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1 Introduction and Overview

There are some typical topics for a second course on Algebraic Num-
ber Theory, including Tate’s thesis and class field theory. Both of these
topics are closely related to the theory of Hecke L-functions; while
Tate’s thesis gives a purely Fourier-theoretic approach to the analytic
continuation and the functional equation of such functions, class field
theory allows one to relate Hecke characters to one-dimensional Galois
representations. Nevertheless, both topics cover just a very particular
aspect of L-functions.

Before we continue with mathematics, let me briefly recall the con-
tent of the Indian parable blind men and an elephant.

Figure 1.1: The blind men and the ele-
phant; source: Wikipedia

A group of blind men heard that a strange animal, called an elephant,
had been brought to the town, but none of them were aware of its shape
and form. Out of curiosity, they said: "We must inspect and know it
by touch, of which we are capable". So, they sought it out, and when
they found it they groped about it. The first person, whose hand landed
on the trunk, said, "This being is like a thick snake". For another one
whose hand reached its ear, it seemed like a kind of fan. As for another
person, whose hand was upon its leg, said, the elephant is a pillar like
a tree-trunk. The blind man who placed his hand upon its side said the
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elephant, "is a wall". Another who felt its tail, described it as a rope. The
last felt its tusk, stating the elephant is that which is hard, smooth and
like a spear.[1] [1] source: "Blind men and the ele-

phant." Wikipedia: The Free Encyclope-
dia. Wikimedia Foundation, Inc. 31

March 2021.,
So, based on their experience of touching just a very particular part

of the elephant’s body they form their minds on what an elephant
looks like. While everyone is right in a sense, no one will get a com-
plete picture of the elephant.

Something similar happens, if you ask number theorists about L-
functions. All of them will agree that they are of central importance
for number theory. But if you ask ten number theorists about the most
important aspect of L-functions, you will probably get ten different
answers.

Figure 1.2: The L-ephant.

In this lecture, I will try to give you an idea about many different
aspects of L-functions. Of course, I won’t be able to go into as much
depth as if I had focused on one single aspect. On the other hand, I
think it makes more sense to get a vague picture of the entire L-ephant,
than to understand its right leg in detail. Now, you might argue that
certain aspects of the theory of L-functions are rather analytic, e.g.,
functional equations, distribution of primes, etc. But if there is one
thing we can learn from the Indian parable, it is to be open-minded and
try to understand different aspects of something we are interested in.
That fits perfectly with the spirit of the University of Duisburg-Essen
and its slogan Offen im Denken.

1.1 Overview

We will start with the Riemann zeta function and its basic proper-
ties. Afterwards, we will briefly say something about the importance
of the Riemann zeta function for the distribution of primes. We will

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant
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prove a weak form of the prime number theorem and briefly indicate
the deeper relationship between the Riemann zeta function and prime
numbers. Afterwards, we will turn our attention to the special val-
ues of the Riemann zeta function. First, we will prove Euler’s formula
which gives an explicit formula for the values of the Riemann zeta
function at the positive even integers. Afterwards, we will briefly dis-
cuss odd zeta values, which are much more mysterious. Here, we will
prove the irrationality of ζ(3), which is due to Apéry.

Afterwards, we will turn our attention to cyclotomic fields. In a first
step, we will prove the Theorem of Kronecker-Weber which classifies
all abelian extensions of Q and hence can be seen as a very explicit
instance of class field theory for the base field Q. We will introduce
Dirichlet L-functions in this context. Then, we will discuss the analytic
continuation and the functional equation of Dirichlet L-functions in
a rather Fourier-theoretic way. This will make you familiar with the
main ideas of Tate’s thesis in a particular case. Then, we will express the
Dedekind zeta function of abelian extensions of Q in terms of Dirichlet
L-functions. If time permits, we will prove Kummer’s criterion which
gives a beautiful relation between special values of L-functions and
class groups of cyclotomic fields.

At the end of the term, we will introduce Hecke characters for gen-
eral number fields. We will give a small overview of how they relate to
class field theory and Tate’s thesis. Since we have already treated both
topics in the more elementary case of the base field Q, we will not go
into details here.





2 The Riemann zeta function

In this chapter, we will define the Riemann zeta function. First, we will
discuss its basic properties, afterwards we will discuss the relevance of
the Riemann zeta function for the distribution of prime numbers. Fi-
nally, we will prove Euler’s Theorem about the values of the Riemann
zeta function at the even positive integers and discuss the irrationality
of ζ(3).

2.1 Basic properties of the Riemann zeta function

The Riemann zeta function is defined for s ∈ C with Re(s) > 1 by the
formula

ζ(s) :=
∞

∑
n=1

1
ns .

Here, we define ns := exp(s log n).

Lemma 2.1.1. The series defining the Riemann zeta function converges ab-
solutely and defines a holomorphic function in the half-plane Re(s) > 1.

Proof. For a real number δ > 0 and s ∈ C with Re(s) ≥ 1+ δ, the series

∞

∑
n=1

1
|ns|

admits the convergent majorant ∑∞
n=1

1
n1+δ , i.e., the series defining the

Riemann zeta function converges absolutely and uniformly [1] on the [1] Recall that a sequence of functions
( fn(s))n with fn : U → C converges uni-
formly to f if and only if for each ϵ > 0
there exists an N ∈ N such that | f (x)−
fn(x)| < ϵ for all x ∈ U and n ≥ N.
A series of complex functions converges
uniformly if and only if its partial sums
converge uniformly.

domain {s ∈ C | Re(s) ≥ 1 + δ}. Now, recall from complex analysis
that a uniform limit of holomorphic functions is again holomorphic,
see for example Theorem III.1.3 in Freitag–Busam[2]. Since δ > 0 was

[2] Eberhard Freitag and Rolf Busam.
Funktionentheorie. Springer-Verlag,
Berlin, 1993. ISBN 3-540-50618-7

arbitrary, the claim follows.

Next, we will prove that the Riemann zeta function admits an Euler
product. We will prove this in slightly greater generality. A function
f : N → C is called completely multiplicative if it satisfies f (1) = 1 and
f (n ·m) = f (n) · f (m) for all n, m ∈N.[3] [3] In other words, it is a homomorphism

of monoids f : (N, ·)→ (C, ·)
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Lemma 2.1.2. Let f : N → C be a completely multiplicative function for
which the series ∑∞

n=1 f (n) converges absolutely. Then

∞

∑
n=1

f (n) = ∏
p
(1− f (p))−1,

where p runs through the set of all primes.[4] [4] Recall that an infinite product ∏∞
i=1 ai

of complex numbers is said to converge
if the sequence of partial products Pn =

∏n
i=1 ai has a non-zero limit.

Proof. The assumptions imply that | f (n)| < 1 for n ≥ 2. Indeed, if we
had | f (n)| ≥ 1 for some n ≥ 2 then | f (nk)| ≥ 1 for every k ≥ 1 contra-
dicting the absolute convergence of the sum ∑∞

n=1 f (n). In particular,
we have | f (p)| < 1 for every prime p and obtain the geometric series

(1− f (p))−1 =
∞

∑
k=0

f (p)k.

Using the complete multiplicativity of f and the unique factorization
in Z, we obtain for every positive integer N the identity

∏
p≤N

(1− f (p))−1 = ∑
n=p

α1
1 ...pαm

m
pi≤N

f (n) =
∞

∑
n=1

f (n)− ∑
n

p|n for some p>N

f (n).

Now it follows∣∣∣∣∣ ∞

∑
n=1

f (n)− ∏
p≤N

(1− f (p))−1

∣∣∣∣∣ ≤ ∑
n

p|n for some p>N

| f (n)| ≤ ∑
n>N
| f (n)|.

The latter sum tends to zero as N → ∞ by the absolute convergence of
∑∞

n=1 f (n) and the result follows.

Corollary 2.1.3. The Riemann zeta function admits the following product
formula for s ∈ C with Re(s) > 1

ζ(s) = ∏
p

1
1− p−s ,

where p runs through the set of all prime numbers. This formula is called the
Euler product of the Riemann zeta function. For a prime p, the term 1

1−p−s

is called the Euler factor at p.

Proof. We apply the previous lemma to the completely multiplicative
function n 7→ 1

ns .

2.1.1 The Gamma function

As we will see, the Gamma function will play an important role for
proving the functional equation of the Riemann zeta function. The
Gamma function is defined for z ∈ C with Re(z) > 0 by

Γ(z) :=
∫ ∞

0
e−ttz dt

t
.
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To prove that the Gamma function is holomorphic, we recall the fol-
lowing result from complex analysis:

Lemma 2.1.4 (Leibniz rule). Let U ⊆ C open and a, b ∈ R with a < b.
Suppose that f : [a, b]×U → C is a continuous function, which is holomor-
phic for every t ∈ [a, b]. Then the function

z 7→
∫ b

a
f (z, t)dt

is holomorphic on U.

Proof. We refer to Lemma II.3.3 in Freitag–Busam[5]. [5] Eberhard Freitag and Rolf Busam.
Funktionentheorie. Springer-Verlag,
Berlin, 1993. ISBN 3-540-50618-7Using the Leibniz rule it is not difficult to prove that the Gamma

function is holomorphic.

Lemma 2.1.5. The integral defining the Gamma function converges abso-
lutely for Re(z) > 0, where it represents a holomorphic function.

Proof. We split the integral into two parts∫ ∞

0
e−ttz dt

t
=
∫ 1

0
e−ttz dt

t
+
∫ ∞

1
e−ttz dt

t

and discuss both integrals separately. Note that we have the equality

|tz−1e−t| = tx−1e−t

for x = Re(z). For any real number x0 > 0, we find a constant C > 0
such that tx−1 ≤ Cet/2 for all 0 < x ≤ x0 and all t ≥ 1. This estimate
together with the existence of∫ ∞

1
e−t/2dt

shows the absolute convergence of the second integral. For the abso-
lute convergence of the first integral, we use the estimation |tz−1e−t| <
tx−1 for t > 0 and the existence of∫ 1

0
tx−1dt for x > 0.

The above estimates show that the functions

fn(z) :=
∫ n

1/n
e−ttz dt

t

converge uniformly to the Gamma function. Each of the functions fn

is holomorphic by the Leibniz rule. Therefore, the Gamma function is
holomorphic as a uniform limit of holomorphic functions.

Using integration by parts, it is not difficult to prove the following
result.
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Lemma 2.1.6. The Gamma function satisfies for all z ∈ C with Re(z) > 0
the functional equation

Γ(z + 1) = zΓ(z).

In particular, we have for a positive integer n the formula Γ(n) = (n− 1)!.

Proof. We will prove this in the exercises.

We can use the functional equation to extend the Gamma function
to C \Z≤0.

Lemma 2.1.7. The Gamma function extends to a meromorphic function on
all of C with simple poles at all non-positive integers and residue[6] [6] Recall: The residue of a meromorphic

function f at z0 ∈ C is given by the term
a−1 in its Laurent expansion

f (z) = ∑
k∈Z

ak(z− z0)
k .

If f has at most a simple pole in z0, we
can compute the residue as follows:

Resz=z0 f (z) = lim
z→z0

(z− z0) f (z).

resz=−nΓ(z) =
(−1)n

n!
for n ∈ Z≥0.

Proof. We will prove this result in the exercises.

For later reference, we will prove the completion formula for the
Gamma function.

Proposition 2.1.8 (Completion formula). For all z ∈ C \Z we have

Γ(z)Γ(1− z) =
π

sin πz
.

Proof. Both of the functions Γ(z)Γ(1− z) and π
sin πz have only simple

poles at the integers. Let us first compute their residues. For n ∈ N0,
we have

Resz=−n Γ(z)Γ(1− z) = Γ(1 + n)Resz=−n Γ(z) = (−1)n

and similarly one proves

Resz=n Γ(z)Γ(1− z) = (−1)n.

Thus, the formula Resz=n Γ(z)Γ(1− z) = (−1)n holds for all integers.
The leading term of the Taylor expansion of sin πz at z = n is (−1)nπ.
We deduce the formula

Resz=n
π

sin πz
= (−1)n.

Since both functions Γ(z)Γ(1 − z) and π
sin πz have only simple poles

with the same residues, we deduce that

h(z) := Γ(z)Γ(1− z)− π

sin πz

extends to an entire function[7] on C. Now, the strategy is to apply [7] An entire function is a function which
is holomorphic the whole complex
plane.

Liouville’s Theorem[8] to deduce that h is constant. Therefore, we need

[8] Recall, that Liouville’s Theorem says
that a bounded entire function is con-
stant.

to prove the boundedness of h. Let us first prove that the function h(z)
is ’periodic up to sign’, i.e.,

h(z + 1) = −h(z).
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Of course, the function π
sin πz is periodic up to sign and the same prop-

erty for Γ(z)Γ(1− z) follows from the following computation:

Γ(z + 1)Γ(1− (z + 1)) = zΓ(z)Γ(−z)

= −Γ(z)(−z)Γ(−z) = −Γ(z)Γ(1− z).

We conclude that also h is ’periodic up to sign’. In particular, the
function |h(z)| is a periodic function. Thus, it suffices to prove that
h(z) is bounded on the vertical strip

V0 = {z ∈ C | 0 ≤ Re(z) < 1}.

Indeed, let us first remark that h(z) is bounded on the compact set[9] [9] Recall that every continuous function
on a compact set is bounded.

V0 ∩ {| Im(z)| ≤ 1}.

For the boundedness of h on V0∩{| Im(z)| > 1} it suffices to prove that
both functions Γ and π

sin πz are bounded on this set. It is not difficult
to see that π

sin πz is bounded on V0 ∩ {| Im(z)| > 1}, so let us turn our
attention to Γ(z). For z ∈ V0 with Im z > 1, we have

|Γ(z)| = |Γ(z + 1)|
|z| ≤ |Γ(z + 1)| ≤

∫ ∞

0
e−ttRe(z+1) dt

t
= Γ(Re(z + 1)).

Now, observe that the function Γ(Re(z + 1)) is bounded since Γ is
bounded on the compact interval [1, 2].

Thus, we have shown that the function

h(z) := Γ(z)Γ(1− z)− π

sin πz

is an entire bounded function. By Liouville’s Theorem, h has to be
constant. To conclude that h = 0, let us observe

h(−z) = −h(z).

This equation implies h(0) = 0 and hence h = 0.

Corollary 2.1.9. We have Γ(1/2) =
√

π, and for n ∈N

Γ
(

1
2
+ n

)
=
√

π
n−1

∏
k=0

(
k +

1
2

)
.

Proof. The first formula follows immediately from Proposition 2.1.8:

Γ
(

1
2

)
Γ
(

1− 1
2

)
=

π

sin π/2
= π.

The second formula follows from the first formula using the functional
equation

Γ(z + 1) = zΓ(z).
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Outlook

[10] In the upcoming lectures, will see many interesting aspects of the [10] At the end of the section, we will of-
ten give an outlook on interesting top-
ics. Reading these parts of the lecture
notes is voluntary. They are neither rel-
evant for understanding the upcoming
lectures nor for the final exam.

Riemann zeta function. But also the Gamma function is an interesting
function. We have already seen the formula

Γ
(

1
2

)
=
√

π.

This formula together with the functional equation gives us the values
of the Gamma function at all rational numbers with denominator 2. In
particular, Γ(1/2) is a transcendental number. One might ask about
the nature of other values Γ( •d ) at rational numbers with denominator
d > 2. Surprisingly, the nature of these values is closely related to
periods of elliptic curves and abelian varieties. Let us give a simple
example. It is not so difficult to compute the following integral:

Ω :=
∫ ∞

1

1√
x3 − x

=
Γ( 1

4 )
2

23/2π1/2 .

Of course, this formulas doesn’t look very interesting at first glance.
But, it has the following interesting arithmetic interpretation. The
equation

E : y2 = x3 − x,

is an example of an (affine) elliptic curves with complex multiplica-
tion. Such elliptic curves play an important role in arithmetic geome-
try. Now, observe that the right hand side of the defining equation of
the elliptic curve E appears in the above integral formula for Ω. More
precisely, it can be shown that the differential form ω := dx/y is an
example of a global differential form on the above elliptic curve E. This
gives the following re-interpretation of the above integral formula:

∫ ∞

1

dx
y

=
∫ ∞

1

1√
x3 − x

=
Γ( 1

4 )
2

23/2π1/2 .

In algebraic geometry, such integrals are called period integrals and
their values are called periods[11]. Thus, the innocent looking integral [11] Periods on a d-dimensional smooth

and proper variety X over Q are de-
fined by integrating an algebraic differ-
ential forms ω of degree i along a cycle
C ∈ Hi(X(C), Z), i.e.,∫

C
ω.

In our case, the path

γ := {t ∈ [1, ∞) | (t,
√

t3 − t)}

represents a non-trivial element γ ∈
H1(E(C), Z) and so Ω is indeed a period
in the above sense.

formula turns out to give an interesting relation between the Gamma
value Γ(1/4), π and the period of an elliptic curve with complex mul-
tiplication. This is only the tip of the iceberg; there are much more gen-
eral relations between Gamma values and periods (e.g. the Chowla-
Selberg formula). This arithmetic interpretation of Gamma values can
finally be used to prove deep transcendence results for Gamma values,
for example:

Theorem (Chudnovsky). The values Γ( 1
4 ) and π are algebraically indepen-

dent. In particular, Γ( 1
4 ) is transcendental.
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2.2 The functional equation

Our next goal is to extend the Riemann zeta function to a meromorphic
function on C \ {1} and to prove its functional equation. Let us start
with some facts about rapidly decreasing functions.

2.2.1 The classical theta function

As a preparation for the proof of the functional equation, we will intro-
duce the classical theta function and prove that it is rapidly decreasing
in the following sense:

Definition 2.2.1. Let D ⊆ R be an unbounded subset. A function
f : D → C is called rapidly decreasing if for every positive integer N ∈N

we have[12] |t|N | f (t)| → 0 as |t| → ∞. For D = N, we will call such a [12] Alternatively, one can demand for
any positive integer N ∈ N that t 7→
|t|N | f (t)| is bounded on D ∩ [c, ∞) for
all sufficiently large real numbers c.

function a rapidly decreasing sequence.

Example 2.2.2. The following functions are examples of rapidly de-
creasing functions:

(a) The function f (t) := e−t is rapidly decreasing on D = R>0.

(b) The function n 7→ e−n2
is rapidly decreasing on D = Z.

(c) The function f (t) := t−2021 is not rapidly decreasing on D = [1, ∞).

In the proof of the analytic continuation and the functional equa-
tion, the classical theta function θ : R>0 → R given by

θ(t) := ∑
n∈Z

e−πn2t = 1 + 2
∞

∑
n=1

e−πn2t

will play an important role. Note that this sequence converges abso-
lutely[13] for any real number t ∈ R>0. The values of the classical theta [13] Indeed, we have e−n2t = (e−nt)n. For

sufficiently large n, we have e−nt < 1
and the series can be estimated by a con-
vergent geometric series.

series are always ≥ 1. Of course, this implies that the theta function
is not rapidly decreasing, but the following Lemma shows that the
closely related function

ω(t) :=
1
2
(θ(t)− 1) =

∞

∑
n=1

e−πn2t

is rapidly decreasing.

Lemma 2.2.3. The function ω(t) is rapidly decreasing on [1, ∞).

Proof. We will prove this in the exercises.

For later reference, let us record the following elementary property
of rapidly decreasing functions:
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Lemma 2.2.4. Let f : [1, ∞)→ R be a continuous function which is rapidly
decreasing. Then, for any complex number s ∈ C, the integral

g(s) :=
∫ ∞

1
f (t)tsdt

converges absolutely and defines a holomorphic function on C.

Proof. Since f is rapidly decreasing, there exists a constant C > 0 such
that

| f (t)|tRe(s)+2 ≤ C

for all t ≥ 1, i.e.,

| f (t)||ts| ≤ C
t2 .

Now, the absolute convergence follows from the convergence of the
integral

∫ ∞
1

1
t2 dt. The function g is holomorphic since it is the uniform

limit of the holomorphic functions[14] [14] Here, we use the Leibniz rule, i.e.,
Lemma 2.1.4.

gn(s) :=
∫ n

1
f (t)tsdt.

2.2.2 The functional equation

The functional equation of the Riemann zeta function will follow from
the following transformation behaviour of the theta series

θ(t) =
1√

t
θ(1/t). (2.1)

For the moment, we postpone the proof of (2.1) and deduce the func-
tional equation of the Riemann zeta function from the transformation
behaviour of the theta series.

Theorem 2.2.5. Let us define the completed Riemann zeta function as

ξ(s) := π−s/2Γ(s/2)ζ(s).

The completed zeta function admits a holomorphic continuation to C \ {0, 1}
with simple poles at s = 0 and s = 1 and satisfies the functional equation

ξ(s) = ξ(1− s).

Proof. In a first step, let us relate the completed Riemann zeta function
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to the theta function. For s ∈ C with Re(s) > 1, we have

ξ(s) = π−s/2Γ(s/2)ζ(s) =
∞

∑
n=1

1
ns

∫ ∞

0
ts/2π−s/2e−t dt

t

=
∞

∑
n=1

∫ ∞

0

(
t

n2π

)s/2
e−t dt

t

[15]
=

∞

∑
n=1

∫ ∞

0
ts/2e−πtn2 dt

t

[16]
=
∫ ∞

0
ts/2ω(t)

dt
t

(2.2)

This will be helpful, since θ(t) satisfies a nice functional equation [15] Here, we have substituted t
n2π

by t.
Maybe, you have already wondered why
we use the logarithmic differential dt

t in-
stead of dt. One reason is that the loga-
rithmic differential dt

t is invariant under
substitutions of the form t 7→ c · t for a
constant c ∈ R.
[16] Here, we have used the absolute con-
vergence to interchange integration and
summation. More precisely, we have
used the following fact from analysis: If
fn is a sequence of Lebesgue measur-
able functions and if ∑

∫
| fn| < ∞ or∫

∑ | fn| < ∞, then

∑
∫

fn =
∫

∑ fn.

which will imply the corresponding functional equation for ξ(s). Let
us express the functional equation for θ(t) in terms of the function
ω(t) = 1

2 (θ(t)− 1). Using the functional equation (2.1), we get

ω(1/t) =
1
2
(θ(1/t)− 1) =

1
2
(
√

tθ(t)− 1)

=
1
2
(
√

t(1 + 2ω(t))− 1) =
√

tω(t) +
√

t
2
− 1

2
.

The strategy is now to use the formula (2.2), i.e.,

ξ(s) =
∫ ∞

0
ts/2ω(t)

dt
t

to prove both, the functional equation and the meromorphic contin-
uation. Unfortunately, the integral on the right hand side does not
converge for general s ∈ C. By Lemma 2.2.4, for general s ∈ C, the
convergence at ∞ is not problematic, since ω(t) is a rapidly decreasing
function. But, for s ∈ C with Re(s) ≤ 1, the integral does not converge
absolutely near 0. So let us split the integral into a problematic part
and an unproblematic part:

∫ ∞

0
ts/2ω(t)

dt
t
=

∫ 1

0
ts/2ω(t)

dt
t︸ ︷︷ ︸

converges only for Re(s)>1

+
∫ ∞

1
ts/2ω(t)

dt
t︸ ︷︷ ︸

converges for all s∈C

.

Luckily, we can use the transformation behaviour of ω and the sub-
stitution t 7→ 1/t to write the problematic part in a more convenient
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way:∫ 1

0
ts/2ω(t)

dt
t
=
∫ ∞

1
ω(1/t)t−s/2 dt

t

=
∫ ∞

1

(
√

tω(t) +
√

t
2
− 1

2

)
t−s/2 dt

t

=
∫ ∞

1
ω(t)t

1−s
2

dt
t
+

1
2

∫ ∞

1
t
−1−s

2 dt− 1
2

∫ ∞

1
t−1− s

2 dt

=
∫ ∞

1
ω(t)t

1−s
2

dt
t︸ ︷︷ ︸

converges for all s∈C

− 1
1− s

− 1
s

.

By combining what we have shown above, we obtain

ξ(s) =
∫ ∞

1
ts/2ω(t)

dt
t
+
∫ ∞

1
ω(t)t

1−s
2

dt
t︸ ︷︷ ︸

converges for all s∈C

− 1
1− s

− 1
s

. (2.3)

The right hand side of this equation is a meromorphic function on C \
{0, 1} with simple poles at s = 0 and s = 1. Thus, we have succeeded
to find a meromorphic continuation of ξ(s). The functional equation
follows from the fact that the right hand side of (2.3) is invariant under
the substitution s 7→ 1− s.

Using the fact that Γ(s) is a non-vanishing meromorphic function
on C with simple poles at the non-positive integers, we deduce imme-
diately the following Corollary.

Corollary 2.2.6. The Riemann zeta function ζ(s) admits a holomorphic con-
tinuation to C \ {1} with a simple pole at s = 1 with residue 1.

Proof. We have seen in the Exercises that the Gamma function Γ(s)
is a non-vanishing holomorphic function on C \ {0,−1,−2, . . . } with
simple poles at s = 0,−1,−2, . . . . Thus, 1

Γ(s) is an entire holomorphic
function on C. By Theorem 2.2.5, the Riemann zeta function

ζ(s) =
πs/2ξ(s)
Γ(s/2)

is holomorphic on C \ {0, 1} with at most simple poles at s = 0 and
s = 1. The singularity at s = 0 is removable, since both Γ(s/2) and ξ

have simple poles at s = 0, so the poles cancel. Hence, ζ(s) extends to
C \ {1} with a simple pole at s = 1 with residue

Ress=1 ζ(s) = lim
ϵ→0

ϵζ(1 + ϵ)

= lim
ϵ→0

ϵξ(1 + ϵ)
π(1+ϵ)/2

Γ((1 + ϵ)/2)
= Ress=1 ξ(s)

√
π

Γ(1/2)
= 1.
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In the proof of Theorem 2.2.5, we have written the completed Rie-
mann zeta function as an integral

ξ(s) =
∫ ∞

0
ts/2ω(t)

dt
t

.

This is a special case of the following definition:

Definition 2.2.7. For a given function f : R>0 → R, we define its
Mellin transform by the formula

M f (s) :=
∫ ∞

0
f (t)ts dt

t
,

whenever the integral exists.

Outlook

The classical theta function

θ(t) := ∑
n∈Z

e−πn2t = 1 + 2
∞

∑
n=1

e−πn2t

admits various generalizations which appear in different branches of
mathematics, e.g., number theory, algebraic geometry, mathematical
physics and analysis. Let us indicate the relation to algebraic geome-
try. One can define the following generalization of the classical theta
function. For z ∈ Z and τ ∈ H = {τ ∈ C | Im(τ) > 0}, we define the
Jacobi theta function as

Θ(τ, z) := ∑
n∈Z

eπin2τ+2πinz.

This series converges absolutely for all (τ, z) ∈H×C and is holomor-
phic in τ and z. Indeed, this is a generalization of our classical theta
function

θ(t) := Θ(it, 0).

