nodem
to node n by wmn . For each noden, let its in-weight and out-weight be denotedwin

n =!
m" N wmn and wout

n =
!

m" N wnm and deÞne the (total) weight of the noden by

un = win
n + wout

n (1)

and the imbalance for noden by

vn = win
n " wout

n (2)

Vectors u and v are formed from theun and vn. The (weighted) graph-Laplacian operator
! on vectorsh is deÞned by

(! h)m = umhm "
!

n" N (wnm + wmn )hn (3)

or in matrix form (where superscriptT denotes transpose),

! = diag(u) " W " W T (4)

Then the improved notion of trophic level is the solutionh of the linear system of equations

! h = v (5)

They introduce an improved notion of trophic incoherence as

F0 =
!

mn wmn (hn " hm " 1)2

!
mn wmn

(6)

using the levelsh determined from Eq.5 above.
This has the nice features thatF0 = 0 if and only if all the level di!erences (hn " hm) are

1; F0 = 1 if and only if all the level di!erences are 0; and otherwiseF0 is strictly between 0
and 1. The coherence is given by1 " F 0.

We study whether the trophic structure (as measured byF0) of the pattern of interbank
exposures inßuences Þnancial contagion dynamics within a banking system.

2.2. Model setting: a stylized banking system
We consider a simple stylized representation of a banking system consisting of:

¥ N banks.

¥ A a vector of total assets, whereAi is the value of the total assets of thei -th bank.
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Figure 2: stylised representation of a portion of an interbank network and of a bank balance sheet highlighting
interbank assets and liabilities (borrowed from Bardoscia et al. (2016). We do not make any detailed
assumptions on external assets and liabilities.

¥ D is a vector of liabilities, whereDi is the total liabilities of the i -th bank.

¥ E a vector of equity positions, whereEi is the equity of the i -th bank.

¥ Balance sheet identity:Ai = Di + Ei

¥ Assets may be decomposed intointerbank and external:

Ð Interbank exposure network, is the squareN # N matrix Ab whose elementsAb
ij

represent the exposure of banki to bank j (i.e. the value of lending from bank
i to bank j ). The row sum Ab

i =
!

j Ab
ij represents the total assets of banki

invested in funding other banks within the network; whereas the column sum
D b

j =
!

i Ab
ij represents the total interbank liabilities ofj .

Ð External assets are those not originating from the interbank system. There are
M external assets, and the external investment matrix is anN # M matrix whose
elementsAe

ik represent the value invested by of banki into the external assetk.
Since we do not model di!erent external asset classes, we denote external assets
by the vector D e

i

The interbank market is incomplete in the sense that banks cannot insure themselves
against credit risk (i.e. in the simple setting we consider, banks do not purchase credit
protection in order to hedge the credit risk on their interbank lending).13

13While this is an oversimpliÞcation, note e.g. empirical evidence that around the time of the 2007-8
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2.3. Simulating exposure networks with varying trophic incoherence

In order to study the inßuence of trophic incoherence on Þnancial contagion dynamics
via interbank lending networks, we require a method by which not only to generate net-
works providing a suitable representation of interbank lending, but also to vary the trophic
incoherence of the pattern of exposures, whilst keeping other things constant.

Liquidity insurance models of the interbank market (Allen and Gale, 2000; Castiglionesi
et al., 2014; Freixas et al., 2000) suggest gross and net interbank exposures are of comparable
magnitude - with a bankÕs interbank exposure tending to be only on one side of the balance
sheet or the other at any given time. However empirically net and gross exposures di!er
to a signiÞcant degree, with banks building up interbank books with exposures on both
sides of the balance sheet, and banks may hold mutual gross positions14 (Bluhm et al.,
2016; Moore, 2011). Thus only self-loops should be ruled out for generating the interbank
exposure network.

Empirical studies have shown interbank networks display heterogeneous degree distribu-
tions (Boss et al., 2004; Iori et al., 2008; SoramŠki et al., 2007).15

Previously Johnson et al.(2014) put forward a model for generating networks in which
coherence is controlled by a temperature parameter (giving a tunable degree oftrophic coher-
ence) which they refer to as the Òpreferential preying modelÓ (PPM).16 However this model
can only generate acyclic directed networks making it unsuitable for modelling interbank
exposure networks.

Klaise and Johnson(2016) put forward a modiÞed version of the original PPM which can
generate cycles, which they refer to as the generalised preferential preying model (GPPM).17

This more general model generates maximally coherent networks whenT $ 0, and generates
networks which approach directed Erdos-Renyi random graphs at high temperature (atT
$% ).

