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What is in this talk?
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Falconer’s theorem and its extension to projections

Affine Iterated function systems

Theorem (Moran–Hutchinson)

Let X be a complete metric space and (ϕ1, . . . , ϕN) and N-tuple of
contracting maps X → X (called an Iterated Function System, IFS). Then
there exists a unique compact K satisfying K = ∪Ni=1ϕi (K ), called the
attractor of the IFS (ϕ1, . . . , ϕN). More constructively, K is the image of
the coding map

{1, . . . ,N}N → X

(i1, i2, . . .) 7→ lim
n→∞

ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕin(x).
(1.1)

The limit exists and does not depend on x ∈ X .
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Falconer’s theorem and its extension to projections

Self-affine fractals

When X = Rd and the contractions ϕi ’s are similarities (i.e. scalings of
Euclidean rigid motions, x 7→ αOx + v for α ∈ R∗, O ∈ Od(R), and
v ∈ Rd), the attractor K is called a self-similar set.

More generally, when the contractions are affine maps x 7→ Ax + v
(A ∈ GLd(R) and v ∈ Rd), K is called a self-affine set.

Already the class of self-similar sets contain many familiar fractal sets
(The middle-third Cantor set, Sierpiński triangle, Peano curve, von Koch
curve, Minkowski sausage, Menger sponge etc.).
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Falconer’s theorem and its extension to projections

Dimensions of self-affine fractals

How does a self-affine set look like? How large it is?

These questions have by-now a long history dating back to early ’80s.

A foundational result is due to Falconer (1988). I would now like to
describe this.

Let N ∈ N and A = (A1, . . . ,AN) be an N-tuple of matrices in GLd(R).
Given an N-tuple vectors v = (v1, . . . , vN) in Rd , let Ti denote the affine
map x 7→ Aix + vi .

We will denote by Av the tuple (T1, . . . ,TN). These are contractions if
‖Ai‖ < 1 for every i = 1, . . . ,N. In this case, denote by K v ⊂ Rd the
attractor of Av .
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Falconer’s theorem and its extension to projections

Hausdorff dimension

Let’s start by recalling the Hausdorff dimension: for a subset K ∈ Rd ,
dimH(K ), the Hausdorff dimension of K is defined as:

inf{s > 0 : lim
δ→0

inf
(Si ): δ−cover

∞∑
i=1

diam(Si )
s = 0}

To bound the dimension from above, one only needs a collection of
δ-covers with δ → 0.
Bounding from the Hausdorff dimension from below is far more
complicated.
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Falconer’s theorem and its extension to projections

Singular values

For M ∈ GLd(R), denote by σ1(M) > · · · > σd(M) > 0 its singular values
in decreasing order. These are the lengths of the semi-axes of the ellipsoid
M(S1). (S1 =unit sphere in Rd).

Let Av = (T1, . . . ,TN) be a contracting affine IFS (recall
A = (A1, . . . ,AN) and v = (v1, . . . , vN) and Tix = Aix + vi ). Recall that
K v ⊂ Rd denotes its attractor.

For a finite word i = i1 . . . in, write |i | = n its length, and extend i1 → Ai1

as semigroup morphism, i.e. Ai = Ai1 . . .Ain .
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Falconer’s theorem and its extension to projections

An algorithm to upper-bound the Hausdorff dimension of
self-affine sets

1. Check if dimH(K v) 6 1: is there s 6 1 such that

limn→∞
1
n log

∑
|i |=n σ1(Ai )

s 6 0? If yes, this s 6 1 is an upper bound.
Also the infimum of such s ∈ (0, 1]. If not, continue:

2. Check if dimH(K v) 6 2: is there s 6 2 such that ...

lim
n→∞

1
n log

∑
|i |=n

σ1(Ai )
σ2(Ai )

σ2(Ai )
s = lim

n→∞
1
n log

∑
|i |=n σ1(Ai )σ2(Ai )

s−1 6 0?

