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Abstract
Determinantal point processes (abbr., DPPs) are randomly arranged points whose distribution is characterized via
determinants of matrices. The entries of these matrices are given by one fixed function of two variables, 𝐾(𝑥, 𝑦), called
the kernel of the DPP. It is well-known that the kernel 𝐾 is not unique and that there exist various other functions
of two variables that are valid kernels of the same DPP. We refer to such kernels as equivalent kernels to 𝐾 . It was
recently shown by Stevens in [Random Matrices: Theory and Applications, 10(03):2150027, 2021] that, restricting to
the case of symmetric kernels, all equivalent kernels of some DPP can be transformed into one another by conjugation
transformations. This partially solves a conjecture of Bufetov from 2017 which states that all equivalent kernels of some
DPP can be transformed into one another by conjugation and transposition transformations. In this work, we completely
relax the symmetry assumptions on the kernels. We go through why this conjecture cannot hold in this general setting
but that under some surprisingly simple and natural conditions on the kernel it does.
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1. Introduction and Motivation

Point processes are probabilistic models for random scatterings of points in some mathematical space. These
processes are characterized by their correlation function. If a point process is determinantal (a.k.a., the point
process is a DPP) then its correlation function is of a determinantal form (see, e.g., [1], [2], [3]).

More precisely, if we denote by 𝜌𝑛 the 𝑛th correlation function of such a point process on some measure
space Λ, then there exists a function 𝐾 : Λ2 → F such that for any 𝑛 > 0 and any tuple (𝑥1, . . . , 𝑥𝑛) ∈ Λ𝑛,
we have

𝜌𝑛(𝑥1, . . . , 𝑥𝑛) = det (𝐾(𝑥𝑖, 𝑥𝑗))
𝑛
𝑖,𝑗=1,

where F is a suitable field which in most (if not all) cases is either R or C (and so this is what we also take F to
be in our work). We then call 𝐾 a correlation kernel of the DPP.

As in [4] (the paper we build on), for our research problem, we neglect the measure space structure of Λ
and just consider it as a set. Hence, the kernel 𝐾 can be regarded as a mere function. If there exists another
function 𝑄 : Λ2 → F such that

det(𝑄(𝑥𝑖, 𝑥𝑗))
𝑛
𝑖,𝑗=1 = det(𝐾(𝑥𝑖, 𝑥𝑗))

𝑛
𝑖,𝑗=1 ∀𝑥1, . . . , 𝑥𝑛 ∈ Λ ∀𝑛 ∈ N, (1)

then we call 𝐾 and 𝑄 equivalent kernels (𝐾 ≡ 𝑄 for short).

Remark 1. If 𝑄 is of the form

𝑄(𝑥, 𝑦) = 𝑔(𝑥)𝑔(𝑦)−1𝐾(𝑥, 𝑦), 𝑥, 𝑦 ∈ Λ,

for some non-zero function 𝑔 : Λ → F, we say that 𝑄 is a conjugation transformation of 𝐾 with conjugation
function 𝑔. It is then easy to check that 𝑄 ≡ 𝐾 .

Remark 2. It is not difficult to see that if 𝑄(𝑥, 𝑦) = 𝐾(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ Λ, then 𝑄 ≡ 𝐾 . In this case we say
that 𝑄 is a transposition transformation of 𝐾 .
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Although the problem of classifying transformations that yield equivalent kernels of DPPs - in the above
framework - originates (and is of theoretical interest) in the theory of determinantal point processes, it
essentially asks a basic question about a pair of functions of two variables: given that function 𝐾 is related to
𝑄 via equation (1) - and thus 𝐾 ≡ 𝑄 - what are all the possible transformations that transform 𝐾 into 𝑄?
In this setup, it was established in [4] that, restricting to the case of symmetric kernels (a function ℎ of two
variables is symmetric if ℎ(𝑥, 𝑦) = ℎ(𝑦, 𝑥) for every 𝑥, 𝑦), 𝐾 must be a conjugation transformation of 𝑄.
More precisely, the following result was established in [4].