The basic GPPM approach is detailed in Table1, which presents pseudo-code for gen-
erating networks with ÒtunableÓtrophic coherence. This starts from building a tree graph
(ensuring a connected network) and obtaining a vector of trophic levels for each node based
on this tree. Then edges are added sequentially - chosen considering all ordered pairs of
disconnected nodes - until the desired number of edges is reached.

The probability of choosing pair(n, m} to form an edgen $ m is given by some function
of the temporary trophic di!erence Pnm = f ("sm " "sn). Klaise and Johnson(2016) propose

crisis, relatively little CDS were written on Þnancial institutions and banks did not hedge default risk
among themselves (Oehmke and Zawadowski, 2012; Minton et al. , 2006). Moreover CDS contracts may
themselves become a contagion channel (Markose et al., 2012; Brunnermeier et al., 2013; Kanno, 2020) - see
further discussion under policy relevance and proposal (section4).

14I.e. both lend from and borrow to the same counterparty.
15Note SoramŠki et al.(2007) studies interbank payment network
16A reference to Òpreferential attachmentÓ and also reßecting that the model was developed to simulate

ecological food webs.
17This is employed in Klaise and Johnson(2016, 2017).
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that if a Gaussian distribution of di!erences centred at 1 is intended, then one might use:

Pnm & exp

#

"
1
2

$
"sm " "sn " 1

T

%2
&

(7)

with T a temperature parameter, controlling the extent to which edges respect (or defy)
the hierarchy. The parameterT will not correspond exactly to the trophic incoherence as
measured with standard levels, but incoherence will increase monotonically withT.

In order to control the degree distribution, intended in- and out-degrees can be assigned
to each node at the outset, then instead of Eq.7 employ

'Pnm = kout
n kin

m Pij (8)

This way the term Pnm continues to produce the desiredtrophic coherence, while the term
kout

n kin
m ensures that nodes are sampled with a frequency proportional to their degrees.18

Table 1: Pseudo code for generating GPPM

¥ deÞne B basal node(s)

¥ for n = 1 : N " B

Ð deÞne new noden

Ð deÞne a single link from new noden to a randomly chosen extant node

¥ calculate temporary trophic levels "s

¥ deÞne Pnm = f ("sm " "sn )

¥ while number of links < intended number of links L

Ð choose one ordered pair(n, m} where an edge does not already exist

Ð deÞne directed edge n $ m, with probability Pnm = f ("sm " "sn )

¥ recalculate levels s and calculate trophic incoherenceq

The GPPM approach to generating networks may be broadly suitable for modelling
interbank exposure networks. We adapt this approach. AlthoughKlaise and Johnson(2016)
and Johnson and Jones(2017) generate simple networks (binary links), when a link is formed
we draw random weights from a distribution (random uniform links) in order to generate a
weighted network (with the weights of links representing the value of interbank exposures).
While Klaise and Johnson(2016) and Johnson and Jones(2017) impose a basal node by not
allowing links to form from other nodes to basal nodes, we do not impose this restriction.

18Note, by not allowing edges to form to or from nodes once they have surpassed their in- or out-degrees,
respectively, one can ensure that the intended degrees are met exactly. However, this might lead to the
algorithm being slower or even getting stuck. So if meeting the exact sequences is not necessary, it may be
better not to impose this constraint.
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Where they employ the standard notions of trophic levels and incoherence, we follow the
deÞnition introduced inMacKay et al. (2020).

This allows us to generate interbank networks of the same size (number of banks), average
degree (number of exposures), expected degree distribution, and value of interbank lending,
whilst systematically varying the level of trophic incoherence of generated networks.

In order to distinguish the impact on contagion dynamics of trophic incoherence induced
by feed-forward structure in the network, from that induced by cycles in the network, we
also run a modiÞed version of the above procedure in order to only allow links from nodes
with lower to higher trophic levels. This allows us to generate directed acyclic networks with
varying levels of purely feed-forward structure induced trophic incoherence.

Figure 3: Demonstration of generating weighted directed networks with a given number of nodes and links,
but varying coherence (incoherence increasing monotonically with the temperature parameterT).

2.4. Constructing a banking system

Starting from interbank networks constructed as set out in section2.3 we construct
stylized banking systems consistent with2.2 following the procedure set out in Table2.

