Projections of self-affine fractals

Cagri Sert

University of Warwick

St. Andrews, 30.01.2025

joint work with Ian D. Morris

What is in this talk?

- Falconer's theorem and its extension to projections
- 2 Constructions 1: Strongly irreducible self-affine sets with exceptional projections
- 3 Constructions 2: Small sumsets with no arithmetic resonance

Constructions 3: Non-exact dimensional projections

1 Falconer's theorem and its extension to projections

- 2 Constructions 1: Strongly irreducible self-affine sets with exceptional projections
- 3 Constructions 2: Small sumsets with no arithmetic resonance
- Constructions 3: Non-exact dimensional projections

Affine Iterated function systems

Theorem (Moran–Hutchinson)

Let X be a complete metric space and $(\varphi_1, \ldots, \varphi_N)$ and N-tuple of contracting maps $X \to X$ (called an Iterated Function System, IFS). Then there exists a unique compact K satisfying $K = \bigcup_{i=1}^{N} \varphi_i(K)$, called the attractor of the IFS $(\varphi_1, \ldots, \varphi_N)$. More constructively, K is the image of the coding map

$$\{1, \dots, N\}^{\mathbb{N}} \to X (i_1, i_2, \dots) \mapsto \lim_{n \to \infty} \varphi_{i_1} \circ \varphi_{i_2} \circ \dots \circ \varphi_{i_n}(x).$$
 (1.1)

The limit exists and does not depend on $x \in X$.

Self-affine fractals

When $X = \mathbb{R}^d$ and the contractions φ_i 's are similarities (i.e. scalings of Euclidean rigid motions, $x \mapsto \alpha Ox + v$ for $\alpha \in \mathbb{R}^*$, $O \in O_d(\mathbb{R})$, and $v \in \mathbb{R}^d$), the attractor K is called a *self-similar set*.

More generally, when the contractions are affine maps $x \mapsto Ax + v$ ($A \in GL_d(\mathbb{R})$ and $v \in \mathbb{R}^d$), K is called a *self-affine set*.

Already the class of self-similar sets contain many familiar fractal sets (The middle-third Cantor set, Sierpiński triangle, Peano curve, von Koch curve, Minkowski sausage, Menger sponge etc.).

Dimensions of self-affine fractals

How does a self-affine set look like? How large it is?

These questions have by-now a long history dating back to early '80s.

A foundational result is due to Falconer (1988). I would now like to describe this.

Let $N \in \mathbb{N}$ and $A = (A_1, \ldots, A_N)$ be an *N*-tuple of matrices in $GL_d(\mathbb{R})$. Given an *N*-tuple vectors $v = (v_1, \ldots, v_N)$ in \mathbb{R}^d , let T_i denote the affine map $x \mapsto A_i x + v_i$.

We will denote by A^{\vee} the tuple (T_1, \ldots, T_N) . These are contractions if $||A_i|| < 1$ for every $i = 1, \ldots, N$. In this case, denote by $K^{\vee} \subset \mathbb{R}^d$ the attractor of A^{\vee} .

Hausdorff dimension

Let's start by recalling the Hausdorff dimension: for a subset $K \in \mathbb{R}^d$, $\dim_H(K)$, the Hausdorff dimension of K is defined as:

$$\inf\{s > 0: \lim_{\delta \to 0} \inf_{(S_i): \delta - cover} \sum_{i=1}^{\infty} diam(S_i)^s = 0\}$$

To bound the dimension from above, one only needs a collection of $\delta\text{-covers}$ with $\delta\to$ 0.

Bounding from the Hausdorff dimension from below is far more complicated.

Singular values

For $M \in GL_d(\mathbb{R})$, denote by $\sigma_1(M) \ge \cdots \ge \sigma_d(M) > 0$ its singular values in decreasing order. These are the lengths of the semi-axes of the ellipsoid $M(S_1)$. $(S_1 = unit sphere in \mathbb{R}^d)$.

Let $A^{\vee} = (T_1, \ldots, T_N)$ be a contracting affine IFS (recall $A = (A_1, \ldots, A_N)$ and $v = (v_1, \ldots, v_N)$ and $T_i x = A_i x + v_i$). Recall that $K^{\vee} \subset \mathbb{R}^d$ denotes its attractor.

For a finite word $i = i_1 \dots i_n$, write |i| = n its length, and extend $i_1 \rightarrow A_{i_1}$ as semigroup morphism, i.e. $A_i = A_{i_1} \dots A_{i_n}$.