Theorem 1.1 (theorem 1.5 from [4]). Suppose that Λ is a set, let F be a field and let 𝐾,𝑄 : Λ2 → F be
symmetric kernels. If 𝐾 and 𝑄 are equivalent (i.e., equation (1) holds), then it must be the case that 𝑄 and 𝐾 are
conjugation transformations of one another, i.e., there exists a non-zero function 𝑔 : Λ → F such that for every
𝑥, 𝑦 ∈ Λ,

𝑄(𝑥, 𝑦) = 𝑔(𝑥)𝑔(𝑦)−1𝐾(𝑥, 𝑦). (2)

Of course, in the (symmetric) setting of the above theorem, a transposition transformation would have just
been the trivial identity transformation. Thus, [4] partially solves the following conjecture of Bufetov, in the
case where both equivalent kernels 𝐾 and 𝑄 are symmetric.

Conjecture 1 (Conj. 1.4 from [4]). If 𝐾 and 𝑄 are equivalent kernels (i.e., (1) is satisfied), then they can be
transformed into one another by transposition and conjugation transformations.

It was then left as an open problem to solve Bufetov’s conjecture in the general setting without the symmetry
assumptions on the kernels. It is imperative, of course, to first determine whether the conjecture does indeed
hold in that general setting. In the next section we show that, in fact, it is possible to find counterexamples to
the conjecture. However, the nature of such counterexamples, as we shall see, is rather exceptional. Fortunately,
our research findings show that it is possible to impose some simple and natural conditions on the kernels
that elegantly rule out such counterexamples. The proof of the conjecture (under these conditions) - briefly
outlined in this paper - is essentially revolved around the recurrent use of an elementary lemma (lemma 4.2)
and some basic graph theory and combinatorics.

Hereafter we summarize the research conducted in [arXiv:2302.02471].

2. Counterexamples of Bufetov’s Conjecture

Firstly, let us consider the case where Λ from Section 1 is any discrete set of cardinality 𝑛 ≥ 4. For simplicity,
assume Λ = {1, 2, . . . , 𝑛}. Then, consider the kernels 𝐾 : Λ2 → F and 𝑄 : Λ2 → F defined by

(𝐾(𝑥, 𝑦))1≤𝑥,𝑦≤𝑛 =

⎡⎣C 0
0 D

⎤⎦ , (𝑄(𝑥, 𝑦))1≤𝑥,𝑦≤𝑛 =

⎡⎣𝐶𝑇 0

0 𝐷

⎤⎦ ,

where 𝐶 and 𝐷 are some non-symmetric square matrices of the same dimension. In this case 𝐾 ≡ 𝑄 but 𝐾 is
neither a transposition nor a conjugation transformation of 𝑄. Thus, Bufetov’s conjectured classification of
transformations does not hold: we have just identified one other type of transformation other than the two
stated in the conjecture which yields equivalent kernels. Perhaps a suitable name for it would be a "partial
transposition transformation", since only part of the matrix is being transposed.

Interestingly, by the block determinant formula, even if the null sub-matrices of the above pair of matrices
were replaced by matrices of ones, it would still be the case that 𝐾 ≡ 𝑄. For the same reason as in the previous
paragraph, Bufetov’s conjecture would still not stand.

For reasons that will be explained in the next section, our analysis is restricted to non-zero kernels (i.e.,
kernels 𝐾 such that 𝐾(𝑥, 𝑦) ̸= 0 for every 𝑥, 𝑦 ∈ Λ). To this end, let us further analyze the counterexample
specified in the preceding paragraph with the additional condition that the matrices 𝐶 and 𝐷 are entrywise
non-zero. We seek for a condition on 𝐾 that would make kernels 𝐾 and 𝑄 of the previously described form a
non-admissible pair satisfying (1). We first need to deal with the case when 𝑛 = 4, in which case kernels 𝐾



and 𝑄 from before satisfy

(𝐾(𝑥, 𝑦))1≤𝑥,𝑦≤𝑛 =

⎛⎜⎜⎝
𝑎 𝑏 1 1
𝑐 𝑑 1 1
1 1 𝑒 𝑓
1 1 𝑔 ℎ

⎞⎟⎟⎠ , (𝑄(𝑥, 𝑦))1≤𝑥,𝑦≤𝑛 =

⎛⎜⎜⎝
𝑎 𝑐 1 1
𝑏 𝑑 1 1
1 1 𝑒 𝑓
1 1 𝑔 ℎ

⎞⎟⎟⎠ , (3)