2.5. Contagion dynamics and quantifying systemic risk

The contagion literature has extensively studied default cascades (threshold models in
which banks propagate distress to their creditors only in the extreme event of default Ð
see especially FurÞne algorithm (FurÞne, 2003); also Mousavi et al. (2014). This is highly
unrealistic.19 DebtRank (Bardoscia et al., 2015; Battiston et al., 2012c) was introduced in
order to also account for pre-default shock propagation. Relative losses in the equity of a
borrower translate into (the same) relative devaluation in the assets of its lenders.

19For example during the 2007-8 Þnancial crisis, the reevaluation of obligations following the deterioration
of counterpartiesÕ creditworthiness was more signiÞcant than actual default based losses (see footnote1 for
further details and references).
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Table 2: Simulation algorithm: set up of banking system

¥ DeÞne the number of banks in the system (N )

¥ DeÞne the density of the network (expected average number of links for each bank) (p)

¥ Simulate weighted exposure network (Ab) (using the modiÞed GPPM (described in section 2.3), link
weights sampled from a uniform distribution, expected total volume of interbank lending/borrowing
Þxed, but trophic incoherence of pattern of exposures controlled via temperature parameter (T)).

¥ Interbank lending positions (Ab
i ) and borrowing positions (D b

i ) are then given, respectively, by the
row and column sumsAb

i =
!

j Ab
ij (representing the total assets of banki invested in funding other

banks within the network) and D b
j =

!
i Ab

ij (representing the total interbank liabilities of j ).

¥ Assuming the ratio of internal assets (Ab
i ) in total assets position (Ai ), then delivers the size of

total assets, therefore external assetsAe
i (the ratio of internal assets to total assets follows a uniform

distribution over [0.2, 0.3] Ð based on empirical data on this from e.g.Bluhm et al. (2016).

¥ Set equity positions (Ei ) (bank capital) as a proportion of total assets (leverage assumption, where
leverage deÞned asli = A i

E i
).

DebtRank is widely used and accepted: it has been applied to several empirical contexts
(Battiston et al., 2012c; di Iasio et al., 2013; Fink et al., 2014; Hideaki and Battiston,
2013; Poledna and Thurner, 2016; Puliga et al., 2014; Tabak et al., 2013); embedded into a
stress-test framework (Battiston et al., 2016a); and employed in risk monitoring (e.g. it is
made available by network risk analytics Þrm FNA as part of their suite of tools on their
platform).20.

DebtRank models the following contagion process: if a bank su!ers an equity loss, its
probability of default will increase. Its counterparties will account for this increased default
risk by reducing the value of the interbank asset on their balance sheet, and their equity will
be reduced by the same amount as this mark-to-market loss. The process of re-evaluation
of interbank assets and equities thus propagates across the interbank network.

The cumulative relative loss in equity for banki at time t (with respect to the original
level at t = 0) is given by

hi (t) = min
$

1,
Ei (0) " Ei (t)

Ei (0)

%
(9)

hi (t) ' [0, 1] of course ranges fromhi (t) = 0 when banki is un-distressed at timet (i.e. for
Ei (0) = Ei (t)); to hi (t) = 1 when banki is in default at time t (i.e. Ei (0) " Ei (t) ( 0).

The dynamics for the relative equity loss (followingBardoscia et al.(2016)) are given
by:

hi (t + 1) = min
(

1, hi (t) +
!

j L ij [pD
j (t) " pD

j (t " 1)]
)

(10)

20See measures of systemic risk provided by FNA platform at:https://fna.Þ/technologies
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where pD
j (t) is the probability of default of bank j at time t and L ij = Ab

ij /E i (0) is the
interbank leverage matrix.

This process of re-evaluation of interbank assets and equities proceeds recursively from
borrowers to lenders, until convergence.

In the literature, Linear DebtRank assumespD
j (t) = hj (t) (Bardoscia et al., 2015; Bat-

tiston et al., 2012c); the FurÞne algorithm (FurÞne, 2003) is recovered by assuming the
probability of default is one if equity less than or equal to zero, and zero otherwise. Nonlin-
ear DebtRank (Bardoscia et al., 2016) introduces the functional formpD

j (t) = hj (t)e! [hj (t# 1)] ,
in which the parameter" can be interpreted as the inverse of the relative equity loss after
which banks start to propagate distress to their creditors.

