Coates-Wiles Theorem: Selmer Groups

Khai-Hoan Nguyen-Dang

Padova University, Italy

August 11, 2023 Euler Systems Seminar

Khai-Hoan Nguyen-Dang (PD) Coates-Wiles Theorem: Selmer Groups

August 2023 1 / 31

2 Selmer Groups

1 Coates-Wiles Theorem: Stategy

2 Selmer Groups

3 Vanishing of Selmer Group

Coates-Wiles '77, Rubin '99

Let *K* be an imaginary quadratic field with ring of integers \mathcal{O} and the class number is 1. Suppose that *E* is defined over *K* and it has complex multiplication by \mathcal{O} . If $L(E, 1) \neq 0$ then E(K) is finite.

Examples

Consider
$$E/\mathbb{Q}(i)$$
: $y^2 = x^3 - x$, we have $\operatorname{End}_{\mathbb{Q}(i)}(E) = \mathbb{Z}[i]$ (e.g. $[i]: (x, y) \mapsto (-x, it)$)

Remark

The general framework (e.g the assumption on the class number can be removed) is due to Arthaud and Rubin.

The starting point

Let K be an imaginary quadratic field of class number 1 with the ring of integers \mathcal{O} . Suppose that E has complex multiplication by \mathcal{O} and let $\alpha \in \mathcal{O}$ be an endomorphism. If $E(K)/\alpha E(K) = 0$, then E(K) is finite.

Since *E* is CM, by Mordell-Weil theorem E(K) is a finitely generated \mathcal{O} -module. Using *K* has class number one, \mathcal{O}_K is PID. The result follows from the structure theorem of finitely generated modules over a PID.

Slogan

Selmer group is the smallest group given by local conditions containing $E(K)/\alpha E(K)$.

Let $\mathfrak{p} = \pi \mathcal{O}_K$ be some finite prime of K, $(\mathfrak{p}, N_E) = 1$ and π is its generator.

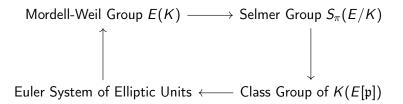
Vanishing of Selmer Group

The Selmer group $S_{\pi}(E/K) = 0$ if and only if $\text{Hom}(A, E[\mathfrak{p}])^{\Delta} = 0$ and $\delta_1(\epsilon) \neq 0$ for all $\epsilon \in \mathcal{O}_{K(E[\mathfrak{p}])}^{\times}$ where

- A ideal class group of $K(E[\mathfrak{p}])$
- $\ 2 \ \ \Delta = \operatorname{Gal}(K(E[\mathfrak{p}]/K))$

Vanishing of the first term

We have Hom $(A, E[p])^{\Delta} = 0$ if and only if $A^{\chi_E} = 0$ where χ_E is the Hecke character associated to CM elliptic curve E.



Euler Systems

Let $\mathfrak{p} \nmid 6N_E$, $K_n := K(E[\mathfrak{p}^n])$, we fix an ideal \mathfrak{a} of \mathcal{O} coprime to $6N_E\mathfrak{p}$

 $R = {$ square free ideals of \mathcal{O} prime to $6N_E \mathfrak{ap} {}$

Definition

Let $r \in R$, $K_n(r) := K_n(E[r\mathfrak{p}^n])$, an Euler system is a collection $\{\eta(n, r) \in K_n(r)^{\times} : n \ge 1, r \in R\}$

satisfying

Theorem

If η is an Euler system, χ an irreducible \mathbb{Z}_p -representation of Δ then

$$|A^{\chi}| \leq |(\mathcal{O}_{K(E[\mathfrak{p}])}^{\times}/C_{\eta})^{\chi}|$$

where C_{η} is the $\mathbb{Z}[\Delta]$ -submodule of \mathcal{O}_{K}^{\times} generated by μ_{K} and $\eta(1, \mathcal{O})$.

Under a certain condition of $\eta(1, \mathcal{O})$ we can obtain $A^{\chi} = 0$. In our case, elliptic units produce the Euler system.

If E/K is an elliptic curve with CM, there is a Hecke character on K associated to E

$$\psi: \mathbb{A}_{K}^{\times} \to \mathbb{C}^{\times}$$

Deuring

Let $\psi : \mathbb{A}_{\kappa}^{\times} \to \mathbb{C}^{\times}$ be a Hecke character attached to E, then

$$L(E,s) = L(\psi,s)L(\overline{\psi},s)$$

Khai-Hoan Nguyen-Dang (PD) Coates-Wiles Theorem: Selmer Groups

- Since $L(E, s) \neq 0$, we have $\frac{L(\overline{\psi}, 1)}{\text{constant}} \neq 0 \mod p$ which implies $A^{\chi_E} = 0$.
- It can be shown that $\eta(1, \mathcal{O})$ generates $\mathcal{O}_{K, \mathfrak{p}}^{\times}$ and $\delta_1(\eta(1, \mathcal{O})) \neq 0$, so is $\delta_1(\epsilon)$ for all $\epsilon \in \mathcal{O}_{K(E[\mathfrak{p}]])}^{\times}$.
- By the main result the Selmer group vanishes, hence the Mordell-Weil group is finite.

