Classification of Transformations of Equivalent Kernels of DPPs, arXiv:2302.02471

Harry Sapranidis Mantelos

University of Warwick

July 9, 2024

X is a DPP in Λ (a set) if $\exists K : \Lambda^2 \to \mathbb{F} (= \mathbb{R} \text{ or } \mathbb{C})$ such that

"Prob(
$$X$$
 has particles at x_1, \ldots, x_n) = $\det(K(x_i, x_j))_{i,j=1}^n$ ",

for every $n \in \mathbb{N}$ and $x_k \in \Lambda$.

X is a DPP in Λ (a set) if $\exists K : \Lambda^2 \to \mathbb{F} (= \mathbb{R} \text{ or } \mathbb{C})$ such that

"Prob(X has particles at
$$x_1, ..., x_n$$
) = $\det(K(x_i, x_j))_{i,j=1}^n$ ",

for every $n \in \mathbb{N}$ and $x_k \in \Lambda$.

K is the kernel of X.

• $Q(x, y) = K(y, x) \ \forall x, y \in \Lambda \implies Q$ is another kernel of X(Q is a *transposition* transformation of K)

X is a DPP in Λ (a set) if $\exists K : \Lambda^2 \to \mathbb{F} (= \mathbb{R} \text{ or } \mathbb{C})$ such that

"Prob(X has particles at
$$x_1, ..., x_n$$
) = det($K(x_i, x_j)$) $_{i,j=1}^n$ ",

for every $n \in \mathbb{N}$ and $x_k \in \Lambda$.

K is the kernel of X.

- $Q(x, y) = K(y, x) \ \forall x, y \in \Lambda \implies Q$ is another kernel of X(Q is a transposition transformation of K)
- $Q(x, y) = \frac{g(x)}{g(y)}K(x, y) \quad \forall x, y \in \Lambda \implies Q$ another kernel of X (Q is a *conjugation transformation* of K)

X is a DPP in Λ (a set) if $\exists \ K : \Lambda^2 \to \mathbb{F} (= \mathbb{R} \text{ or } \mathbb{C})$ such that

"Prob(X has particles at
$$x_1, ..., x_n$$
) = det($K(x_i, x_j)$) $_{i,j=1}^n$ ",

for every $n \in \mathbb{N}$ and $x_k \in \Lambda$.

K is the kernel of X.

- $Q(x, y) = K(y, x) \ \forall x, y \in \Lambda \implies Q$ is another kernel of X(Q is a transposition transformation of K)
- $Q(x,y) = \frac{g(x)}{g(y)}K(x,y) \ \forall x,y \in \Lambda \implies Q$ another kernel of X (Q is a conjugation transformation of K)

Notation: Write $Q \equiv K$.

X is a DPP in Λ (a set) if $\exists \ K : \Lambda^2 \to \mathbb{F} (= \mathbb{R} \text{ or } \mathbb{C})$ such that

"Prob(X has particles at
$$x_1, ..., x_n$$
) = det($K(x_i, x_j)$) $_{i,j=1}^n$ ",

for every $n \in \mathbb{N}$ and $x_k \in \Lambda$.

K is the kernel of X.

- $Q(x, y) = K(y, x) \ \forall x, y \in \Lambda \implies Q$ is another kernel of X(Q is a transposition transformation of K)
- $Q(x, y) = \frac{g(x)}{g(y)}K(x, y) \ \forall x, y \in \Lambda \implies Q$ another kernel of X (Q is a conjugation transformation of K)

Notation: Write $Q \equiv K$.

 $Q \equiv K \stackrel{?}{\Longrightarrow} Q$ obtained from K via above two transformations.

X is a DPP in Λ (a set) if $\exists \ K : \Lambda^2 \to \mathbb{F} (= \mathbb{R} \text{ or } \mathbb{C})$ such that

"Prob(X has particles at
$$x_1, ..., x_n$$
) = det($K(x_i, x_j)$) $_{i,j=1}^n$ ",

for every $n \in \mathbb{N}$ and $x_k \in \Lambda$.

K is the kernel of X.

- $Q(x, y) = K(y, x) \ \forall x, y \in \Lambda \implies Q$ is another kernel of X(Q is a transposition transformation of K)
- $Q(x,y) = \frac{g(x)}{g(y)}K(x,y) \ \forall x,y \in \Lambda \implies Q$ another kernel of X (Q is a conjugation transformation of K)

Notation: Write $Q \equiv K$.

 $Q \equiv K \xrightarrow[\text{Bufetov, }]{?} Q$ obtained from K via above transformations.

$$Q \equiv K \xrightarrow[\text{Buffetov }]{?} Q$$
 obtained from K via above transformations.