for some 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ ∈ F ∖ {0} such that 𝑐 ̸= 𝑏 and 𝑓 ̸= 𝑔.
Clearly, the sub-matrices of ones in the upper-right and lower-left block regions of the above two block

matrices are the ones that bring about the block structure that enables this "partial transposition" transformation
discussed previously to be a viable transformation that transforms equivalent kernels (of a special form) into
one another. And so by far the most intuitive condition to impose on our pair of matrices that we would
hope would be enough to make this type of transformation non-permissible would be to require non-zero
determinants in the upper-right and lower-left 2× 2 sub-matrix regions, that is, to require⃒⃒⃒⃒

𝐾(1, 3) 𝐾(1, 4)
𝐾(2, 3) 𝐾(2, 4)

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝐾(3, 1) 𝐾(3, 2)
𝐾(4, 1) 𝐾(4, 2)

⃒⃒⃒⃒
̸= 0,

which - in the case of 𝑛 = 4 - is the same as requiring for every 𝑥, 𝑦, 𝑧, 𝑤 ∈ Λ distinct,⃒⃒⃒⃒
𝐾(𝑥, 𝑦) 𝐾(𝑥,𝑤)
𝐾(𝑧, 𝑦) 𝐾(𝑧, 𝑤)

⃒⃒⃒⃒
̸= 0.

Our research findings not only show that this condition, in fact, is sufficient in solving Bufetov’s conjecture
in the above setting with Λ = {1, 2, . . . , 𝑛} and 𝑛 = 4 (or for any discrete set Λ of any cardinality, for that
matter); but even for a general abstract set Λ (of any kind of cardinality).

3. Main result

Precisely, our main result in [5] reads as follows.

Theorem 3.1. Suppose that Λ is a set, let F be a field and let 𝐾,𝑄 : Λ2 → F be non-zero (not necessarily
symmetric) kernels such that for every 𝑥, 𝑦, 𝑧, 𝑤 ∈ Λ distinct,⃒⃒⃒⃒

𝐾(𝑥, 𝑦) 𝐾(𝑥,𝑤)
𝐾(𝑧, 𝑦) 𝐾(𝑧, 𝑤)

⃒⃒⃒⃒
̸= 0. (4)

If 𝐾 and 𝑄 are equivalent (i.e., equation (1) holds - in which case, equation (4) with 𝐾 replaced by 𝑄 also holds),
then the following two transformations are the only possible transformations that transform 𝐾 into 𝑄:

• Conjugation transformations, i.e., there exists a non-zero function 𝑔 : Λ → F such that (2) holds for every
𝑥, 𝑦 ∈ Λ.

• Transposition transformations followed by conjugation transformations, i.e., there exists a non-zero function
𝑔 : Λ → F such that for every 𝑥, 𝑦 ∈ Λ,

𝑄(𝑥, 𝑦) = 𝑔(𝑥)𝑔(𝑦)−1𝐾(𝑦, 𝑥). (5)

In the last section, the significance of the (4) condition from theorem 3.1 was explained and illustrated; but
the reason why we require non-zero kernels was not. The reason we insist on the latter is because, had it not
been so, then we may have been presented with quite a few problems in solving Bufetov’s conjecture in this
general (not necessarily symmetric) setting. Indeed, equation (1) with 𝑛 = 1 and 𝑛 = 2 can easily be seen to
yield the identity

𝐾(𝑥, 𝑦)𝐾(𝑦, 𝑥) = 𝑄(𝑥, 𝑦)𝑄(𝑦, 𝑥), 𝑥, 𝑦 ∈ Λ. (6)

This identity, in the symmetric setting of [4] (where both 𝐾 and 𝑄 are symmetric), implies that for every
𝑥, 𝑦 ∈ Λ,

𝐾(𝑥, 𝑦) = 0 if and only if 𝑄(𝑥, 𝑦) = 0. (7)