(Gross, Rubin, Burungale-Flach) Keep the assumptions above, not only E(K) is finite but also III(E/K) is finite and

$$\frac{L(\overline{\psi},1)}{\Omega} = \frac{|\mathrm{III}(E/K)|_{K}}{|E(K)|} \cdot \prod_{v} |\phi_{v}|_{K} \cdot \text{constant}$$

It follows that

$$L(E/K,1) = \Omega \frac{|\mathrm{III}(E/K)|_{K}}{|E(K)^{2}|} \cdot \prod_{\nu} |\phi_{\nu}|_{K}$$

where ϕ_v is the component group of the Neron model of E/K at the prime v.

- Recently, Xin Wan showed a number of explicit infinite families of elliptic curves without complex multiplication for which we can now prove the full Birch and Swinnerton-Dyer conjecture.
- (Tunnell '83) Congruence Number Problem : Apply Coates-Wiles's theorem for $y^2 = x^3 n^2x$ and its quadratic twists.
- (Goldfeld 79): 50% of the quadratic twists of an elliptic curve defined over the rationals have analytic rank zero. Some recent progress is due to Burungale-Tian.

Coates-Wiles Theorem: Stategy

We have the fundamental exact sequence of G_K -modules

$$0 \to E[\alpha] \to E(\overline{K}) \stackrel{\alpha}{\to} E(\overline{K}) \to 0$$

Taking Galois cohomology yields

 $0 \to E[\alpha](K) \to E(K) \stackrel{\alpha}{\to} E(K) \stackrel{\delta}{\to} H^1(K, E[\alpha]) \to H^1(K, E) \stackrel{\alpha}{\to} H^1(K, E)$

We obtain the following exact sequence

$$0 \to E(K)/\alpha E(K) \stackrel{\delta}{\to} H^1(K, E[\alpha]) \to H^1(K, E)[\alpha] \to 0$$

Selmer Group

Fix a prime \mathfrak{p} of K and consider that E over $K_{\mathfrak{p}}$, we also get

$$0 \to E(K_{\mathfrak{p}})/\alpha E(K_{\mathfrak{p}}) \stackrel{\delta}{\to} H^{1}(K_{\mathfrak{p}}, E[\alpha]) \to H^{1}(K_{\mathfrak{p}}, E)[\alpha] \to 0$$

Giving local conditions by the following

$$\begin{array}{cccc} 0 \longrightarrow E(\mathcal{K})/\alpha E(\mathcal{K}) \stackrel{\delta}{\longrightarrow} H^{1}(\mathcal{K}, E[\alpha]) \longrightarrow H^{1}(\mathcal{K}, E)[\alpha] \longrightarrow 0 \\ & & \downarrow & & \downarrow \\ 0 \longrightarrow E(\mathcal{K}_{\mathfrak{p}})/\alpha E(\mathcal{K}_{\mathfrak{p}}) \longrightarrow H^{1}(\mathcal{K}_{\mathfrak{p}}, E[\alpha]) \longrightarrow H^{1}(\mathcal{K}_{\mathfrak{p}}, E)[\alpha] \longrightarrow 0 \end{array}$$

Definition

$$S_{\alpha}(E/K) := \ker(H^1(K, E[\alpha]) \to \prod_{\mathfrak{p}} H^1(K_{\mathfrak{p}}, E))$$

We define the enlarged Selmer group for some $\alpha \in \mathcal{O}$. Write $\alpha \mathcal{O} = \mathfrak{p}^n$ with $\mathfrak{p} \not\mid 6$ and $n \ge 1$

$$S'_{lpha}(E/K) := \ker(H^1(K, E[lpha]) o \prod_{\mathfrak{q}
eq lpha} H^1(K_\mathfrak{q}, E))$$

Characterization

Suppose that $E[\mathfrak{p}^n] \subset K$. Then

$$S'_{\alpha}(E/K) = \operatorname{Hom}(\operatorname{Gal}(M/K), E[\mathfrak{p}^n])$$

where M is the maximal abelian extension of K unramified outside above \mathfrak{p} , i.e. $\mathfrak{p}^n = (\alpha)$.