It has been shown that the stability of these dynamics depends on the leading eigenvalue
of the interbank leverage network (Bardoscia et al., 2015, 2016; Markose et al., 2012),21

highlighting the importance of the exposure network topology in distress propagation.
For simplicity, we follow the linear DebtRank literature.
Regardless of the nature of the shock, the total equity loss at convergence is! N

i =1 hi (T)Ei (0). This provides the monetary value of total losses. The total relative equity
loss Ð i.e. the fraction of equity lost in the system (once dynamics have converged) with
respect to initial equity, which we employ as a measure of systemic risk, is:

REL (T) =
1

!
i Ei (0)

* N

i =1
hi (T)Ei (0) (11)

3. Analysis and results

3.1. Stress test exercise

We investigate the inßuence of the trophic structure of the interbank network on shock
ampliÞcation, as well as its interaction with leverage, by implementing a stress-test exercise
in which we systematically vary both thetrophic coherenceof the interbank network, and
bank leverage ratios.

A stress test consists in applying an initial exogenous shock to the system, then measuring
its response. The benchmark DebtRank model we borrow from the literature (as introduced
in Section2.5) allows for di!erent sorts of shocks. It is common for example (sinceBattiston
et al. (2012c)) to shock each bank individually in order to obtain a ranking of the systemic
impact of individual institutions).

Because we are interested in how incoherence of the overall network impacts the systemÕs
sensitivity to exogenous shocks(endogenous ampliÞcation), we consider a uniform shock to
the external assets of all banks - every bank su!ers an initial loss in their external assets
AE

i (1) = xshockAE
i (0).22

21Markose et al. (2012) for FurÞne; Bardoscia et al. (2015) for linear DebtRank; Bardoscia et al. (2016)
for nonlinear DebtRank.

22We assume a single shock to external assets at the beginning of the simulation process. It a!ects the
external assets of all banks in the same way. Since we do not di!erentiate di!erent types of external assets,
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This sort of shock scenario is commonly used as a benchmark both within the DebtRank
(e.g. Bardoscia et al.(2015); Battiston et al. (2016b)) and across the wider systemic risk
literature (e.g. Adrian and Shin (2010); Cifuentes, Cifuentes et al.(2005); Cont et al. (2013);
Martinez-Jaramillo et al. (2014); Tasca and Battiston (2013)).

We measure the impact of this stress test as the total relative equity loss (Eq.11).
We employ our generalisation of the original GPPM model ofJohnson and Jones(2017)

(introduced in section 2.3) in order to simulate interbank networks with varying levels of
trophic incoherence Ð since this is a stochastic process we generate 100 random networks
from each ensemble of weighted directed networks with a given expected level of trophic
incoherence (but the same number of banks, average degree - i.e. number of interbank
relationships, and expected degree distribution). All the results presented are averaged over
network samples.

In order to separate the contribution offeed-forward structure to incoherence and dy-
namics, fromcycle structure (see section2.1), we also use our further generalisation of the
GPPM (explained in section2.3) to generate directed acyclic graphs with varying levels of
trophic incoherence.

We then also systematically vary the level of bank leverage we assume in our stress tests
(we simply assume uniform leverage).

3.2. Results

Figure 4 presents the result of our stress-test exercise systematically varying both the
trophic structure of the interbank network and bank leverage.

The results from this experiment give us insight into the interplay between trophic-
incoherence and leverage.

These results conÞrm the existing result that leverage interacts with interconnectivity:
the leverage of banki on the interbank market compounds multiplicatively with the leverage
of iÕs counterparties on external assets (Battiston et al., 2016b).

We see however, that the trophic structure of the interbank leverage network also has
a crucial inßuence on the dynamics: total relative equity loss increases with the trophic
incoherence of the interbank network.23 As a result, shock ampliÞcation may be high even
at low leverage if the network is very incoherent; but can also be low even at high leverage,
if the network is more coherent.

Figure 5 presents the same exercise (although a larger initial shock), but for random
directed acyclic graphs with varying levels of trophic incoherence (i.e. varying levels of feed-
forward structure). This exercise generates similar results.

one way to look at this is that banksÕ external assets are homogeneous; another way to look at it is that we
implement a common uniform shock (i.e. the shock is not asset-speciÞc and cannot be diversiÞed away, and
the strength of the shock is homogeneous across assets).

23Where we take the edge weightswij = Ab
ij .
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Figure 4: Results of contagion analysis based on exposure networks with varying levels oftrophic coherence.
All points are averaged over a sample of 100 simulated networks withN = 50 and connectivity p = 0 .4.
Uniform shock: " 1% shock to external assets.