Before we describe the relevance of the Jacobi theta functions for alge-
braic geometry, let us make a brief detour to (complex) elliptic curves.
For fixed τ ∈ H, let us write Λτ for the subgroup ⟨1, τ⟩ of (C,+)

generated by 1 and τ. Such subgroups are called lattices in C. The
quotient

C/Λτ

turns out to be a complex manifold of dimension 1. Even better, it can
be shown that C/Λτ are the C-valued points of an elliptic curve [17] [17] If you have never seen an elliptic

curve, you can think about an elliptic
curve (over C) as a curve given by the
vanishing locus of the equation

y2 = x3 − Ax− B

for certain A, B ∈ C with the prop-
erty that the polynomial x3− Ax− B has
only simple roots.

defined over C. Thus, it is not only a complex manifold but a complex
manifold which ’comes from an algebraic variety’. Conversely, it can
be shown that the C-valued points of any elliptic curve over C are
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isomorphic to C/Λτ for some τ ∈ C. This correspondence is very
important for studying isomorphism classes of elliptic curves[18].

[18] Finally, this leads to an explicit de-
scription of the C-valued points of cer-
tain moduli spaces of elliptic curves.

Let us now come back to the Jacobi theta function. As we have
indicated above, we can associate to τ ∈ H a complex elliptic curve
C/Λτ . One might hope, that Θ(τ, ·) is a Λτ-periodic function on C.
If this were the case, one would obtain a well-defined function on the
elliptic curve C/Λτ . Unfortunately, it turns out that the Jacobi theta
function is not Λτ-periodic. Nevertheless, it satisfies a nice transfor-
mation behaviour for maps of the form z 7→ z + λ for λ ∈ Λτ . If
one makes this transformation behaviour explicit, it turns out that the
Jacobi theta function (and certain generalizations) give an explicit de-
scription of sections of line bundles on elliptic curves. This plays an
important role in the study of elliptic curves, their line bundles and
their cohomology. This can even be generalized to abelian varieties
which can be seen as higher dimensional generalizations of elliptic
curves. Finally, let us observe that elliptic curves and abelian varieties
have many interesting applications to number theory. This closes the
circle and we are back in the world of number theory where we belong
to, at least in this lecture.

2.3 Fourier Theory

In this section, we deduce the functional equation of the classical theta
series

θ(t) := ∑
n∈Z

e−πn2t = 1 + 2
∞

∑
n=1

e−πn2t.

We will give a purely Fourier-theoretic proof. So let us start with
recalling[19] some basic facts from Fourier analysis. Let us write C∞(R) [19] By the way, don’t be afraid if you are

not familiar with Fourier analysis. We
will recall all relevant statements and
definitions.

for the set of all infinite differentiable complex-valued functions on R.

Definition 2.3.1. The space of Schwartz functions consists of all f ∈
C∞(R) such that all derivatives f (n) are rapidly decreasing on R. We
will write S(R) for the space of all Schwartz functions on R. For a
Schwartz function f ∈ S(R) let us define its Fourier transform as

f̂ (x) :=
∫

R
f (y)e−2πixydy.

An important example for a function in the Schwartz space is the
function f (x) = e−πx2

. In the exercises, we will verify that it is indeed
rapidly decreasing. This function has the important property that it is
its own Fourier transform. More generally, we have:

Lemma 2.3.2. For t ∈ R>0 let us consider the function ft(x) = e−πtx2
. We

have
f̂t =

1√
t

f1/t.
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Proof. This will be shown in the exercises.

We will use the following Theorem without proof:

Theorem 2.3.3 (Fourier Inversion Theorem on R). For f ∈ S(R), we
have f̂ ∈ S(R) and the Fourier inversion formula holds:̂̂f (x) = f (−x)

Proof. For a proof, we refer to Theorem 2.2.14. in Loukas Grafakos’
book on ’Classical Fourier Analysis’[20]. [20] Loukas Grafakos. Classical Fourier

analysis, volume 249 of Graduate Texts in
Mathematics. Springer, New York, second
edition, 2008. ISBN 978-0-387-09431-1

The functional equation of the classical theta series will follow from
the Poisson summation formula:

Theorem 2.3.4 (Poisson summation formula). For f ∈ S(R), we have

∑
k∈Z

f (k) = ∑
k∈Z

f̂ (k).

Before we give the proof of the Poisson summation formula, let us
explain how this implies the functional equation of θ.

Corollary 2.3.5. The classical theta series satisfies the functional equation:

θ(t) =
1√

t
θ(1/t).

Proof. Lemma 2.3.2 gives for the function ft(x) = e−πtx2
the following

explicit formula for the Fourier transform

f̂t =
1√

t
f1/t.

The functional equation of the theta function follows now immediately
from the Poisson summation formula:

θ(t) = ∑
k∈Z

ft(k) = ∑
k∈Z

f̂t(k) = ∑
k∈Z

1√
t

f1/t(k) =
1√

t
θ(1/t).

For the proof of the Poisson summation formula, we will need the
Fourier expansion of periodic functions, i.e., functions f : R→ C with
f (x + 1) = f (x). We will identify such functions with functions on
S1 := R/Z. We will also use the following Theorem form Fourier
Analysis without proof.

Theorem 2.3.6 (Fourier Expansion on S1). For f ∈ C∞(R/Z) and x ∈
R, we have

f (x) = ∑
k∈Z

ck( f )e2πikx, (2.4)

where ck( f ) :=
∫ 1

0 f (t)e−2πiktdt. The sum (2.4) converges absolutely and
uniformly in x. The elements of the sequence (ck( f ))k∈Z are called Fourier
coefficients and form a rapidly decreasing sequence on Z.
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Proof. For a proof, we refer to Theorem 2.2.14. in Loukas Grafakos’
book on ’Classical Fourier Analysis’[21]. [21] Loukas Grafakos. Classical Fourier

analysis, volume 249 of Graduate Texts in
Mathematics. Springer, New York, second
edition, 2008. ISBN 978-0-387-09431-1Let us now deduce the Poisson summation formula using Fourier

theory:

Proof of Poisson summation. For a given Schwartz function f ∈ S(R)

let us define

F(x) := ∑
k∈Z

f (x + k).

Since f and all its derivatives are rapidly decreasing, this sum con-
verges absolutely and defines a smooth function on R. Furthermore,
the function F is periodic:

F(x + 1) = ∑
k∈Z

f (x + k + 1) = ∑
k∈Z

f (x + k) = F(x).

Thus, by Theorem 2.3.6, it admits a Fourier expansion

F(x) = ∑
k∈Z

ck(F)e2πikx,

with ck(F) :=
∫ 1

0 F(t)e−2πiktdt. The result follows from the following
computation:

∑
k∈Z

f (k) = F(0) = ∑
k∈Z

∫ 1

0
F(t)e−2πiktdt

= ∑
k∈Z

∫ 1

0
∑
l∈Z

f (t + l)e−2πiktdt

= ∑
k∈Z

∑
l∈Z

∫ l+1

l
f (t)e−2πik(t−l)dt

= ∑
k∈Z

∫
R

f (t)e−2πiktdt = ∑
k∈Z

f̂ (k).

Here, we have interchanged summation and integration by absolute
convergence, compare footnote[16].

Outlook

Fourier analysis is everywhere. Perhaps, you might have already seen
examples of Fourier expansions for periodic functions in terms of the
sin and cos functions. In Theorem 2.3.6, we have seen the following
formula for a periodic function f

f (x) = ∑
k∈Z

ck( f )e2πikx,
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where ck( f ) :=
∫ 1

0 f (t)e−2πiktdt. By writing e2πikx = cos(2πikx) +
i sin(2πikx), we obtain the following version of the Fourier expansion
formula

f (x) =
a0

2
+

∞

∑
k=1

(ak cos(2πikx) + bk sin(2πikx)), (2.5)

with ak and bk defined for k ≥ 1 by the formula

ak = ck + c−k

bk = i(ck − c−k).

This allows one to write periodic functions as an infinite linear combi-
nation of simple trigonometric functions. The above Fourier expansion
formula in (2.5) has the advantage that the coefficients bk vanish if f is
real-valued. The fact that the sequence of Fourier coefficients ak and bk

(respectively ck) is rapidly decreasing has important applications. One
often obtains a quiet good approximation of f by considering only the
truncated sequences[22] [22] Approximation of a piecewise linear

function:

a0

2
+

N

∑
k=1

(ak cos(2πikx) + bk sin(2πikx)), for some N.

This has many applications, even outside of mathematics. Many im-
portant modern developments would not exist without Fourier Analy-
sis. Just to mention a few of them: efficient compression of data (mp3,
mp4, jpg), bandpass filters, image processing, face recognition, etc..
This is also a good place to recommend the following nice video[23]

[23] Here is a link to the YouTube video
about the Harmonic Analyzer:

about a long forgotten machine – the Harmonic Analyzer.

2.4 Chebyshev bounds for primes

In the following two sections, we will study the asymptotic distribu-
tion of prime numbers. Although, no exact formula for the number of
primes

π(x) := ∑
p≤x

1

less than a given positive real number x is known, this functions satis-
fies a quite regular pattern asymptotically[24]. The aim of the following [24] The following plot shows the function

π(x)
x/ ln x .two sections is to prove the Prime Number Theorem (PNT), which says

lim
x→∞

π(x)
x/ log x

= 1.

Let us briefly indicate the history of the Prime Number Theorem. It
has been known since Euclid that π(x)→ ∞ as x → ∞. Euler was able
to proof π(x)/x → 0 as x → ∞. In other words, as x increases, the

https://www.youtube.com/watch?v=GyYflzRVu6M
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prime numbers become rarer. Around 1850, Chebyshev found more
quantitative description for the growth of the function π(x). He was
able to prove that there exist positive real numbers a and b such that

a
x

log x
≤ π(x) ≤ b

x
log x

.

Furthermore, he could also show that the limit

lim
x→∞

π(x)
x/ log x

is equal to 1 if it exists. Finally, Hadamard and de la Vallée-Poussin
(1896) succeeded to prove independently the Prime Number Theorem,
i.e.,

lim
x→∞

π(x)
x/ log x

= 1.

In this lecture, we will prove the Chebyshev bounds for π(x). This
proof will not involve the Riemann zeta function and is rather elemen-
tary. In the next lecture, we will prove the PNT using the Riemann
zeta function. Let us start with the following elementary estimate for
the least common multiple of the first n positive integers.

Lemma 2.4.1. Let dk := lcm(1, 2, . . . , k) be the least common multiple of the
first k positive integers. For a positive integer n we have the estimate

d2n+1 > 4n.

Proof. The value of the integral

I :=
∫ 1

0
xn(1− x)ndx

can be bounded by 0 < I < 4−n, since we have the estimate 0 <

x(1− x) ≤ 1/4 for 0 < x ≤ 1. On the other hand, by expanding the
product in the integrand, we get

xn(1− x)n = anxn + an+1xn+1 + · · ·+ a2nx2n,

for suitable integers an, . . . , a2n. We can compute the integral explicitly
in terms of the coefficients an, . . . , a2n:

I =
an

n + 1
+ · · ·+ a2n

2n + 1
.

This implies that d2n+1 I is a positive integer. In particular, we have
d2n+1 I ≥ 1. Together with the estimate I < 4−n, we obtain the desired
estimate:

d2n+1 ≥
1
I
> 4n.
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Lemma 2.4.2. For each integer n ≥ 2, we can bound the product of all
primes less than n from above by

∏
p≤n

p < 4n.

Proof. We will prove the statement by induction over n. The statement
is obviously true for n = 2, 3. For an integer n ≥ 4, let us assume that
we have already shown the estimate

∏
p≤k

p < 4k

for all integers k ≤ n− 1. Our aim is to prove the statement for n. If n
is even, we have

∏
p≤n

p = ∏
p≤n−1

p < 4n−1 < 4n,

so the statement is obviously true and we may assume that n = 2m− 1
for some m ≥ 3. By dividing the product into two parts, we get by the
induction hypothesis the estimate

∏
p≤n

p = ∏
p≤m

p ∏
m<p≤2m−1

p ≤ 4m ∏
m<p≤2m−1

p.

Now, let us observe that all primes of the last product divide the fac-
torials in the numerator of the binomial coefficient(

2m− 1
m

)
=

(2m− 1)!
m!(m− 1)!

but they do not divide the factorials in the denominator. Hence, we
get ∏m<p≤2m−1 p | (2m−1

m ) which proves

∏
m<p≤2m−1

p ≤
(

2m− 1
m

)
.

The binomial theorem gives

2
(

2m− 1
m

)
=

(
2m− 1

m

)
+

(
2m− 1
m− 1

)
<

2m−1

∑
k=0

(
2m− 1

k

)
= (1+ 1)2m−1.

and allows us to estimate the binomial coefficient (2m−1
m ) < 22m−2 =

4m−1. Thus, we get

∏
p≤n

p ≤ 4m
(

2m− 1
m

)
< 4m4m−1 = 4n.
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Theorem 2.4.3 (Chebyshev Bounds). For all x ≥ 3 we have

a
x

log x
< π(x) < b

x
log x

for a = 1
2 log 2 and b = 6 log 2.

Proof. For 3 ≤ x < 6, the estimates are checked by a straightforward
computation. Thus, we may assume x ≥ 6. Choose n such that 2n +

1 ≤ x ≤ 2n + 3 and let us write

d2n+1 := lcm(1, . . . , 2n + 1) = pα1
1 . . . pαs

s

for the prime decomposition of d2n+1 with s = π(2n + 1). First note,
that pαi

i ≤ 2n + 1 for all 1 ≤ i ≤ s, as each pαi
i must appear on the list

1, 2, . . . , 2n + 1. Therefore,

d2n+1 ≤ (2n + 1)s.

On the other hand, we have seen in Lemma 2.4.1 that d2n+1 > 4n and
deduce

4n < (2n + 1)s.

Taking logarithms gives for x ≥ 6

π(x) ≥ π(2n + 1) = s >
2n log(2)

log(2n + 1)
>

(x− 3) log(2)
log x

≥ (x/2) log(2)
log x

= a
x

log x
.

The estimate from above follows from the following computation

π(x) = ∑
p≤x

1 = ∑
p≤
√

x

1 + ∑√
x<p≤x

1

< π(
√

x) + ∑√
x<p≤x

log p
log
√

x
<
√

x +
2

log x ∑
p≤x

log p

=
√

x +
2

log x
log ∏

p≤x
p

[25]
≤
√

x +
4x log 2

log x

[26]
≤ 6 log 2

x
log x

.

Here, we have used Lemma 2.4.2 and the estimate
√

x ≤ 2x log 2
log x for

x ≥ 6, see [25] and [26]. [25] Here, we use Lemma 2.4.2.
[26] This follows from the estimate

√
x ≤

2x log 2
log x for x ≥ 6.

Outlook

In 1845, Joseph Bertrand conjectured the following statement about
primes.

Conjecture (Bertrand’s Postulate). For each positive integer n, there is at
least one prime in the interval (n, 2n].
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This conjecture is now a Theorem and has been proven by Cheby-
shev in 1850. Indeed, Bertrand’s Postulate follows from the better es-
timate

a
x

log x
≤ π(x) ≤ b

x
log x

.

with a ≈ 0.92129 and b ≈ 1.10555 obtained by Chebyshev. In the
exercises, we will give an elementary proof of Bertrand’s Postulate.

2.5 The Prime Number Theorem

In the last section, we have already seen the Chebyshev bounds for the
distribution of prime numbers

a
x

log x
< π(x) < b

x
log x

.

In this section, we will sketch the proof of the Prime Number Theorem,
i.e.,

lim
n→∞

π(n)
n/ log(n)

= 1.

In particular, we want to explain why the zero-free region of the Rie-
mann zeta function plays an important role in the proof of the PNT. It
will be convenient to introduce the following notation. For two func-
tions f , g : R>0 → R, we will write

f (x) ∼ g(x), as x → ∞

if and only if f (x)
g(x) → 1 as x → ∞. With this notation, the Prime

Number Theorem can be formulated as follows.

Theorem 2.5.1 (Prime Number Theorem). We have

π(x) ∼ x
log x

as x→ ∞.

Before we give the proof, we will need a few auxiliary results. Let
us define the function

Φ(s) := ∑
p

log p
ps .

It is easily checked that the series defining Φ(s) is absolutely conver-
gent for Re(s) > 1 and defines a holomorphic function in this half-
plane. Next, we want to prove the non-vanishing of ζ(s) on Re(s) ≥ 1.
First, we recall the following fact from complex analysis.

Lemma 2.5.2. Let f : U → C be a meromorphic function on an open subset
U ⊆ C. Then, ∂

∂s log f (s) has at most simple poles on U. Furthermore, if
µ ∈ Z is the order[27] of f at s0 ∈ U then, the residue at s0 ∈ U is given by [27] Recall that the order of a meromor-

phic function at s0 ∈ U is µ if the Laurent
expansion of f near s0 starts at k = µ,
i.e.,

f (s) =
∞

∑
k=µ

ak(s− s0)
k , with aµ ̸= 0.

Ress=s0

∂

∂s
log f (s) = Ress=s0

f ′(s)
f (s)

= µ.
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Proof. Let s0 ∈ U and consider the Laurent expansion of f at s0, i.e.,

f (s) =
∞

∑
k=µ

ak(s− s0)
k, with aµ ̸= 0.

The claim follows from computing the leading terms in the Laurent
expansion of f ′ and 1/ f near s0 ∈ U. They are given by the following
formulas[28] [28] This is a good place to remind you

of the Landau big-O symbol. For two
functions f and g with g non-zero and
s0 ∈ C, we write

f (s) = O(g(s)) as s→ s0

if and only if

lim sup
s→s0

∣∣∣∣ f (s)
g(s)

∣∣∣∣ < ∞.

This means that | f (s)| grows at most like
a constant times |g(s)| as s→ s0.

f ′(s) =
∞

∑
k=µ

ak · k(s− s0)
k−1 = aµ · µ · (s− s0)

µ−1 + O((s− s0)
µ), .

and
1

f (s)
=

1
aµ

(s− s0)
−µ + O((s− s0)

−µ+1)

Thus, we get
f ′(s)
f (s)

= µ(s− s0)
−1 + O(1)

which proves that f ′/ f has at most a simple pole at s0 ∈ U with
Ress=s0

f ′(s)
f (s) = µ.

We are now ready to prove the non-vanishing of ζ(s) for Re(s) ≥ 1.

Proposition 2.5.3 (Non-vanishing of ζ(s) on Re(s) ≥ 1).

(a) The function Φ(s) extends meromorphically to Re(s) > 1
2 . The poles of

Φ(s) are all simple and located at s = 1 and at the zeroes of ζ(s). The pole
of Φ(s) at s = 1 has residue 1.

(b) The Riemann zeta function does not vanish on the half-plane Re(s) ≥ 1.

Proof. For Re(s) > 1 the Euler product formula implies the non-vanishing
of ζ(s). Furthermore, the Euler product gives the following formula[29] [29] Here, the choice of the branch of the

logarithm does not play a role, since we
take the derivative.

− ζ ′(s)
ζ(s)

= − d
ds

log ζ(s) = ∑
p

d
ds

log(1− p−s) = ∑
p

log p
ps − 1

= ∑
p

log p
ps

(
1 +

1
ps − 1

)
= Φ(s) + ∑

p

log p
ps(ps − 1)

. (2.6)

It is not difficult to check[30] that the final sum converges for Re(s) > 1
2 . [30] For example, as follows: For all

primes p, we have

log p
|ps(ps − 1)| ≤

log p
(p− 1)2 Re(s)

.

For every ϵ > 0 and all sufficiently large
primes p, we have log p < pϵ. This gives

log p
|ps(ps − 1)| ≤

1
(p− 1)2 Re(s)−ϵ

,

and the absolute convergence for
Re(s) > 1

2 + ϵ follows from the
convergence of

∑
n≥1

1
n2 Re(s)−ϵ

.

Since ϵ > 0 was arbitrary, we deduce the
desired convergence.

Since we have already seen that ζ(s) extends meromorphically to the
entire complex plane with a simple pole at s = 1, we deduce from (2.6)
the statement (a) in combination with Lemma 2.5.2.

It remains to show that ζ(s) does not vanish on the line given by
Re(s) = 1. For a given real number α ̸= 0, let us write µ for the
order of vanishing of ζ(s) at s = 1 + iα and ν for the order of ζ(s) at
s = 1 + 2iα. From Lemma 2.5.2, we conclude

Ress=1
ζ ′(s)
ζ(s)

= −1, Ress=1+iα
ζ ′(s)
ζ(s)

= µ, Ress=1+2iα
ζ ′(s)
ζ(s)

= ν.
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The sum ∑p
log p

ps(ps−1) is holomorphic on the half-plane Re(s) > 1
2 , so

by (2.6) the residue of Φ at s = s0 coincides with the residue of − ζ ′(s)
ζ(s)

at s = s0 for all s0 ∈ C with Re(s0) > 1/2.
So, we obtain

lim
ϵ� 0

ϵΦ(1+ ϵ) = 1, lim
ϵ� 0

ϵΦ(1+ iα+ ϵ) = −µ, lim
ϵ� 0

ϵΦ(1+ 2iα+ ϵ) = −ν.

Because of Φ(s) = Φ(s), we get also the residues at s = 1− iα and
s = 1− 2iα, i.e.,

lim
ϵ� 0

ϵΦ(1+ ϵ) = 1, lim
ϵ� 0

ϵΦ(1± iα+ ϵ) = −µ, lim
ϵ� 0

ϵΦ(1± 2iα+ ϵ) = −ν.

In particular, this gives

lim
ϵ� 0

2

∑
r=−2

(
4

2 + r

)
ϵΦ(1 + ϵ + irα) =

(
4
2

)
− 2
(

4
3

)
µ− 2

(
4
4

)
ν.

The binomial theorem implies for any ϵ > 0

0 < ∑
p

log p
p1+ϵ

(piα/2 + p−iα/2)4 =
2

∑
r=−2

(
4

2 + r

)
Φ(1 + ϵ + irα).

This positivity of the latter term shows ∑2
r=−2 (

4
2+r)ϵΦ(1+ ϵ+ irα) > 0

and hence
6− 8µ− 2ν ≥ 0.

Since µ and ν are non-negative, we deduce µ = 0. Since µ was the
order of vanishing of ζ at s = 1 + iα and α was arbitrary, we deduce
that ζ(s) does not vanish for Re(s) = 1.

We will use the following purely analytic Theorem without proof.

Theorem 2.5.4. Let f : R>0 → C be a bounded and continuous function.
Suppose that the function g(z) =

∫ ∞
0 f (t)e−ztdt which is initially only de-

fined for Re(z) > 0 extends holomorphically to Re(z) ≥ 0. Then
∫ ∞

0 f (t)dt
exists and we have ∫ ∞

0
f (t)dt = g(0).

Proof. We refer the interested reader to Page 707 in Zagier’s paper on
Newman’s proof of the PNT[31] for a proof. [31] D. Zagier. Newman’s short proof of

the prime number theorem. Amer. Math.
Monthly, 104(8):705–708, 1997. ISSN
0002-9890. doi: 10.2307/2975232. URL
https://doi.org/10.2307/2975232

Let us introduce the function

ϑ(x) := ∑
p≤x

log p.

By combining the analytic Theorem 2.5.4 with the non-vanishing of
ζ(s) on Re(s) ≥ 1, we will prove:

https://doi.org/10.2307/2975232
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Corollary 2.5.5. The following integral is convergent:∫ ∞

1

ϑ(x)− x
x2 dx. (2.7)

Proof. Let us first observe for Re(s) > 0, we have the equation

Φ(s + 1) = ∑
p

log p
ps+1

= (s + 1)
∫ ∞

1

ϑ(x)
xs+2 dx = (s + 1)

∫ ∞

0
e−(s+1)tϑ(et)dt. (2.8)

We want to apply Theorem 2.5.4 to the continuous function

f (t) := ϑ(et)e−t − 1.

Thus, let us consider the integral

g(s) =
∫ ∞

0
f (t)e−stdt.

For Re(s) > 0, we can rewrite this integral using (2.8) as follows

g(s) =
∫ ∞

0
f (t)e−stdt =

∫ ∞

0
ϑ(et)e−(s+1)t − e−stdt =

Φ(s + 1)
(s + 1)

− 1
s

.

Let us check the assumptions of Theorem 2.5.4. We have to check
that f (t) is bounded on R>0 and that g(s) extends to Re(s) ≥ 0.
The boundedness of f follows by taking logarithms of the estimate
in Lemma 2.4.2:

| f (t)| ≤ ϑ(et)

et =
1
et log ∏

p≤et

p ≤ 1
et (2 log 2)et ≤ 2 log 2. (2.9)

Let us now check that the function g(s) extends to Re(s) ≥ 0. The
function g(s) is initially defined only for Re(s) > 0. By Proposition
2.5.3, we know that Φ(s + 1) is meromorphic on Re(s) ≥ 0 and its
only pole[32] is a simple pole at s = 0 with residue 1. Since 1

s does also [32] Here, the non-vanishing of ζ(s) on
Re(s) ≥ 1 enters the argument. If ζ(s)
had zeroes in Re(s) ≥ 1 the function
Φ(s) would have further poles and we
could not apply Theorem 2.5.4.

have a pole with residue 1 at s = 1, we deduce that g(s) = Φ(s+1)
s+1 −

1
s

extends to a holomorphic[33] function on the half-plane Re(s) ≥ 0.

[33] Note, that the functions Φ(s+1)
s+1 and 1

s
have only simple poles with the same
residue on Re(s) ≥ 0. So, the poles in
the difference ’cancel’ and g(s) extends
holomorphicaly to Re(s) ≥ 0.

Hence g(s) extends holomorphically to Re(s) ≥ 0 and we can apply
Theorem 2.5.4 to obtain the convergence of the integral

g(0) =
∫ ∞

0
f (t)dt =

∫ ∞

0
ϑ(et)e−t − 1dt

=
∫ ∞

0

ϑ(et)− et

et dt =
∫ ∞

1

ϑ(x)− x
x2 dx.

Here, we have made the substitution x = et in the last step.

We are now well-prepared to prove the following Theorem which
will then imply the Prime Number Theorem.
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Theorem 2.5.6. We have ϑ(x) ∼ x as x → ∞.

Proof. We prove the theorem by contradiction. Let us first assume,
that for some λ > 1 there are arbitrary large real numbers y with
ϑ(y) ≥ λy. For any such y we have∫ λy

y

ϑ(x)− x
x2 dx ≥

∫ λy

y

λy− x
x2 dx =

∫ λ

1

λ− x
x2 dx > 0.

The right hand side is a positive real number which is independent
of y. Since there are arbitrarily large values y with ϑ(y) ≥ λy, this
contradicts the convergence of the integral∫ ∞

1

ϑ(x)− x
x2 dx.

Next, let us assume that for some λ < 1 there are arbitrary large real
numbers y with ϑ(y) ≤ λy. By a similar argument, we obtain∫ y

λy

ϑ(x)− x
x2 dx ≤

∫ y

λy

λy− x
x2 dx =

∫ 1

λ

λ− x
x2 dx < 0.

The right hand side is a negative real number which is independent
of y. Again this would contradict the convergence of the integral (2.7).