However, when we drop this symmetry assumption on both kernels, we do not have the luxury of concluding the
statement in (7). On the contrary, there could very well exist 𝑥̄, 𝑦, 𝑥̂, 𝑦 ∈ Λ such that, for example, 𝐾(𝑥̄, 𝑦) = 0,
𝐾(𝑦, 𝑥̄) ̸= 0, 𝑄(𝑥̄, 𝑦) ̸= 0, 𝑄(𝑦, 𝑥̄) = 0, 𝐾(𝑥̂, 𝑦) = 0, 𝐾(𝑦, 𝑥̂) ̸= 0, 𝑄(𝑥̂, 𝑦) = 0 and 𝑄(𝑦, 𝑥̂) ̸= 0. In this
case, both the pair 𝑥̄, 𝑦 and the pair 𝑥̂, 𝑦 satisfy equation (6) - so there’s no contradiction to the (1) equation.
However, the pair 𝑥̄, 𝑦 could not possibly satisfy equation (2) for some non-zero function 𝑔; nor could the pair
𝑥̂, 𝑦 satisfy equation (5) for some non-zero function 𝑔. Therefore, 𝐾 and 𝑄 in this case could not possibly be
transformed into one another through conjugation and transposition transformations: neither equation (2) nor
equation (5) is satisfied for every 𝑥, 𝑦 ∈ Λ.

4. Idea & Outline of the Proof of Theorem 3.1

The main tools we used to prove theorem 3.1 were the classic Leibniz formula for determinants, some (perhaps
known) results from graph theory regarding cycles of lengths 2, 3 and 4, the concept of a cocycle function (see
[4] for more details), and some basic combinatorics. We provide a brief outline of our proof below. We begin
by laying some necessary groundwork and introducing some (perhaps non-standard) terminology.

Definition 1. We call an (𝑛 + 1)-tuple (𝑥0, 𝑥1, . . . , 𝑥𝑛) ∈ Λ𝑛+1 such that 𝑥𝑛 = 𝑥0 a cycle of length 𝑛.
Moreover, if all the 𝑥𝑖’s in the tuple are distinct (except for 𝑥0 and 𝑥𝑛 - which by definition are equal), then we call
(𝑥0, 𝑥1, . . . , 𝑥𝑛) a simple cycle.

Definition 2. We call a function 𝑐 : Λ2 → F a cocycle function if for every 𝑟 ≥ 1 and for every tuple
(𝑧1, . . . , 𝑧𝑟) ∈ Λ𝑟 ,

𝑐(𝑧1, 𝑧2)𝑐(𝑧2, 𝑧3) · · · 𝑐(𝑧𝑟−1, 𝑧𝑟)𝑐(𝑧𝑟, 𝑧1) = 1. (8)

Definition 3. If 𝑄 : Λ → F and 𝐾 : Λ → F are functions that satisfy

𝑄(𝑥, 𝑦) = 𝑐(𝑥, 𝑦)𝐾(𝑥, 𝑦) ∀ 𝑥, 𝑦 ∈ Λ

for some cocycle function 𝑐 : Λ2 → F, then we say that 𝑄 is a cocycle transformation of 𝐾 .

One can easily verify that a cocycle transformation of a kernel yields an equivalent kernel. It is also a
straightforward exercise to show that, under our paper’s non-zero kernel assumption, a kernel 𝑄 is a cocycle
transformation of a kernel 𝐾 if and only if 𝑄 is a conjugation transformation of 𝐾 . This is a critical observation
which simplifies our work, since establishing that some function satisfies the cocycle property (8) is objectively
easier than constructing some conjugation function from scratch. In particular, the previous observation means
that if we are able to prove that either the function

𝑆 : Λ2 → F, 𝑆(𝑥, 𝑦) =
𝑄(𝑥, 𝑦)

𝐾(𝑥, 𝑦)
,

or the function

𝑆̃ : Λ2 → F, 𝑆̃(𝑥, 𝑦) =
𝑄(𝑥, 𝑦)

𝐾(𝑦, 𝑥)

is a cocycle function, then, since for every 𝑥, 𝑦 ∈ Λ,

𝑄(𝑥, 𝑦) = 𝑆(𝑥, 𝑦)𝐾(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) = 𝑆̃(𝑥, 𝑦)𝐾(𝑦, 𝑥),

it would follow that 𝑄 must be in one of the two forms from the conclusion of theorem 3.1 - which is exactly
the statement of Bufetov’s conjecture. And so the proof of theorem 3.1 boils down to proving that one of the
functions 𝑆 or 𝑆̃ must be a cocycle function.