•
$$K(x, y) = K(y, x)$$
 and $Q(x, y) = Q(y, x) \ \forall x, y \in \Lambda$
 \implies conjecture holds.

$$Q \equiv K \xrightarrow[\text{Bufetov.}]{?} Q$$
 obtained from K via above transformations.

•
$$K(x, y) = K(y, x)$$
 and $Q(x, y) = Q(y, x) \ \forall x, y \in \Lambda$

$$\underset{\text{Stevens, '19}}{\Longrightarrow} \text{conjecture holds.}$$

 $Q \equiv K \underset{\text{Bufetov, '17}}{\overset{?}{\Longrightarrow}} Q$ obtained from K via above transformations.

•
$$K(x,y) = K(y,x)$$
 and $Q(x,y) = Q(y,x) \ \forall x,y \in \Lambda$

$$\Longrightarrow_{\text{Stevens, '19}} \text{conjecture holds.}$$

$$\bullet \ (K(x,y))_{x,y=1}^n = \begin{pmatrix} a & b & 1 & 1 \\ c & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix}, \ (Q(x,y))_{x,y=1}^n = \begin{pmatrix} a & c & 1 & 1 \\ b & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix},$$

 $Q \equiv K \underset{\text{Bufetov, 17}}{\overset{?}{\Longrightarrow}} Q$ obtained from K via above transformations.

• K(x, y) = K(y, x) and $Q(x, y) = Q(y, x) \ \forall x, y \in \Lambda$ $\Longrightarrow_{\text{Stevens, '19}} \text{conjecture holds.}$

$$\bullet \ (K(x,y))_{x,y=1}^n = \begin{pmatrix} a & b & 1 & 1 \\ c & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix}, \ (Q(x,y))_{x,y=1}^n = \begin{pmatrix} a & c & 1 & 1 \\ b & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix},$$

$$\Rightarrow Q \equiv K$$
, but...

 $Q \equiv K \underset{\text{Bufetov, '17}}{\overset{?}{\Longrightarrow}} Q$ obtained from K via above transformations.

•
$$K(x, y) = K(y, x)$$
 and $Q(x, y) = Q(y, x) \ \forall x, y \in \Lambda$

$$\Longrightarrow_{\text{Stevens, '19}} \text{conjecture holds.}$$

•
$$(K(x,y))_{x,y=1}^n = \begin{pmatrix} a & b & 1 & 1 \\ c & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix}, (Q(x,y))_{x,y=1}^n = \begin{pmatrix} a & c & 1 & 1 \\ b & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix},$$

- \rightarrow $Q \equiv K$, but...
- $ightharpoonup Q(3,4) = f \neq g = K(4,3) \implies Q$ a transposition transformation of K.

 $Q \equiv K \underset{\text{Bufetov, '17}}{\overset{?}{\Longrightarrow}} Q$ obtained from K via above transformations.

•
$$K(x,y) = K(y,x)$$
 and $Q(x,y) = Q(y,x) \ \forall x,y \in \Lambda$

$$\Longrightarrow_{\text{Stevens, '19}} \text{conjecture holds.}$$

•
$$(K(x,y))_{x,y=1}^n = \begin{pmatrix} a & b & 1 & 1 \\ c & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix}, (Q(x,y))_{x,y=1}^n = \begin{pmatrix} a & c & 1 & 1 \\ b & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix},$$

- \rightarrow $Q \equiv K$, but...
- $ightharpoonup Q(3,4) = f \neq g = K(4,3) > Q$ a transposition transformation of K.

 $Q \equiv K \underset{\text{Bufetov, 17}}{\overset{?}{\Longrightarrow}} Q$ obtained from K via above transformations.

• K(x,y) = K(y,x) and $Q(x,y) = Q(y,x) \ \forall x,y \in \Lambda$ $\Longrightarrow_{\text{Stevens, '19}} \text{conjecture holds.}$

$$\bullet \ (K(x,y))_{x,y=1}^n = \begin{pmatrix} a & b & 1 & 1 \\ c & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix}, \ (Q(x,y))_{x,y=1}^n = \begin{pmatrix} a & c & 1 & 1 \\ b & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix},$$

- \rightarrow $Q \equiv K$, but...
- $ightharpoonup Q(3,4) = f \neq g = K(4,3) > Q$ a transposition transformation of K.
- \rightarrow Q is not a conjugation transformation of K either.

 $Q \equiv K \xrightarrow[\text{Bufetov, }]{\gamma} Q$ obtained from K via above transformations.