We are now ready to prove the Prime Number Theorem:

Proof of the Prime Number Theorem. The Prime Number Theorem is an
easy consequence of the asymptotic ϑ(x) ∼ x since we can estimate
π(x) in terms of ϑ(x). Let us start with an upper bound:

ϑ(x) = ∑
p≤x

log p ≤ ∑
p≤x

log x = π(x) log x.

For the lower bound, let us fix a positive real number ϵ > 0:

ϑ(x) ≥ ∑
x1−ϵ≤p≤x

log p ≥ ∑
x1−ϵ≤p≤x

(1− ϵ) log x

= (1− ϵ) log xπ(x)− (1− ϵ) log xπ(x1−ϵ).

The Chebyshev bounds give (1− ϵ) log xπ(x1−ϵ) ≤ 6 log 2x1−ϵ and we
obtain

ϑ(x) ≥ (1− ϵ) log xπ(x)− 6 log 2x1−ϵ.

Combining both estimates gives for any ϵ > 0

ϑ(x)
(1− ϵ) log x

+ 6 log 2
x1−ϵ

(1− ϵ) log x
≥ π(x) ≥ ϑ(x)

log x
.

Dividing by x
log x and passing to the limit x → ∞ shows

1
1− ϵ

≥ lim
x→∞

π(x)
x

log x
≥ 1.
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Since this holds for any ϵ > 0, we get the desired asymptotic formula

lim
x→∞

π(x)
x

log x
= 1.

Outlook

In this lecture, we have seen that the non-vanishing of ζ(s) for Re(s) ≥
1 can be used to prove the Prime Number Theorem. The PNT is equiv-
alent to the following statement[34]

[34] This is a good place to remind you
of the Landau little-o symbol. For two
functions f and g with g non-zero and
x0 ∈ R∪ {±∞}, we write

f (x) = o(g(x)) as x → x0

if and only if

lim sup
x→x0

∣∣∣∣ f (x)
g(x)

∣∣∣∣ = 0.

This means that | f | grows much slower
than |g| if we approach x0.

π(x) =
x

log x
+ o

(
x

log x

)
, as x → ∞.

It is a natural question if one can improve the error term in the PNT. In-
deed, there is a much stronger relation between the non-vanishing re-
gion of the Riemann zeta function and the distribution of prime num-
bers. For refinements of the PNT it is more convenient to introduce
the integral logarithm

Li(x) :=
∫ x

2

1
log t

dt.

It is not difficult to see that Li(x) ∼ x
log x , so we can reformulate the

PNT as follows

π(x) = Li(x) + o (Li(x)) , as x → ∞.

Using the non-vanishing of the Riemann zeta function on Re(s) ≥ 1
and a slightly more refined argument, Vallée Poussin was able to give
a more precise estimate for the error term

π(x) = Li(x) + O(xe−a
√

log x), as x → ∞,

for some positive real number a. It was Bernhard Riemann who ob-
served that one could refine this error term considerably if one knew
that the Riemann zeta function is non-vanishing for Re(s) > 1

2 . We
have already seen that the Riemann zeta function does not have any
zeroes for Re(s) ≥ 1. Using the functional equation, it is not difficult
to find all zeroes in the region Re(s) ≤ 1 (see exercises). The remaining
strip 0 < Re(s) < 1 is called the critical strip and the Riemann Hypoth-
esis claims that all zeroes in this strip lie in the central line Re(s) = 1

2 .
This lead to one of the most important conjectures in mathematics.

Conjecture (The Riemann Hypothesis). All zeroes of the Riemann zeta
function in the strip 0 < Re(s) < 1 lie on the line Re(s) = 1

2 .
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It can be shown that the Riemann Hypothesis is indeed equivalent
to the following refinement of the Prime Number Theorem:

π(x) = Li(x) + O(
√

x log x).

Thus, the asymptotic distribution of the prime numbers is intimately
related to the zero-free region of the Riemann zeta function.

2.6 Euler’s Formula

In this section, we will compute the values of the Riemann zeta func-
tion at the even positive integers. The question about the values of the
Riemann zeta function has its origin in the 17-th century. In 1644, the
Italian mathematician Pietro Mengoli raised the question of the value
of the convergent series

∞

∑
n=1

1
n2 .

Afterwards, mainly mathematicians of the city Basel worked on this
problem and it became popular under the name Basel problem. In his
groundbreaking work[35] Leonhard Euler solved this problem finally [35]

in 1735. He did not only prove the formula

∞

∑
n=1

1
n2 =

π2

6
,

but computed more generally for all positive integers k the value of
the series

∞

∑
n=1

1
n2k .

The aim of this section is to prove Euler’s remarkable formula

ζ(2n) = (−1)n−1 (2π)2n

2(2n)!
B2n.

More generally, we will introduce the Hurwitz zeta function and prove
an explicit formula for all its values at the negative integers.

2.6.1 Bernoulli numbers and Bernoulli polynomials

The Bernoulli numbers and more generally Bernoulli polynomials oc-
cur everywhere in mathematics. They also play an important role in
studying the special values of the Riemann zeta function.

Definition 2.6.1. The Bernoulli numbers Bn for n ≥ 0 are defined by the
formula

t
et − 1

=
∞

∑
n=0

Bn
tn

n!
.
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The first Bernoulli numbers are B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0,
B4 = − 1

30 , B5 = 0. All these values are rational, and except for B1 all
Bernoulli numbers of odd index vanish.

Lemma 2.6.2. The Bernoulli numbers are all rational and B2n+1 = 0 for
n ≥ 1.

Proof. The formal power series et−1
t has coefficients in Q, i.e.,

et − 1
t
∈ QJtK.

Its leading term is 1 and hence a unit in Q. Thus, the inverse of et−1
t

exists in the formal power series ring QJtK and we get

t
et − 1

=
∞

∑
n=0

Bn
tn

n!
∈ QJtK,

and hence the rationality of the Bernoulli numbers. The claim B2n+1 =

0 for n ≥ 1 is equivalent to

t
et − 1

− B1t

being an even function. We have

t
et − 1

− B1t =
t

et − 1
+

t
2

=
2t + t(et − 1)

2(et − 1)

=
t(et + 1)
2(et − 1)

and thus after expansion with e−t/2

t
et − 1

− B1t =
t
2

et/2 + e−t/2

et/2 − e−t/2 . (2.10)

Finally, the following direct computation shows that g(t) := t
et−1 − B1t

is an even function:

g(−t) =
−t
2

e−t/2 + et/2

e−t/2 − et/2 =
t
2

et/2 + e−t/2

et/2 − e−t/2 = g(t).

Thus, we have shown B2n+1 = 0 for n ≥ 1.

We shall also need the Bernoulli polynomials.

Definition 2.6.3. The n-th Bernoulli polynomial Bn(X) for n ∈ Z≥0 is
defined by

teXt

et − 1
=

∞

∑
n=1

Bn(X)
tn

n!
.

Here, we view eXt = ∑∞
k=0

(Xt)k

k! as an element in the power series ring
RJtK over the polynomial ring R = Q[X].
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Of course, the Bernoulli polynomials evaluated at zero give the
Bernoulli numbers, i.e., Bn = Bn(0). The following Lemma gives
a more general connection between the Bernoulli numbers and the
Bernoulli polynomials.

Lemma 2.6.4. We have

Bn(X) =
n

∑
i=0

(
n
i

)
BiXn−i

and

Bn(1− X) = (−1)nBn(X).

Proof. This follows since the generating function teXt

et−1 of the Bernoulli
polynomials is the product of

t
et − 1

=
∞

∑
i=0

Bi
ti

i!

and

eXt =
∞

∑
j=0

X j tj

j!
.

The proof of the second equation follows from comparing the coeffi-
cients of

∞

∑
n=1

Bn(1−X)
tn

n!
=

te(1−X)t

et − 1
=

te−Xt

1− e−t =
(−t)eX(−t)

e−t − 1
=

∞

∑
n=1

Bn(X)
(−t)n

n!
.

2.6.2 Values of the Hurwitz zeta function

In the following, we will compute the values of the Riemann zeta func-
tion at the negative integers. More generally, we will compute the val-
ues of the Hurwitz zeta function, which is defined for 0 < x ≤ 1 and
s ∈ C with Re(s) > 1 by

ζ(s, x) :=
∞

∑
n=0

1
(n + x)s .

Note, that the Riemann zeta function is a special case of the Hurwitz
zeta function:

ζ(s) = ζ(s, 1).

We already know that the Riemann zeta function admits a meromor-
phic continuation to C. The following result generalizes this to the
Hurwitz zeta function:
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Theorem 2.6.5. For 0 < x ≤ 1, the Hurwitz zeta function admits a mero-
morphic continuation to all of C with a simple pole at s = 1 of residue 1 and
satisfies

ζ(1− n, x) = −Bn(x)
n

for n ∈N.

Proof. Set F(t) := te(1−x)t

et−1 and consider the integral

H(s) :=
∫

F(z)zs−2dz,

where the integral is over the following path

which consist of the positive real axis (top side), a circle Cϵ around 0
of radius ϵ, and the positive real axis (bottom side). We define zs :=
exp(s log(z)), where we take the branch of the logarithm with branch
cut along R>0 which is given by log t on the top side of the real axis
and by log(t) + 2πi on the bottom side. Then, the integral defining
H(s) converges absolutely and locally uniformly for all s ∈ C. Hence,
H(s) is a holomorphic function defined on the whole complex plane.
By our choice of the branch of the logarithm, we may write

H(s) =
∫

F(z)zs−2dz =−
∫ ∞

ϵ
F(t) exp((s− 2) log t)dz +

∫
Cϵ

F(z)zs−2dz

+
∫ ∞

ϵ
F(t) exp((s− 2)(log t + 2πi))dt

=(e2πis − 1)
∫ ∞

ϵ
F(t)ts−2dt +

∫
Cϵ

F(z)zs−2dz.

For a moment, let us assume Re(s) > 1. Then
∫

Cϵ
→ 0 as ϵ→ 0, so

H(s) = (e2πis − 1)
∫ ∞

0
F(t)ts−2dt

= (e2πis − 1)
∫ ∞

0
ts−1 e(1−x)t

et − 1
dt

= (e2πis − 1)
∫ ∞

0
ts−1

∞

∑
m=0

e−(x+m)tdt

= (e2πis − 1)
∞

∑
m=0

1
(x + m)s Γ(s)

= (e2πis − 1)ζ(s, x)Γ(s).
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In particular, we get for s ∈ C with Re(s) > 1

ζ(s, x) =
H(s)

(e2πis − 1)Γ(s)
. (2.11)

The right hand side of this equation is a holomorphic function on C \
{1} with a simple pole at s = 1. In particular, this equation provides a
meromorphic continuation of ζ(s, x). Let us now assume that s = 1− n
is an integer. Then, by Cauchy’s integral theorem and Lemma 2.6.4,
we get[36] [36] For the integer s = 1− n, the two inte-

grals from ∞ to ϵ and from ϵ to ∞ cancel,
so only the integral over Cϵ survives.

H(1− n) =
∫

Cϵ

F(z)z−n−1dz

= (2πi)
Bn(1− x)

n!
= (2πi)(−1)n Bn(x)

n!
. (2.12)

We have already seen that the Gamma function has simple poles at all
non-positive integers with

Ress=1−nΓ(s) =
(−1)n−1

(n− 1)!
.

We deduce

lim
s→1−n

(e2πis− 1)Γ(s) = lim
s→1−n

(2πi(s− (1−n))+O((s− (1−n))2))Γ(s)

= 2πi · Ress=1−nΓ(s) =
2πi(−1)n−1

(n− 1)!
. (2.13)

Combining (2.11), (2.12) and (2.13) gives the desired equality

ζ(1− n, x) = −Bn(x)
n

.

Putting x = 1 in the above formula for the Hurwitz zeta values
gives.

Corollary 2.6.6. For n ≥ 1, we have

ζ(1− n) = −(−1)n Bn

n
.

In particular, we have ζ(0) = −1/2 and for any integer n ≥ 2

ζ(1− n) = −Bn

n
.

Proof. For x = 1, we get

ζ(1− n) = ζ(1− n, 1) = −Bn(1)
n

= −(−1)n Bn

n
.

Since B1 = −1/2 and B2n+1 = 0 for n ≥ 1, we deduce the second
claim.
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2.6.3 Euler’s formula

By combining the explicit formula for the negative zeta values with
the functional equation, we deduce Euler’s formula.

Corollary 2.6.7 (Euler’s formula). For n ≥ 1, we have

ζ(2n) = (−1)n−1 (2π)2n

2(2n)!
B2n.

Proof. Let us first express the Riemann zeta function in terms of the
completed Riemann zeta function and apply the functional equation
for ξ to get

ζ(2n) =
πn

Γ(n)
ξ(1− 2n) =

πn

Γ(n)
π−

1−2n
2 Γ

(
1− 2n

2

)
ζ(1− 2n)

=
π2n
√

πΓ(n)
Γ
(

1− 2n
2

)
ζ(1− 2n).

So, let us first compute the Gamma values using the functional equa-
tion Γ(z + 1) = zΓ(z) and Corollary 2.1.9

Γ
(

1− 2n
2

)
=

Γ(1/2)

∏n
k=1

(
1
2 − k

) = (−1)n2n
√

π

∏n
k=1 (2k− 1)

,

and
1

Γ(n)
=

1

∏n−1
k=1 k

=
2n−1

∏n−1
k=1 2k

.

Thus, we obtain

ζ(2n) = π2n(−1)n22n−1 1

∏n−1
k=1 2k ∏n

k=1 (2k− 1)
ζ(1− 2n)

= (−1)n (2π)2n

2(2n− 1)!
ζ(1− 2n).

Finally, we conclude using the explicit formula for ζ(1− 2n) = − B2n
2n

ζ(2n) = (−1)n−1 (2π)2n

2(2n)!
B2n.

Outlook

Euler’s formula for the values of the Riemann zeta function at the
positive even integers says that ζ(2n) is a rational number times (2πi)n

and leads immediately to the following two questions:

(a) What can be said about the odd values of the Riemann zeta func-
tion?
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(b) Is the appearance of (2πi)n in Euler’s formula a coincidence?

The first question concerns the values of the Riemann zeta function at
the odd positive integers, while the second question is about the even
zeta values. This already indicates that the values of the Riemann zeta
function at the integers fall naturally into two classes, depending on
the parity of the integer in the argument. Let us explain, why it is
much more difficult to say something about the values of the Riemann
zeta function at the odd positive integers. Let us start recalling how
we were able to prove Euler’s formula. We started with the formula
ζ(1− n) = − Bn

n for the Riemann zeta function at the negative integers.
This formula does indeed hold for all integers n ≥ 0 independent of
the parity of n. Then, we used the functional equation

π−
s
2 Γ
( s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s)

to relate the value at s = n to the value at s = 1− n. The point is now
the following. If n is even, the Gamma function Γ

(
1−s

2

)
is defined at

s = n, so we can divide by this Γ-value and compute ζ(n). On the other
hand, if n ≥ 2 is odd then 1−n

2 is a negative integer and the Γ-value

Γ
(

1−s
2

)
is not defined[37] at s = n. Thus, the poles of the Gamma [37] Recall that the Gamma function has

poles at all non-positive integers.function are the reason for the different nature of the even respectively
odd zeta values. This lead Deligne to the following definition[38]. [38] He defined it much more generally,

for all values of a motivic L-function
L(M, s) at an integer n.Definition. The value ζ(n) of the Riemann zeta function at an integer

n is called critical if neither of the Gamma factors Γ
( s

2
)

and Γ
(

1−s
2

)
has a pole at s = n. Otherwise, we call the value non-critical.

Thus, the critical values of the Riemann zeta function are exactly the
values corresponding to positive even integers ζ(2n) and the corre-
sponding values on the other side of the functional equation ζ(1− 2n).
Deligne formulated a very general and deep conjecture for all criti-
cal values of ’motivic’ L-functions. Roughly, the expectation is that
critical L-values are always algebraic up to powers of certain explicit
periods[39]. In the case of the Riemann zeta function this conjecture [39] Here, period is meant in the sense of

footnote [11]predicts[40] that ζ(2n) is algebraic up to (2πi)2n, so Euler’s formula
[40] To realize 2πi as a period, we can use
Cauchy’s integral formula

2πi =
∫

γ

dt
t

,

Here, γ ∈ H1(Gm(C), Z) is the gener-
ator of the first homology of Gm(C) =
C× which is a counter-clockwise cir-
cle around 0 ∈ C. Furthermore, ob-
serve that the differential form dt

t is
an algebraic Kähler differential dt

t ∈
Γ(Gm, Ω1

Gm
).

can be seen as a ’proof’ for the Deligne conjecture for the Riemann
zeta function. For more general L-functions, this conjecture is vastly
open. Nevertheless, the Deligne conjecture can be seen as a possible
answer to the second question at the beginning of this section. At the
end of the next section, we will say something about the non-critical
zeta values, i.e., the odd zeta values ζ(3), ζ(5), . . . .
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2.7 A proof that Euler missed

Euler’s formula raises immediately the question about the values of
the values of the Riemann zeta function at the odd positive integers.
These values are much more mysterious and purely understood. It is
not expected that there is a closed and explicit formula for the odd
zeta values in terms of basic mathematical constants such as Euler’s
formula. Thus, it is a natural question if one can say something about
the structure of these values, e.g., if they are rational, irrational, alge-
braic, or transcendental.

For quite a long time, nothing has been known about the structure
of the odd zeta values. So, it was a mathematical sensation when
Apéry succeeded to prove the irrationality of ζ(3), in 1979. The fol-
lowing citation is attributed to the famous mathematician Carl Ludwig
Siegel:

„Man kann diesen Beweis nur wie einen Kristall vor sich her tragen.“

It is very surprising that Apéry’s proof has not been found earlier,
since it is quite elementary. This is summarized in a very concise way
in the following quotation of the mathematician van der Poorten, who
said about Apéry’s proof:

„A proof that Euler missed...“

Up to today, ζ(3) is the only particular of the infinite many numbers

ζ(2n + 1) für n ≥ 1

for which we can prove its irrationality. Nevertheless, there are certain
asymptotic results about the irrationality of odd zeta values. In this
lecture, we will present a nice version of Apéry’s proof which goes
back to Frits Beukers. When we established the Chebyshev bounds for
the function π(x), we have already seen the sequence

dn := lcm(1, . . . , n)

and deduced upper bounds for it. Equipped with the full strength of
the Prime Number Theorem, we can improve this bound.

Proposition 2.7.1. For all sufficiently large integers n, we have[41] [41] With slightly more effort, one can
prove dn ∼ en as n→ ∞.

dn = lcm(1, . . . , n) < 3n.

Proof. Exercise.

Before we proceed with the details of Apery’s proof, let us outline
the strategy. We will construct two integer sequences (An)n≥0 and
(Bn)n≥0 with the following property:[42] [42] We can think about this inequality as

follows: The sequence ( An
Bn

)n of rational
numbers provides a very good rational
approximation of ζ(3). It is a general
principle in transcendental number the-
ory that a real number is irrational or
transcendental if it has very good ap-
proximations by rational numbers.
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0 < |An + Bnζ(3)| → 0 für n→ ∞.

Let us now assume that ζ(3) = a
b was a rational number. Then

(|bAn + aBn|)n≥0

is a non-zero sequence of integers which tends to zero as n→ ∞. This
is an obvious contradiction.

For the construction of the sequences (An)n≥0 and (Bn)n≥0 we will
need a few auxiliary results:

Proposition 2.7.2. For r, s ∈N0 let us consider the integral[43] [43] Let us observe that Ir,s = Is,r , so we
may without loss of generality assume
that r ≥ s.

Ir,s :=
∫ 1

0

∫ 1

0
− log(xy)

1− xy
xrysdxdy.

(a) For r > s we get
d3

r · Ir,s ∈ Z.

Here, we recall dr = lcm(1, . . . , r).

(b) For r = s we have

Ir,r = 2

(
ζ(3)−

r

∑
k=1

1
k3

)
.

In particular, d3
r Ir,r ∈ Z + ζ(3)Z.

Proof. By partial integration, we obtain for k ≥ 0:∫ 1

0
log(x)xr+kdx = lim

ϵ→0

∫ 1

ϵ
log(x)xr+kdx (2.14)

=
1

r + k + 1
lim
ϵ→0

(
[xr+k+1 log(x)]1ϵ −

∫ 1

ϵ

1
x
· xr+k+1dx

)
=

−1
(r + k + 1)2 .

Using (2.14) and the geometric series gives

Ir,s =
∫ 1

0

∫ 1

0
− log(xy)

1− xy
xrysdxdy

= −
∫ 1

0

(
∞

∑
k=0

∫ 1

0
log(xy)xr+kys+kdx

)
dy

= −
∫ 1

0

(
∞

∑
k=0

log(y)ys+k
∫ 1

0
xr+kdx + ys+k

∫ 1

0
log(x)xr+kdx

)
dy

= −
∞

∑
k=0

∫ 1

0

(
ys+k log y
r + k + 1

− ys+k

(r + k + 1)2

)
dy.

By applying (2.14) to the first of the two integrals, we obtain

Ir,s =
∞

∑
k=0

(
1

(r + k + 1)(s + k + 1)2 +
1

(r + k + 1)2(s + k + 1)

)
. (2.15)
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a) For r > s we can rewrite the summand of (2.15) as follows

1
(r + k + 1)(s + k + 1)2 +

1
(r + k + 1)2(s + k + 1)

=
1

(r + k + 1)(s + k + 1)

(
1

s + k + 1
+

1
r + k + 1

)
=

1
r− s

(r + k + 1)− (s + k + 1)
(r + k + 1)(s + k + 1)

(
1

s + k + 1
+

1
r + k + 1

)
=

1
r− s

(
1

s + k + 1
− 1

r + k + 1

)(
1

s + k + 1
+

1
r + k + 1

)
=

1
r− s

(
1

(s + k + 1)2 −
1

(r + k + 1)2

)
.

Substituting this into (2.15) yields

Ir,s =
∞

∑
k=0

1
r− s

(
1

(s + k + 1)2 −
1

(r + k + 1)2

)
=

1
r− s

r−s

∑
k=1

1
(s + k)2 .

For 1 ≤ k ≤ r − s the integer s + k is contained in the set {1, . . . , r}.
Thus, lcm(1, . . . , r) is a multiple of s + k and we obtain

d2
r

1
(s + k)2 ∈ Z.

Since 1 ≤ r− s ≤ r, we also get

dr
1

r− s
∈ Z.

Altogether, we find

d3
r Ir,s =

dr

r− s

r−s

∑
k=1

d2
r

(s + k)2 ∈ Z.

(b) For r = s we can write (2.15) as

Ir,r = 2
∞

∑
k=0

(
1

(r + k + 1)3

)

= 2

(
∞

∑
k=1

1
k3 −

r

∑
k=1

1
k3

)
= 2

(
ζ(3)−

r

∑
k=1

1
k3

)
.

Because k3 is a divisor of d3
r , the claim about the integrality of the

linear combination follows.

For a positive integer n, we define the polynomial Qn := Xn(1−X)n

and set
Pn :=

1
n!

Q(n)
n .

Here, we write Q(n)
n for the polynomial obtained by taking the n-th

formal derivative of the polynomial Qn. Note, that Pn is a polynomial
of degree n with integral coefficients[44]. [44] It is easily checked that the coeffi-

cients of n-th formal derivative of a poly-
nomial in Z[X] are divisible by n!.
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Corollary 2.7.3. There are sequences (An)n∈N and (Bn)n∈N of integers
with the property

d3
n

∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdx = An + Bnζ(3).

Proof. Let us define the integers ar,s for 0 ≤ r, s ≤ n as coefficients of
the polynomial Pn(X)Pn(Y) ∈ Z[X, Y]:

Pn(X)Pn(Y) =
n

∑
r=0

n

∑
s=0

ar,sXrYs.

We set
Bn := d3

n · 2 · (a0,0 + a1,1 + · · ·+ an,n)

and

An := d3
n

(
∑

0≤s<r≤n
2ar,s Ir,s

)
− 2

n

∑
r=1

ar,r

r

∑
k=1

d3
n

k3 .

Let us observe that An and Bn are integers. Proposition 2.7.2 implies:

d3
n

∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdx = An + Bnζ(3).

We are now ready to prove the irrationality of ζ(3):

Theorem 2.7.4 (Apéry). ζ(3) is irrational.

Proof. We have already constructed integers An and Bn for each n ∈N

such that

d3
n

∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdx = An + Bnζ(3).

Our next aim is to prove that

0 < |An + Bnζ(3)| → 0 mit n→ ∞.

In order to estimate the integral, the following observation will be
useful:

Claim: We have∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdy =

∫ 1

0

∫ 1

0

∫ 1

0

Qn(u)Qn(v)Qn(w)

(1− (1− uv)w)n+1

with Qn(x) = xn(1− x)n.
Proof of the claim: Exercise
Next, we want to establish an estimate for the integral∫ 1

0

∫ 1

0

∫ 1

0

Qn(u)Qn(v)Qn(w)

(1− (1− uv)w)n+1 dudvdw. (2.16)
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Since the integrand is strictly positive on the interior of the cube [0, 1]3,
we obtain

0 <
∫ 1

0

∫ 1

0

∫ 1

0

Qn(u)Qn(v)Qn(w)

(1− (1− uv)w)n+1 dudvdw.

On the other hand, a straightforward argument shows

u(1− u)v(1− v)w(1− w)

1− (1− uv)w
≤ (
√

2− 1)4 für 0 ≤ u, v, w ≤ 1.

This proves an upper estimate for the intergal (2.16):

∫ 1

0

∫ 1

0

∫ 1

0

Qn(u)Qn(v)Qn(w)

(1− (1− uv)w)n+1 dudvdw

≤ (
√

2− 1)4n
∫ 1

0

∫ 1

0

∫ 1

0

1
(1− (1− uv)w)

dudvdw

= (
√

2− 1)4n
∫ 1

0

∫ 1

0
− log(uv)

1− uv
dudv = (

√
2− 1)4n2ζ(3).

Combining Corollary 2.7.3 with the above claim gives

0 < |An + Bnζ(3)| ≤ d3
n(
√

2− 1)4n2ζ(3).

Proposition 2.7.1 implies, using 33 · (
√

2 − 1)4 ≈ 0, 79 < 1, that the
right hand side converges for n→ ∞ to 0. If ζ(3) = a

b was rational, we
would get

0 < |bAn + Bna| → 0 für n→ ∞

a non-zero sequence of integers which converges to zero – a contradic-
tion.

Outlook

In the following, let us indicate what is known (and what is not known)
about the odd zeta values. A first naive guess, having Euler’s formula
in mind, would be that ζ(n)/(2πi)n is always rational. But indeed this
is not expected to be true. Grothendieck’s period conjecture, a deep
conjecture in arithmetic geometry, would imply that

2πi, ζ(3), ζ(5), . . . , ζ(2n + 1), . . .

are algebraically independent. In particular, we would not expect
a similar formula as Euler’s formula for the odd zeta values. At
the same time, Grothendieck’s Period Conjecture would imply the
transcendence of all odd zeta values. Unfortunately, we are even far
away from proving the transcendence of a single particular odd zeta
value. Indeed, even worse, we do not know the irrationality of a single
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ζ(2n + 1) for n ≥ 2. Nevertheless, Wadim Zudilin succeeded to prove
that at least one of the numbers

ζ(5), ζ(7), ζ(9), ζ(11)

is irrational. A major breakthrough has been made by Rivoal and Ball-
Rivoal in 2001. They were able to prove that infinitely many odd zeta
values are irrational. More precisely, they succeeded to prove:

Theorem (Rivoal, Ball–Rivoal, 2001). For ϵ > 0 and all sufficiently large
odd integers s, the Q-vector space spanned by

ζ(3), ζ(5), . . . , ζ(s)

has at least dimension (1−ϵ)

1+
√

2
log s. In particular, there are at least (1−ϵ)

1+
√

2
log s

irrational numbers in the list

ζ(3), ζ(5), . . . , ζ(s).

