§O Overview
K - imp. quadratic field, $\theta=\theta_{k}$ - ming of integers
E - ell curve over © with CM Coy O
Thu. (cootes-Wiles' 77$) L(E / \mathbb{Q}, 1) \neq 0 \Rightarrow E(\mathbb{Q})$ in finite.
$E \leadsto y$ leak character $\psi=\psi \psi_{E / K}$ s.t. $L(E / \mathbb{Q}, s)=L(\psi, s)$
Tim 1. If $L(\psi, 1) \neq 0$ then for a rentable ravine π in $\theta, S_{\pi}(E / K)=0$ 。
$\operatorname{Thm}_{1} \Rightarrow C W$ tam: \exists injective $\operatorname{map} E(k) / \pi E(K) \longrightarrow S_{\pi}(E / k)$

We fix a mime $\rho>\not$ split ink, $p l p$ in θ, so $p=p \bar{p}$
$F=K(E[P])-t_{0} t_{A} M_{y}$ ramified at $P, \quad P \mid P$ in θ_{F}
$\Delta=\operatorname{yal}(F / K), \quad A=C(F), \quad X_{E}=$ chamaterly which Δ ant yon $E[P]$

$$
\lambda_{E}: D \rightarrow \mathbb{F}_{p}^{\lambda}
$$

To prove $S_{\pi}(E / K)=0$ we need to establish:

$$
A^{X_{E}}=0 \quad \text { and } \quad \delta_{1}(\varepsilon) \neq 0 \text { for some } \varepsilon \in \Theta_{F}^{x}
$$

Both of these come down to steadying the ell. wit $\eta(1,0)$, spocitiedly when it's a m -th power.
§1. When is $\eta(1, \theta)$ a p-th power?
$\eta(1, \theta) \in \partial_{F}^{X}$ is defined or a value $\Lambda_{E, L}(P)$ where $\&$ is some auxiliary id ed and $P \in E[P], P=j\left(\psi(D)^{-1} \Omega\right)$, where Ω in a period of E

$$
\xi: E(\mathbb{C}) \rightarrow \mathbb{C} / \theta \Omega
$$

We'll work in the formal group \& E : we parametrize point es $(x, y) \in E\left(F_{P}\right)$ by $z=-x / y$ - Tings in a bijection between sherd of $D \in E\left(F_{B}\right)$ and nth of O in F_{P}

We hove $\Lambda_{E, q}(P)=\Lambda_{p, q}(z)$ for $P=(x, b), z=-x / y$ where $\Lambda_{p, G} \in O_{p}\lfloor+\rangle^{x}$
Lemma: $F_{\text {or }} Q \in E[p]$, weave $Q \in E_{1}\left(F_{P}\right)$, and if $Q=(\lambda, y) \neq 0$ then $V_{p}(-x / y)=1$ We get a map $E[P)^{(x, x) \rightarrow 0} \hat{E}[P]^{2+1+2} \rightarrow\left(1+P \partial_{F, P}\right) /\left(1+P^{2} \theta_{F, P}\right)$

- Δ-eavivariant ieromoroblicen.

Define $\delta: O_{F, D}^{x} \rightarrow(1+E)\left(1+P^{2}\right) \xrightarrow{\sim} E[P]$ - Δ exivamant hor.
Note: if $n \in \theta_{F, \perp} X$ is an-th cower, then $\delta(u)=0$

and $L(\psi, 1) / \Omega \equiv 0(\bmod p)$ if $\delta(\eta(1,0))=0$
Proof: Let $z=-x / y$ for $P=(x, y) \in E[p]$ from before, so $y(1, \theta)=\Lambda_{p, q}(z)$. Here

$$
\begin{aligned}
& \Lambda_{p, q}(T)=\Lambda_{p, q}(0)+\underbrace{\Lambda_{p}(0) \Lambda 2 f(N q-\psi(q)) \cdot \frac{C(\psi, 1)}{\Omega}}_{p, q} T+O\left(T^{2}\right) \in \theta_{p}\left(T T D^{X}\right. \\
& \Rightarrow \Lambda_{p, q}(0) \in \theta_{p}^{x} \text { and } \forall_{\in \theta_{p} . \leadsto \text { by our choicer, }, \frac{L(\psi, 1)}{\Omega} \in \theta_{p} .}
\end{aligned}
$$

Whup dou such q exist?