For non-zero functions of two variables (which, under our paper’s non-zero kernel assumption, both 𝑆 and
𝑆̃ are), there is a shortcut to establishing the cocycle property (8); we state it below.



Proposition 4.1. If a non-zero function 𝑐 : Λ2 → F satisfies

1. 𝑐(𝑥, 𝑥) = 1 for every 𝑥 ∈ Λ;
2. 𝑐(𝑥, 𝑦)𝑐(𝑦, 𝑥) = 1 for every 𝑥, 𝑦 ∈ Λ;
3. 𝑐(𝑥, 𝑦)𝑐(𝑦, 𝑧)𝑐(𝑧, 𝑥) = 1 for every 𝑥, 𝑦, 𝑧 ∈ Λ,

then 𝑐 is a cocycle function.

In other words, 𝑐 satisfying the cocycle property for every cycle of length 1, 2 and 3 is both a necessary and
sufficient condition for 𝑐 to be a (full) cocycle function, that is, for it to satisfy the cocycle property for any
cycle of any length. This result simplifies/shortens our analysis in that instead of having to prove the cocycle
property (8) for every cycle in Λ (of every possible length) for either the function 𝑆 or 𝑆̃; proving it for cycles
of lengths 1, 2 and 3 is sufficient.

It is immediate from equation (1) with 𝑛 = 1 and equation (6) that both 𝑆 and 𝑆̃ automatically satisfy the
cocycle property for any cycle of length 1 and 2 in Λ. Thus, by Proposition 4.1, it suffices to show that either 𝑆
or 𝑆̃ satisfies the cocycle property for all cycles of length 3 in Λ. This task, however, is not at all trivial in this
general setting. In particular, it is no longer enough to just use equation (1) with 𝑛 = 3 in conjunction with
the Leibniz formula for determinants (as was the case in [4]). The reason being that in this general setting the
aforementioned step will merely yield, for any simple cycle 𝑝 = (𝑝𝑖)

3
𝑖=0 of length 3 in Λ,

=: 𝐾[𝑝]⏞  ⏟  
𝐾(𝑝0, 𝑝1)𝐾(𝑝1, 𝑝2)𝐾(𝑝2, 𝑝0)+

=: 𝐾′[𝑝]⏞  ⏟  
𝐾(𝑝0, 𝑝2)𝐾(𝑝2, 𝑝1)𝐾(𝑝1, 𝑝0)

= (9)

𝑄(𝑝0, 𝑝1)𝑄(𝑝1, 𝑝2)𝑄(𝑝2, 𝑝0)⏟  ⏞  
𝑄[𝑝] :=

+𝑄(𝑝0, 𝑝2)𝑄(𝑝2, 𝑝1)𝑄(𝑝1, 𝑝0)⏟  ⏞  
𝑄′[𝑝] :=

.

Note that, had both 𝐾 and 𝑄 been symmetric, equation (9) would simplify to ◁2𝐾[𝑝] = ◁2𝑄[𝑝], which proves
the cocycle property for all cycles of length 3 in Λ for the function 𝑆 from before. In contrast, to be able to
proceed with equation (9) in the non-symmetric setting, one needs to make the additional observation that
𝐾[𝑝]𝐾 ′[𝑝] = 𝑄[𝑝]𝑄′[𝑝] also holds. This is an immediate consequence of equation (6). Thereafter the following
elementary lemma can be applied.

Lemma 4.2. Let 𝑎, 𝑏, 𝑎′, 𝑏′ ∈ F be constants satisfying

𝑎+ 𝑏 = 𝑎′ + 𝑏′ and 𝑎𝑏 = 𝑎′𝑏′. (10)

Then, it is either the case that 𝑎 = 𝑎′ and 𝑏 = 𝑏′; or, 𝑎 = 𝑏′ and 𝑏 = 𝑎′.