Figure 5: Results of contagion analysis based on directed acyclic exposure networks with varying levels
of trophic coherence. All points are averaged over a sample of 100 simulated networks withN = 50 and
connectivity p = 0 .4. Uniform shock: " 5% shock to external assets.
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4. Policy relevance and proposal

Minimum capital adequacy ratios are the cornerstone of prudential regulations, enhanc-
ing the resilience of the Þnancial system to shocks by requiring institutions to maintain
prudent levels of capital. Our resultsshow howeverthat the signiÞcant contribution from
network-based risk means that two interbank networks with the same leverage can have
very di!erent levels of systemic risk due to structural properties of the network that are well
captured by trophic incoherence.

This result suggests it would be worthwhile for regulators to monitor thetrophic incoher-
enceof Þnancial networks as a useful systemic risk indicator (notethis statistic is very easily
and quickly computed, and only requires knowledge of the exposure network Ð something
regulators may have or could obtain).

Moreover,while the debate has focused on how systemic risk bu!ers could or shouldbe
set to reßect network-based risk, our results also imply that in principle, systemic risk could
be signiÞcantly reduced, withoutfurther increases incostly capital requirements, ÔsimplyÕ
by re-wiring the exposure network to achieve a more coherent pattern of exposures:

Of course, interbank network topologies emerge endogenously and may be hard to ma-
nipulate exogenously. Interestingly many natural complex systems exhibit high levels of co-
herence (with the result that the leading eigenvalues do not exhibit the generic dependence
on size or link density (Jacquet et al., 2016)) suggesting coherence-inducing mechanisms in
the network formation process (Johnson et al., 2014). While such mechanisms may be ab-
sent in Þnancial systems,potentially Þnancial regulatorscould introduce coherence-inducing
incentivesin order to increase the resilience of Þnancialnetworks to shocks.

Concretely, an additional transaction level regulatory capital requirement or tax that is
proportional to the absolute trophic level di!erence from one (and zero for a level di!erence
of one) between counterparties would encourage the self-organised formation of a more co-
herent topology, reducing systemic risk without reducing the value of interbank lending, or
increasing costly capital requirements.

Practically this might be implemented through moving from current OTC arrangements
to having a market run by a central bank or other central counterparty: credit-seeking banks
make a request for quotes from the central bank for several counterparties; the central bank
calculates and adds on a charge (if any) based on absolute trophic-level di!erence; the
credit-seeking bank then selects an o!er (presumably the lowest o!ered rate).

Interbank loans already take account of counterparty credit-risk, under this arrangement
they would also reßect systemic risk contributionso incentivise the endogenous formation
and dynamic maintenance of more coherent network structures improving the systems re-
silience to shocks.

This can be understood as a Pigovian tax aimed at internalising negative network ex-
ternalities24 consistent with the objective of Þnancial regulation as argued for example by

24Endogenous risk: in the presence of imperfect information and incomplete risk markets externalities
move along chains of Þnancial contracts and build up into systemic risk (seeBattiston (2016) for a discussion
of how incomplete information and markets give rise to contagion risk).
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Morris and Shin (2009).25 The feasibility of more coherent conÞgurations for the same in-
terbank lending implies no/low deadweight loss.26 While attempts to quantify the social
marginal cost of a potential transaction may be sensitive to both the systemic risk model
used and the detail of the network - thus e.g. imperfect observation of the network - it
may be that incentivising a more coherent network structure could provide a more heuristic
but robust strategy: we expect a more coherent structure to be more resilient under a wide
range of shocks and di!erent contagion processes (the subject of ongoing investigation in
Þnancial context) so less prone to model error; trophic levels can be calculated e!ectively for
partially observed networksMacKay et al. (2020) - meaning the incentive scheme could be
e!ective even where the interbank network is imperfectly observed; and since banks may be
otherwise indi!erent between funding/lending opportunities that have very di!erent social
costs (resulting from their impact on contagion risk), this sort of structural solution could
be more e"cient compared to the alternative of costly increases in required capital and
challenging uncertainties in welfare analysis for calibrating these bu!ers.

In practice it may be important to account not only for interbank lending (which in the
US remains signiÞcantly lower than before the Þnancial crisis (Allen et al., 2020)) but also at
a minimum derivatives positions,27 and perhaps other components of the overall interbank
exposure network (which also includes e.g. payments, repo, foreign exchange, and equity
holdings).28 This would require not only the analysis of trophic structure in this multi-layer
setting, but the design of a suitable market mechanism for it.

While in the simple setting we model for this paper banks do not hedge credit risk on
their interbank lending, in practice banks of course may buy credit protection (using credit
derivatives such as CDS).