This already proves that there are infinitely many odd zeta values.
On the other hand, log s is a very slowly growing function. In a joint
work with Stefan Fischler and Wadim Zudilin, we were able to im-
prove this lower bound considerably:

Theorem (Fischler–S.–Zudilin, 2018). For ϵ > 0 and s sufficiently large,
at least

2(1−ϵ)
log s

log log s

of the numbers
ζ(3), ζ(5), . . . , ζ(s),

are irrational.

Building on our method, this has been further improved recently by
Li Lai and Pin Yu:

Theorem (Lai-Yu,2020). For ϵ > 0 and s sufficiently large, at least

(c0 − ϵ)

√
s

log s
, c0 ≈ 1.192507..

of the numbers
ζ(3), ζ(5), . . . , ζ(s),

are irrational.

Surprisingly, the above results predict that there are quite many
irrational odd zeta values, but the only particular odd zeta value for
which we can prove irrationality remains ζ(3).





3 The Kronecker-Weber Theorem

In this chapter, we will classify all abelian extensions of Q, i.e. Ga-
lois extensions of Q with abelian Galois group. More precisely, the
Theorem of Kronecker-Weber says that every abelian extension of Q

is contained in a cyclotomic extension, i.e., in some field Q(ζn) for
a primitive n-th root of unity. This result can be seen as a very ex-
plicit version of global class field theory for the ground field Q. For
the proof, we will introduce local fields and first classify all abelian
extensions of Qp for all primes p, where Qp is the field of p-adic num-
bers. Finally, we will deduce the Kronecker-Weber Theorem from the
corresponding local statement.

3.1 Absolute values and valuation rings

In this section, we define absolute values, valuations and discuss their
relation to discrete valuation rings.

Definition 3.1.1. An absolute value on a field k is a map | · | : k → R≥0

such that for all x, y ∈ k:

(a) |x| ≥ 0 and (|x| = 0⇔ x = 0),

(b) |xy| = |x||y|

(c) |x + y| ≤ |x|+ |y|.

The absolute value is called non-Archimedean if and only if it satisfies
the strict triangle inequality |x + y| ≤ max(|x|, |y|), otherwise it will
be called Archimedean. The pair (k, | · |) will be called a valued field. An
absolute value | · | on k defines a metric d(x, y) := |x − y| on k and
hence a topology[1]. Two absolute values are called equivalent if the [1] A basis of open neighbourhoods for

this topology is given by the open balls

Bϵ(α) := {x ∈ k | |α− x| < ϵ}.

So, a subset U ∈ k is open if and only if
for every x ∈ U there exists an open ball
around x which is contained in U

define they same topology on k.

Of course, we have the following trivial absolute value on any field
k:

Example 3.1.2. For a given field k, the map | · | : k→ R≥0 defined by

|0| := 0, |x| := 1 for all x ∈ k×



48 dr. johannes sprang

is an absolute value. It is called the trivial absolute value.

In the following, we will usually ignore the trivial absolute value.
Of course, a non-trivial absolute value is an absolute value which is not
the trivial absolute value. Let us give the following important examples
for absolute values on Q.

Example 3.1.3. The usual absolute value | · | defines an absolute value
on Q. Furthermore, for each prime p ∈ Z, the map

| · |p : Q→ R, x 7→ |x|p := p−vp(x),

is an example for a non-Archimedean absolute value. Here, vp is de-
fined by vp(x) = n if x = pn a

b with n ∈ Z and integers a and b which
are co-prime to p.

The following criterion is useful if one wants to decide if two abso-
lute values are equivalent:

Proposition 3.1.4. For two non-trivial absolute values | · |1 and | · |2 on a
field k, the following are equivalent:

(a) | · |1 is equivalent to | · |2,

(b) For all x ∈ k, we have |x|1 < 1⇒ |x|2 < 1,

(c) There exists a positive real number s such that for all x ∈ k: |x|1 = |x|s2.

Proof. (a) ⇒ (b) Let us assume that | · |1 and | · |2 define the same
topology. For an absolute value | · | on k and x ∈ k, we have

|x| < 1⇔ (|xk|)k is a zero-sequence in the topology defined by | · |.

Thus, for all x ∈ k, we have |x|1 < 1⇔ |x|2 < 1. This proves (a)⇒ (b).
(b) ⇒ (c) Let us fix[2] y ∈ k with |y|1 > 1. Let us define s := log |y|1

log |y|2
. [2] Such a y exists, because | · |1 is non-

trivial. Indeed, for any z ∈ k with |z| ̸=
0, 1 we have either |z| > 1 or |z−1| > 1We want to show that any x ∈ k× satisfies[3]

[3] Of course, the statement of (c) for x =
0 holds trivially. So, we may assume x ∈
k×.

|x|1 = |x|s2.

For each x ∈ k×, we can find a real number α with |x|1 = |y|α1 . Let

us choose a sequence
(

mi
ni

)
i

of rational numbers with mi ∈ Z, ni ∈ N

which converges from above to α, i.e., mi
ni

� α as i→ ∞. Then, we have
for all i ≥ 0

|x|1 = |y|α1 < |y|mi/ni
1 .

This implies ∣∣∣∣ xni

ymi

∣∣∣∣
1
< 1 for all i ≥ 0.

Now (b) yields ∣∣∣∣ xni

ymi

∣∣∣∣
2
< 1 for all i ≥ 0,
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which gives for all i ≥ 0

|x|2 < |y|mi/ni
2 .

Passing to the limit gives |x|2 ≤ |y|α2 . Analogously, by choosing a
sequence of rationals which converges to α form below, we deduce
|x|2 ≥ |y|α2 . Thus, we have shown that

|x|2 = |y|α2 .

Since x ∈ k× was arbitrary, (c) follows from the following computation

|x|1 = |y|α1 = |y|
α

log |y|1
log |y|2

2 = |x|
log |y|1
log |y|2
2 = |x|s2.

(c)⇒ (a) For ϵ > 0, x ∈ k and i ∈ {0, 1}, let us consider the following
ball

Bi
ϵ(x) := {y ∈ k | |x− y|i < ϵ}.

Then (c) implies B1
ϵ(x) ⊆ B2

ϵ1/s(x) and B2
ϵ(x) ⊆ B1

ϵs(x). Since {Bi
ϵ(x) |

x ∈ k, ϵ > 0} is a basis for the topology induced by | · |i, we get (a).

Sometimes, it is more convenient to work with the following addi-
tive version of a non-Archimedean absolute value:

Definition 3.1.5. An (additive) valuation on a field k is a map

v : k→ R∪ {∞}

satsifying

(a) v(x) = ∞⇔ x = 0,

(b) v(xy) = v(x) + v(y), and

(c) v(x + y) ≥ min(v(x), v(y)).

The valuation is called discrete[4] if and only if v(k×) = 1
t Z for some [4] Note that v is discrete if and only if

the subspace topology on v(k×) ⊆ R is
discrete. This explains the terminology.

t ∈ R>0. Furthermore, it is called normalized if and only if v(k×) = Z.

Of course, the datum of an additive valuation is equivalent to the
datum of a non-Archimedean absolute value:

Lemma/Definition 3.1.6. For a non-Archimedean valued field (k, | · |),
define v(·) := − log | · |. This gives an additive valuation on k which
will be called the exponential valuation associated with | · |. Conversely,
given an additive valuation v on a field k and a real number q > 1,
| · | := q−v(·) is a non-Archimedean absolute value on k whose equiv-
alence class does not depend on the choice of q. We will say that a
valued field (k, | · |) is discretely valued if its associated exponential val-
uation is discrete.
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Proof. The only non-trivial claim, that different choices of q give equiv-
alent absolute values, follows from Proposition 3.1.4.

Next, let us turn our attention to examples of absolute values on
number fields. Let us recall from ’Algebraic Number Theory I’ that
each prime ideal pOK of a number field K induces a discrete valuation

vp : K → Z∪ {∞},

which is given by vp(0) = ∞ and for non-zero x by the exponents in
the unique prime-decomposition of the fractional ideal (x):

(x) = ∏
p

pvp(x).

The following definition gives examples of absolute values for a given
number field K and generalizes the Example 3.1.3.

Definition 3.1.7. Let K be a number field with ring of integers OK.

(a) For a prime ideal p of a number field K, let us define the normalized
absolute value[5] by the following formula [5] This defines an absolute value by the

definition of a ’discrete valuation’.

|x|p := (Np)−vp(x),

where Np := [OK : p] denotes the norm of p. The absolute value
| · |p is non-Archimedean.

(b) For a real or complex embedding σ, let us define the absolute value

|x|σ := |σ(x)|,

where | · | is the usual absolute value on R respectively on C.

For completeness, let us mention the following Theorem of Os-
trowski which shows that the above definition gives all absolute values
of a number field up to equivalence.

Theorem 3.1.8 (Ostrowski). Any non-trivial non-Archimedean absolute
value of a number field K is equivalent to | · |p for a prime ideal p. Any
Archimedean absolute value of K is equivalent to | · |σ coming from a real
or complex embedding.

Proof. We will prove this result for K = Q in the exercises. The general
case is not much more complicated.

Next, we want to study non-Archimedean absolute values from a
more algebraic perspective. Let us recall that a discrete valuation ring is
a principal ideal domain with exactly one non-zero maximal ideal. A
generator π of the maximal ideal m will be called uniformizer, i.e., we
have m = (π).
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Proposition 3.1.9. Let (k, | · |) be a non-Archimedean (non-trivially) valued
field with associated exponential valuation v. The set

A := {x ∈ k | v(x) ≥ 0} = {x ∈ k | |x| ≤ 1}

is a local sub-ring of k with maximal ideal

m := {x ∈ k | v(x) > 0} = {x ∈ k | |x| < 1},

and group of units

A× = {x ∈ k | v(x) = 0} = {x ∈ k | |x| = 1}.

If the valuation v is discrete then A is a discrete valuation ring.

Proof. From the property that | · | is non-Archimedean, it follows im-
mediately that A is a sub-ring of k and that m is an ideal in A. The
fact that A is a local ring with maximal ideal m follows[6] from the [6] Recall from Commutative Algebra

that a ring A is local if and only if A \ A×

is an ideal.
following claim:

A× = {x ∈ k | v(x) = 0}. (3.1)

"⊆": For a ∈ A× there exists b ∈ A such that a · b = 1. We deduce
0 = v(1) = v(a) + v(b) and together with v(a), v(b) ≥ 0, we obtain
v(a) = 0.
"⊇": Every x ∈ k with v(x) = 0 is contained in A \ {0}. But the inverse
x−1 ∈ k is also contained in A, since v(x−1) = −v(x) = 0. Thus,
x ∈ A×. This finishes the proof of (3.1).
It remains to prove the last statement of the Proposition: Let us assume
that v is discrete. We want to prove that A is a discrete valuation ring.
Since v is discrete, we have v(k×) = 1

t Z and v′ := t · v is a normalized
discrete valuation of k with

A = {x ∈ k | v′(x) ≥ 0}.

Let π ∈ A be an element with v′(π) = 1. Let 0 ̸= a ⊆ A an ideal and
set

n := min{v′(a) | a ∈ a}.

Claim: a = (πn).
"⊆": For x ∈ a, we have v′(x) ≥ n by the definition of n. This implies
v′
( x

πn

)
≥ 0, and we get x

πn ∈ A. But this means x ∈ (πn).
"⊇": By the definition of n, there exists an element x ∈ a with v′(x) =
n = v′(πn). This implies v′

( x
πn

)
= 0 and hence x

πn ∈ A×. We get
(πn) = (x) ⊆ a, as desired.
Since a was an arbitrary non-zero ideal, we deduce that all ideals of A
are of the form (0) or (πn) for an integer n ≥ 0. In particular, A is a
PID with a unique maximal ideal (π).

Corollary 3.1.10. For an integral domain A, the following are equivalent:
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(a) A is a discrete valuation ring,

(b) the quotient field k of A admits a discrete valuation v such that A = {x ∈
k | v(x) ≥ 0}.

Proof. (a) ⇒ (b) For a DVR A with maximal ideal m = (π) define
v(0) := ∞ and v(x) := max{n ∈ Z | x ∈ πn A}. It is easily checked
that this gives a discrete valuation on A.
(b)⇒ (a) This has been shown in Proposition 3.1.9.

3.2 Completions

Recall from analysis that one defines the real numbers by completion
of Q with respect to the usual absolute value on Q. This procedure
can be applied to any absolute value.

Definition 3.2.1. A valued field (k, | · |) is called complete if and only if
all Cauchy sequences[7] have a limit in k. [7] A Cauchy sequence in a valued field

(k, | · |) is a sequence (xi)i ⊆ k such
that for any ϵ > 0 there exists a posi-
tive integer N such that for all n, m ≥ N:
|xn − xm| < ϵ.

The following Theorem shows that every valued field has a unique
completion:

Theorem 3.2.2. For every valued field (k, | · |) there is a complete valued
field (k̂, |̂ · |) with the following properties:

(a) k ⊆ k̂ and |̂ · | extends | · |,

(b) k is dense in k̂.

The completion is unique up to isomorphism, i.e., any other complete valued
field satisfying (a) and (b) is isomorphic to (k̂, |̂ · |). The field (k̂, |̂ · |) is
called the completion of (k, | · |).

Proof. We sketch the proof. We define

R := {(xi)i∈N | (xi)i∈N is a Cauchy sequence in (k, | · |)}

as the set of Cauchy sequences in k. It is easily checked that point-wise
addition and multiplication of sequences defines a ring-structure onR
and that

m := {(xi)i∈N | (xi)i∈N is a zero-sequence in (k, | · |)}

is a maximal ideal of R. We define k̂ := R/m. By mapping x ∈ k to
the constant sequence (x)i∈N, we get a map

k→ R↠ k̂.

The absolute value |̂ · | on k̂ can be defined as follows

̂|(xi)i mod m| := lim
i
|xi|.

Now, it is not difficult to check that (k̂, |̂ · |) satisfies the desired prop-
erties.
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Definition 3.2.3. For a prime ideal p of a number field K, we will write
(K̂p, | · |p) for the completion of (K, | · |p). The associated exponential
valuation vp is discrete, and we will write OK,p (or sometimes just
Op) for the associated complete discrete valuation ring. In particular,
we obtain for a rational prime p the field of p-adic numbers (Qp, | · |p)
as completion of (Q, | · |p). The discrete valuation ring of Qp will be
denoted by Zp and will be called ring of p-adic integers.

Example 3.2.4. Let p be a prime and consider the discrete valuation
ring Zp in the p-adic completion Qp of Q with respect | · |p. The inter-
section of Q with Zp is

Zp ∩Q = {x ∈ Q | vp(x) ≥ 0} = Z(p), (3.2)

where we write Z(p) for the localization of Z at the prime ideal (p).
The equation (3.2) also shows that the localization Z(p) is the discrete
valuation ring of the valued field (Q, | · |p). The residue field of this
discrete valuation ring is

Z(p)/pZ(p)
∼= Z/pZ.

In the following, let us assume that (k, | · |) is a discretely valued
field[8]. [8] i.e., a field with a non-Archimedean

valuation whose exponential valuation
is discrete.Proposition 3.2.5. Let us assume that (k, | · |) is a discretely valued field

with valuation ring A and maximal ideal m. Let (k̂, |̂ · |) be the completion
of (k, | · |) with valuation ring Â and maximal ideal m̂. Then for n ≥ 1, the
subsets A ⊆ Â and mn ⊆ m̂n are dense and induce an isomorphism

A/mn ∼−→ Â/m̂n. (3.3)

Furthermore, we have v(k×) = v̂(k̂×), where v and v̂ denote the exponential
valuations of | · | and |̂ · |.

Proof. Let v be the exponential valuation of | · | on k. Without loss
of generality, we may assume that v is normalized. By the definition
of (k̂, |̂ · |), the additive valuation v̂(x) = limn v(xn) for a Cauchy se-
quence x = (xn)n is the exponential valuation associated to |̂ · | on k̂. In
particular, v̂(k̂×) is contained in the closure of v(k×) ⊆ R in R. Since
v(k×) is discrete, we get v(k×) = v̂(k̂×). In particular, v̂ is a discrete
valuation and the inclusions A ⊆ Â and mn ⊆ m̂n are dense. We claim
that the composition

φ : A ↪→ Â ↠ Â/m̂n

is surjective. Since A ⊆ Â is dense, also the image im(φ) ⊆ Â/m̂n is
dense in the quotient topology. The equation

m̂n = {x ∈ Â | v̂(x) > n− 1}
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shows that the ideal m̂n is open in Â. Thus, the quotient topology
on Â/m̂n is the discrete topology. Since every subset of a discrete
topological space is closed, we deduce that im(φ) is closed. Thus,
im(φ) is dense and closed in Â/m̂n and we get im(φ) = Â/m̂n. This
proves the surjectivity of φ. From ker φ = A ∩ m̂n, we deduce the
isomorphism (3.3).

Let (k, |̂ · |) be a complete discretely valued field with valuation ring
A and maximal ideal m. Since the absolute value is non-Archimedean[9], [9] Recall that a discretely valued field

is by definition a field with a non-
Archimedean absolute value whose as-
sociated exponential valuation is dis-
crete.

it satisfies the strict triangle inequality

|x + y| ≤ max(|x|, |y|).

In such fields, we have the following useful property.

Lemma 3.2.6. Let (k, |̂ · |) be a complete discretely valued field. If (an)n≥1 ⊆
k is a zero-sequence in k then[10] [10] Of course, this does not hold

in Archimedean fields like R, e.g.,
(n−1)n≥1 is a zero sequence but
∑∞

n=1 n−1 diverges.

∞

∑
n=1

an

converges in k.

Proof. This will be proven in the exercises.

Example 3.2.7. For every prime p, and every k ≥ 0 the prime power
pk divides n! for n ≥ pk. Thus, (n!)n≥1 is a zero-sequence in Qp for
any prime p. In particular, the series

∞

∑
n=1

n!

converges[11] for every prime p in the valued field Qp. [11] By the way, it is an unsolved conjec-
ture that the value of this sequence in Qp
is transcendental, i.e., not algebraic over
Q.

Let us recall that a discrete valuation ring is a principal ideal domain
with exactly one maximal ideal. The following result is useful for an
explicit description of elements in complete discretely valued fields.

Proposition 3.2.8. Let A be a complete discrete valuation ring with maximal
ideal m, uniformizer π and normalized valuation v. Furthermore, let R ⊆ A
be a system of representatives for A/m. Then any x ∈ k \ {0} can be written
uniquely in the form

x = πm
∞

∑
k=0

akπk

with m = v(x), ai ∈ R and a0 ̸= 0.

Proof. The element u := π−mx satisfies

v(u) = v(π−m) + v(x) = −m + m = 0,
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and hence it is a unit in A. We prove by induction on n that u admits
a unique representation of the form

u = a0 + a1π + a2π2 + · · ·+ an−1πn−1 + bnπn (3.4)

with ai ∈ R for i = 0, . . . , n− 1, a0 ̸= 0 and bn ∈ A. For n = 1, this fol-
lows from the fact that R is a system of representatives for A/m. Now,
let us assume that we already have found a unique representation for
u of the form (3.4). Then, let an ∈ R be the unique representative for
bn. Thus, we can write

u = a0 + a1π + a2π2 + · · ·+ an−1πn−1 + anπn + bn+1πn+1

with bn+1 ∈ A which is uniquely determined by

bn+1 =
u− (a0 + a1π + a2π2 + · · ·+ an−1πn−1 + anπn)

πn+1 .

The coefficients a0, . . . , an−1 are uniquely determined by the induction
hypothesis. This shows that for every n ≥ 1 there is a unique represen-
tation of u of the form (3.4). Thus, we obtain the uniquely determined
series

∞

∑
n=0

anπn,

which converges to u, by the previous Lemma.

For a complete discrete valuation ring A with maximal ideal m, the
projections

A/mm ↠ A/mn,

for m ≥ n, form a projective system of ring homomorphisms and we
can form the projective limit

lim←−
n

A/mn := {(xn)n≥1 | xn ≡ xn+1 mod mn for all n ≥ 1.} ⊆ ∏
n≥1

A/mn.

The projective limit carries a canonical ring structure given by the
component-wise addition and multiplication. Furthermore, it inher-
its the subspace topology from the product topology of ∏n≥1 A/mn,
where each factor A/mn is equipped with the discrete topology[12]. [12] Of course, the above can be summa-

rized by saying that we take the limit in
the category of topological rings, where
A/mn is equipped with the discrete
topology.

Proposition 3.2.9. Let A be a complete discrete valuation ring with max-
imal ideal m. We equip A with the topology given by some absolute value
associated to the canonical valuation v on A. Then, the canonical map

φ : A→ lim←−
n

A/mn, x 7→ (x mod mn)n≥1

is an isomorphism of topological rings.
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Proof. Of course, φ is a homomorphism of rings. It is injective since
we have

ker φ = ∩n≥0m
n = {0}.

On the other hand, it is surjective by Proposition 3.2.8. It remains to
check that φ is a homeomorphism of topological spaces. A basis of
neighbourhoods of zero for the product topology on ∏n≥1 A/mn is
given by the family of subsets

B := (BN)N≥1

with BN := ∏N
n=1{0} ×∏n>N A/mn. Since lim←−n

A/mn is equipped
with the subspace topology, a basis of neighbourhoods for 0 ∈ lim←−n

A/mn

is given by the family
(
BN ∩ lim←−n

A/mn
)

N≥1
. On the other hand, a ba-

sis of neighbourhoods of 0 ∈ A on A with the topology induced by
the normalized valuation v is given by (mN)N≥1. Now, the following
equation shows that φ identifies both bases of neighbourhoods of zero:

φ(mN) = BN ∩ lim←−
n

A/mn, for all N ≥ 1.

Since a basis of zero determines uniquely the topology on any topo-
logical ring, we deduce that φ is a homeomorphism.

Example 3.2.10. If we apply the above Proposition to the discrete val-
uation ring Zp of (Qp, | · |p), then we obtain

Zp ∼= lim←−
n

Zp/pnZp.

On the other hand, we have already seen in Proposition 3.2.5 and Ex-
ample 3.2.4 that

Zp/pnZp ∼= Z(p)/pnZ(p)
∼= Z/pnZ,

and obtain

Zp ∼= lim←−
n

Z/pnZ.

Thus, we have two equivalent ways of thinking about Zp. Either as
the valuation ring in the completion of Q with respect to | · |p, or as
the limit lim←−n

Z/pnZ. Both descriptions are useful on there own.

Outlook: Local fields

Ostrowski’s Theorem provides a classification of all absolute values on
a given number field. Indeed it is possible to characterize all possible
fields which can arise in this way as completions of number fields.
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Definition 3.2.11. A local field is a field k with a non-trivial absolute
value | · | such that the topology induced by | · | is locally compact, i.e.,
for every α ∈ k there is an ϵ > 0 such that the closed ball

B≤ϵ(α) := {x ∈ k | |x− α| ≤ ϵ}

is compact.

Of course, R and C with the usual absolute values are examples of
local fields since all closed balls are compact in the usual topologies
of R and C. The field Q with the usual (Archimedean) absolute value
is not a local field, since no closed ball B≤ϵ(x) ⊆ Q is compact; such
balls are always missing limit points. Indeed, one can show that any
local field has to be complete. If we ignore the local fields of positive
characteristic then the local fields of characteristic zero are exactly the
fields which we obtain as completions of number fields.

More precisely, the following Theorem implies that R, C and the
finite extensions of Qp are all local fields of characteristic zero.

Theorem 3.2.12. The only Archimedean local fields are R and C. The non-
Archimedean local fields of characteristic zero are exactly the finite extensions
of Qp.

Proof. For a proof, see for example Chapter II, (5.2) in Neukirch’s book
on Algberaic Number Theory[13], but note that Neukirch’s definition [13] Jürgen Neukirch. Algebraic num-

ber theory, volume 322 of Grundlehren
der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 1999.
ISBN 3-540-65399-6. doi: 10.1007/978-3-
662-03983-0. URL https://doi.org/10.

1007/978-3-662-03983-0. Translated
from the 1992 German original and with
a note by Norbert Schappacher, With a
foreword by G. Harder

of a local field excludes the Archimedean fields.

3.3 Hensel’s Lemma

The aim of this section is to prove Hensel’s Lemma. This is a very
useful tool to lift decompositions of separable polynomials from the
residue field of a complete discrete valuation ring to the discrete valu-
ation ring (DVR). Let us fix the following notation for this section:

Notation 3.3.1. In this section, let A be a complete discrete valuation
ring with fraction field K, maximal ideal m, uniformizer π and residue
field κ.

Definition 3.3.2. Notation as in 3.3.1. A polynomial f = a0 + · · · +
anXn ∈ A[X] is called primitive if and only if the ideal generated by its
coefficients (a0, . . . , an) is the whole ring A.[14] [14] For a DVR, this is equivalent to f ̸≡ 0

mod m.

Hensel’s Lemma allows us to lift decompositions of polynomials
from κ[X] to A[X].

Theorem 3.3.3 (Hensel’s Lemma). Let f ∈ A[X] be a primitive polynomial
over a complete[15] discrete valuation ring. Assume that the reduction f := f [15] Completeness is important here. Let

us consider the discrete valuation ring
Z(5), which is the localization of Z at
the prime ideal (5), and the polyno-
mial f = X2 + 1 ∈ Z(5)[X]. The re-
duction f = X2 + 1 ∈ F5[X] splits as
f = X2 + 1 = (X − 2)(X − 3) ∈ F5. But
f does not split in Z(5) since Q does not
contain i and −i.

https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-3-662-03983-0
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mod m ∈ κ[X] decomposes into a product of co-prime polynomials

f = gh, g, h ∈ κ[X].

Then, there exist g, h ∈ A[X] such that:

• g mod m = g and h mod m = h in κ[X],

• deg(g) = deg(g),

• f = g · h in A[X].

Proof. Let us define d := deg f and m := deg g. Then

deg h = deg f − deg g ≤ d−m.

Let us choose lifts g0, h0 ∈ A[X] of g and h such that

g0 = g mod m, and deg g0 = m

h0 = h mod m, and deg h0 ≤ d−m.

Since g and h are co-prime, we can find a, b ∈ A[X] such that

ag0 + bh0 ≡ 1 mod m.