Proof

Characterization

Suppose that $E[\mathfrak{p}^n] \subset K$. Then

$$S'_{\alpha}(E/K) = \operatorname{Hom}(\operatorname{Gal}(M/K), E[\mathfrak{p}^n])$$

where M is the maximal abelian extension of K unramified outside above \mathfrak{p} .

By the assumption G_K acts trivially on $E[\mathfrak{p}^n]$, so

$$H^1(K, E[\mathfrak{p}^n]) = \operatorname{Hom}(G_K, E[\mathfrak{p}^n])$$

Let q be a prime of K not dividing \mathfrak{p} , we have E has good reduction at q and $H^1(\mathcal{K}_{\mathfrak{q}}, E[\mathfrak{p}^n]) = \operatorname{Hom}(G_{\mathcal{K}_{\mathfrak{q}}}, E[\mathfrak{p}^n])$. By inflation-restriction sequence, we see that the image of the connecting morphism δ is in

$$E(\mathcal{K}_{\mathfrak{q}})/\alpha E(\mathcal{K}_{\mathfrak{q}}) \stackrel{\delta}{\to} \operatorname{Hom}(\mathcal{G}_{\mathcal{K}_{\mathfrak{q}}}/I_{\mathcal{K}_{\mathfrak{q}}}, E[\mathfrak{p}^{n}]) = \operatorname{Hom}(\hat{\mathbb{Z}}, E[\mathfrak{p}^{n}]) = E[\mathfrak{p}^{n}] = \mathcal{O}/\mathfrak{p}^{n}$$

Since E has a good reduction at q, we see that

$$E(K_{\mathfrak{q}})/\alpha E(K_{\mathfrak{q}}) \cong \tilde{E}(k)/\alpha \tilde{E}(k) \cong \mathcal{O}/\mathfrak{p}^n$$

It follows that

$$E(K_{\mathfrak{q}})/\alpha E(K_{\mathfrak{q}}) \stackrel{\delta}{\rightarrow} \operatorname{Hom}(G_{K_{\mathfrak{q}}}/I_{K_{\mathfrak{q}}}, E[\mathfrak{p}^{n}])$$

is an isomorphism. The enlarged Selmer group can be rewritten as

$$\begin{aligned} S'_{\alpha}(E/K) &= \{ c \in \operatorname{Hom}(G_{K}, E[\mathfrak{p}^{n}]) : \operatorname{res}_{\mathfrak{q}}(c) \in \operatorname{Hom}(G_{K_{\mathfrak{q}}}/I_{\mathfrak{q}}, E[\mathfrak{p}^{n}]) \; \forall \mathfrak{q} \nmid \alpha \} \\ &= \operatorname{Hom}(\operatorname{Gal}(M/K), E[\mathfrak{p}^{n}]) \end{aligned}$$

where M is the maximal abelian extension of K unramified outside above p

Let \mathfrak{p} be a prime of K lying above $p \geq 5$. Let $n \geq 0$:

• If $\mathcal{O}_{\mathfrak{p}} = \mathbb{Z}_p$ or if $E[\mathfrak{p}] \not\subset E(K)$, the restriction map gives an isomorphism

$$H^1(K, E[\mathfrak{p}^n]) \cong H^1(K(E[\mathfrak{p}^n]), E[\mathfrak{p}^n])^{\mathsf{Gal}(K(E[\mathfrak{p}^n])/K)}$$

② Suppose K is a finite extension of \mathbb{Q}_{ℓ} for some $\ell \neq p$. Then the restriction map gives an injection

$$H^1(K, E)[\mathfrak{p}^n] \hookrightarrow H^1(K(E[\mathfrak{p}^n]), E)[\mathfrak{p}^n]$$

Theorem

Suppose *E* is defined over *K*. If we denote by $K_n = K(E[\mathfrak{p}^n])$, then

$$S'_{lpha}(E/K)\cong \operatorname{Hom}(M_n/K_n,E[\mathfrak{p}^n])^{\operatorname{Gal}(K_n/K)}$$

Here M_n is the maximal abelian extension of K_n unramifield outside primes above \mathfrak{p} .

Proof

Apply the above lemma and the characterization of enlarged Selmer group.