(there is a more efficient covering at this scale!)

3. etc.
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Falconer’s theorem and its extension to projections

Singular value potential, affinity dimension

Given a matrix M ∈ GLd(R), set

ϕs(M) := σ1(M) · · ·σbsc(M)σ
s−bsc
dse (M)

This is called the singular value potential (Falconer, Douady—Oesterlé,
Kaplan–Yorke).

The argument we have seen implies that
The zero s0(A) of the map PA(s) := lim

n→∞
1
n log

∑
|i |=n ϕ

s(Ai )

is an upper bound for the Hausdorff dimension of the attractor K v of Av.

Where does the translation parts v = (v1, . . . , vN) appear in the above
construction of upper bound?

Nowhere! The upper bound s0(A) only depends on the linear parts A of
the affine IFS Av. It is called the affinity dimension of A.
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Falconer’s theorem and its extension to projections

Falconer’s 1988 result

Theorem (Falconer)

Let A = (A1, . . . ,AN) be N-tuple of contracting matrices in GLd(R).

1) For every v ∈ (Rd)N , we have dimH(K v) 6 s0(A).

2) If, moreover ‖Ai‖ < 1
2 for every i = 1, . . . ,N,

then for Lebesgue almost every v ∈ (Rd)N , dimH(K v) = s0(A).

The constant 1/2 here is due to Solomyak.

In other words, the covering of K v that we discussed is the optimal one (at
least) for Lebesgue almost every v ∈ (Rd)N !

This foundational result has been guiding over three decades of research:
how to get rid of almost every? (this is exact overlaps conjecture in
self-similar context)
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Falconer’s theorem and its extension to projections

Projections

Let Av be a contracting affine IFS and K v its attractor. And let
P ∈ Grk(Rd) be a k-plane in Rd and QP ∈ End(Rd) be the orthogonal
projection onto P.
What can be said of the size QP(K v)? (e.g. Hausdorff dimension.)

Theorem (Marstand 1954, Mattila 1975)

Let B be a Borel set in Rd . Then for every k = 1, . . . , d, for Lebesgue
almost every k-plane in Grk(Rd),

dimH(QP(B)) = min{k, dimH B}.

Almost every is with respect to k(d − k)-dimensional Lebesgue measure.

The inequality 6 is trivial. Those planes for which it is strict < are called
exceptional projections for B. They constitute a measure zero set.
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Falconer’s theorem and its extension to projections

Our result

Theorem

Let A = (A1, . . . ,AN) be an N-tuple of contracting matrices in GLd(R).
Then, for every k = 0, . . . , d there exist an integer m > 1, a finite
filtration ∅ =Wm+1 ⊂ Wm ⊂ · · · ⊂ W0 = Gr(k , d) of algebraic varieties
each invariant under the linear algebraic group generated by A, and real
numbers sm < · · · < s0 6 k with the following properties:

1)For every v ∈ (Rd)N , for every P ∈ Wj \Wj+1, we have
dimH QPK

v 6 sj .

2) If, moreover ‖Ai‖ < 1
2 for every i = 1, . . . ,N, then for every

P ∈ Wj \Wj+1, for Lebesgue almost every v ∈ (Rd)N , dimH QPK
v = sj .

The case k = d is precisely Falconer’s 1988 theorem.

Cagri Sert (University of Warwick) Projections of self-affine fractals St. Andrews, 30.01.2025[10pt] joint work with Ian D. Morris 14 / 29



Falconer’s theorem and its extension to projections

An immediate consequence

The G -invariant varieties Wj are explicit. They are given by level sets of
some pressure function. They are Schubert-type varieties. This allows us
to deduce for example

Corollary

Suppose the semi-group 〈A〉 < GLd(R) acts irreducibly on all
∧k Rd

(irreducible: no proper non-trivial invariant subspace). Then, the filtration
is trivial m = 0 and therefore for any `-plane P, dimH(K v) = min{s0, `}
for Lebesgue almost every v ∈ (Rd)N .