$p>\nexists$ indies that $F=K(E C \overline{\vec{y}}) / K$ is a proper extevaion, By $C F T, \exists$ prime $s . t$.

By s $C M$, thisatision $E[P]$ by $\psi(X) \cdot x^{-1} . \leadsto \psi(A) \neq 1(\bmod (\bar{P})$

$$
\Rightarrow \bar{\psi}(q) \neq 1(\bmod p) \underset{p \nmid \psi \mid q)}{\Rightarrow} N q \not \equiv \psi(q)(\bmod p)-\text { tale } q=q \text {. }
$$

We look at image of $\eta(1,0)=\Lambda_{p, i t}(2)$ in $1+\underline{p}^{2}$, which is

$$
\Lambda_{p, q}(0)\left(1+124\left(N_{q-\psi}(q)\right) \frac{L(y, 1)}{\Omega}\right) \quad\left(\bmod 1+p^{2}\right)
$$

$\Lambda_{p_{1} q_{c}}(0) \in \partial_{p}^{\lambda}$, we can writeit us $a_{0}+a_{1} \pi+a_{2} \pi^{2}+\ldots$. Bunt $V_{\underline{p}}(\pi)=$ ram. index of $F / K=n-1>2$

$$
\begin{aligned}
\delta\left(\Lambda_{p, c}(0)\right)=0 \Rightarrow \delta(\eta(1, \theta)) & =\delta\left(1+124() \frac{L(\psi, 1)}{\Omega}\right) \\
& =0 \text { ifs } \frac{L(x, 1)}{\Omega}=0(p)
\end{aligned}
$$

Cor. If $L(\psi, 1) / \Omega \neq 0(\bmod p)$ then $\left.\eta(1,0)^{x_{E}} \in\left(\theta_{E, D}^{x}\right)^{x_{E}}\right)^{p}$
Proof: $\delta\left(\eta(1, \theta)^{x_{E}}\right)=\underbrace{\delta(\eta(1,0))^{x_{E}}}_{\in \in[p]=E[p]^{x_{E}}}=\delta(\eta(1,0)) \neq 0 \Rightarrow \eta^{P_{\text {prop }}} \neq \operatorname{not}^{x_{E}} p-\operatorname{tn}$ vower.
§2. Conclusion of the proof.
We need: $A^{x} E=0$ and $\delta_{1}\left(\theta_{F}^{x}\right) \neq 0$
We know that $A^{x_{t}}=0 \Leftarrow \eta(1,0)^{\gamma_{E}} \in M_{F}^{x_{E}},\left(\left(\theta_{r, \underline{Q}}\right)^{x_{t}}\right)^{0}$
Prop: $y_{f} L(\bar{\psi}, 1) / \Omega \neq 0(\bmod p)$ then $A^{x_{E}}=0$
Proof: It is enough to chat $\mu_{F}^{x} E=0$. It not, then $\mu_{p} \subseteq \mu_{F}^{x_{E}}$. Thenetive
vroot: It isenough to chak $\mu_{F}^{y} E=0$. I4 not, then $\mu_{p} \subseteq \mu_{F}^{x} E$. Thenetive \exists A-eamimiant map $E[p] \rightarrow E[p] \simeq \mu_{p}$, so wenelt of $\operatorname{Hom}\left(E[p], \mu_{p}\right)^{G}$ But ho Weil's poining, $\operatorname{Vom}\left(E\left[_{p}\right], \mu_{p}\right) \cong E[p] \quad G_{k}$-eamiv. \leadsto unout aivial elt of $E\left[_{p 0} G^{G_{k}}=E\left[\left[_{p}\right](K)\right.\right.$. But for $n>7$ there ure no such $\operatorname{sit}_{\text {y }}$ over K and $E[\beta]=E[P] \oplus E[F]$.