An algorithm to upper-bound the Hausdorff dimension of self-affine sets

1. Check if dim_{*H*}(K^{\vee}) ≤ 1 : is there $s \leq 1$ such that

 $\lim_{n\to\infty} \frac{1}{n} \log \sum_{|i|=n} \sigma_1(A_i)^s \leq 0$? If yes, this $s \leq 1$ is an upper bound. Also the infimum of such $s \in (0, 1]$. If not, continue:

2. Check if dim_{*H*}(K^{v}) \leq 2: is there $s \leq$ 2 such that ...

 $\lim_{n\to\infty}\frac{1}{n}\log\sum_{|i|=n}\frac{\sigma_1(A_i)}{\sigma_2(A_i)}\sigma_2(A_i)^s = \lim_{n\to\infty}\frac{1}{n}\log\sum_{|i|=n}\sigma_1(A_i)\sigma_2(A_i)^{s-1} \leqslant 0?$

(there is a more efficient covering at this scale!)

3. etc.

Singular value potential, affinity dimension

Given a matrix $M \in \operatorname{GL}_d(\mathbb{R})$, set $\varphi^s(M) := \sigma_1(M) \cdots \sigma_{\lfloor s \rfloor}(M) \sigma_{\lceil s \rceil}^{s - \lfloor s \rfloor}(M)$

This is called *the singular value potential* (Falconer, Douady—Oesterlé, Kaplan–Yorke).

The argument we have seen implies that The zero $s_0(A)$ of the map $P_A(s) := \lim_{n \to \infty} \frac{1}{n} \log \sum_{|i|=n} \varphi^s(A_i)$ is an upper bound for the Hausdorff dimension of the attractor K^v of A^v .

Where does the translation parts $v = (v_1, \ldots, v_N)$ appear in the above construction of upper bound?

Nowhere! The upper bound $s_0(A)$ only depends on the linear parts A of the affine IFS A^v. It is called *the affinity dimension* of A.

Cagri Sert (University of Warwick)

Falconer's 1988 result

Theorem (Falconer)

Let $A = (A_1, \ldots, A_N)$ be N-tuple of contracting matrices in $GL_d(\mathbb{R})$.

1) For every $v \in (\mathbb{R}^d)^N$, we have $\dim_H(K^v) \leqslant s_0(A)$.

2) If, moreover $||A_i|| < \frac{1}{2}$ for every i = 1, ..., N, then for Lebesgue almost every $v \in (\mathbb{R}^d)^N$, dim_H(K^v) = $s_0(A)$.

The constant 1/2 here is due to Solomyak.

In other words, the covering of K^{\vee} that we discussed is the optimal one (at least) for Lebesgue almost every $v \in (\mathbb{R}^d)^N$!

This foundational result has been guiding over three decades of research: how to get rid of almost every? (this is *exact overlaps conjecture* in self-similar context)

Cagri Sert (University of Warwick)

Projections

Let A^v be a contracting affine IFS and K^v its attractor. And let $P \in \operatorname{Gr}_k(\mathbb{R}^d)$ be a *k*-plane in \mathbb{R}^d and $Q_P \in \operatorname{End}(\mathbb{R}^d)$ be the orthogonal projection onto *P*.

What can be said of the size $Q_P(K^{v})$? (e.g. Hausdorff dimension.)

Theorem (Marstand 1954, Mattila 1975)

Let B be a Borel set in \mathbb{R}^d . Then for every k = 1, ..., d, for Lebesgue almost every k-plane in $Gr_k(\mathbb{R}^d)$,

$$\dim_H(Q_P(B)) = \min\{k, \dim_H B\}.$$

Almost every is with respect to k(d - k)-dimensional Lebesgue measure.

The inequality \leq is trivial. Those planes for which it is strict < are called *exceptional projections* for *B*. They constitute a measure zero set.

Our result

Theorem

Let $A = (A_1, \ldots, A_N)$ be an N-tuple of contracting matrices in $GL_d(\mathbb{R})$. Then, for every $k = 0, \ldots, d$ there exist an integer $m \ge 1$, a finite filtration $\emptyset = \mathcal{W}_{m+1} \subset \mathcal{W}_m \subset \cdots \subset \mathcal{W}_0 = Gr(k, d)$ of algebraic varieties each invariant under the linear algebraic group generated by A, and real numbers $s_m < \cdots < s_0 \le k$ with the following properties:

1)For every
$$v \in (\mathbb{R}^d)^N$$
, for every $P \in W_j \setminus W_{j+1}$, we have $\dim_H Q_P K^v \leq s_j$.

2) If, moreover $||A_i|| < \frac{1}{2}$ for every i = 1, ..., N, then for every $P \in W_j \setminus W_{j+1}$, for Lebesgue almost every $v \in (\mathbb{R}^d)^N$, dim_H $Q_P K^v = s_j$.

The case k = d is precisely Falconer's 1988 theorem.