On the one hand, bilaterally demanding counterparty insurance from each other is subject
to the same problems as the underlying interbank lending network: without information on
the entire network, banks cannot assess systemic risk; meanwhile the network of counterparty
insurance emerging from this OTC market will be equally opaque. As a result, allowing
banks to also write CDS could potentially signiÞcantly increase systemic risk by creating

25Morris and Shin argue ÒThe objective of Þnancial regulation in a system context, then, is to levy the
appropriate Pigovian tax that mitigates these externalities to the extent possible, and thereby move the
Þnancial system as a whole closer to an e"cient outcomeÓ (Morris and Shin, 2009, p.232).

26An alternative, proposed by Beale and MacKay (unpublished) and worked on further by Tucker (un-
published), is for the regulator to set capital requirements as a function of a bankÕs exposure to other banks
and asset classes in such a way as to incentivise each bank to move the exposure network towards a systemic
optimum from the regulatorÕs perspective. This proposal requires the regulator to communicate to a bank
not only the current capital requirement but also its derivatives (in the mathematical, not Þnancial, sense)
with respect to all exposures of the bank. One of the main di"culties at the time was to propose a sensible
objective function for the regulator, but one could use the total equity loss from a simulated stress test, as
in this paper.

27Which have risen to prominence since the mid-1980sMerton and Bodie (1995), and played a central
role in the 2007-8 Þnancial crisis.

28Contagion dynamics in this sort of multilayer setting is a growing area of research for complex systems
(Salehi et al., 2015; Boccaletti et al., 2014) and the study of systemic risk in Þnancial networks (Korniyenko
et al., 2018; Bardoscia et al., 2018; Aymanns et al., 2018; Battiston and Martinez-Jaramillo , 2018).

Oct 2020



19

additional contagion channels and feedback loops.
On the other hand, where we have proposed here that a regulator could use information

on the overall network to incentivise a more coherent structure in the underlying inter-
bank lending network, perhaps a similar transaction level incentive-based strategy could
be employed but using bilateral counterparty insurance to ÔrewireÕ the network from the
perspective of counterparty risk (see related proposal byLeduc et al. (2017)).29

In principle this sort of strategy could provide an attractive complement to regulatory
capital requirements, improving e"ciency in mitigating systemic risk. This is important
since while raising or varying capital requirements to reßect risk levels can help to ensure
resilience of the Þnancial network to adverse shocks,there are however limits to resorting
only to capital requirements to prevent systemic risk:

There is evidencehigher capital requirementsmay (under some conditions): increase the
cost of borrowing and reduce lending to the economy (Aiyar et al., 2014, 2016; Bernanke,
1983; Bridges et al., 2014; JimŽnez et al., 2017; Peek and Rosengren, 2000; De-Ramon et al.,
2016; Bahaj et al., 2016);30 cause banks to shed-assets(have a destabilising e!ect when the
constraints bind) (ECB, 2012; Cont and Schaanning, 2017); raise the riskiness of a bankÕs
balance sheet by inducing risk shifting behaviour (Uluc and Wieladek, 2018).31

These sorts of costs generate a trade-o! potentially resulting in a non-monotonic Ôhump-
shapedÕ relationship between social welfare gains and capital ratios (Clerc et al., 2015; Bege-
nau, 2019; Adrian and Boyarchenko, 2015). However a strategy of driving out topologically
driven risk (through reconÞguration of the exposure network) would not be subject to these
sorts of issues.

Our proposals contribute to the search for infrastructure-based solutions to market fail-
ures. Policy discussion following the 2007-8 Þnancial crisis clearly identiÞed the cross-
sectional dimension to systemic risk stemming from the the extreme interconnectedness
of banks as a major factor, and sought structural solutions (King, 2009; Haldane, 2009;
Yellen, 2013). The contribution from the complex and opaque web of OTC derivatives to
this interconnectedness received particular attention. The structural side of the post-crisis

29Requires banks to be motivated to insure credit risk - see e.g.Zawadowski (2013) for some relevant
discussions.

30The Long-Term Economic Impact study published by the Basel Comittee in 2010 (BCBS, 2010) assumed
that each percentage point increase in the capital ratio would raise loan spreads by around 13 bps translating
into a 0.1% fall in GDP relative to trend. Some more recent studies suggest suggests the negative short and
long run impacts of increased capital requirements on lending and real activity may be signiÞcantly larger
e.g. (Clerc et al., 2015; De Nicol˜ , 2015).