Wehave $\delta_{1}: F_{D} X \rightarrow E[P]$-equivariant and $\delta_{1}\left(\theta_{F}, \underline{D}\right) \neq 0$
Prop. Suppose os split sin K and $J_{r_{k / Q}} \psi(\beta) \neq 1$. Then

$$
\text { 1. } \mu_{p} \notin F_{D} \quad \text { 2. }\left(\theta_{F, D}^{x}\right)^{x_{E}} \text { is truee of ol } 1 \text { over } \mathbb{Z}_{p}
$$

Proof. 1. If $\mu_{p} \subseteq F_{\underline{D}}$, twen $F_{\underline{D}}=K_{p}\left(\mu_{p}\right)$. By local $C F T,\left[D_{1}, Q_{p}\left(\mu_{p}\right) / Q_{p}\right]=1$

$$
\text { Functovirlites } \Rightarrow\left[p, F_{p} / K_{p}\right]=1 \text {. Alss }\left[\psi(p), F_{p} / K_{p}\right]=1(\operatorname{des} s+(M)
$$

$\Rightarrow[\underbrace{n / \psi(p)}_{\in O_{p}^{x}} / F_{p} / K_{p}]=1$, focal CFT implieq $p / \psi(p) \equiv 1($ mode $p)$.
$F_{r} \psi(p)=\psi(p)+\overline{\psi(p)}=\psi(p)+1 p / \psi(p) \equiv 1(\bmod p)$.
$\left|J_{r} \psi(p)\right| \leqslant 2 \sqrt{n}<p-1 \leadsto J_{v} \psi(p)=1$.
2. $u^{(n)}=1+\underline{p}^{n} \subseteq \theta_{F, p}^{x}$. We have $\theta_{F, p}^{x} \otimes \mathbb{Z}_{p} \cong u^{(1)} \otimes \mathbb{Z}_{p}$ enought to shaw $u^{(1) x_{E}}$ freeotul 1 .
For somen, $U^{(n)} \cong \theta_{F, D} \quad \Delta$-eaniv. via a losarit hm maro.
$U^{(n)} \otimes \mathbb{Q}_{b} \cong F_{D} \stackrel{\text { masistem }}{=} K_{p}[\Delta] . \quad K_{p}[\Delta]^{x_{E}}$ is 1 -dimersiond.
$\stackrel{(I S}{\otimes Q_{b}}$. So $\left(u^{(1)} \otimes Q_{D}\right)^{x_{E}}$ is $1-\mathrm{dim} . \Rightarrow\left(u^{(1)} \otimes \mathbb{Z}_{b}\right)^{x_{E}}$ is trece of ak 1
becance it hay no p-tarsion ly 1 .

Proof: yry. is clear. For suri., Aivat sudition gives teat $\eta(1, \theta)^{x} E$ is not a 0 th pouer in $\left(\theta_{F, D}^{x}\right)^{\nu_{E}} \cong \mathbb{Z}_{p} \Rightarrow$ it gemerat es the whole \mathbb{Z}_{p} - module by provione porop, D.

Proot of thun 1: Suppose $L(\psi, 1) \neq 0$. Buy Chebstarev, we can tiud p such that:

- $p>7$ • $1+6 \&$ - $L(\psi, 1) / \Omega$ iqa p-mit
- posditsink $\cdot \operatorname{Tr} \psi(p) \neq 1$.

We sum betore trat $A^{x_{E}}=0$, and we also get $n(1,0)^{x} E$ geremster $\left(\theta_{F, D}^{x}\right)^{x} E$
Since δ_{1} maper thislacit grouporto $\left.E[P], \delta_{1}(\eta(1,0))=\delta_{1}(n \mid 1,0)^{x_{E}}\right) \neq 0$.
itsexplained tais siver $S_{\pi}(E / k)=0$ unde $E(k)=0$.