Coates-Wiles Theorem: Stategy

2 Selmer Groups

Logarithm Map

Let \mathfrak{p} be a prime of K comprime to 6N. It follows that E has good reduction at \mathfrak{p} . The reduction gives the exact sequence of \mathcal{O} -modules

$$0 o E_1(K_\mathfrak{p}) o E(K_\mathfrak{p}) o ilde{E}(k) o 0$$

It can be shown that this sequence is split

$$E(K_{\mathfrak{p}})\cong E_1(K_{\mathfrak{p}}) imes ilde{E}(k)$$

Moreover, the logarithm map gives an isomorphism

$$\log_E : E_1(K_p) \cong \mathfrak{p}\mathcal{O}_p$$

This map extends to a subjective map

$$\log_E : E(K_p) \to \mathfrak{p}\mathcal{O}_p$$

whose kernel is finite and has no p-torsion.

Khai-Hoan Nguyen-Dang (PD) Coates-Wiles Theorem: Selmer Groups

We define

$$\langle , \rangle_{\pi^n} : E(\mathcal{K}_{\mathfrak{p}}) \times \mathcal{K}_{n,\mathfrak{p}}^{\times} \to E[\mathfrak{p}^n]$$

 $\langle P, x \rangle_{\pi^n} := Q^{\operatorname{Art}(x,\mathcal{K}_{n,\mathfrak{p}})} - Q$

where $Q \in E(\overline{K}_p)$ such that $\pi^n Q = P$ and Art is the local Artin map.

Linearity

Let
$$P \in E_1(K_p)$$
, $x \in K_{n,p}^{\times}$ and $a \in \mathcal{O}_p$. Then

$$\langle aP, x \rangle_{\pi^n} = a \langle P, x \rangle_{\pi^n}$$

Khai-Hoan Nguyen-Dang (PD) Coates-Wiles Theorem: Selmer Groups

All together

Let $P \in E_1(\mathcal{K}_p \text{ such that } \log_E(P) = \pi$. Define $\delta_n : \mathcal{K}_{n,p}^{\times} \to E[p^n]$ by $\delta_n(x) := \langle P, x \rangle_{\pi^n}$

If $P \in \tilde{E}(k)$, it is a torsion point of order prime to \mathfrak{p} , we have

$$\log_E(P) = 0$$
 and $\langle P, x \rangle_{\pi^n} = 0$

Theorem

The Galois equivariant morphism (called π^n -reciprocity)

$$\delta_n: K_{n,\mathfrak{p}}^{\times} \to E[\mathfrak{p}^n]$$

has property: any $P \in E(\mathcal{K}_{\mathfrak{p}})$ and $x \in \mathcal{K}_{n,\mathfrak{p}}^{\times}$

$$\langle P, x \rangle_{\pi^n} = (\pi^{-1} \log_E(P)) \delta_n(x)$$

The map δ_n is subjective and $\delta_n(\mathcal{O}_{n,\mathfrak{p}}^{\times}) = E[\mathfrak{p}^n]$.

Selmer Group

Theorem

Let $K_n = K(E[\mathfrak{p}^n])$ with idele group $\mathbb{A}_{K_n}^{\times}$. Define

$$W_n = K_n^{\times} \prod_{v \mid \infty} K_{n,v}^{\times} \prod_{v \nmid \mathfrak{p} \infty} \mathcal{O}_{n,v}^{\times} \cdot \ker \delta_n$$

Then $S_{\pi^n}(E/K) \cong \operatorname{Hom}(\mathbb{A}_{K_n}^{\times}/W_n, E[\mathfrak{p}^n])^{\operatorname{Gal}(K_n/K)}$

We can rewrite the enlarged Selmer group

$$S'_{\pi^n}(E/K) = \operatorname{Hom}(\mathbb{A}_{K_n}^{\times}/W'_n, E[\mathfrak{p}^n])^{\operatorname{Gal}(K_n/K)}$$

where $W'_n = K_n^{\times} \prod_{\nu \mid \infty} K_{n,\nu}^{\times} \prod_{\nu \nmid \mathfrak{p} \infty} \mathcal{O}_{n,\nu}^{\times}$. On the other hand, we have an isomorphism

$$E(\mathcal{K}_{\mathfrak{p}}/\pi^{n}E(\mathcal{K}_{\mathfrak{p}}) \cong \operatorname{Hom}(\mathcal{K}_{n,\mathfrak{p}}^{\times}/\operatorname{ker} \delta_{n}, E[\mathfrak{p}^{n}])^{\operatorname{Gal}(\mathcal{K}_{n}/\mathcal{K})} (= \mathcal{O}/\mathfrak{p}^{n})$$

We have an isomorphism

$$\mathsf{E}(\mathsf{K}_\mathfrak{p}/\pi^n\mathsf{E}(\mathsf{K}_\mathfrak{p})\cong \mathsf{Hom}(\mathsf{K}_{n,\mathfrak{p}}^{ imes}/\ker \delta_n,\mathsf{E}[\mathfrak{p}^n])^{\mathsf{Gal}(\mathsf{K}_n/\mathsf{K})}$$