31For capital requirements to a!ect loan supply: (i) bank equity must be a relatively costly form of Þnance
(more expensive than bank debt, implying failure of Modigliani-Miller theorem (Miller and Modigliani ,
1958)), and (ii) capital requirements need to be a binding constraint on a bankÕs choice of capital structure.
Economic theory provides good reasons for why the Modigliani-Miller theorem may fail here. Chießy cited
are: asymmetric information; and the di!erence in tax treatment between debt and equity (seeAiyar et al.
(2014) for review). However Gale and Yorulmazer (2020) recently argue/point out that (unlike corporate
debt) agents hold bank deposits not just for the interest income earned on them, but also for the liquidity
beneÞt they yield. As a result the equilibrium interest rate on bank deposits will be lower than the return
on equity (making deposit funding cheaper than equity funding).
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reform agenda has focused on switching from OTC to central clearing of derivatives (via
CCPs/novation) as a way to simplifying the network of counterparty exposures between
Þnancial institutions and reduce the aggregate size of counterparty exposures (through mul-
tilateral netting ( Du"e et al. , 2011)) ( CPMI , 2018).32

While we are only at the stage of discussing ideas, incentivising the endogenous formation
and maintenance of a more coherent network structure for OTC markets (such as interbank
lending and OTC derivatives) could o!er new directions in the search for infrastructure based
solutions to market failures stemming from interconnectedness. The existing literature in
this direction remains in its infancy.

Some existing work has asked, given an interbank network, how high do capital bu!ers
need to be set in order to mitigate systemic risk. Otherinteresting contributions haveasked,
given an interbank network, what is the optimal distribution of regulatory capital, and
proposed setting required bu!ers(for individual institutions) based on banksÕ contributions
to network risk (in order to either help inoculate nodes in inßuential network positions; or to
fund rescue pots - seeMarkose et al.(2012), Gauthier et al. (2012), Cont et al. (2013), Alter
et al. (2015) who study capital bu!ers. Similarly, Aldasoro and Faia(2016) and Ferrara
et al. (2019) come to the same conclusion regarding liquidity bu!ers).

These papers and most of the literature have taken Þnancial networks as given(without
any network restructuring). Some work has studied the endogenous formation of Þnancial
networks (Anufriev et al., 2016; Babus, 2016; Jelonek, 2016; Zawadowski, 2013). However,
very little work has been devoted to the possibility of controlling the incentives that Þnancial
institutions may have in order to promote the formation of more resilient network structures.

There are of coursea number of good reasons for this. It has been far from clear,
based on the existing literature, that any single topology is always more resilient (Bardoscia
et al., 2016; Caccioli et al., 2012; Gai and Kapadia, 2010; Ladley, 2013; Roukny et al.,
2013); moreover key topological parameters previously identiÞed in the literature may not
o!er practical control parameters (for example network density may not be useful given
restricting interconnectedness would likely restrict the functionality of the system).

Exceptions are recent studies byPoledna and Thurner(2016) and Leduc et al.(2017), and
Leduc and Thurner (2017), who investigate how systemic risk can be reduced by changing
the underlying networks, when Þnancial agents are incentivised to favour transactions with
low systemic risk in the network(see also unpublished work by Beale, MacKay and Tucker
from 2011;33 and Thurner and Poledna(2013)).34

Poledna and Thurner (2016) propose a transaction tax set as some proportion of its
marginal contribution to expected systemic loss (calculated based on DebtRank) - this idea
is explored through an agent based model.Leduc et al. (2017) show analytically that this

32Note there is a link between the move to central clearing and trophic coherence, since the introduction of
a central counterparty and novation of trades, breaks cycles in the network and generates coherent structure.
Di!erently from the proposal we introduce here, it also of course generates a highly systemic node (the CCP).

33For Beale et al. 2011, see footnote26.
34Thurner and Poledna (2013) meanwhile propose the regulator use their knowledge of the network in

order to disclose the DebtRank of individual institutions and require borrowers to seek loans from less risky
nodes, encouraging the development more stable networks.
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tax can be implemented without reducing the total interbank transaction volume and thus
without making the system less e"cient. And Leduc and Thurner (2017) argue that since
credit-default swaps (CDSs) have the e!ect of transferring a Þnancial exposure from one
institution to another, they could be used to change the topology of the Þnancial network
of interbank exposures and explore in an agent based model whether imposing a systemic
insurance ÔsurchargeÕ (proportional to the amount of systemic risk created by the contract)
added to CDS spreads could be used to ÒrewireÓ the interbank exposure network to reduce
systemic risk.

Also closely related, are some recent studies that try to quantify the reduction in systemic
risk (measured in DebtRank) that could in principle be achieved by rewiring the network
(and compare high/low risk and empirical networks on various familiar topological statistics)
(Diem et al., 2020; Krause et al., 2019).