An immediate consequence

The *G*-invariant varieties W_j are explicit. They are given by level sets of some pressure function. They are Schubert-type varieties. This allows us to deduce for example

Corollary

Suppose the semi-group $\langle A \rangle < GL_d(\mathbb{R})$ acts irreducibly on all $\bigwedge^k \mathbb{R}^d$ (irreducible: no proper non-trivial invariant subspace). Then, the filtration is trivial m = 0 and therefore for any ℓ -plane P, $\dim_H(K^v) = \min\{s_0, \ell\}$ for Lebesgue almost every $v \in (\mathbb{R}^d)^N$.

Corollary

Suppose $\langle A \rangle$ lies in $\mathbb{R}^*O_d(\mathbb{R})$ (the setting of similarities). The same conclusion holds.

Even these two consequences seem to be new.

Cagri Sert (University of Warwick)

Projections of self-affine fractals

St. Andrews, 30.01.2025[10pt] joint work with

A stratified Marstand–Falconer type consequence

Corollary (Stratified Marstand-type projection theorem for self-affine sets) Let $A = (A_1, \ldots, A_N)$ be an N-tuple of matrices in $GL_d(\mathbb{R})$ such that $||A_i|| < \frac{1}{2}$ for every $i = 1, \ldots, N$. For every $k = 0, \ldots, d$ let $\emptyset = \mathcal{W}_{m+1} \subset \mathcal{W}_m \subset \cdots \subset \mathcal{W}_0 = Gr(k, d)$ and $s_m < \cdots < s_0 \leqslant k$ be as in the previous theorem. Then, Lebesgue a.e. $v \in (\mathbb{R}^d)^N$ we have $\dim_H Q_P K^v = s_j$ for Lebesgue a.e. $P \in \mathcal{W}_j$.

This follows from the previous result by Fubini and the fact that dim $W_j > \dim W_{j+1}$.

Constructions 1: Strongly irreducible self-affine sets with exceptional projections

3 Constructions 2: Small sumsets with no arithmetic resonance

Constructions 3: Non-exact dimensional projections

Strongly irreducible self-affine sets with exceptional projections

It is expected that a stronger irreducibility assumption on all exterior powers $\bigwedge^k \mathbb{R}^d$ and a separation assumption imply that the there are no exceptional projections for any $v \in (\mathbb{R}^d)^N$.

It was not clear whether requiring this only for \mathbb{R}^d action is sufficient for such a conclusion (in small dimensions $d \leq 3$, $\langle A \rangle$ acts irreducibly on \mathbb{R}^d implies it acts irreducibly on $\bigwedge^k \mathbb{R}^d$).

We construct several classes of examples of A that are strongly irreducible in \mathbb{R}^d but the filtration (\mathcal{W}_j) is non-trivial. Therefore for such A, for almost every v, the attractor K^v has a positive dimensional subvariety of planes consisting of exceptional projections. Theorem (Strongly irreducible self-affine sets with exceptional projections) If d = 2k and $H = \mathbb{R}^* SO(k, k)$, and if A is k-dominated (which contains a non-empty open subset of H^N), then there exists a k(k-1)/2-dimensional subvariety \mathcal{V} of the Grassmannian Gr(k, 2k) such that for almost every $v \in (\mathbb{R}^d)^N$, \mathcal{V} is contained in the set of exceptional projections of K^v .

Theorem (Some more strongly irreducible self-affine sets with exceptional projections)

If H is given by the tensor product representation of $GL_{d_1}(\mathbb{R}) \times GL_{d_2}(\mathbb{R})$ on $\mathbb{R}^{d_1d_2}$ and A is 2-dominated (again, non-empty open in H^N), then there exists either a $(d_1 + 2d_2 - 5)$ or $(2d_1 + d_2 - 5)$ -dimensional subvariety \mathcal{V} of the Grassmannian $Gr(d_1d_2 - 2, d_1d_2)$ such that for almost every $v \in (\mathbb{R}^d)^N$, \mathcal{V} is contained in the set of exceptional projections of K^v .

2 Constructions 1: Strongly irreducible self-affine sets with exceptional projections

3 Constructions 2: Small sumsets with no arithmetic resonance

Constructions 3: Non-exact dimensional projections

Furstenberg predicted the following statement, now a result of Hochman–Shmerkin (after Peres–Shmerkin):

Theorem (Hochman-Shmerkin)

Let $p, q \in \mathbb{N}$ and X, Y be two non-empty closed subsets of [0, 1] invariant under $\times p$ and $\times q \pmod{1}$, respectively. Then,

$$\dim_H(X+Y) < \min\{1, \dim_H X + \dim_H Y\} \implies \frac{\log p}{\log q} \in \mathbb{Q}.$$

Arithmetic independence \implies geometric independence. Equivalently, geometric resonance \implies arithmetic resonance.