Corollary

Suppose 〈A〉 lies in R∗Od(R) (the setting of similarities). The same
conclusion holds.

Even these two consequences seem to be new.
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Falconer’s theorem and its extension to projections

A stratified Marstand–Falconer type consequence

Corollary (Stratified Marstand-type projection theorem for self-affine sets)

Let A = (A1, . . . ,AN) be an N-tuple of matrices in GLd(R) such that
‖Ai‖ < 1

2 for every i = 1, . . . ,N. For every k = 0, . . . , d let
∅ =Wm+1 ⊂ Wm ⊂ · · · ⊂ W0 = Gr(k, d) and sm < · · · < s0 6 k be as in
the previous theorem. Then, Lebesgue a.e. v ∈ (Rd)N we have
dimH QPK

v = sj for Lebesgue a.e. P ∈ Wj . .

This follows from the previous result by Fubini and the fact that
dimWj > dimWj+1.
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Constructions 1: Strongly irreducible self-affine sets with exceptional
projections

Strongly irreducible self-affine sets with exceptional
projections

It is expected that a stronger irreducibility assumption on all exterior
powers

∧k Rd and a separation assumption imply that the there are no
exceptional projections for any v ∈ (Rd)N .

It was not clear whether requiring this only for Rd action is sufficient for
such a conclusion (in small dimensions d 6 3, 〈A〉 acts irreducibly on Rd

implies it acts irreducibly on
∧k Rd).

We construct several classes of examples of A that are strongly irreducible
in Rd but the filtration (Wj) is non-trivial. Therefore for such A, for
almost every v, the attractor K v has a positive dimensional subvariety of
planes consisting of exceptional projections.
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Constructions 1: Strongly irreducible self-affine sets with exceptional
projections

Theorem (Strongly irreducible self-affine sets with exceptional projections)

If d = 2k and H = R∗ SO(k , k), and if A is k-dominated (which contains a
non-empty open subset of HN), then there exists a k(k − 1)/2-dimensional
subvariety V of the Grassmannian Gr(k, 2k) such that for almost every
v ∈ (Rd)N , V is contained in the set of exceptional projections of K v.

Theorem (Some more strongly irreducible self-affine sets with exceptional
projections)

If H is given by the tensor product representation of GLd1(R)× GLd2(R)
on Rd1d2 and A is 2-dominated (again, non-empty open in HN), then there
exists either a (d1 + 2d2− 5) or (2d1 + d2− 5)-dimensional subvariety V of
the Grassmannian Gr(d1d2 − 2, d1d2) such that for almost every
v ∈ (Rd)N , V is contained in the set of exceptional projections of K v.
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Constructions 2: Small sumsets with no arithmetic resonance

Furstenberg predicted the following statement, now a result of
Hochman–Shmerkin (after Peres–Shmerkin):

Theorem (Hochman–Shmerkin)

Let p, q ∈ N and X ,Y be two non-empty closed subsets of [0, 1] invariant
under ×p and ×q (mod 1), respectively. Then,

dimH(X + Y ) < min{1, dimH X + dimH Y } =⇒ log p

log q
∈ Q.

Arithmetic independence =⇒ geometric independence.
Equivalently, geometric resonance =⇒ arithmetic resonance.

Cagri Sert (University of Warwick) Projections of self-affine fractals St. Andrews, 30.01.2025[10pt] joint work with Ian D. Morris 21 / 29



Constructions 2: Small sumsets with no arithmetic resonance

A result of Pyörälä

More recently, building on work of Hochman, Pyörälä has proven a result
in similar spirit for self-affine sets in dimension 2:

He showed the following theorem: Let A and B be two contracting
N-tuples in GL2(R), v,w ∈ (Rd)N and denote by X and Y the
corresponding self-affine sets. Then, under some assumptions on A and B
and translations parts v,w (irreducibility, domination, separation), if

dimH(X + Y ) < min{2, dimH X + dimH Y }

then the log-eigenvalues of matrices in the tuples A and B belong to an
arithmetic set/lattice αZ.