These employ a brute-force approach to identifying network conÞgurations that limit sys-
temic risk.35 They do not identify topological characteristics or structural features strongly
associated with low systemic risk conÞgurations obtained or propose policy measures. How-
ever they help to highlight the potential gains that might in principal be achieved through
approaching systemic risk management based on inßuencing network topologies, and provide
strong motivation for work in this direction, and the sort of proposals we make here.

For example Diem et al. (2020) Þnd that applied to snapshots of the Austrian inter-
bank market, their optimization of network structure reduces systemic risk by c.70% (they
calculate existing capital levels would need to be scaled up by a factor of3.3 to obtain
similar levels of DebtRankhighlighting the limits of managing balance sheet structure but
not network structure).

While in this paper we choose to study contagion via the asset side of bank balance sheets
(most extensively studied in the literature Ð note this is also the case for the literature
reviewed above) and the results we present are for distress propagation due to mark-to-
market revaluation of contracts,we expectthat trophic coherencewill also prove relevant
to additional channels of contagion, such as systemic illiquiditythat was so central to the
Þnancial crisis (BCBS, 2013b; Cifuentes, Cifuentes et al., 2005; Morris and Shin, 2009).
What is more, while here we initially investigate the inßuence oftrophic coherenceusing a
toy model, it will be interesting to investigate the inßuence of trophic coherence in richer
models of Þnancial processes, system and sub-systems.

Further work might explore the potential gains to be made by combining network rewiring
with optimal allocation of regulatory capital requirements (reßecting individual institutions
network position). It would also e.g. be interesting to investigate how the distribution of
systemic importance of individual institutions responds to re-wiring). This and more besides
is left to future work.

35Thus potentially sensitive to the systemic risk model.
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5. Conclusion

Regulatory frameworks have emphasised leverage as a source of risk, and minimum cap-
ital adequacy ratios are the cornerstone of prudential regulations. These have been assessed
in order to make individual institutions resilient to the direct impact of some predeÞned
shock.

The Þnancial network literature has shown the interaction of leverage and network-based
ampliÞcation: the leverage of a bank on the interbank market compounds multiplicatively
with the leverage of its counterparties. However, the extent of ampliÞcation depends on the
topology of the exposure network. The resilience of the system to a shock may be inßuenced
by the presence of destabilizing cycles and multiple pathways in the exposure network.

It has been shown that the number of feedback loops in a network, as well as the eigen-
values of associated matrices, is related to a structural property calledtrophic coherence,
which provides a measure of the ÔdirectednessÕ of a network. We argue thattrophic coherence
may therefore be relevant for understanding, monitoring and potentially for controlling risk
in Þnancial networks. We investigate the inßuence oftrophic coherenceon systemic risk in
interbank networks (measured using DebtRank).

We show that trophic coherencehas a crucial inßuence on DebtRank dynamics: shock-
propagation depends strongly on thetrophic coherenceof the exposure network. Using a
simulation-based approach we show the degree of endogenous ampliÞcation is moderated
even at high leverage in more coherent networks; and high even where leverage is low in
incoherent networks. We also show that not only feed-back loops, but also feed-forward
loops (which also reducetrophic coherence) contribute to increased ampliÞcation of shocks.

These results clearly imply the importance of monitoring network structure in systemic
risk assessment, and suggest it may be useful to measure thetrophic coherenceof Þnancial
networks. More than this however, they imply that in principle (since it is possible to have a
network of the same size, density, value of interbank lending/borrowing, degree distribution,
but very di!erent levels of trophic coherence) systemic risk might be reduced considerably
and e"ciently without any increase in capital requirements, simply by re-wiring the exposure
network.

While interbank networks of course form endogenously, we ask whether a transaction level
charge proportional to the absolute di!erence (from one) in the trophic levels of prospec-
tive counterparties could incentivise the self-organised formation of more resilient network
structures without impairing market functionality.

We view our paper as a Þrst step in exploring the relevance and broader implications of
the trophic incoherence of Þnancial network architecture for Þnancial stability and Þnancial
stability management. Several important issues remain open to future research.

While in this paper we choose to study contagion via the asset side of bank balance
sheets (most extensively studied in the literature) and the results we present are for distress
propagation due to mark-to-market revaluation of contracts, it seems very likely that trophic
incoherence will also prove relevant to additional channels of contagion - such as systemic
illiquidity - and its inßuence on the dynamics of richer models of Þnancial processes should
be explored.
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