•
$$K(x,y) = K(y,x)$$
 and $Q(x,y) = Q(y,x) \ \forall x,y \in \Lambda$

$$\Longrightarrow_{\text{Stevens, '19}} \text{conjecture holds.}$$

•
$$(K(x,y))_{x,y=1}^n = \begin{pmatrix} a & b & 1 & 1 \\ c & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix}, (Q(x,y))_{x,y=1}^n = \begin{pmatrix} a & c & 1 & 1 \\ b & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix},$$

- $\rightarrow Q \equiv K$, but...
- $ightharpoonup Q(3,4) = f \neq g = K(4,3) > Q$ a transposition transformation of K.
- \rightarrow Q is not a conjugation transformation of K either.

$$\begin{vmatrix} K(1,3) & K(1,4) \\ K(2,3) & K(2,4) \end{vmatrix} \neq 0 \neq \begin{vmatrix} K(3,1) & K(3,2) \\ K(4,1) & K(4,2) \end{vmatrix}$$

$$Q \equiv K \xrightarrow[\text{Bufetov, '17}]{?} Q$$
 obtained from K via above transformations.

•
$$K(x, y) = K(y, x)$$
 and $Q(x, y) = Q(y, x) \ \forall x, y \in \Lambda$
 \Longrightarrow conjecture holds.

•
$$(K(x,y))_{x,y=1}^n = \begin{pmatrix} a & b & 1 & 1 \\ c & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix}, (Q(x,y))_{x,y=1}^n = \begin{pmatrix} a & c & 1 & 1 \\ b & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix},$$

for some $a, b, c, d, e, f, g, h \in \mathbb{F} \setminus \{0\}$ such that $c \neq b \& f \neq g$.

- $\rightarrow Q \equiv K$, but...
- $ightharpoonup Q(3,4) = f \neq g = K(4,3) > Q$ a transposition transformation of K.
- \rightarrow Q is not a conjugation transformation of K either.

•
$$K \neq 0$$
 and $\begin{vmatrix} K(x,y) & K(x,w) \\ K(z,y) & K(z,w) \end{vmatrix} \neq 0 \ \forall x,y,z,w \in \Lambda$ distinct

⇒ conjecture holds.

 $Q \equiv K \xrightarrow[\text{Bufetov, }]{?} Q$ obtained from K via above transformations.

•
$$K(x, y) = K(y, x)$$
 and $Q(x, y) = Q(y, x) \ \forall x, y \in \Lambda$

 $\underset{\text{Stevens, '19}}{\Longrightarrow}$ conjecture holds.

•
$$(K(x,y))_{x,y=1}^n = \begin{pmatrix} a & b & 1 & 1 \\ c & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix}, (Q(x,y))_{x,y=1}^n = \begin{pmatrix} a & c & 1 & 1 \\ b & d & 1 & 1 \\ 1 & 1 & e & f \\ 1 & 1 & g & h \end{pmatrix},$$

- $ightharpoonup Q \equiv K$, but...
- $ightharpoonup Q(3,4) = f \neq g = K(4,3) > Q$ a transposition transformation of K.
- \rightarrow Q is not a conjugation transformation of K either.

•
$$K \neq 0$$
 and $\begin{vmatrix} K(x,y) & K(x,w) \\ K(z,y) & K(z,w) \end{vmatrix} \neq 0 \ \forall x,y,z,w \in \Lambda$ distinct $\underset{\text{Sapranidis, '23}}{\Longrightarrow}$ conjecture holds.

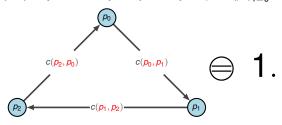
Theorem (Sapranidis, '23)

 $K \neq 0$ and $\begin{vmatrix} K(x,y) & K(x,w) \\ K(z,y) & K(z,w) \end{vmatrix} \neq 0 \ \forall x,y,z,w \in \Lambda$ distinct and $Q \equiv K$ $\implies Q$ is in one of the following two forms, for some function $q \neq 0$:

$$Q(x,y) = \frac{g(x)}{g(y)}K(x,y)$$
 or $Q(x,y) = \frac{g(x)}{g(y)}K(y,x)$

Proof (outline):

Show $S(x, y) = \frac{Q(x, y)}{K(x, y)}$ or $\tilde{S}(x, y) = \frac{Q(x, y)}{K(y, x)}$ satisfies the 3-cocycle property: for every simple 3-cycle $p = (p_i)_{i=0}^3 \in \Lambda^4$,