In the following, we will lift the decomposition f = gh successively
modulo higher and higher powers of m = (π). More precisely, we will
prove the following claim by induction on n.
Claim: For any positive integer n, there exist polynomials

p1, p2, . . . , pn−1 ∈ A[X] and q1, q2, . . . , qn−1 ∈ A[X]

with deg pi < m and deg qi ≤ d−m such that

f ≡ gn−1hn−1 mod πn, (3.5)

where

gn−1 := g0 + πp1 + . . . πn−1 pn−1, hn−1 := h0 + πq1 + . . . πn−1qn−1.

Proof of the claim: For n = 1, we have f ≡ g0h0 mod π by the assump-
tions. Let us assume that we have already constructed gn−1 and hn−1

with the desired property. Our aim is to construct gn and hn. By the
induction hypothesis, we have f − gn−1hn−1 ∈ πn A and we define

fn := π−n( f − gn−1hn−1) ∈ A[X].

Because of deg g0 = deg(g0 mod m), the leading term of g0 is con-
tained in A \m, and hence it is a unit. By division with remainder, we
find pn, q′n ∈ A[X] such that

b fn = q′ng0 + pn
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with
deg pn < deg g0 = m. (3.6)

We deduce

g0(a fn + h0q′n) + h0 pn = g0a fn + h0(q′ng0 + pn)

= g0a fn + h0b fn ≡ fn mod m. (3.7)

We define qn as the polynomial obtained from a fn + h0q′n by remov-
ing all coefficients which are divisible by π. In particular, we have
deg(qn mod m) = deg qn. Thus, we get from equation (3.7)

g0qn ≡ fn − h0 pn mod m. (3.8)

Now, by equation (3.8) we obtain

m + deg qn = deg( fn − h0 pn mod m).

Since deg( fn mod m) ≤ d and deg(h0 pn mod m) < (d−m) + m = d,
we deduce from this equality

deg qn ≤ d−m.

It remains to prove f = gnhn mod mn+1, but this follows from the
following computation

f − gnhn = f − (gn−1 + πn pn)(hn−1 + πnqn)

= f − gn−1hn−1 − πn(pnhn−1 + qngn−1 + πn pnqn)

= πn( fn − pnhn−1 − qngn−1︸ ︷︷ ︸
≡ fn−pnh0−qng0

(3.8)
≡ 0 mod m

−πn pnqn) ≡ 0 mod mn+1.

This finishes the proof of the Claim.

Now, the statement of Hensel’s Lemma follows from defining

g := lim
n

gn, h := lim
n

hn.

Note, that this limit exists in A[X], since A is complete[16], gn and hn [16] The ring of polynomials over a com-
plete discrete valuation ring is in general
not necessarily complete with respect to
the m-adic topology, i.e., the topology for
which (mk A[X])k forms a basis of neigh-
bourhoods of zero. For example, the se-
quence ( fk)k given by

fk = 1+πX+π2X2 + · · ·+πkXk ∈ A[X]

is a Cauchy sequence in A[X] but it does
not converge. On the other hand, the
subspace of polynomials of degeree ≤ N
for a fixed integer N is complete.

have bounded degrees and πn → 0 as n → ∞. Furthermore, we have
gn mod m = g0, hn mod m = h0, and we deduce from deg gn = deg g
that deg g = m = deg g. By (3.5), we obtain

f = g · h

as desired.

We have the following variant of Hensel’s Lemma which allows us
to find unique lifts of simple roots in the residue field.
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Corollary 3.3.4. Let f ∈ A[X] be a monic polynomial with reduction f ∈
κ[X] and α ∈ κ a simple root of f in κ. Then, there exists a unique root
α ∈ A of f such that α = α mod p.

Proof. We consider f = gh with g := X − α. Since α is a simple root,
the polynomials g and h are co-prime. Thus, Hensel’s Lemma gives
a decomposition f = gh with deg g = 1, hence g = X − α for some
α ∈ A with α mod m = α. This shows the existence of a root α of
f lifting α. The uniqueness follows from the fact that α is a simple
root.

For a polynomial f = a0 + a1X + · · ·+ anXn ∈ K[X], let us define

| f | := max{|a0|, |a1|, . . . , |an|}.

Another useful application of Hensel’s Lemma is the following:

Corollary 3.3.5. Let f = a0 + a1X + · · ·+ anXn ∈ K[X] be a polynomial
over the fraction field K of a complete DVR A.

(a) If f is irreducible in K[X], than | f | = max{|a0|, |an|}.

(b) If f is irreducible, monic and f (0) = a0 ∈ A then f ∈ A[X].

Proof. (a) After multiplication with a suitable element from K, we may
assume without loss of generality that | f | = 1. This is equivalent to
f ∈ A[X] and f ̸= 0 in κ[X]. Let r := min0≤i≤n{i : |ai| = 1} be the
index of the least non-vanishing coefficient of f ∈ κ[X], i.e.,

f = Xr︸︷︷︸
=:h

(ar + ar+1X + · · ·+ anXn−r)︸ ︷︷ ︸
=:g

∈ κ[X].

If we had max{|a0|, |an|} < 1, this would imply 0 < r < n. Thus,
deg g, deg h > 0. The polynomial g = Xr is obviously co-prime to h
since ar ̸= 0. Thus, we could apply Hensel’s Lemma to get a non-
trivial decomposition of f and we would obtain a contradiction to the
irreducibility of f . This proves max{|a0|, |an|} = 1 and hence (a).
(b) is an easy consequence of (a). Indeed, the statement (a) implies
| f | = max{|a0|, |an|}. By the assumptions, we have |an| = 1 and |a0| =
| f (0)| ≤ 1. Hence, we get | f | ≤ 1 but this means that all coefficients
are in A.

Another consequence of Hensel’s Lemma is the following fact about
the integral closure of a complete discrete valuation ring:

Corollary 3.3.6. Let L/K be a finite field extension of the fraction field K of
the complete DVR A. Let us denote by B := AL the integral closure of A in
L, then

B = {α ∈ L | NL/K(α) ∈ A},

where NL/K denotes the field norm NL/K : L→ K.
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Proof. Let us start with the following observation. Let α ∈ L with
normalized minimal polynomial

f = a0 + a1X + · · ·+ an−1Xn−1 + Xn ∈ K[X].

By the basic properties of norms[17], we have [17] Recall the following statements about
norms (e.g., ANT 1):

(a) For any finite field extensions
L/M/K and α ∈ M, we have
NL/K(α) = NM/K(α)

[L:M].

(b) Let L/K be finite and

P = a0 + · · ·+ an−1Xn−1 + Xn

be the minimal polynomial of α ∈ K.
Then NK(α)/K = (−1)na0.

NL/K(α) = NK(α)/K(α)
[L:K(α)]

and NK(α)/K(α) = (−1)na0. We deduce

NL/K(α) = (−1)n[L:K(α)]a[L:K(α)]
0 . (3.9)

⊆: If we apply (3.9) to an integral element α ∈ B, we get NL/K(α) ∈ A.
⊇: Conversely, let us assume that NL/K(α) ∈ A. By (3.9), a0 ∈ K is
integral and hence an element of A. According to Corollary 3.3.5(b),
we have f ∈ A[X]. Thus, the normalized minimal polynomial of α has
coefficients in A and we get α ∈ AL

= B.

Finally, we will implicitly use Hensel’s Lemma when we want to
extend a given absolute value to a larger field.

Theorem 3.3.7 (Extension of absolute values). Let (K, | · |) be a complete
and discretely valued field and L/K an algebraic field extension. Then, there
is a unique absolute value | · |L on L such that | · |L extends | · |, i.e., for all
x ∈ K, we have |x|L = |x|. The valuation ring of | · |L is the integral closure
of A in L. Furthermore, if L/K is finite of degree n then | · |L is complete,
discrete and satisfies

| · |L = |NL/K(·)|
1
n .

Proof. First, observe that it is enough to prove existence and unique-
ness for finite field extensions. Indeed, if we have already proven the
existence and uniqueness for all finite field extensions, then for a given
α ∈ L we choose a finite sub-extension F/K containing α and define

|α|L := |α|F.

By the uniqueness of | · |F, this does not depend on F and hence it is
well-defined. For any given α, β ∈ L, we can choose a finite extension
F containing α and β and check that | · |L is indeed an absolute value:

|α|L = |α|F = 0⇔ α = 0,

|αβ|L = |αβ|F = |α|F|β|F = |α|L|β|L,

|α + β|L = |α + β|F ≤ max(|α|F, |β|F) = max(|α|L, |β|L).

Thus, we may without loss of generality assume that L/K is finite.
Existence: For a finite extension L/K, the formula for | · |L is already
suggested by the statement of the Theorem. For α ∈ L set

|α|L := |NL/K(·)|
1
n .
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We have to check that this defines an absolute value on L. Let α, β ∈ L.
Obviously, we have |α|L = 0 ⇔ α = 0 and by the multiplicativity of
norms |αβ|L = |α|L|β|L for α, β ∈ L. Furthermore, the explicit formula
for |α|L shows, that the associated exponential valuation of | · |L is
discrete. It remains to check the non-Archimedean triangle inequality.
We define B := AL as the integral closure of A in L. By Corollary 3.3.6
and the definition of | · |L, we have for all x ∈ L

|x|L ≤ 1⇔ |NL/K(x)| ≤ 1⇔ NL/K(x) ∈ A⇔ x ∈ B. (3.10)

In particular, we have for all x ∈ L the equivalence |x|L ≤ 1 ⇔
|x + 1|L ≤ 1. Applying this to x = α

β with β ∈ L×, we obtain after
multiplication with |β|L the equivalence

|α|L ≤ |β|L ⇔ |α + β|L ≤ |β|L.

Since we can interchange the roles of α and β, we also deduce

|β|L ≤ |α|L ⇔ |α + β|L ≤ |α|L.

Combining both inequalities gives

|α + β|L ≤ max(|α|L, |β|L)

as desired. This proves the existence of | · |L. The claim that B is the
valuation ring of (L, | · |) follows from equation (3.10).
Uniqueness: Let | · |L be the absolute value on L which has been con-
structed above. In particular, we already know that B := AL is the
discrete valuation ring of | · |L. Let | · |′L be a second absolute value
on L which extends | · |. We want to prove that both absolute values
coincide. Let us denote by B′ the valuation ring of | · |′ and by m′ its
maximal ideal, i.e.,

B′ := {x ∈ L | |x|′L ≤ 1}, m′ := {x ∈ L | |x|′L < 1}.

Assume there was an element α ∈ B \ B′. Let f = a0 + · · ·+ an−1Xn−1 +

Xn ∈ K[X] be the normalized minimal polynomial of α, i.e.,

αn = −a0 − a1α− · · · − an−1αn−1. (3.11)

Of course, a0, . . . , an−1 ∈ A because α ∈ B is integral. Since | · |′L ex-
tends | · |, we get A ⊆ B′ and deduce a0, . . . , an−1 ∈ B′. By assumption,
we have α ̸∈ B′, i.e., |α|′L > 1, which implies α−1 ∈ m′. If we multiply
(3.11) by α−n, we get

1 = −a0α−n − a1α−n+1 − an−1α−1︸ ︷︷ ︸
∈m′

.

which leads to the contradiction that 1 is contained in the maximal
ideal m′ of B′. Thus, we have shown B ⊆ B′. Since B∩m′ is a non-zero
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prime ideal of B and since B is a discrete valuation ring, we deduce
B ∩m′ = m. This implies m ⊆ m′. In terms of the absolute values, this
means for all α ∈ L

|α|L < 1⇒ α ∈ m⇒ α ∈ m′ ⇒ |α|′L < 1.

Now, it follows from 3.1.4 that | · |L = | · |′sL for some positive real
number s. Since both absolute values extend | · | on K, we deduce
s = 1 and the uniqueness follows. The completeness of L with respect
to | · |L follows from the fact that any finite-dimensional normed K-
vector space over (K, | · |) is complete, see the next Definition and the
following Lemma.

Definition 3.3.8. Let (K, | · |) be a complete discretely valued field and
let V be a finite dimensional vector space. A norm on V is a map
∥·∥ : V → R≥0 such that for all α ∈ K and v, w ∈ V

(a) ∥v∥= 0 if and only if v = 0,

(b) ∥αv∥= |α|∥v∥,

(c) ∥v + w∥≤ ∥v∥+∥w∥.

Two norms ∥·∥ and ∥·∥′ are called equivalent if and only if there exist
positive real numbers c, C ∈ R such that c∥·∥≤ ∥·∥′≤ C∥·∥.

We have the following Lemma.

Lemma 3.3.9. Let V be a finite dimensional vector space over a complete
valued field (K, | · |). Up to equivalence there is exactly one norm on V and
V is complete with respect to this norm.

Proof. For the existence, let us choose a basis v1, . . . , vn of V and define
the maximum norm

∥
n

∑
i=1

αivi∥∞:= max
1≤i≤n

|αi|.

It is easily checked that the maximum norm is a norm and that V
is complete with respect to ∥·∥∞. For the uniqueness, let ∥·∥ be an
arbitrary norm on V. We prove that ∥·∥ is equivalent to ∥·∥∞. For an
arbitrary vector v = ∑n

i=1 αivi, we have

∥v∥≤
n

∑
i=1
|αi|∥vi∥≤ C∥v∥∞,

for C := max1≤i≤n∥vi∥. The existence of the lower bound c is left as
an exercise.

An important Corollary of the unique extension of absolute values
is the following result.
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Corollary 3.3.10. Let (K, | · |) be a complete discretely valued field and L/K
a finite Galois extension with unique extension | · |L of | · |. Then, we have
|σ(α)|L = |α|L for all α ∈ L and all σ ∈ Gal(L/K).

Proof. We define | · |′L := | · |L ◦ σ. This gives an absolute value on L
extending | · |. By uniqueness, we get | · |′L = | · |L.

For later reference, let us formulate the following additive version
of Theorem 3.3.7.

Corollary 3.3.11. Let (K, | · |) be a complete and discretely valued field with
exponential valuation v. For any algebraic field extension L/K, there is a
unique additive valuation vL on L which extends v. If L/K is finite then the
value group v(K×) of K is of finite index in the value group vL(L×) of L.

Proof. This is an immediate restatement of Theorem 3.3.7 in terms of
exponential valuations.

3.4 Ramification and completion

In this section, we will recall facts about ramification of Dedekind do-
mains from Algebraic Number Theory 1. Afterwards, we will put
them into new perspectives by relating them to valuations. Finally, we
will compare the ramification of Dedekind rings to the ramification in
their completion.

In this section, let us fix the following notation.

Notation 3.4.1. Let A be a Dedekind domain with fraction field K and
let L be a finite field extension of K. We denote the integral closure of
A in L by B := AL. Thus, we have the following setup:

L ⊇ B κ(q)

K ⊇ A κ(p)

The residue field of a prime ideal p ⊆ A (resp. q ⊆ B) will be denoted
by κ(p) (resp. κ(q)).

Let us first recall the following facts about ramification which should
be familiar from Algebraic Number Theory 1. For a non-zero prime
ideal p ⊆ A, let us consider its unique prime decomposition in B:

pB = ∏
q⊆B prime

qeq .

For a prime q, the number eq is the ramification index[18] of q over p. [18] If we want to emphasize the depen-
dence of p, we will sometimes write
e(q/p) for eq.

Furthermore, let us write

fq = f (q/p) := [κ(q) : κ(p)]
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for the inertia degree, i.e., the degree [κ(q) : κ(p)] of the extension of
residue fields. Let us recall that the prime q is called unramified over p if
and only if e(q/p) = 1 and κ(q)/κ(p) is a separable field extension[19]. [19] In this lecture, the second condition

will be satisfied automatically. For a fi-
nite extension of Qp, all residue fields
are finite and hence perfect, i.e., any fi-
nite extension is separable.

Furthermore, we always have

[L : K] = ∑
q|p

fqeq. (3.12)

Let us now assume that L/K is a Galois extension with Galois group
G := Gal(L/K). In this case, one has eq = eq′ and fq = fq′ for all q, q′

over a fixed prime p of A. Let us denote the decomposition group of a
prime q over p by

Gq := {σ ∈ G | σ(q) = q}.

In the above situation, we have a surjection Gq ↠ Gal(κ(q)/κ(p)) and
the inertia group Iq of q is the kernel of this surjection, i.e., we have a
short exact sequence

1→ Iq → Gq ↠ Gal(κ(q)/κ(p))→ 1. (3.13)

Let us also recall that L/K is unramified at q if and only if the inertia
group Iq is trivial. Finally, let us observe that the ramification index
can be expressed as the index of the value groups of the corresponding
valuations.

Lemma 3.4.2. Let q ⊆ B be a prime over p ⊆ A and let us write vq for the
normalized valuations associated to q. Then

e(q/p) = [vq(L×) : vq(K×)].

Proof. This follows immediately from the definition of the ramification
index and the normalized valuation[20]. More precisely, the normal- [20] Here, recall the definition of the nor-

malized valuation of a prime ideal in a
Dedekind domain. For x ∈ K we define
vp(x) as the exponent of p in the unique
prime decomposition (x) = ∏p p

vp(x).
On the other hand, the ramification in-
dex eq is the exponent of q in the prime
decomposition of p = ∏q q

eq .

ized value group vq(L×) is Z. For any x ∈ K×, the fractional ideal
(x)K ⊆ K with decomposition

(x)K = ∏
p

pvp(x)

has in L the decomposition

(x)L = ∏
p

∏
q|p

qvp(x)e(q/p).

Since the normalized valuation νp(x) assumes every integer for a suit-
able x ∈ K×, this proves the assertion [vq(L×) : vq(K×)] = e(q/p).

Let us also formulate the following special case of the previous
Lemma when A and B are complete discrete valuation rings[21]. [21] Here, it is a good point to recall

that every discrete valuation ring is a
Dedekind domain. Thus, everything you
know about Dedekind rings applies in
particular to DVRs.
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Corollary 3.4.3. Let L/K be a finite extension of a complete discretely valued
field (K, | · |) with exponential valuation vK. Then, we have

eL/K := e(mL/mK) = [vL(L×) : vK(K×)],

where vL is the unique extension of vK to L and mK respectively mL are the
maximal ideals in the discrete valuation rings A (resp. B) of K (resp. L).

Proof. We have shown the previous Lemma only for the normalized
valuation and not for arbitrary valuations. So, we only have to relate
the normalized valuation of the maximal ideals to the given exponen-
tial valuations. That’s easily done. The exponential valuation vL of
| · |L differs from the normalized valuation vmL only by multiplication
with a positive real number t ∈ R>0, i.e.

vL = t · vmL .

Now, the claim follows from the previous Lemma

e(mL/mK) = [vmL(L×) : vmL(K
×)]

= [vL(L×) : vL(K×)] = [vL(L×) : vK(K×)].

The following result relates the ramification of Dedekind rings to
the corresponding ramification in the completion.

Theorem 3.4.4. Let p ∈ A be an ideal with factorization pB = ∏q|p q
eq .

Let Kp be the completion of K with respect to | · |p and let p̂ be the maximal
ideal in its complete discrete valuation ring Âp. Similarly, denote for q ⊆ B
by Lq the completion of L with respect to | · |q and q̂ the maximal ideal in its
valuation ring B̂q. Then, the following holds:

(a) Each Lq is a finite extension of Kp with [Lq : Kp] ≤ [L : K].

(b) Each q̂ is the unique prime of B̂q lying over p̂.

(c) Each q̂ has ramification index eq̂ = eq and residue field degree fq̂ = fq.

(d) [Lq : Kp] = eq fq.

(e) If L/K is Galois then each Lq/Kp is Galois and we have isomorphisms
of decomposition groups Gq

∼= Gq̂ = Gal(Lq/Kp) and inertia groups
Iq ∼= Iq̂.

Proof. (a) First, note that K ↪→ L induces[22] injections Kp ↪→ Lq and [22] For example, this can be seen as fol-
lows. Since vq extends vp, the absolute
value | · |q extends | · |p. Hence, a Cauchy
sequence respect to | · |p is also a Cauchy
sequence with respect to | · |q. The inclu-
sion of the completions is now given by
[(xn)n] 7→ [(xn)n].

Âp ↪→ B̂q. Since any K-basis b1, . . . , bm of L spans Lq as Kp-vector
space, we obtain [Lq : Kp] ≤ [L : K].
(b) The valuation rings Âp of Kp and B̂q of Lq are complete DVRs,
hence they only have one non-zero prime ideal and the claim follows.
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(c) Let us write vq and vq̂ for the normalized valuations associated to q

and q̂. By Proposition 3.2.5, the value group of a discretely valued field
does not change under completion, i.e., we have vq(K×) = vq̂(K×p ) and
vq(L×) = vq̂(L×q ). By Lemma 3.4.2, we have eq = [vq(L×) : vq(K×)]
and deduce

eq̂ = [vq̂(L×q ) : vq̂(K×p )] = [vq(L×) : vq(K×)] = eq.

By Proposition 3.2.5, the residue field of a DVR coincides with the
residue field of its completion. This shows

fq = [κ(q) : κ(p)] = [κ(q̂) : κ(p̂)] = fq̂.

(d) follows from combining (b) and (c).
(e) Now, we assume that L/K is Galois. Each σ ∈ Gq acts on L and
respects the valuation vq, since it fixes q.[23] Thus σ induces an auto- [23] More precisely, for x ∈ L with (x) =

∏P PnP we have (σ(x)) = ∏P σ(P)nP .
Since σ ∈ Gq fixes q, we deduce that the
multiplicity of q in (x) is the same as the
multiplicity of q in (σ(x)).

morphism of Lq and fixes Kp. We get a group homomorphism

φ : Gq → AutKp(Lq).

This map is injective: If φ(σ) acts trivially on Lq, then it also acts
trivially on L ⊆ Lq, so ker φ is trivial. On the other hand, we have

eq fq = |Gq| ≤ |AutKp(Lq)| ≤ [Lq : Kp] = eq fq,

so we have everywhere equality. In particular, φ is surjective and we
have |AutKp(Lq)| = [Lq : Kp]. The last equality implies that Lq/Kp is
a Galois extension. There is only one prime q̂ of the complete discrete
valuation ring B̂q̂ and this prime is necessarily fixed by every σ ∈
Gal(Lq/Kp), so Gal(Lq/Kp) ∼= Gq̂. The inertia groups Iq and Iq̂ have
both eq elements, and φ restricts to an injective homomorphism Iq →
Iq̂, so also the inertia groups are isomorphic.

Outlook

By Ostrowski’s Theorem, a complete list of non-trivial absolute values
on Q up to equivalence is given by the usual absolute value | · | together
with the non-Archimedean absolute values | · |p for each prime p.

The completion R of Q is not algebraically closed but the degree
2 extension C/R is algebraically closed. Furthermore, C is complete
with respect to the unique extension | · | of R. So, C is the smallest field
extension of Q which is algebraically closed, complete and extends the
usual absolute value | · | on Q. It is a natural question to ask for a field
with analogous properties for the non-Archimedean absolute values.

A first natural step is to consider an algebraic closure Qp of Qp. By
Theorem 3.3.7, there is a unique absolute value | · |p on Qp extending
the absolute value on Qp. Unfortunately, it turns out that Qp is, in
contrary to the algebraic closure of R, not complete[24]. Let us denote [24] This also shows that we can not drop

the hypothesis that L/K is finite in the
last assertion about completeness of The-
orem 3.3.7

the completion of (Qp, | · |p) by (Cp, | · |p).
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Theorem. The field (Cp, | · |p) is complete and algebraically closed.

Thus, Cp can be seen as a kind of p-adic analogue of the field of
complex numbers. Of course, we can form its valuation ring

OCp := {x ∈ Cp : |x|p ≤ 1}

with its maximal ideal m := {x ∈ Cp : |x|p < 1}. The associated ad-
ditive valuation vp on Cp is not discrete. Indeed, there are elements
in Cp with arbitrary small additive valuation, e.g., vp( n

√
p) = 1

n . Thus,
OCp is not a discrete valuation ring. Indeed, OCp is a rather patholog-
ical example of a local ring. For example, one can even show that it is
non-Noetherian and its maximal ideal satisfies

m2 = m.

3.5 Unramified and totally ramified extensions of Qp

In this section, we will prove structure theorems about unramified and
totally ramified extensions of finite extensions of Qp. For this section,
let us fix the following notation.

Notation 3.5.1. Let us write | · |p for the usual absolute value (i.e.,
|p|p = 1

p ) and vp for the normalized valuation on Qp. Let L/K be
finite extensions of Qp and equip them with the absolute value given
by the unique extension of | · |p. We will again write | · |p (resp. vp)
for this unique extension on L and K. The discrete valuation ring of K
(resp. L) will be denoted by OK (resp. OL), its maximal ideal by mK

(resp. mL) and its residue field by κK (resp. κL), i.e.,

L ⊇ OL OL/mL = κL

K ⊇ OK OK/mK = κK.

Let us make the following definition.

Definition 3.5.2. Let us write e := [vp(L×) : vp(K×)] for the ramifica-
tion index of L/K. We call the field extension L/K

(a) unramified if and only if e = 1,

(b) tamely ramified if and only if p ∤ e,

(c) totally ramified if and only if e = [L : K].

Let us first study all unramified extensions of Qp.

Lemma 3.5.3. Let P ∈ OK[X] be a normalized polynomial such that P mod mK ∈
κK[X] is separable. If L = K(α) for some root α of P then L/K is unramified.
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Proof. Exercises.

The following result shows that all unramified extensions are ’cy-
clotomic’, i.e., generated by roots of unity. More precisely, we have.

Theorem 3.5.4 (Unramified extensions). The extension L/K is unramified
if and only if L = K(ζqn−1) for some n ≥ 1, where ζqn−1 denotes a primitive
(qn − 1)th root of unity and q is the cardinality of the residue field κK of K.
If this is the case, then n = [κL : κK] is the degree of the extension of residue
fields κL/κK.

Proof. Let us first observe that the extension K(ζqn−1)/K is unrami-
fied; the polynomial is normalized and the reduction of the polyno-
mial P = Xqn−1 − 1 in κK[X] is separable, hence Lemma 3.5.3 shows
that K(ζqn−1)/K is unramified.

Let L/K be an arbitrary finite unramified extension with corre-
sponding extension κL/κK of residue fields. We want to prove that
L is generated by a primitive qn − 1-root of unity. Since L/K is unram-
ified, we have e = 1 and

[L : K] = f = [κL : κK].

The group of units κ×L is cyclic of order qn − 1 where n = [κL : κK]. Let
α be a generator of κ×L . The polynomial Xqn−1− 1 ∈ κK[X] is separable
and has α as a root. Hence, by Hensel’s Lemma, there is a unique root
α ∈ L of

Xqn−1 − 1 ∈ L[X]

lifting α. Since α is a root of Xqn−1 − 1 and its reduction has order
qn − 1, we deduce that α is a primitive (qn − 1)-root of unity. We
obtain

[K(α) : K] ≥ [κK(α) : κK] = [κL : κK] = [L : K].

On the other hand, we have K ⊆ K(α) ⊆ L and, by degree reasons, we
deduce L = K(α). Thus, L is generated by the primitive (qn − 1)-root
of unity α and we have

[L : K] = n = [κL : κK].

Corollary 3.5.5. For each positive integer n, there is a unique unramified
extension of degree n over K.