This result indicates that the arithmetic-geometric phenomenon predicted
by Furstenberg on the circle is still valid in a non-commutative setting in
dimension 2.
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Constructions 2: Small sumsets with no arithmetic resonance

Small sumsets with no arithmetic resonance

Theorem

Let G < GLd1d2(R) be the image of GLd1(R)× GLd2(R) via the tensor
product representation. Then, for N,M > 1 large enough, there exists
open sets of tuples (A,B) ∈ GN × GM each generating a Zariski-dense
semigroup in G and with the following property. For Lebesgue almost every
v ∈ (Rd)N and w ∈ (Rd)M , the associated fractals X v and Y w satisfy

dimH(X v + Y w) < dimH(X v) + dimH(Y w ) < d1d2.

Note that the tuples can come from an open set in G therefore, their
log-eigenvalues do not live in a finite-rank Z-module.

This construction shows that in higher dimensions (> 4), Furstenberg’s
phenomenon (arithmetic vs geometric resonance) should take into account
further aspects (it does not hold with a naive generalization).
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Constructions 3: Non-exact dimensional projections
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Constructions 3: Non-exact dimensional projections

Exact dimensionality of measures

Let µ be a Borel measure on a complete metric space. The local
dimension of µ at x ∈ X is

dimloc(µ, x) = lim
r→0

logµ(B(x , r))

log r

if it exists (otherwise consider upper loc dim and lower loc dim).
If this limit exists µ-a.e., µ is called exact-dimensional.

Popularized by Young in early 80’s and soon recognized to play important
role in dimension theory of dynamical systems, fractal geometry etc. (e.g.
Ledrappier–Young formula).
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Constructions 3: Non-exact dimensional projections

Eckmann–Ruelle conjecture and self-affine version

Recall that for a C 1-diffeomorphism of a compact manifold, a long line of
works by Young, Ledrappier, and finally Barreira–Pesin–Schmeling (99)
showed that any hyperbolic ergodic invariant measure is exact-dimensional
[Eckmann–Ruelle conjecture].

In fractal geometry, the analogous result was proven by Feng (2019)
following Hutchinson, Mcmullen, Gatzouras–Lalley, Kenyon–Peres,
Feng–Hu:

Theorem (Feng)

Given a contracting affine IFS Av, the image c∗µ of any ergodic
shift-invariant measure µ on {1, . . . ,N}N by the coding map

c : {1, . . . ,N}N → X

(i1, i2, . . .) 7→ lim
n→∞

ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕin(x).
(4.1)

is exact-dimensional.
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Constructions 3: Non-exact dimensional projections

Non-exact dimensional projections

This result is very general: it is valid for any contracting affine IFS Av and
any ergodic-shift invariant measure µ on {1, . . . ,N}N.

How about exact-dimensionality of the image of c∗µ by an orthogonal
projection Q?

Whereas it can be shown that if µ is a Bernoulli measure, for any Q,
Q∗c∗µ is exact-dimensional, we show that this is not true in general, and
construct the following examples of non-exact-dimensional projections.
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Constructions 3: Non-exact dimensional projections

Last theorem

Theorem

For every d > 2 there exists an irreducible affine iterated function system
Av on Rd which admits a unique and ergodic invariant measure µ such
that the dimension of c∗µ equals that of the attractor, and such that there
exist projections Q with the property that Q∗c∗µ is not exact-dimensional.

In every even dimension d := 2k > 4 one may construct examples in which
the set of rank-k orthogonal projections such that Q∗c∗µ is not
exact-dimensional includes an algebraic variety of dimension 1

2k(k − 1), A
is additionally strongly irreducible.
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Constructions 3: Non-exact dimensional projections

Thank you

Thanks for your attention!
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