Theorem (Sapranidis, '23)

 $K \neq 0$ and $\begin{vmatrix} K(x,y) & K(x,w) \\ K(z,y) & K(z,w) \end{vmatrix} \neq 0 \ \forall x,y,z,w \in \Lambda$ distinct and $Q \equiv K$ $\implies Q$ is in one of the following two forms, for some function $g \neq 0$:

$$Q(x,y) = \frac{g(x)}{g(y)}K(x,y)$$
 or $Q(x,y) = \frac{g(x)}{g(y)}K(y,x)$

Proof (outline):

Define
$$S(x, y) = \frac{Q(x, y)}{K(x, y)}$$
, $\tilde{S}(x, y) = \frac{Q(x, y)}{K(y, x)}$.

Let $p = (p_i)_{i=0}^1 \in \Lambda^2$ be a 1-cycle. Then,

$$\det(K(\mathbf{X}_i, \mathbf{X}_i))_{i,j=1}^n = \det(Q(\mathbf{X}_i, \mathbf{X}_i))_{i,j=1}^n$$

with n = 1 yields

Theorem (Sapranidis, '23)

$$K \neq 0$$
 and $\begin{vmatrix} K(x,y) & K(x,w) \\ K(z,y) & K(z,w) \end{vmatrix} \neq 0 \ \forall x,y,z,w \in \Lambda$ distinct and $Q \equiv K$

 \implies Q is in one of the following two forms, for some function $g \neq 0$:

$$Q(x,y) = \frac{g(x)}{g(y)}K(x,y)$$
 or $Q(x,y) = \frac{g(x)}{g(y)}K(y,x)$

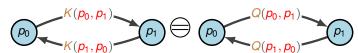
Proof (outline):

Define
$$S(x, y) = \frac{Q(x, y)}{K(x, y)}$$
, $\tilde{S}(x, y) = \frac{Q(x, y)}{K(y, x)}$.

Let $p = (p_i)_{i=0}^2 \in \Lambda^3$ be a (simple) 2-cycle. Then,

$$\det(K(\mathbf{x}_i,\mathbf{x}_j))_{i,j=1}^n = \det(Q(\mathbf{x}_i,\mathbf{x}_j))_{i,j=1}^n$$

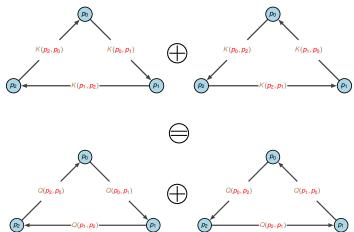
with n = 2 yields



Proof (outline):

Let $p = (p_i)_{i=0}^3 \in \Lambda^4$ be a simple 3-cycle.

The Leibniz formula applied to $Q \equiv K$ with n = 3 yields



Proof (outline):

Define
$$S(x, y) = \frac{Q(x, y)}{K(x, y)}$$
, $\tilde{S}(x, y) = \frac{Q(x, y)}{K(y, x)}$.

The previous slides imply the following lemma:

Theorem

For every (simple) cycle $\mathbf{p} := (\mathbf{p_i})_{i=0}^3$ of length 3 in Λ , it is either the case that

Case 1:
$$S[p] = 1$$
;

or

Case 2:
$$\tilde{S}[p] = 1$$
.

Proof (outline):

Define
$$S(x, y) = \frac{Q(x, y)}{K(x, y)}$$
, $\tilde{S}(x, y) = \frac{Q(x, y)}{K(y, x)}$.

The previous slides imply the following lemma:

Theorem

For every (simple) cycle $p := (p_i)_{i=0}^3$ of length 3 in Λ , it is either the case that

Case 1:
$$S[p] = 1$$
;

or

Case 2:
$$\tilde{S}[p] = 1$$
.

Finally, show that every (simple) cycle $p := (p_i)_{i=0}^3$ of length 3 in Λ is in the same case.

Proof (outline):

Define
$$S(x, y) = \frac{Q(x, y)}{K(x, y)}$$
, $\tilde{S}(x, y) = \frac{Q(x, y)}{K(y, x)}$.

The previous slides imply the following lemma:

Theorem

For every (simple) cycle $p := (p_i)_{i=0}^3$ of length 3 in Λ , it is either the case that

Case 1:
$$S[p] = 1$$
;

or

Case 2:
$$\tilde{S}[p] = 1$$
.

Finally, show that every (simple) cycle $p := (p_i)_{i=0}^3$ of length 3 in Λ is in the same case (non-trivial: 4-cycles, graph-theoretic magic tricks, see arXiv:2302.02471).