Proof. We denote by q the cardinality of the residue field of K. By The-
orem 3.5.4, the unramified extensions of K are exactly the extensions
L = K(ζqn−1)/K and we have n = [κL : κK] = [L : K].

The totally ramified extensions of Qp are intimately related to Eisen-
stein polynomials. Recall the definition of an Eisenstein polynomial:
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Definition 3.5.6. A monic polynomial

P = Xn + an−1Xn−1 + · · ·+ a1X + a0 ∈ OK[X]

is an Eisenstein polynomial if ai ∈ mK for 0 ≤ i < n and a0 ̸∈ m2
K. Note

that a0 is then a uniformizer for A.

We recall the Eisenstein irreducibility criterion.

Lemma 3.5.7 (Eisenstein criterion). Let P ∈ OK[X] be an Eisenstein poly-
nomial. Then f is irreducible in both OK[X] and K[X].

Proof. See lecture Algebra I.

Theorem 3.5.8 (Totally ramified extensions). The extension L/K is totally
ramified if and only if L = K(πL) where πL is the root of an Eisenstein
polynomial P ∈ OK[X]. If this is the case then πL is a uniformizer for the
discrete valuation ring OL of L.

Proof. Let us assume that L/K is totally ramified of degree e = [L :
K] and πK ∈ OK (resp. πL ∈ OL) is a uniformizer of K (resp. L).
According to Corollary 3.4.3, we have

vp(L×) =
1
e

vp(K×).

Since πK generates vp(K×) and πL generates vp(L×), we get evp(πL) =

vp(πK), or written multiplicatively |πL|ep = |πK|p. For all conjugates
π′L of πL, we have according to Corollary 3.3.10 |πL|p = |π′L|p. Since
each coefficient ai of the minimal polynomial of πL

P = ∏
π′L

(X− π′L) = a0 + a1X + · · ·+ ae−1Xn−1 + Xn ∈ OK[X],

(here, π′L runs over the conjugates of πL) is a symmetric polynomials
of degree n− i in the conjugates π′L of πL, we get |ai|p < 1 and hence
ai ∈ mK. Furthermore, we get for a0 the formula

|a0|p = ∏
π′L

|π′L|p = |πL|np.

This implies n ≥ e, otherwise a0 can not[25] be an element of K. On the [25] Since 0 < νp(a0) = nνp(πL) ∈
nνp(L×) ∈ n

e νp(K×), n must be a posi-
tive multiple of e.

other hand, we have n ≤ e since K(πL) ⊆ L. Thus, we have e = n and
deduce

|a0|p = ∏
π′L

|π′L|p = |πL|ep = |πK|p. (3.14)

Hence, a0 ∈ mK \m2
K and we conclude that P is an Eisenstein polyno-

mial.
Conversely, let us assume that πL is the root of an Eisenstein polyno-

mial P ∈ OK[X] of degree e with constant term a0. The same reasoning
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as in equation (3.14), shows that |a0|p = |πL|ep. Since P is Eisenstein,
we have |a0|p = |πK|p and conclude

|πL|ep = |πK|p.

In particular, L/K has ramification index e. Together with [L : K] =
deg P = e, we deduce that L/K is totally ramified.

Theorem 3.5.9 (Tamely totally ramified extensions). The extension L/K
is tamely and totally ramified if and only if L = K(π1/e

K ) for some uniformizer
πK ∈ OK and a positive integer e with p ∤ e.

Proof. Let us assume that L/K is tamely and totally ramified extension
of degree e and let us denote by πK and πL the uniformizers of K and
L. Since L/K is totally ramified, we get |πK|p = |πL|ep. This implies
that there is a unit u ∈ O×L such that

uπe
L = πK.

Since L/K is totally ramified, L and K have the same residue field
κK = κL. Thus, we can change the uniformizer πK in such a way
that u ≡ 1 mod mL. Thus, let us without loss of generality assume
u ≡ 1 mod mL. Let us define g := Xe − u ∈ OL[X]. Because L/K is
tamely ramified, we have p ∤ e. Hence, the reduction g = Xe − 1 of g
is separable. This allows us to apply Hensel’s Lemma to find a root β

of g lifting the root 1 ∈ κL of g. We claim that α := βπL is a eth root of
πK. Indeed, we have

αe = βeπe
L = uπe

L = πK.

Thus, we get K(α) = K(π1/e
L ) ⊆ L. On the other hand, we must have

equality since both L/K and K(α)/K are totally ramified of degree
e.

Outlook

The notion of ramification appears in different fields of mathematics,
for example in the theory of Riemann surfaces. A Riemann surface is
a 1-dimensional connected complex manifold, i.e., roughly it is a geo-
metric object which looks locally like an open subset of C. A morphism
of Riemann surfaces X and Y is a map f : X → Y which is locally given
by a holomorphic map. The notion of ramification appears in the the-
ory of Riemann surfaces usually in form of the following definition.

Lemma/Definition 3.5.10. For a non-constant morphism f : X → Y of
Riemann surfaces and a point x ∈ X, there exists a positive integer e
and coordinates z at x and z′ at f (x) such that f is locally given in
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these coordinates by z 7→ ze. More precisely, we find neighbourhoods
U of x and V of f (x) together with charts

φ : U → U′ ⊆ C, ψ : V → V′ ⊆ C

with x 7→ 0 ∈ C and f (x) 7→ 0 ∈ C such that the following diagram
commutes

X Y

U V

U′ V′

z ze.

∼= ∼=

The number e is does only depend on f and x and is called the ram-
ification index of f at x. Let us write OX(U) (resp. OY(V)) for the
holomorphic functions on an open subset U ⊆ X (resp. V ⊆ Y). By
pre-composition with f |U : U → V, we obtain a pull-back map on
holomorphic functions

f ∗ : OY(V)→ OX(U), g 7→ g ◦ f .

We may view the coordinate z′ on V as a holomorphic function z′ : V →
C. By the definition of the ramification index, the pull-back of z′ gives
in terms of the coordinate z the function ( f ∗z′)(z) = ze. Using the
chart ψ, we can view every holomorphic function g on V as a function
defined on an open neighbourhood of 0 in C. Since a holomorphic
function in a neighbourhood of 0 is uniquely determined by its power
series expansion, we obtain an injective map

OY(V)→ CJz′K.

Similarly, using the chart φ we obtain an injective map

OX(U)→ CJzK.

Since f ∗ identifies z′ with ze, we can summarize the above discussion
by a commutative diagram

OY(V) OX(U)

CJz′K CJzK.

z′ ze.

f ∗
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We are now in a situation, where we can relate the ramification of Rie-
mann surfaces to the ramification theory of Dedekind rings. Therefore,
let us observe that the ring

A := CJz′K

is a local domain with exactly one non-zero prime ideal ideal (z′) ⊆
CJz′K. Hence, it is a discrete valuation ring. The associated discrete
valuation is given by v(0) = ∞ and

v(
∞

∑
k=0

ckz′k) := min{k ≥ 0 | ck ̸= 0}.

The maximal ideal of this ring is mA := z′CJz′K and we write K =

CLz′M for its fraction field. By the same argumet for z instead of z′,
we obtain a discretely valued field L = CLzM with discrete valuation
ring B = CJzK and maximal ideal mL := (z) ⊆ B. The map z′ 7→ ze

induces an extension of valued fields K ⊆ L. Furthermore, we have
mK · B = zeB = me

L. Hence, the extension L/K is a ramified extension
of degree e. This relates the ramification of Riemann surfaces to the
ramification theory of Dedekind domains. Using the inclusion

OX(U) ↪→ CJzK,

induced by x ∈ X and the local coordinate z near x, we obtain a valu-
ation vx : OX(U) → Z. This valuation has a quite concrete interpreta-
tion. The value vx(g) is exactly the vanishing order of the function g
at x ∈ X. Of course, it extends to the fraction field of OX(U) which is
the field of meromorphic functions MX(U) on U and gives the order
of a meromorphic function at x ∈ X.

In a certain sense, the above picture describes the local situation at
a point x ∈ X. Let us briefly outline the global picture. The mero-
morphic functions on a Riemann surface form a field MX(X). As we
have seen above, every point x ∈ X gives us a valuation vx onMX(X)

and it can be shown that the completion of MX(X) with respect to
vx is exactly the field CLzM. By pull-back of meromorphic functions,
a non-constant morphism of Riemann surfaces X → Y gives a field
extension MY(Y) ⊆ MX(X) of the fields of meromorphic functions.
It turns out, that the theory of (compact) Riemann surfaces behaves
quite similar to the theory of number fields. In this analogy, the num-
ber field corresponds to the field of meromorphic functions and the
primes correspond to points of the Riemann surface.

The above discussion can be used to think about points of a Rie-
mann surface in at least two different ways:

(a) Points are like primes.

(b) Points are like valuations.
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If one takes this seriously, than each of the above ways of thinking
about points leads to a rich geometric theory. (a) leads to Algebraic
Geometry[26], while (b) leads to Rigid Analytic Geometry. [26] At least, for compact Riemann sur-

faces one can make this vague anal-
ogy between valuations and prime ide-
als very precise.3.6 Krasner’s Lemma

In this section, we will prove a small Lemma due to Krasner which has
some surprising consequences. For example, it can be used to prove
that there are only finitely many extensions of Qp of bounded degree.
Of course, this is not true for number fields like Q. This already in-
dicates that it might be much easier to classify all finite abelian exten-
sions of Qp and motivates the ’local’ approach towards the Kronecker-
Weber Theorem.

Notation 3.6.1. Let us fix an algebraic closure Qp of Qp and write | · |p
for the unique extension of the p-adic absolute value on Qp.

Definition 3.6.2. Let K be a finite extension of Qp in Qp. For α ∈ Qp let
us denote by α = α1, α2, . . . , αn the conjugates of α over K, i.e., the roots
of the minimal polynomial of α over K. We say that β ∈ Qp belongs to
α over K if |β− α|p < |β− αi|p for all 2 ≤ i ≤ n.[27] [27] So β is closer to α than to any conju-

gate of α over K.
Our next aim is to study tamely and totally ramified extensions of

Qp.

Theorem 3.6.3 (Krasner’s Lemma). Let Qp ⊆ K ⊆ Qp be a finite exten-
sion of Qp and α, β ∈ Qp. If β belongs to α over K then K(α) ⊆ K(β).

Proof. Suppose that α ̸∈ K(β). Then, there is an embedding σ ∈
Gal(Qp/K(β)) for which σ(α) ̸= α, i.e., σ(α) = αi for some 2 ≤ i ≤ n.
By Corollary 3.3.10, we have

|β− α|p = |σ(β− α)|p = |σ(β)− σ(α)|p = |β− αi|p,

but this contradicts the hypothesis that β belongs to α.

Although Krasner’s Lemma is an easy consequence of the Galois
invariance of the p-adic absolute value, it has many interesting con-
sequences. Let us recall that we have introduced for a polynomial
f = a0 + a1X + · · ·+ anXn ∈ OK[X] the notation

| f | = max
i=0,...,n

|ai|p.

Krasner’s Lemma is the main ingredient to prove the following Propo-
sition:

Proposition 3.6.4. Let f ∈ OK[X] be a normalized irreducible polynomial
with roots α1, . . . , αn ∈ Qp. For any g ∈ OK[X] satisfying

| f − g| <
mini ̸=j |αi − αj|np

2n
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and for any root α ∈ Qp of f , there exists a unique root β ∈ Qp of g with
K(α) = K(β). In particular, g is irreducible and has the same splitting field
as f .

Proof. Exercises.

The above Proposition can be used to prove that there are only
finitely many extensions of Qp of a fixed degree. More precisely, we
have.

Corollary 3.6.5. For a given finite extension K of Qp and a positive integer
n, there are only finitely many extensions of K of degree n in Qp.

Proof. Exercise.

Furthermore, we can use the above Proposition to prove that all
finite extensions of Qp are obtained as completions of number fields.

Corollary 3.6.6. Let K̂/Qp be a finite extensions of Qp. Then, there exists a
finite extension K of Q and a prime p over p such that K̂ is the completion of
K at | · |p.

Proof. Exercises.

3.7 Infinite Galois theory

In this section, we give a very brief introduction to infinite Galois the-
ory. Let us first recall that the Galois group of a (not necessarily finite)
Galois extension L/K is defined as the group of all K-linear field au-
tomorphisms of L, i.e., Gal(L/K) := AutK(L). We recall the following
Galois correspondence for finite Galois extensions.

Theorem 3.7.1 (Finite Galois correspondence). Let L/K be a finite Galois
extension of fields with Galois group G = Gal(L/K). There is an inclusion
reversing bijection

{subextensions L/F/K} {subgroups H ⊆ G}

F Gal(L/F)

LH H.

Under this correspondence, a normal field extension F/K corresponds to a
normal subgroup H ⊆ G and we have Gal(F/K) ∼= G/H.

Next, we want to generalize the Galois correspondence to arbitrary
(not necessarily finite) Galois extensions. The maps F 7→ Gal(L/F)
and H 7→ LH from the finite Galois correspondence are still defined
for infinite Galois groups. Unfortunately, it turns out that the Galois
correspondence fails in general for infinite extensions as the following
example shows.
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Example 3.7.2. For a prime p, we have the degree two Galois extension
Q(
√

p)/Q with Galois group Gal(Q(
√

p)/Q) ∼= F2, where 1 ∈ F2

corresponds to the map

Q(
√

p)→ Q(
√

p),
√

p 7→ −√p.

Let us now take the compositum of all these fields L = Q(
√

p |
prime). Of course, this is again a Galois extension of Q of infinite

degree. It is easily checked that the Galois group of this extension is

Gal(L/Q) = ∏
p prime

F2.

This group contains uncountably many index 2 subgroups[28]. On the [28] An index 2 subgroup of V :=
∏p prime F2 corresponds to a surjection

∏
p prime

F2 ↠ F2.

Note, that every non-zero element of the
F2 vector space

V∗ = HomF2

(
∏

p prime
F2, F2

)

corresponds to such a surjection. Now,
the claim follows from the fact that V∗ is
uncountable.

other hand, there are only countably many quadratic extensions of Q.
Thus, the Galois correspondence in the above form can not hold for
infinite Galois extensions.

The above example shows that there are in general way to many
subgroups of an infinite Galois group to make the Galois correspon-
dence work. Thus, we need a way to single out the ’relevant’ sub-
groups of Gal(L/K). As a motivation, let us come back to our exam-
ple:

Example 3.7.3. Let us again consider the Galois extension L = Q(
√

p |
prime) over Q. Every finite Galois sub-extension of L/Q is contained

in an extension of the form

F = Q(p | p ∈ J),

where J is a finite subset of the set P of all primes. The corresponding
Galois group of F is given by the subgroup

Gal(L/F) = ∏
p∈P\J

F2 ×∏
p∈J
{0}.

Note, that the subgroups of the above kind form a basis for the product
topology of 0 ∈ ∏p F2, when we equip F2 with the discrete topology.
Thus, we can single out the ’relevant’ subgroups corresponding to all
finite sub-extensions by introducing a suitable topology on Gal(L/Q).
In this case, a subgroup U ⊆ Gal(L/Q) corresponds to a finite ex-
tension L/Q if and only if it is an open subgroup with respect to the
product topology on Gal(L/Q) = ∏p prime F2.

We want to use the above example as a motivation to find the ’rel-
evant’ subgroups corresponding to sub-extensions. It was Krull who
observed that this can be done by introducing a suitable topology on
the Galois group. Let us recall that a topological group is a group G
equipped with a topology such that the multiplication

m : G× G → G
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and the inversion
i : G → G, g 7→ g−1

are continuous maps. We define the following topology on a Galois
group.

Definition 3.7.4. Let L/K be a Galois extension of fields. We equip
Gal(L/K) with the topology given by the following basis of open
neighbourhoods. For σ ∈ Gal(L/K) a family of open neighbourhoods
is given by the family of cosets (σ ·Gal(L/F))F, where F runs over all
finite sub-extensions of K. This topology is called Krull topology.

Let us first observe, that for a finite Galois extension L/K the Krull
topology on the Galois group Gal(L/K) is the discrete topology; in-
deed, every singleton {σ} is open since it is of the form σ Gal(L/L)
for the finite extension L over K. In particular, every subgroup in a
finite Galois group is open and closed with respect to the Krull topol-
ogy. Thus, the following Theorem is really a generalization of the finite
Galois correspondence.

Theorem 3.7.5 (Galois correspondence). Let L/K be a Galois extension
of fields with Galois group G = Gal(L/K). There is an inclusion reversing
bijection

{subextensions L/F/K} {closed subgroups H ⊆ G}

F Gal(L/F)

LH H.

Under this correspondence, a normal field extension F/K corresponds to a
normal subgroup H ⊆ G and we have Gal(F/K) ∼= G/H. The finite field
extensions F/K correspond exactly to the open subgroups of G.

Proof. For a proof, see Theorem 7.2 in Milne’s notes on Fields and
Galois Theory[29]. [29] James S. Milne. Fields and ga-

lois theory (v4.61), 2020. Available at
www.jmilne.org/math/A pro-finite group is a topological group that is isomorphic to an

inverse limit of an inverse system of discrete[30] finite groups. Let [30] I.e., we equip these finite groups with
the discrete topology.us explain these notions: Recall that a directed set is a non-empty set

I together with a reflexive and transitive binary relation ≤ with the
property that for any i, j ∈ I, there is an element k ∈ I such that i ≤ k
and j ≤ k. An inverse system of discrete finite groups consists of a
directed set (I,≤), a collection of discrete finite groups G = {Gi | i ∈
I} and transition maps f j

i : Gj → Gi whenever i ≤ j such that f i
i =

idGi and the collection satisfies the composition property f j
i ◦ f k

j = f k
i .

The inverse limit of the inverse system ((I,≤),G, ( f j
i )i,j) can now be

described explicitly as[31] [31] Of course, it also satisfies a universal
property, see Exercise sheet 8.
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lim←−
i

Gi =

{
(gi)i∈I ∈∏

i∈I
Gi | f j

i (gj) = gi∀i ≤ j

}
.

We equip lim←−i
Gi with the subspace topology of the product ∏i Gi.

Example 3.7.6. The positive integers (N, |) with the binary operation
n | m given by divisibility form a directed set (we will check this in the
Exercises). For n | m, we have canonical projections

f m
n : Z/mZ ↠ Z/nZ.

This gives a directed system ((N, |), (Z/nZ)n, ( f m
n )m,n) of finite groups.

The associated profinite group

lim←−
n∈(N,|)

Z/nZ

is denoted by Ẑ.

By Tychonoff’s Theorem, this product is compact and lim←−i
Gi is a

closed subset of this compact topological group. Hence, every pro-
finite topological group is compact. Even better, we have the following
purely topological characterization of pro-finite groups:

Theorem 3.7.7. A topological group G is pro-finite if and only if G is com-
pact, Hausdorff[32] and totally disconnected[33]. If G is pro-finite, then we [32] Recall that a topological space is

Hausdorff if and only if for each two dis-
tinct points there are neighbourhoods of
each of the two points which are distinct.
[33] A topological space is called totally
disconnected if and only if the only con-
nected subsets are singletons.

have a canonical isomorphism of topological groups

G ∼−→ lim←−
i

G/U,

where U runs over all open normal subgroups of finite index.

Proof. See, for example Theorem 2.1.3 in the book Profinite Groups by
L. Ribes and P. Zalesskii[34]. [34] L. Ribes and P. Zalesskii. Profinite

Groups. A Series of Modern Surveys
in Mathematics. Springer Berlin Heidel-
berg, 2010. ISBN 9783642016424

Now, one can check that the Krull topology is a profinite group.

Theorem 3.7.8. The Krull topology makes Gal(L/K) a compact Hausdorff
and totally disconnected topological group.

Proof. See Proposition 7.8 in Milne’s notes[35]. [35] James S. Milne. Fields and ga-
lois theory (v4.61), 2020. Available at
www.jmilne.org/math/Applying the above characterization of pro-finite groups to Gal(L/K),

we obtain.

Theorem 3.7.9. For any Galois extension L/K, we have an isomorphism of
topological groups

Gal(L/K) ∼−→ lim←−
F

Gal(F/K),
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where F runs through all finite Galois extensions of K in L. More precisely,
the directed set is the set

I = {F | F finite Galois subextension}

with the binary relation ⊆ given by inclusion of subfields. For F1, F2 ∈ I with
F1 ⊆ F2, the transition maps is given by the canonical surjection

Gal(F2/K) ↠ Gal(F1/K).

Proof. This is a direct consequence of Theorem 3.7.8 and Theorem
3.7.7.

As an example, let us compute the Galois group of the field obtained
by adjoining all p-power roots of unity to Qp:

Example 3.7.10. Let p be a prime and consider the field extension
L = Qp(ζpj | j ∈N) over Qp. By Theorem 3.7.9, we have

Gal(L/Qp) = lim←−
j∈(N,≤)

Gal(Qp(ζpj)/Qp).

The Galois groups Gal(Qp(ζpj)/Qp) can be computed explicitly

(Z/pjZ)×
∼−→ Gal(Qp(ζpj)/Qp), k 7→ (ζpj 7→ ζk

pj)

and we obtain

Gal(L/Qp) = lim←−
j∈(N,≤)

Gal(Qp(ζpj)/Qp) ∼= lim←−
j∈(N,≤)

(Z/pjZ)× ∼= Z×p .

Similarly, we can compute the Galois group of the field obtained by
adjoining all roots of unity of prime-to-p order to Qp:

Example 3.7.11. Let p be a prime and consider the field extension
K := Qp(ζn | n prime to p) over Qp. We obtain

Gal(K/Qp) = lim←−
n∈(N,|) prime to p

Gal(Qp(ζn)/Qp).

For n which is prime to p, all the extensions Qp(ζn)/Qp are unrami-
fied. By Theorem 3.5.4, we get

Gal(K/Qp) = lim←−
m∈(N,|)

Gal(Qp(ζpm−1)/Qp).

For m ∈N, we have

Z/mZ
∼−→ Gal(Qp(ζpm−1)/Qp, k 7→

(
ζpm−1 7→ ζ

pk

pm−1

)
.

Thus, we obtain

Gal(K/Qp) ∼= lim←−
m∈(N,|)

Z/mZ ∼= Ẑ.
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Sometimes, it is useful to compute an inverse limit using a co-final
directed subset (J,≤) ⊆ (I,≤), i.e., a subset J ⊆ I which is directed with
the binary operation ≤ on I and is co-final in the following sense

∀i ∈ I∃j ∈ J such that i ≤ j.

For a co-final directed subset (J,≤) ⊆ (I,≤), it is not difficult to check
that we have an isomorphism

lim←−
i∈(I,≤)

Gi
∼= lim←−

j∈(J,≤)
Gj.

For example, the even positive integers form a co-final subset in (N,≤)
and we have

Zp = lim←−
n∈(N,≤)

Z/pkZ = lim←−
n∈(2N,≤)

Z/pkZ = lim←−
n∈(N,≤)

Z/p2kZ.

3.8 Kummer theory

In this section, we give a brief introduction to Kummer theory. Kum-
mer theory provides an explicit description of all cyclic extensions of
degree n for arbitrary fields which are of characteristic prime to n and
contain all n-th roots of unity.

So let us first fix this setup for the following section.

Notation 3.8.1. Let n be a positive integer and K be an arbitrary field
such that the characteristic of K does not divide n. Let us fix a separa-
ble closure K of K. Let us furthermore assume that K contains all n-th
roots of unity µn(K).

To motivate Kummer theory, let us start with the following observa-
tion. For any field K as above and any α ∈ K, the field K( n

√
α) obtained

by adjoining any n-th root of K is a splitting field[36] for the polynomial [36] Since K contains all n-th roots of
unity, the field K( n

√
α) contains all roots

of f .
f = Xn − α. By our assumption that n is not divisible by the charac-
teristic of K, the polynomial f ∈ K[X] is separable. Hence, L/K is a
Galois extension. Furthermore, we have an injective homomorphism

Gal(L/K) µn(K),

σ
σ( n√α)

n√α
.

This homomorphism is an isomorphism if and only if Xn − α is irre-
ducible[37]. In particular, since any subgroup of a cyclic group is again [37] Recall from algebra that the Galois

group of the splitting field of a polyno-
mial acts transitively on the roots if and
only if the polynomial is irreducible.

cyclic the Galois group of the extension L/K is cyclic. We can sum-
marize the above discussion as follows. Adjoining a n-th root of an
arbitrary element of K gives us a cyclic[38] Galois extension of K. One [38] Here and in the following, we use the

terminology ’cyclic Galois extension’ or
’cyclic field extension’ as a short form
for ’Galois extension with a cyclic Galois
group’
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aspect of Kummer theory is to prove the converse. In particular, Kum-
mer theory says that any cyclic extension of K of degree n is obtained
by adjoining an n-th root of a suitable element of K.

For the proof, we will need the following statement.

Proposition 3.8.2 (Linear independence of automorphisms). Let L/K
be a finite extension of fields. Then AutK(L) is a linearly independent subset
of the L-vector space of all K-linear maps L→ L.

Proof. Suppose the set AutK(L) is linearly dependent. Then, there is a
non-trivial linear combination of minimal length r

φ = c1σ1 + · · ·+ crσr = 0

with ci ∈ L× and pairwise distinct automorphisms σi ∈ AutK(L) for
i = 1, . . . , r. Of course, such a linear combination can not have length 1,
i.e., r > 1. Since σ1 ̸= σr, we find an element α ∈ L with σ1(α) ̸= σr(α).
We have φ(β) = 0 for any β ∈ L, and hence we get

φ(αβ)− σ1(α)φ(β) = 0.

But the latter relation is of the form

c′2σ2 + · · ·+ c′rσr = 0

for c′i := ciσi(α)− ciσ1(α). Hence we have found a shorter linear de-
pendence relation in AutK(L). Note, that the latter relation is non-
trivial since cr ̸= 0 by our choice of α. This gives a contradiction to the
minimality of r and hence AutK(L) is linearly independent.

We have the following Corollary.

Corollary 3.8.3. Let L/K be a finite Galois extension of fields with a cyclic
Galois group Gal(L/K) = ⟨σ⟩ of order n. For every n-th root of unity
ζn ∈ µn(L) of L, there is an element x ∈ L such that

σ(x) = ζnx.

Proof. The automorphism σ is a K-linear map on L with characteristic
polynomial Xn − 1 ∈ K[X]. By the linear independence of automor-
phisms, the polynomial Xn − 1 must be its minimal polynomial, since
the set {1, σ, σ2, . . . , σn−1} is linearly independent. Therefore, ζn ∈ L
is an eigenvalue of σ and we deduce that there exists an eigenvector
x ∈ L such that

σ(x) = ζnx.

Using this corollary, we can now prove that any cyclic extension of
K is obtained by adjoining an n-th root of K.
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Corollary 3.8.4. Let L/K is a cyclic extension of degree n which not divisible
by the characteristic of K and assume that K contains all n-th roots of unity.
Then L = K( n

√
α) for some α ∈ K.

Proof. Let L/K be a cyclic Galois extension with Galois group Gal(L/K) =
⟨σ⟩. By Corollary 3.8.3, we find for a primitive n-th root ζn ∈ K an el-
ement x ∈ L such that

σ(x) = ζnx.