This simple lemma is the key ingredient of our proof, as it is what first introduces the "dichotomy" that enables
us to eventually reach our desired conclusion about 𝑆 and 𝑆̃ (and is repeatedly invoked).

Thereafter we need to extract a bit more information about the relationship between 𝐾 and 𝑄. For this
we make use of equation (1) with 𝑛 = 4 in conjunction with the Leibniz formula for determinants. As a
result cycles of length 4 also enter the scene; and so then our task is to find a way to link cycles of lengths
2, 3 and 4 together in some suitable way. In figures 1-3 below we represent graphically the three lemmas
from graph theory we use to achieve this. In very broad terms, the way in which we exploited these lemmas
was via the following graphical identification we made for functions of two variables evaluated on cycles:
for an arbitrary function ℎ : Λ2 → F, we identify (graphically) the product ℎ[𝑝] :=

∏︀𝑛
𝑖=1 ℎ(𝑝𝑖−1, 𝑝𝑖), where

𝑝 := (𝑝𝑖)
𝑛
𝑖=0 ∈ Λ𝑛+1 is a cycle of length 𝑛 in Λ, by precisely the (drawn) cycle graph of 𝑝.

5. Open Problems

Firstly, one could attempt to extend the results from [4] and [5] (summarized in this extended abstract) by
taking potential measure space structures of Λ into consideration.

A somewhat related question one could also explore is the following: given that we start with a non-
symmetric kernel, say 𝐾 , of a DPP, does there necessarily exist an equivalent kernel of 𝐾 , say 𝑄, which is
symmetric?



𝑝0 𝑝3

𝑝1 𝑝2

𝑝0 𝑝3

𝑝1 𝑝2

Figure 1: In this figure we seek to write the disjoint union of two distinct simple cycles of length 4, 𝑝 = (𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝0)
and 𝑞 = (𝑝0, 𝑝2, 𝑝3, 𝑝1, 𝑝0) (drawn in black and red, respectively, in the LHS directed graph) as the disjoint union of
distinct simple cycles of lengths 2 and 3. We do this in the RHS directed graph by considering the 3-cycle 𝑠(1) =
(𝑝2, 𝑝3, 𝑝1, 𝑝2), the 3-cycle 𝑠(2) = (𝑝2, 𝑝3, 𝑝0, 𝑝2) and the 2-cycle 𝑟 = (𝑝0, 𝑝1, 𝑝0).

𝑝0 𝑝3

𝑝1 𝑝2

𝑝0 𝑝3

𝑝1 𝑝2

Figure 2: In this figure we decompose a simple cycle of length 4, 𝑝 = (𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝0), into two simple cycles of
length 3. There are two possible such decompositions: on the LHS graph, in red is the 3-cycle 𝑠(1) = (𝑝0, 𝑝1, 𝑝2, 𝑝0),
and in blue is the 3-cycle 𝑠(2) = (𝑝0, 𝑝2, 𝑝3, 𝑝0); on the RHS graph, in red is the 3-cycle 𝑟(1) = (𝑝0, 𝑝1, 𝑝3, 𝑝0), and in
blue is the 3-cycle 𝑟(2) = (𝑝1, 𝑝2, 𝑝3, 𝑝1).

𝑝2 𝑝1

𝑝0

𝑝4

Figure 3: In this figure we decompose a 3-cycle 𝑝 = (𝑝0, 𝑝1, 𝑝2, 𝑝0) into three distinct simple cycles of length 3 that
each contains the vertex 𝑝4, where 𝑝4 ̸= 𝑝𝑖 for all 𝑖 ∈ {0, 1, 2}. In red is the 3-cycle 𝑠(1) = (𝑝0, 𝑝1, 𝑝4, 𝑝0), in green is
the 3-cycle 𝑠(2) = (𝑝1, 𝑝2, 𝑝4, 𝑝1), and in blue is the 3-cycle 𝑠(3) = (𝑝2, 𝑝0, 𝑝4, 𝑝2).
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