We can rewrite the Selmer group

$$S_{\pi^n}(E/K) \cong \{ f \in \operatorname{Hom}(\mathbb{A}_{K_n}^{\times}/W'_n, E[\mathfrak{p}^n])^{\operatorname{Gal}(K_n/K)} : \operatorname{res}_{K_{n,\mathfrak{p}^{\times}}} f \in \operatorname{Hom}(K_{n,\mathfrak{p}}^{\times}/\ker \delta_n, E[\mathfrak{p}^n])^{\operatorname{Gal}(K_n/K)} \}$$

Hence

$$S_{\pi^n}(E/K) \cong \operatorname{Hom}(\mathbb{A}_{K_n}^{\times}/W_n, E[\mathfrak{p}^n])^{\operatorname{Gal}(K_n/K)}$$

where $W_n = K_n^{\times} \prod_{v \mid \infty} K_{n,v}^{\times} \prod_{v \nmid \mathfrak{p} \infty} \mathcal{O}_{n,v}^{\times} \cdot \ker \delta_n$

3

)

Vanishing of Selmer Group

Apply the previous theorem for n = 1.

Theorem

Let $\Delta = \operatorname{Gal}(K(E[\mathfrak{p}])/K)$. The Selmer group $S_{\pi}(E/K) = 0$ if and only if

$$\mathsf{Hom}(A, E[\mathfrak{p}])^{\Delta} = \mathsf{0} ext{ and } \delta_1(\epsilon)
eq \mathsf{0} ext{ for all } \epsilon \in \mathcal{O}_{K(E[\mathfrak{p}])}^{ imes}$$

Denote by $\overline{\epsilon}$ the closure of ϵ in $\mathcal{O}_{1,\mathfrak{p}}^{\times}$ and $V = \ker \delta_1 \cap \mathcal{O}_{1,\mathfrak{p}}^{\times}$, we have Δ -equivariant exact sequence

$$0 \to \mathcal{O}_{\mathcal{K}_1,\mathfrak{p}}^{\times}/V\bar{\epsilon} \to \mathbb{A}_{\mathcal{K}_1}^{\times}/W_1 \to A' \to 0$$

where A' is a certain quotient of A. Applying Hom(-, E[p]) and taking Δ -invariant we obtain

$$\begin{array}{l} \mathsf{Hom}(\mathbb{A}_{\mathcal{K}_{1}}^{\times}/\mathcal{W}_{1}, \mathcal{E}[\mathfrak{p}])^{\Delta} = 0 \,\, \mathsf{iff} \\ \mathsf{Hom}(\mathcal{O}_{\mathcal{K}_{1}, \mathfrak{p}}^{\times}/V\overline{\epsilon}, \mathcal{E}[\mathfrak{p}])^{\Delta} = 0 \,\, \mathsf{and} \,\, \mathsf{Hom}(\mathcal{A}', \mathcal{E}[\mathfrak{p}])^{\Delta} = 0 \end{array}$$

Isotypical Component

Definition

Let M be a finitely generated Δ module, and hence a $\mathbb{Z}[\Delta]$ -module. The p part of M is $M^{(p)} = M \otimes_{\mathbb{Z}} \mathbb{Z}_p$. Given a character $\chi : \Delta \to \mathbb{Z}_p^{\times}$, we define

$$\epsilon(\chi) = \frac{1}{p-1} \sum_{\sigma \in \Delta} \chi(\sigma)^{-1} \sigma$$

Suppose that χ is an irreducible representation of Δ , we define

$$M^{\chi} = \epsilon(\chi) M^{(p)}$$

Proposition

Let *M* be a $\mathbb{Z}[\Delta]$ -module. Then

$$M^{\chi} = \{ m \in M^{(p)} : \sigma m = \chi(\sigma) m \forall \sigma \in \Delta \}$$

2 $M^{(p)} = \bigoplus_{\chi} M^{\chi}$, where the sum is over all the irreducible representations of Δ .

Khai-Hoan Nguyen-Dang (PD) Coates-Wiles Theorem: Selmer Groups

Corollary

Define χ_E the \mathbb{F}_p -representation of Δ induced by the action of Δ on $E[\mathfrak{p}]$, we have

 $E[\mathfrak{p}] = E[\mathfrak{p}]^{\chi_E}$

We give the last vanishing result of my talk.

Theorem

We have $\operatorname{Hom}(A, E[\mathfrak{p}])^{\Delta} = 0$ if and only if $A^{\chi_E} = 0$.

Thank you for your attention!

3