We have
σ(xn) = σ(x)n = ζn

nxn = xn.

Thus, α := xn is invariant under ⟨σ⟩ = Gal(L/K) and hence it is
contained in K by Galois Theory. Moreover, the orbit of x under the
Galois action x, xζn, . . . , xζn−1

n has length n since ζn was a primitive
n-th root of unity, so [K(x) : K] = n. Because K(x) is a sub-field of the
degree n extension L/K, we must have equality, i.e., L = K(x) for the
n-th root x of α ∈ K.

Let us now introduce the Kummer pairing.

Lemma/Definition 3.8.5. Let K be a field as in Notation 3.8.1. We have
a well-defined bilinear pairing

⟨·, ·⟩ : Gal(K/K)× (K×/K×n) µn(K)

(σ, α) σ( n√α)
n√α

.

This pairing is called the Kummer pairing.

Proof. Let us first show that the pairing does not depend on the choice
of the choosen n-th root of α. Let x, y ∈ K be two roots of α. Then
x = ζny for some n-th root of unity ζn which is fixed by Gal(K/K).
Hence we get

σ(x)
x

=
σ(ζny)

ζny
=

ζnσ(y)
ζny

=
σ(y)

y
.

In order to prove that the Kummer pairing is well-defined modulo K×n

in the second component, it suffices to show

⟨σ, αn⟩ = 1, ∀α ∈ K×, σ ∈ Gal(K/K).

But of course, we can pick α ∈ K as an n-th root of αn, hence we get

⟨σ, αn⟩ = σ(α)

α
= 1.

By its definition, the Kummer pairing is bilinear.

We are now ready to prove the main theorem of this section.
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Theorem 3.8.6 (Kummer Theory). Let K be a field containing all n-th
roots of unity µn(K) where n is a positive integer which not divisible by the
characteristic of K. Then the Kummer pairing induces an isomorphism

Φ : K×/K×n Homcont(Gal(K/K), µn(K))

α (σ 7→ ⟨σ, α⟩),

where Homcont(Gal(K/K), µn(K)) denotes the group of all continuous group
homomorphisms from the absolute Galois group of K to the discrete abelian
groupµn(K) of all n-th roots of unity.

Proof. Injectivity: For α ∈ K× \ K×n, the extension K( n
√

α) is non-trivial
and hence some σ ∈ Gal(K/K) will act non-trivially. For such an
element σ ∈ Gal(K/K), we have ⟨σ, α⟩ ̸= 1, so α ̸∈ ker Φ. This proves
the injectivity of Φ.
Surjectivity: Now, let φ : Gal(K/K)→ µn(K) be a homomorphism with
an image of order d. Let us write H := ker φ and denote by L := KH

the fixed field of φ, so φ factors as

Gal(K/K) ↠ Gal(K/K)/H ∼−→ µd(K)

By the continuity of φ, we deduce that H is an open subgroup in
the Krull topology and hence L/K is finite. More precisely, we have
Gal(L/K) = Gal(K/K)/H ∼= Z/dZ, so L/K is a cyclic extension of
degree d. Corollary 3.8.4 shows that L = L( d

√
α) for some α ∈ K. In

this way, we obtain a morphism

Φ(α) : Gal(K/K) ↠ Gal(K/K)/H ∼−→ µd(K).

At this point, we do not yet know that Φ(α) does coincide with the
given map φ. But for any m ∈ (Z/dZ)× and e := n/d, we obtain a
continuous homomorphism

Φ(αem).

For distinct choices of m ∈ (Z/dZ)×, these maps are distinct since
each choice of m gives different classes in αem ∈ K×/K×n and Φ is in-
jective. On the other hand, there are exactly #(Z/dZ)× = # Aut(Z/dZ)

distinct homomorphisms of the form

Gal(K/K) ↠ Gal(K/K)/H ∼−→ µn(K).

Thus, we have φ = Φ(αme) for some m ∈ (Z/dZ)×. This proves the
surjectivity.

Let us consider the following example:
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Example 3.8.7. For K = Q and n = 2, the 2nd roots of unity {±1} are
contained in Q and the characteristic of Q does not divide 2. Hence,
we may apply Kummer’s Theorem and obtain

Q×/Q×2 ∼= Homcont(Gal(Q/Q), {±1}).

Each element of Q×/Q×2 is determined by a unique square-free inte-
ger d and with this identification, the Kummer pairing is given by

{d ∈ Z | d square-free} ∼−→ Homcont(Gal(Q/Q), {±1}).

which is given by

d 7→
(

σ 7→ σ(
√

d)√
d

)
.

Thus, Kummer Theory for n = 2 and K = Q reflects the fact that the
quadratic extensions of Q are precisely the fields obtained by adjoining
a square root of a square-free integer.

In the case, where the n-th roots of unity are not contained in K, the
following lemma will bes useful.

Lemma 3.8.8. Let p be a prime and F be a field of characteristic prime to p.
Let L = F(ζp, p

√
α) for some α ∈ F(ζp)×. Define the homomorphism

ω : Gal(F(ζp)/F)→ (Z/pZ)×,

by σ(ζp) = ζ
ω(σ)
p . If L/F is abelian then σ(α)

αω(σ) ∈ F(ζp)×p for all σ ∈
Gal(F(ζp)/F).

Proof. Let G = Gal(L/F), H = Gal(L/F(ζp)) ⊆ G and let A be the
subgroup of F(ζp)×/F(ζp)×p generated by α. The Kummer pairing
induces a bilinear pairing H × A → µp(K) that is compatible with the
Galois action of Gal(F(ζp)/F) ∼= G/H

⟨h, αω(σ)⟩ = ⟨h, α⟩ω(σ) = σ(⟨h, α⟩) = ⟨h, σ(α)⟩,

for all σ ∈ Gal(F(ζp)/F) and h ∈ H. The isomorphism Φ induced by
the Kummer pairing is injective, so αω(σ) ≡ σ(α) mod F(ζp)×p.

Proposition 3.8.9. For p > 2 no extension of Qp has Galois group isomor-
phic to (Z/pZ)k for k ≥ 3.

Proof. It is enough to prove that there is no Galois extension with Ga-
lois group isomorphic to (Z/pZ)3. Suppose there were a extension
K/Qp with Gal(K/Qp) ∼= (Z/pZ)3. Let us choose the uniformizer[39] [39] The element π := ζp − 1 is the root of

the Eisenstein polynomial

(X + 1)p − 1
X

∈ Qp[X],

and hence it is a uniformizer of Qp(ζp)
by Theorem 3.5.8.

π := ζp − 1 of the field Qp(ζp).
Claim 1: There exists a subgroup A ⊆ U1/Up

1 where U1 := {u ≡ 1
mod π} is the group of principal units of the field Qp(ζp).
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Proof of Claim 1: The field K/Qp is linearly disjoint from Qp(ζp)/Q,
since the latter has degree p − 1 which is prime to p. By Kummer
theory, there is a subgroup A ⊆ Qp(ζp)×/Qp(ζp)×p isomorphic to
(Z/pZ)3, for which K(ζp) ∼= Q(ζp, A1/p), where A1/p = { p

√
α | α ∈

A}. Our aim is to prove that we may without loss of generality assume
that A ⊆ U1/Up

1 . The extension Q(ζp, A1/p) is the compositum of
two linearly disjoint abelian extensions, hence it is also abelian. Now,
Lemma 3.8.8 implies for any α ∈ A

σ(α)

αω(σ)
∈ Qp(ζp)

×p, (3.15)

where σ ∈ G := Gal(Qp(ζp)/Qp) and ω : G ∼−→ (Z/pZ)× is given by

σ(ζp) = ζ
ω(σ)
p . Let us write vπ for the normalized valuation on Qp(ζp)

associated to π. We want to compute the valuation of an arbitrary
element α ∈ A. Note, that it is only well-defined mod p since α is
only defined up to multiplication of elements from Qp(ζp)×p. For each
α ∈ A, we have according to (3.15) the formula

vπ(a) = vπ(σ(α)) ≡ ω(σ)vπ(α) mod p.

Thus, we have (1− ω(σ))vπ(α) ≡ 0 mod p for all σ ∈ G. Since ω(σ)

runs through all elements in (Z/pZ)×, this implies vπ(α) ≡ 0 mod p.
On the other hand, α is only defined up to multiplication with a pth
power in Qp(ζp)×. Thus, we may without loss of generality multiply
α by π−vπ(α) and obtain a representative α ∈ Qp(ζp)× with vπ(α) = 0.
Furthermore, µp−1(Qp)p = µp−1(Qp) so every (p− 1)-root of unity is a
p-th power. It follows from Exercise 2 on Sheet 6, that the (p− 1)-roots
of unity form a system of representatives for the units in the residue
field of a totally ramified extension. Thus, after multiplication with
a suitable element from µp−1(Qp(ζp)), we may furthermore assume
α ≡ 1 mod π. Summarizing the above discussion shows that we may
assume A ⊆ U1/Up

1 , where U1 := {u ≡ 1 mod π} are the principal
units in the field Qp(ζp). This shows the Claim 1.

Claim 2: Any u ∈ U1 can be written as

u = ζb
pu2

for suitable 0 ≤ b ≤ p− 1 and u2 ∈ U2 := {u ≡ 1 mod π2}.
Proof of Claim 2: Let us write u = 1 + bπ + O(π2). Since we have
ζp = 1 + π, we get

ζ−b
p = 1− bπ + O(π2).

This implies
ζ−b

p u = 1 + O(π2).

Thus setting u2 := ζ−b
p u proves Claim 2.

Now, we will show that the elements of A are of a very particular form.
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Claim 3: Every α ∈ A can be written in the form

α = ζb
p(1 + cπp + O(πp+1))

for suitable integers b and c.
Proof of Claim 3: We start with the following observation

σ(π)

π
=

σ(ζp − 1)
ζp − 1

=
ζ

ω(σ)
p − 1
ζp − 1

= ζ
ω(σ)−1
p + · · ·+ ζp + 1 ≡ ω(σ) mod π.

This shows
σ(π) ≡ ω(σ)π mod π2. (3.16)

Applying Claim 2 to α ∈ A gives

α = ζb
p(1 + cπe + O(πe+1))

for some integers c, b and e ≥ 2. Together with (3.16), this allows us to
σ(α) as follows

σ(α) = ζ
ω(σ)b
p (1 + cω(σ)eπe + O(πe+1)).

On the other hand, we have

αω(σ) = ζ
ω(σ)b
p (1 + cω(σ)πe + O(πe+1)).

A straightforward computation shows Up
1 ⊆ Up+1 and since we have

σ(α)

aω(σ)
∈ Up

1 ,

we deduce by comparing the coefficients in the π-adic expansion of
σ(α) and αω(σ) the congruence

ω(σ) = ω(σ)e

for every σ ∈ G. But this implies e ≡ 1 mod p− 1 and since e ≥ 2, we
get e ≥ p. This proves the Claim 3.
Now, Claim 3 shows that A is contained in the subgroup of U1/Up

1
generated by ζp and (1 + πp). This is an abelian group of expo-
nent p generated by two elements, hence isomorphic to a subgroup
of (Z/pZ)2. This contradicts A ∼= (Z/pZ)3.

Outlook

We have seen in this section that not every finite group can appear as
a Galois group of Qp. More precisely, for an odd prime p, the groups
(Z/pZ)k for k ≥ 3 can not be realized as a Galois group over Qp.
The question whether every finite group appears as a Galois group of
some Galois extension over the field of rational numbers Q is much
more difficult and widely open. Indeed, it is expected that each finite
group appears as such a Galois group:
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Conjecture (Inverse Problem of Galois Theory). For every finite group
G there exists a Galois extension K/Q with G ∼= Gal(K/Q).

This again shows that extensions of global fields are much more
complicated to understand than there local counterparts. For example,
the Galois groups Gal(Qp/Qp) are (topologically) finitely presented
and it is possible to give explicit generators and relations. The abso-
lute Galois group Gal(Q/Q) is not (topologically) finitely generated
and no ’explicit’ description is known. Nevertheless, it contains many
important arithmetic information and appears everywhere in (alge-
braic) number theory.

3.9 Proof of the local Kronecker–Weber Theorem

In this section, we will combine the results of the previous weeks to
prove the local Kronecker-Weber Theorem, i.e., we want to prove the
following Theorem.

Theorem 3.9.1. For any finite abelian extension K/Qp there exists a positive
integer n such that K ⊆ Qp(ζn).

We claim that it suffices to prove the Kronecker-Weber Theorem
for all finite abelian extensions of prime power degree. Indeed, let
us assume that K/Qp is a finite abelian extension with Galois group
G = Gal(L/Qp). By the structure theorem for finite abelian groups, G
decomposes as

G = G1 × · · · × Gr,

where each Gi is a cyclic group of prime power degree. For 1 ≤ j ≤ r,
let us define

G(j) :=
r

∏
i=1
i ̸=j

Gi.

and the fixed field Kj := KG(j)
. The field Kj is a cyclic extension of Qp

of prime power degree. We have

K = K1 . . . Kr.

Let us assume for a moment that we already know the local Kronecker-
Weber Theorem for all cyclic extensions of prime power degree. In
particular, we can find for any 1 ≤ j ≤ r a positive integer nj such that

Kj ⊆ Qp(ζnj).

If we set n := lcm(n1, . . . , nr) then we get

K = K1 . . . Kr ⊆ Qp(ζn1) . . . Qp(ζnr ) = Qp(ζn)
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and the local Kronecker–Weber Theorem would follow. Thus, it suf-
fices to prove the local Kronecker–Weber Theorem for cyclic extensions
K/Qp of prime power degree lr for all primes l and r ≥ 1. We distin-
guish between l = p and l ̸= p. Let us start with the case l ̸= p.

Proposition 3.9.2. Let K/Qp be a cyclic extension of degree lr for some
prime l ̸= p. Then there exists a positive integer n such that K ⊆ Qp(ζn).

Proof. Let I ⊆ Gal(K/Qp) be the inertia group of K/Qp and set F :=
K I . Then F/Qp is unramified while K/F is totally and tamely rami-
fied. By the structure theorem of totally ramified extensions (Theorem
3.5.8), we get

K = F( e
√

π) (3.17)

for some uniformizer π of F. Since F/Qp is unramified, we have (p) =
(π) in the valuation ring OF of F and deduce that

π = −up

for some unit u ∈ A×. From (3.17), we deduce

K ⊆ Qp( e
√
−p)F( e

√
u)

The element e
√

u is a root of the normalized polynomial Xe − u whose
reduction is separable, hence by Lemma 3.5.3 the extension F( e

√
u)/F is

unramified. Since F/Qp is also unramified, we deduce that F( e
√

u)/Qp

is unramified. By the structure theorem for unramified extensions, we
deduce F( e

√
u) = Qp(ζk) for k = p[F(

e√u):Qp ] − 1. It remains to show
that Qp( e

√−p) is also contained in a cyclotomic extension. But note
that Qp( e

√−p)/Qp is a sub-extension of an abelian extension, hence
it is also an abelian Galois extension. In particular, it contains all eth
roots of −p, i.e.,

e
√
−p, ζe · e

√
−p, . . . , ζe−1

e · e
√
−p ∈ Qp( e

√
−p).

So, it does also contain all e-th roots of unity and we obtain the tower
Qp ⊆ Qp(ζe) ⊆ Qp( e

√−p). Since p ∤ e, we deduce from Lemma 3.5.3
that Qp ⊆ Qp(ζe) is an unramified extension. On the other hand, we
already know that Qp( e

√−p)/Qp is totally ramified. Thus, we must
have Qp(ζe) = Qp and deduce[40] that e | (p − 1) for . This gives [40] We have seen in Exercise 2 and 4 of

Sheet 6 that the roots of unity µe(K) for
p ∤ e map isomorphically to the roots of
unity of κK . For K = Qp, we deduce that
e | (p− 1) since p− 1 is the order of the
groups of unity in Fp.

Qp( e
√−p) ⊆ Qp((−p)1/(p−1)). But we will prove in the Exercises the

equality
Qp((−p)1/(p−1)) = Qp(ζp).

Combining everything gives

K ⊆ Qp( e
√
−p)F( e

√
u) ⊆ Qp(ζp)Qp(ζk) ⊆ Qp(ζpk),

which proves the statement of the theorem.
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In order to finish the proof of the local Kronecker-Weber Theorem,
we have to deal with the case l = p.

Proposition 3.9.3. Let K/Qp be a cyclic extension of degree pr. Then there
exists a positive integer n such that K ⊆ Qp(ζn).

Proof. Let us first assume p ̸= 2. Before we start the proof, let us think
about obvious candidates of cyclotomic fields which might contain
such a degree pr extension of Qp. The first example which comes to
mind is the unique unramified extension of Qp of degree pr, namely
Qp(ζppr−1). On the other hand, the abelian extension Qp(ζpr+1) of Qp

is a totally ramified Galois extension of degree pr(p− 1). This can be
seen easily by observing that the minimal polynomial of ζpr+1 − 1 is
the polynomial

(X + 1)pr+1 − 1
(X + 1)pr − 1

= (X + 1)pr(p−1) + (X + 1)pr(p−2) + · · ·+ (X + 1)pr
+ 1

which is easily seen[41] to be an Eisenstein polynomial. In particular, [41] The constant term is p and the higher
coefficients are all divisible by p since p

divides (pi

k ) for i ≥ 1 and 1 ≤ k < pi .
there is a unique totally ramified abelian sub-extension of Qp(ζpr+1)

of degree pr. Thus, we have two obvious candidates and our goal is
to prove that our given field K is contained in their composite, i.e.,
in the field Qp(ζm) for m = pr+1(ppr − 1). The field Qp(ζm) is the
compositum of the linearly disjoint fields Qp(ζpr+1) and Qp(ζppr−1),
hence its Galois group is isomorphic to

Gal(Qp(ζm)/Qp) ∼= (Z/(p− 1)Z)× (Z/prZ)× (Z/prZ).

Let us assume that K is not contained in this field. Then, we would
have

Gal(K(ζm)/Qp) ∼= (Z/(p− 1)Z)× (Z/prZ)× (Z/prZ)× (Z/psZ),

for some 1 < s ≤ r. It follows that the group Gal(K(ζm)/Qp) has a
quotient which is isomorphic to (Z/pZ)3. Thus, there would be a fi-
nite Galois extension of Qp with Galois group (Z/pZ)3. By Kummer
theory, such an extension can not exist, see Proposition 3.8.9.
Let us now indicate the proof for the prime p = 2. The strategy is
similar, but for p = 2 we have to adapt the argument since there are
abelian extensions of Q2 with Galois group (Z/2Z)3, namely the ex-
tension Q2(ζ24). We want to prove that K is contained in Q2(ζm) with
m = (22r − 1)2r+2 which has Galois group

Gal(Q2(ζm)/Q2) ∼= (Z/2Z)× (Z/2rZ)2.

If K is not contained in Q2(ζm), then the Galois group K(ζm) has to be
of the following form:

Gal(K(ζm)/Q2) ∼=

Z/2Z× (Z/2rZ)2 ×Z/2sZ with 1 ≤ s ≤ r, or

(Z/2rZ)2 ×Z/2sZ with 2 ≤ s ≤ r.
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Thus, it admits either a quotient isomorphic to (Z/2Z)4 or to (Z/4Z)3.
By the next Lemma, both groups can not be realised as a Galois group
over Q2.

Lemma 3.9.4. No extension of Q2 has Galois group isomorphic to (Z/2Z)4

or to (Z/4Z)3.

Proof. This will be proven in the exercises.

Let us define the maximal abelian extension Kab on a field K as the
compositum of all finite abelian extensions in a fixed algebraic closure
of K. The local Kronecker-Weber Theorem allows us to give an explicit
description of the Galois group of the maximal abelian extension of
Qp:

Corollary 3.9.5. For a prime p, we have Qab
p = Qp(ζn | n ∈ N) and we

get an (explicit) isomorphism

Ẑ×Z×p
∼−→ Gal(Qab

p /Qp).

Proof. The local Kronecker-Weber Theorem says that any abelian ex-
tension of Qp is contained in a cyclotomic extension Qp(ζn). This
proves Qab

p = Qp(ζn | n ∈ N). We can write this in a more convenient
way as follows

Qp(ζn | n ∈N) = Qp(ζn | n prime to p)Qp(ζpj | j ∈N).

Since both fields on the right hand side are linearly disjoint, we get

Gal(Qab
p /Qp) = Gal(Qp(ζn | n prime to p)/Qp)×Gal(Qp(ζpj | j ∈N)/Qp).

Now, the isomorphism follows from the explicit isomorphisms of Ex-
ample 3.7.10 and Example 3.7.11.

Outlook

Using the local Kronecker-Weber Theorem, we were able to prove an
isomorphism

Ẑ×Z×p
∼−→ Gal(Qab

p /Qp). (3.18)

On the other hand, we have Q×p = pZ ×Z×p ∼= Z×Z×p . The group
Ẑ×Z×p is the pro-finite completion of the group Z×Z×p . Here, the
pro-finite completion of an abstract group G is the group

Ĝ := lim←−
U

G/U

where U runs through all normal subgroups of finite index in G. Thus,
combining the isomorphism Q×p ∼= Z×Z×p with, we obtain an explicit
isomorphism

Q̂×p
∼−→ Gal(Qab

p /Qp).
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So, it turns out that the Galois group of the maximal abelian extension
of Qp can be described in an explicit way by the pro-finite completion
of the units of Qp. Surprisingly, this holds for any finite extension of
Qp (more generally for local fields):

Theorem 3.9.6 (Local class field Theory). Let K be a finite extension of
Qp, then there exists an explicit isomorphism

K̂× ∼−→ Gal(Kab/K).

So local class field theory allows us to study the Galois group of the
maximal abelian extension of K purely in terms of the units in K. The
units in K are easily studied, on sheet 6, exercise 4, we have given an
explicit description of the group K×.

3.10 The global Kronecker–Weber Theorem

In this section, we want to prove the Global Kronecker–Weber Theo-
rem:

Theorem 3.10.1 (Global Kronecker–Weber Theorem). Let K/Q be a fi-
nite abelian field extension. There exists a positive integer n such that K ⊆
Q(ζn), where ζn is a primitive n-th root of unity.

Let us recall the following result from Algebraic Number Theory I:

Theorem 3.10.2 (Hermite–Minkowski). Let K be a number field of degree
n and with discriminant dK. Then√

|dK| ≥
nn

n!

(π

4

)n/2
.

In particular, there are no non-trivial everywhere unramified extensions of Q.

Proof. Algebraic Number Theory I.

Corollary 3.10.3. Let K/Q be a finite abelian Galois extension. Then Gal(K/Q)

is generated by the inertia groups[42] Ip(K/Q) where p runs through all the [42] Since K/Q is abelian, the inertia
groups Ip of a prime ideal p ⊆ OK over
p does only depend on p.

primes.

Proof. Let H ⊆ Gal(K/Q) be the subgroup generated by all the inertia
groups Ip(K/Q). The fixed field L := KH is fixed by each Ip(K/Q)

hence it is everywhere unramified. The Hermite–Minkowski Theorem
implies L = Q and hence H = Gal(K/Q).

Furthermore, we will need some facts about the prime decompo-
sition in cyclotomic fields. First, let us recall that a Frobenius ele-
ment of a prime P ⊆ OL over p ⊆ OK in a Galois extension L/K
of number fields is an element FrobP of the decomposition group
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GP ⊆ G = Gal(L/K) which maps to the Frobenius morphism (x 7→
x#κ(p)) ∈ Gal(κ(P)/κ(P)) of the residue field extension under

GP ↠ Gal(κ(P)/κ(P)).

The kernel of the latter map is the inertia group IP. So, it is only well-
defined up to multiplication by IP. In particular, FrobP is uniquely
determined if P is unramified over p. Furthermore, recall from ANT
1 that the sets of Frobenius elements as well as the decomposition
and inertia groups of two primes P and P′ over p are conjugate in
Gal(L/K). In particular, if L/K is abelian then the set of Frobenius ele-
ments, the decomposition group and the inertia group do only depend
on p and not on the chosen prime above p.

Theorem 3.10.4 (Cyclotomic Extensions). Let n be a positive integer and
ζn a primitive n-th root of unity in an algebraic closure Q of Q. We have

(a) Q(ζn) is a Galois extension of Q with Galois group

ωn : Gal(Q(ζn)/Q)
∼−→ (Z/nZ)×, σ(ζn) = ζ

ωn(σ)
n .

(b) The ring of integers of Q(ζn) is Z[ζn].

(c) The extension Q(ζn)/Q is ramified at p if and only ifp | n if p ̸= 2

4 | n if p = 2.

If n = pk then p = (ζpk − 1)
[Q(ζpk ):Q], in particular, p is totally ramified

in Q(ζpk )/Q.

(d) For a prime p with p ∤ n, let us write Frobp ∈ Gal(Q(ζn)/Q) for the
Frobenius element[43] at p. We have ωn(Frobp) = p + nZ [43] By the discussion preceding this The-

orem, Frobp is well-defined since p is un-
ramified and the extension is abelian.(e) For a prime p, let us write n = pvp(n)m with m := n/pvp(n). Then the

inertia group Ip(Q(ζn)/Q) of Gal(Q(ζn)/Q) corresponds to the group
(Z/pvp(n)Z)× under the isomorphism

Gal(Q(ζn)/Q) ∼= Gal(Q(ζm)/Q)×Gal(Q(ζpvp(n))/Q)

∼= (Z/mZ)× × (Z/pvp(n)Z)×.

(f) For each prime p, let us write n = pvp(n)m with m := n/pvp(n) and
define

p := p + mZ ∈ (Z/mZ)×

and
fp := ord(p).
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Then, the prime p decomposes in Z[ζn] as follows:

pZ[ζn] = (p1 . . . pr)
φ(pvp(n))

with f (pi/p) = fp and e(p/p) = φ(pvp(n)), where φ(pvp(n)) denotes
the Euler totient function of pvp(n).

Proof. (a), (b), (c) and (d) have been shown in the lecture ANT 1

in the winter term. (e) follows from the fact that p is unramified in
Q(ζm)/Q, while it is totally ramified in Q(ζpvp(n))/Q. So, the inertia

group of Gal(Q(ζpvp(n))/Q) is the whole Galois group.

( f ) is a consequence of the previous claims. Indeed, by (e) the ramifi-
cation index at p is given by

ep = |Ip| = #(Z/pvp(n)Z)× = φ(pvp(n)).

Again, since Q(ζm)/Q is unramified while Q(ζvp(n))/Q is totally ram-
ified, the inertia degree fp coincides with the inertia degree of p in
Q(ζm)/Q. This is given by the order of the decomposition group, i.e.,

fp = ord(Frobp).

By (d), we have ord(Frobp) = ord(p) for p = p + mZ.

We can now prove the Global Kronecker-Weber Theorem:

Proof. Let K/Q be a finite abelian extension with Galois group G =

Gal(K/Q). For any ramified rational prime p we pick[44] a prime p ⊆ [44] Since K/Q is Galois, all primes above
p are ramified with the same ramifica-
tion index. In the following, it does not
matter which prime we pick.