A result of Pyörälä

More recently, building on work of Hochman, Pyörälä has proven a result in similar spirit for self-affine sets in dimension 2:

He showed the following **theorem**: Let A and B be two contracting *N*-tuples in $GL_2(\mathbb{R})$, $v, w \in (\mathbb{R}^d)^N$ and denote by X and Y the corresponding self-affine sets. Then, under some assumptions on A and B and translations parts v, w (irreducibility, domination, separation), if

 $\dim_H(X+Y) < \min\{2, \dim_H X + \dim_H Y\}$

then the log-eigenvalues of matrices in the tuples A and B belong to an arithmetic set/lattice $\alpha \mathbb{Z}$.

This result indicates that the arithmetic-geometric phenomenon predicted by Furstenberg on the circle is still valid in a non-commutative setting in dimension 2.

Small sumsets with no arithmetic resonance

Theorem

Let $G < GL_{d_1d_2}(\mathbb{R})$ be the image of $GL_{d_1}(\mathbb{R}) \times GL_{d_2}(\mathbb{R})$ via the tensor product representation. Then, for $N, M \ge 1$ large enough, there exists open sets of tuples $(A, B) \in G^N \times G^M$ each generating a Zariski-dense semigroup in G and with the following property. For Lebesgue almost every $v \in (\mathbb{R}^d)^N$ and $w \in (\mathbb{R}^d)^M$, the associated fractals X^v and Y^w satisfy

$$\dim_H(X^{\vee} + Y^{\vee}) < \dim_H(X^{\vee}) + \dim_H(Y^{\vee}) < d_1d_2.$$

Note that the tuples can come from an open set in G therefore, their log-eigenvalues do not live in a finite-rank \mathbb{Z} -module.

This construction shows that in higher dimensions (≥ 4), Furstenberg's phenomenon (arithmetic vs geometric resonance) should take into account further aspects (it does not hold with a naive generalization).

Cagri Sert (University of Warwick)

Projections of self-affine fractals

- 2 Constructions 1: Strongly irreducible self-affine sets with exceptional projections
- 3 Constructions 2: Small sumsets with no arithmetic resonance

Constructions 3: Non-exact dimensional projections

Exact dimensionality of measures

Let μ be a Borel measure on a complete metric space. The local dimension of μ at $x \in X$ is

$$\dim_{\mathsf{loc}}(\mu, x) = \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r}$$

if it exists (otherwise consider upper loc dim and lower loc dim). If this limit exists μ -a.e., μ is called *exact-dimensional*.

Popularized by Young in early 80's and soon recognized to play important role in dimension theory of dynamical systems, fractal geometry etc. (e.g. Ledrappier–Young formula).

Eckmann-Ruelle conjecture and self-affine version

Recall that for a C^1 -diffeomorphism of a compact manifold, a long line of works by Young, Ledrappier, and finally Barreira–Pesin–Schmeling (99) showed that any hyperbolic ergodic invariant measure is exact-dimensional [Eckmann–Ruelle conjecture].

In fractal geometry, the analogous result was proven by Feng (2019) following Hutchinson, Mcmullen, Gatzouras–Lalley, Kenyon–Peres, Feng–Hu:

Theorem (Feng)

Given a contracting affine IFS A^v , the image $c_*\mu$ of any ergodic shift-invariant measure μ on $\{1, \ldots, N\}^{\mathbb{N}}$ by the coding map

$$c: \{1, \dots, N\}^{\mathbb{N}} \to X$$

(*i*₁, *i*₂, ...) $\mapsto \lim_{n \to \infty} \varphi_{i_1} \circ \varphi_{i_2} \circ \cdots \circ \varphi_{i_n}(x).$ (4.1)

is exact-dimensional. Cagri Sert (University of Warwick)

Non-exact dimensional projections

This result is very general: it is valid for any contracting affine IFS A^v and any ergodic-shift invariant measure μ on $\{1, \ldots, N\}^{\mathbb{N}}$.

How about exact-dimensionality of the image of $c_*\mu$ by an orthogonal projection Q?

Whereas it can be shown that if μ is a Bernoulli measure, for any Q, $Q_*c_*\mu$ is exact-dimensional, we show that this is not true in general, and construct the following examples of non-exact-dimensional projections.

Last theorem

Theorem

For every $d \ge 2$ there exists an irreducible affine iterated function system A^v on \mathbb{R}^d which admits a unique and ergodic invariant measure μ such that the dimension of $c_*\mu$ equals that of the attractor, and such that there exist projections Q with the property that $Q_*c_*\mu$ is not exact-dimensional.

In every even dimension $d := 2k \ge 4$ one may construct examples in which the set of rank-k orthogonal projections such that $Q_*c_*\mu$ is not exact-dimensional includes an algebraic variety of dimension $\frac{1}{2}k(k-1)$, A is additionally *strongly irreducible*.

Thank you

Thanks for your attention!