OK over p. By Theorem 3.4.4 (e), we have Gal(Kp/Qp) ∼= Gp ⊆ G.
Hence, the local extension Kp/Qp is abelian and the local Kronecker–
Weber Theorem implies that Kp ⊆ Qp(ζmp) for some positive integer
mp. If p is unramified in K then Kp/Qp is unramified and we may in
this case assume that mp is co-prime to p. Let ep := νp(mp) and put
m = ∏p pep , which is a finite product since only finitely primes ramify
in K/Q. We set L := K(ζm). We want to show L = Q(ζm), which then
implies K ⊆ Q(ζm).

The field L = K · Q(ζm) is a compositum of Galois extensions of
Q, and therefore Galois over Q. Its Galois group is isomorphic to a
subgroup[45] of Gal(Q(ζm)/Q) × Gal(K/Q) and hence is an abelian [45] More precisely, we recall from Al-

gebra: For two finite Galois extensions
L1, L2 of K with Galois groups G1 =
Gal(L1/K) and G2 = Gal(L2/K), the Ga-
lois group Gal(L1L2/K) is isomorphic to

{(σ, τ) ∈ G1×G2 : σ|K1∩K2 = τ|K1∩K2}.

group. Now, let P ⊆ OL and p ⊆ OK be a primes such that P|p|p. The
completion of L at P is given by

LP = Kp(ζm) = Qp(ζm, ζmp) = Qp(ζlcm(m,mp)).

By Theorem 3.10.4 and Theorem 3.4.4 (e), the inertia groups of Qp(ζm)

and Qp(ζlcm(m,mp)) are both isomorphic to (Z/pep Z)×, i.e.,

Ip(Qp(ζm)/Qp) ∼= (Z/pep Z)× ∼= Ip(Qp(ζlcm(m,mp))/Qp).
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On the other hand, the tower Qp(ζm) ⊆ L ⊆ Qp(ζlcm(m,mp)) gives rise
to a surjection of inertia groups

Ip(Qp(ζlcm(m,mp))/Qp) ↠ Ip(LP/Qp) ↠ Ip(Qp(ζm)/Qp).

Thus, we deduce |Ip(LP/Qp)| = φ(pep) where φ is Euler’s totient
function. By Theorem 3.10.3 and since L/Q is abelian, the map⊕

p
Ip(LP/Qp) =

⊕
p

Ip(L/Q) ↠ Gal(L/Q)

induced by the inclusions Ip(L/Q) ⊆ Gal(L/Q) is surjective. We de-
duce

|Gal(L/Q)| ≤∏
p
|Ip(LP/Qp)| = ∏

p
φ(pep) = φ(m).

But the subextension Q(ζm)/Q of L/Q has already degree φ(m) and
we conclude L = Q(ζm). This implies K ⊆ Q(ζm) and the global
Kronecker–Weber Theorem holds.

Previously, we have already introduced the profinite group

Ẑ := lim←−
n∈(N,|)

Z/nZ.

Let us observe that the finite groups (Z/nZ,+) have an additional
multiplicative structure and form a ring. The transition maps Z/mZ→
Z/nZ for n|m are all ring homomorphisms and thus we obtain a nat-
ural ring structure on

Ẑ := lim←−
n∈(N,|)

Z/nZ.

In particular, it makes sense to talk about the units Ẑ× of Ẑ. Note,
that we can also describe the units in this ring as follows:

Ẑ× = lim←−
n∈(N,|)

(Z/nZ)×.

We equip them with the topology induced by the inverse limit. The
following Corollary gives an explicit description of Gal(Qab/Q):

Corollary 3.10.5. There is a canonical isomorphism of pro-finite groups

Gal(Qab/Q)
∼−→ Ẑ×.

Proof. The global Kronecker-Weber Theorem implies that the cyclo-
tomic extensions Q(ζn) form a cofinal set in the directed set of all
finite abelian Galois extension with respect to inclusion. By Theorem
3.7.9, we have

Gal(Qab/Q)
∼−→ lim←−

n
Gal(Q(ζn)/Q).
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By Theorem 3.10.4, we have canonical isomorphism ωn : Gal(Q(ζn)/Q)→
(Z/nZ)×. They are compatible with the transition maps and we get

Gal(Qab/Q)
∼−→ lim←−

n
Gal(Q(ζn)/Q) ∼= lim←−

n
(Z/nZ)× = Ẑ×.

Outlook

For a general number field K, we will see later the definition of the
ring of adeles AK. Its group of units IK := GL1(AK) is called the
group of ideles. In the case K = Q, one can show that this group is
isomorphic to IQ

∼= R>0 ×Q× × Ẑ×. The Kronecker-Weber Theorem
can be restated as follows. There is a canonical surjection

IQ/Q× ↠ Gal(Qab/Q)

with kernel R>0. It is this formulation which can be generalized to
arbitrary number fields and leads to the general statements of global
class field theory.

3.11 Dirichlet L-functions

In the next lectures, we want to explain the importance of the Kronecker–
Weber Theorem (and more generally class field theory) to the the-
ory of L-functions. In this section, we will define Dirichlet characters
and Dirichlet L-functions. As an application of these L-functions, we
sketch Dirichlet’s proof that there are infinitely many primes in each
arithmetic progression and deduce the Chebotarev density theorem
for abelian extensions of Q.

Definition 3.11.1. Let d be a positive integer. A Dirichlet character mod-
ulo d is a group homomorphism

χ : (Z/dZ)× → C×.

For d | D and a Dirichlet character χ modulo d, we obtain a Dirichlet
character modulo D by pre-composition with the canonical projection
(Z/DZ)× → (Z/dZ)×, i.e.,

(Z/DZ)× → (Z/dZ)× → C×. (3.19)

Given a Dirichlet character χ modulo D, the conductor d of χ is the
smallest divisor of D such that χ factors as in (3.19). We call a Dirichlet
character χ modulo D primitive if D is its conductor. The Dirichlet
character which is constant 1 on (Z/DZ)× will be called the trivial
Dirichlet character modulo D and will be denoted by 1.
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We can associate an L-function to any such Dirichlet character as
follows. Given a Dirichlet character χ modulo D, we may extend it to
a function on the integers as follows:

χ : Z→ C, n 7→ χ(n) :=

χ(n mod D) if (n, D) = 1

0 if (n, D) ̸= 1.

Now, we define

L(χ, s) := ∑
n≥1

χ(n)
ns .

It is immediately checked that L(χ, s) converges absolutely and locally
uniformly on Re(s) > 1 to a holomorphic function. Furthermore, it
admits an Euler product:

Lemma 3.11.2. For Re(s) > 1, we have the formula

L(χ, s) = ∏
p
(1− χ(p)p−s)−1.

Proof. Since n 7→ χ(n)n−s is a multiplicative function, we may apply
Lemma 2.1.2.

Note, that the Euler factors of the Dirichlet L-function associated to
the trivial character 1 : (Z/DZ)× → C× differs only at finitely many
primes from the Euler factors of the Riemann zeta function. More
precisely,

L(1, s) = ζ(s)∏
p|D

(1− p−s). (3.20)

For a given Dirichlet character χ modulo D, let us observe that
χ : Z → C is periodic with period length D. This is the crucial point
in relating Dirichlet L-functions to Hurwitz zeta functions:

Lemma 3.11.3. Let χ be a Dirichlet character modulo D. For Re(s) > 1, we
have

L(χ, s) = D−s
D

∑
d=1

χ(d)ζ(s, d/D).

Proof.

L(χ, s) =
D

∑
d=1

∑
n≥0

χ(d)
(d + n · D)s

= D−s
D

∑
d=1

χ(d) ∑
n≥0

1
(n + d/D)s = D−s

D

∑
d=1

χ(d)ζ(s, d/D).

This allows us to deduce many interesting properties of Dirichlet
L-functions from the corresponding properties of Hurwitz zeta func-
tions:
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Theorem 3.11.4. Let χ be a Dirichlet character modulo D. The Dirichlet
L-function admits a meromorphic continuation to C. If χ = 1 is the trivial
character modulo D, then L(1, s) is meromorphic with a simple pole at s = 1.
If χ is a non-trivial character, the Dirichlet L-function is an entire function.
The values at the negative integers are given by the formula

L(χ, 1− n) = −
Bn,χ

n
, for n ∈N,

where

Bn,χ := Dn−1
D

∑
d=1

χ(d)Bn(d/D).

In particular, the values of L(χ, s) at s = 1− n are all algebraic.

Proof. This follows immediately from Theorem 2.6.5, where we have
shown that ζ(s, x) for 0 < x ≤ 1 admits a meromorphic continuation
to C with a simple pole at s = 1 of residue 1 and satisfies

ζ(1− n, x) = −Bn(x)
n

for n ∈N.

The claim about L(χ, s) being entire for χ non-trivial, follows from

Ress=1 L(χ, s) = D−1
D

∑
d=1

χ(d)Ress=1 ζ(s, d/D) = D−1
D

∑
d=1

χ(d)︸ ︷︷ ︸
=0

.

Here, we use the fact that

D

∑
d=1

χ(d) = 0,

which is left as an exercise.

Using Dirichlet L-functions, one can prove Dirichlet’s Theorem about
primes in arithmetic progressions. Let us first introduce the notion of
a Dirichlet density:

Definition 3.11.5. Let S ⊆ T ⊆ N be sets of positive integers. We
define the Dirichlet density of S in T as

lim
s→1+

∑n∈S n−s

∑n∈T n−s

if the limit exists.

Lemma 3.11.6. We have

∑
p∈P

1
ps = log ζ(s) + O(1) = − log(s− 1) + O(1), as s→ 1.
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In particular, the Dirichlet density of a subset S ⊆ P is given by

lim
s→1+

∑p∈S
1
ps

− log(s− 1)
,

if the limit exists. Furthermore, the Dirichlet density of finite subsets S ⊆ P

is zero.

Proof. Since the Riemann zeta function has a simple pole at s = 1 of
residue 1, we deduce

log ζ(s) = − log(s− 1) + O(1), as s→ 1+.

On the other hand, we have

log ζ(s) = ∑
p∈P

− log(1− p−s) = ∑
p∈P

1
ps + ∑

p∈
∑
n≥2

1
npns︸ ︷︷ ︸

=O(1) as s→1+

.

The claims about Dirichlet densities are immediate consequences of
this formula.

The following Lemma plays a key role in the proof of Dirichlet’s
theorem:

Lemma 3.11.7 ((Orthogonality relation)). For a, b ∈ Z/DZ, we have

1
φ(D) ∑

χ

χ(a)χ(b) =

1 a = b

0 a ̸= b,

where φ denotes Euler’s totien function and χ runs over all Dirichlet charac-
ters modulo D.

Proof. Exercise.

Theorem 3.11.8. Let a and D be co-prime positive integers, then there are
infinitely many primes of the form a + nD. More precisely, the set

{p ∈ P | p ≡ a mod D}

has Dirichlet density 1/φ(D) in P, where φ denotes Euler’s totient function.

Proof. We sketch the proof and divide it into several sub-claims:
Claim 1: We have

log L(χ, s) = ∑
p∈P

χ(p)
ps + O(1), as s→ 1.
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Proof of the Claim 1: This follows easily from the following computation:

log L(χ, s) = log ∏
p∈P

(1− χ(p)p−s)−1 = ∑
p∈P

∞

∑
n=1

χ(p)n

npns

= ∑
p∈P

χ(p)
ps + ∑

p∈P

∞

∑
n=2

χ(p)n

npns︸ ︷︷ ︸
O(1) as s→1

.

Claim 2: For each non-trivial Dirichlet character χ, we have L(χ, 1) ̸= 0.
Proof of the Claim 2: This will be shown later.

We are now ready to prove the Theorem. By Claim 2 and Lemma
??, we have

1
φ(D) ∑

χ

χ(a) log L(χ, s) = − 1
φ(D)

log(s− 1) + O(1), as s→ 1.

(3.21)
On the other hand, by Lemma 3.11.7, equation (3.20) and Claim 1, we
have

1
φ(D) ∑

χ

χ(a) log L(χ, s) = ∑
p∈Pa

1
ps + O(1),

where we write Pa := {p ∈ P | p ≡ a mod D}. Dividing the latter
equation by − log(s− 1) and observing (3.21) gives

lim
s→1+

∑p∈Pa
1
ps

− log(s− 1)
=

1
φ(D)

.

Thus, in the sense of Dirichlet densities, about 1/φ(D) of the primes
are congruent a modulo D. In Chapter 2.5, we have used the non-
vanishing of ζ(s) on Re(s) ≥ 1 to deduce an asymptotic formula for
the prime counting function. By combining the methods of Chapter
2.5 with the idea of the proof of Dirichlet’s Theorem, one can prove:

Theorem 3.11.9. For co-prime positive integers a and D, we have

∑
p≤x

p≡a mod D

1 ∼ 1
φ(D)

x
log x

as x → ∞.

Proof. We only sketch the argument. We define

ϑχ(x) = ∑
p≤x

χ(p) log p.

The function ϑ1 for the trivial character 1 differs from the function ϑ

defined in Chapter 2.5 only in finitely many terms. So, we deduce
from Corollary 2.5.5 the convergence of the integral∫ ∞

1

ϑ1(x)− x
x2 dx.
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Similarly, one proves for every non-trivial character χ the convergence
of ∫ ∞

1

ϑχ(x)
x2 dx.

Now, we define
ϑa(x) = ∑

p≤x
p≡a mod D

log p,

and observe by the orthogonality relation

ϑa(x) =
1

φ(D) ∑
χ

χ(a)ϑχ(x).

The convergence of the above integrals implies∫ ∞

1

ϑa(x)− x
x2 dx < ∞.

By a similar argument as in Theorem 2.5.6 one deduces from the con-
vergence of this integral the asymptotic formula

ϑa(x) ∼ 1
φ(x)

x as x → ∞.

And finally, we can use this formula to prove

∑
p≤x

p≡a mod D

1 ∼ 1
φ(D)

x
log x

as x → ∞,

by the same argument as in the Prime Number Theorem.

We can restate this result in terms of natural densities:

Definition 3.11.10. Let S ⊆ T ⊆ N be sets of positive integers. We
define the natural density of S in T as

lim
x→∞

∑n∈S
n≤x

1

∑n∈T
n≤x

1

if the limit exists.

Thus, we obtain:

Corollary 3.11.11. For co-prime positive integers a and D the natural den-
sity of {p ∈ P | p ≡ a mod D} in the set of all primes P is 1/φ(D).

An immediate consequence of Dirichlet’s result on primes in arith-
metic progressions together with the Kronecker-Weber Theorem is the
following special case of Chebotarev’s Density Theorem for abelian
extensions of Q:
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Corollary 3.11.12. Let K/Q be a finite abelian extension and g ∈ Gal(K/Q).
The natural and Dirichlet density of the set

{p ∈ P | p unramified and Frobp = g}

in the set of all primes P is 1/# Gal(K/Q).

Proof. By the Kronecker-Weber Theorem, there is a positive integer D
such that K ⊆ Q(ζD). Let us denote by Fp the pre-image of Frobp(K/Q) ∈
G = Gal(K/Q) under

Gal(Q(ζD)/Q) ↠ G.

Since the Frobenius element of Q(ζD) at p maps to the Frobenius el-
ement of K at p and since Fp has exactly # Gal(Q(ζD)/Q)

# Gal(K/Q)
elements, it

suffices to prove the claim for K = Q(ζD). Let us denote by a + DZ

the image of g ∈ G under the isomorphism in Theorem 3.10.4 (a)

Gal(Q(ζD)/Q)
∼−→ (Z/DZ)×.

By Theorem 3.10.4, the image of Frobp ∈ G under this isomorphism is
p + DZ. Thus, we get

{p ∈ P | p unramified and Frobp = g} = {p ∈ P | p ≡ a mod D},

and the result follows from Dirichlet’s Theorem for primes in arith-
metic progressions.

3.12 Dirichlet characters as Galois representations

In this section, we will use the Kronecker–Weber Theorem to relate
Dirichlet characters to 1-dimensional Galois representations.

We have introduced Dirichlet characters as group homomorphisms
(Z/DZ)× → C×. A more convenient way to view Dirichlet characters
is provided by the pro-finite group

Ẑ× = lim←−
d∈(N,|)

(Z/dZ)×.

For every d ∈N, we have canonical projections

Ẑ× ↠ (Z/dZ)×.

This allows us to associate to every Dirichlet character a continuous
homomorphism Ẑ× → C×. The following Lemma shows that the con-
tinuous homomorphisms Ẑ× → C× are precisely the Dirichlet charac-
ters.
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Lemma 3.12.1. Every continuous group homomorphism χ : Ẑ× → C× fac-
tors through

χ : Ẑ× → (Z/dZ)× → C×

for some d ∈N. In particular, we can identify the set of all primitive Dirichlet
characters with Homcont(Ẑ×, C×).

Proof. Exercise.

Let us now relate the Kronecker-Weber Theorem to Dirichlet char-
acters. The Kronecker-Weber Theorem gave us the explicit description
Qab = Q(ζn | n ∈ N) for the maximal abelian field extension of Q.
This allowed us to compute the Galois group of Qab/Q. More pre-
cisely, we have an explicit isomorphism

Gal(Qab/Q) ∼= Ẑ× = lim←−
n∈(N,|)

(Z/nZ)×.

Using this isomorphism, we get:

Corollary 3.12.2. We have an isomorphism

Homcont(Gal(Q/Q), C×)
∼−→ {χ primitive Dirichlet characters}, ρ 7→ χρ.

Proof. It suffices to show that

Homcont(Gal(Q/Q), C×) ∼= Homcont(Gal(Qab/Q), C×),

but since C× is an abelian group, any continuous group homomor-
phism Gal(Q/Q) → C× factors through the Galois group of some
abelian Galois extension K/Q. Hence, it factors through the maximal
such extension which is Qab.

The continuous homomorphisms

Gal(Q/Q)→ C× = GL1(C)

are exactly the 1-dimensional complex Galois representations. Next
week, we will study such complex Galois representations more care-
fully. In particular, we will associate an L-functions to each complex
Galois representation.

Outlook

This identification of continuous group homomorphisms Gal(Qab/Q)→
C× with primitive Dirichlet characters looks quite innocent, but it is
the starting point of many interesting and deep conjectures in modern
number theory. Indeed, the left hand side of the identification

Homcont(Gal(Q/Q), C×)
∼−→ {χ primitive Dirichlet characters},
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can be seen as the set of all 1-dimensional (complex) Galois repre-
sentations. Galois representations play an important role in modern
number theory for several reasons: The absolute Galois group of a
number field itself contains many interesting information but it is a
quite complicated object. Studying the representations of a group is
a general approach to gain a better understanding of the group itself.
Furthermore, Galois representations appear naturally in arithmetic ge-
ometry (usually with Ql coefficients for a prime l). Many interesting
L-functions can be described in a natural way as L-functions associ-
ated to such Galois representations. In the next section, we will out-
line the definition of an L-function associated to a (complex) Galois
representation, so called Artin L-functions. Unfortunately, it is noto-
riously difficult to understand the analytic properties, like functional
equations or meromorphic continuation, of such L-functions defined
by representations. In particular, we will see that in the simple case
of 1-dimensional (complex) Galois representations of Gal(Q/Q) we
can identify the Artin L-function of the 1-dimensional representation
ρ with the Dirichlet L-function of χρ. We have already seen that it is
not so difficult to prove analytic properties of Dirichlet L-functions.
This is a general theme in the theory of L-functions. The Langland’s
program can be seen as a conjectural generalization of this to higher di-
mensional representations: One wants to associate to every L-function
of a Galois representations a certain ’automorphic’ L-function which
is more accessible from an analytic point of view. For one-dimensional
complex Galois representations of Q, the associated ’automorphic’ L-
functions are exactly the Dirichlet L-functions. Thus, the Kronecker-
Weber Theorem can be seen as the motivating example for the Lang-
land’s program.

3.13 Complex representations

In this section, we outline the definition of Artin L-functions. These
L-functions are associated to certain complex representations. We will
skip most of the proofs and cite several results from representation
theory.

Definition 3.13.1. Let G be a (topological) group and V a finite dimen-
sional C-vector space. Let us denote by GL(V) the set of all C-linear
automorphisms of V. A (complex) representation (ρ, V) of G is a group
homomorphism

ρ : G → GL(V).

In other words, it is a C-linear action of G on V. If G is a topological
group, we call such a representation continuous if the map

G×V → V, (g, v) 7→ ρ(g)(v)
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is continuous (here, V is equipped with the usual topology induced by
any isomorphism V ∼= Cn). A homomorphism φ : (ρ′, W) → (ρ, V) of
representations ρ′ : G → GL(W) to ρ : G → GL(V) is a C-linear map
φ : W → V which is compatible with the G-actions, i.e.,

φ(ρ(g)(w)) = ρ′(g)(φ(w)).

A sub-representation is a linear subspace W ⊆ V such that ρ(g)|W ∈
GL(W). A representation ρ is called irreducible if there is no non-zero
proper sub-representation.

Let us give some examples:

Example 3.13.2.(a) The trivial representation of a finite group G on a
finite dimensional C-vector space G is the representation

G → GL(V), g 7→ idV .

Since any C-linear subspace is a sub-representation, this represen-
tation is irreducible if and only if dim V = 1. For V = C, we will
often write 1G for the trivial representation 1G : G → GL(C).

(b) For a finite group G, let us consider the C-vector space C[G] :=⊕
g∈G C with the standard basis (eg)g∈G. The (right) regular represen-

tation of a group G is C[G] together with

ρ : G → GL(C[G]), g 7→ (eh 7→ egh).

For a non-trivial group G, this representation is never irreducible
since the kernel of the map

C[G]→ C, ∑
g∈G

ageg 7→ ∑
g∈G

ag

is a non-trivial proper sub-representation.

(c) The identity GL(V)→ GL(V) is a representation of GL(V).

(d) Given two representations ρ1 : G → V1 and ρ2 : G → V2 we can form
their direct sum

ρ1⊕ ρ2 : G → GL(V1)×GL(V2) ⊆ GL(V1⊕V2), g 7→ (ρ1(g), ρ2(g)).

The irreducible representations can be seen as the building blocks
for all finite dimensional (complex) representations of a finite group:

Theorem 3.13.3 (Maschke’s Theorem). Let G be a finite group and ρ a
representation on a finite dimensional C-vector space. Then ρ is isomorphic
to a finite direct sum of irreducible representations of G.

Proof. See §1.4, Theorem 2 in Serre’s book ’Linear representations of
finite groups’[46]. [46] Jean-Pierre Serre. Linear representa-

tions of finite groups. Graduate Texts
in Mathematics, Vol. 42. Springer-Verlag,
New York-Heidelberg, 1977. ISBN 0-
387-90190-6. Translated from the second
French edition by Leonard L. Scott
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Next, let us study the functoriality of representations under homo-
morphisms of groups f : H → G. Of course, given a representation
ρ : G → GL(V), we obtain a representation of H by pre-composition
with H, i.e.,

f ∗ρ := ρ ◦ f : H → GL(V).

Often, the morphism f : H → G is just the inclusion of a subgroup. In
this case, we will call f ∗ρ the restriction of ρ to H and we will also denote
it by ResG

H ρ := f ∗ρ. Conversely, we have the following construction:

Definition 3.13.4. Let H ⊆ G be a subgroup of a finite group G and
ρ : H → GL(V) a representation of H. We define

IndH
G ρ := {Φ ∈ Map(G, V) | Φ(xh−1) = hΦ(x) for all h ∈ H, x ∈ G}.

as the representation of G with the C-linear G-action (gΦ)(x) := Φ(g−1x).
This representation is called the induced representation of ρ.

Example 3.13.5. Let G be a finite group and consider the trivial sub-
group H := {e} ⊆ G together with the trivial representation 1H of
H. In this case, the induced representation turns out to be the regular
representation of G, indeed

IndG
{e} 1H = HomSet(G, C) ∼=

⊕
g∈G

C = C[G],

and it is easily checked that the G-action on IndG
{e} 1H coincides with

the G-action on the regular representation C[G].

For finite groups H ⊆ G, we have constructed functors

ResG
H : RepG → RepH

and
IndH

G : RepH → RepG,

where RepG (resp. RepH) denotes the category of complex representa-
tions of G (resp. H). The following Theorem shows that these functors
are adjoint:

Lemma 3.13.6 (Frobenius Reciprocity). Let H ⊆ G be finite groups, ρ a
representation of G and π a representation of H, then

HomRepG
(IndH

G π, ρ) ∼= HomRepH
(π, ResG

H ρ).

Proof. Exercise.

Finally, let us state Schur’s Lemma:

Lemma 3.13.7. Let (ρ, V) be an irreducible finite-dimensional representation
of a finite group. Then

EndRepG
(ρ) = C.
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Proof. See §2.2, Proposition 4 in Serre’s book ’Linear representations
of finite groups’[47]. [47] Jean-Pierre Serre. Linear representa-

tions of finite groups. Graduate Texts
in Mathematics, Vol. 42. Springer-Verlag,
New York-Heidelberg, 1977. ISBN 0-
387-90190-6. Translated from the second
French edition by Leonard L. Scott

Let us observe that Schur’s Lemma implies for two irreducible com-
plex representations ρ and ρ̃ of a finite group G:

HomRepG
(ρ, ρ̃) =

0 ρ ̸∼= ρ̃

C ρ ∼= ρ̃.

Using Frobenius reciprocity and Schur’s Lemma, we get:

Corollary 3.13.8. Let G be a finite group, then

C[G] ∼=
⊕

(ρ,W) irreducible rep. of G

(ρ, W)dim W ,

where the direct sum runs over all isomorphism classes of irreducible repre-
sentations of G.

Proof. By Maschke’s Theorem, we already know that

C[G] ∼=
⊕

(ρ,W) irreducible rep. of G

(ρ, W)nW ,

where (ρ, W) runs over the isomorphism classes of irreducible repre-
sentations of G and nW are certain non-negative integers. It remains
to show nW = dimC W. By Schur’s Lemma, we have

nW = dimC HomRepG
(C[G], ρ).

On the other hand, we have seen in Example 3.13.5 that C[G] = Ind{e}G 1{e}
where 1{e} denotes the trivial representation. Together with Frobenius
reciprociy, we get

nW = dimC HomRepG
(Ind{e}G 1{e}, ρ)

= dimC HomC(1{e}, ResG
{e} ρ) = dimC HomC(C, W) = dimC W.

3.14 Artin L-functions

The aim of this section is to associate an L-function to every com-
plex Galois representation of number fields, so called Artin L-functions.
Such L-functions associated to Galois representations are in general
rather difficult to study from an analytic point of view. In the case
of 1-dimensional Galois representations of the absolute Galois group
of C, the Kronecker-Weber Theorem allows us to compare Artin L-
functions to Dirichlet L-functions.
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Let us now introduce Artin L-functions. Let L/K be a finite Galois
extension of number fields with Galois group G = Gal(L/K). For a
prime P ⊆ OL over p ⊆ OK let us denote by IP ⊆ GP the inertia and
the decomposition group. Let us denote by FrobP ∈ GP any element
mapping to the Frobenius morphism of the field extension κ(P)/κ(p)

under
GP ↠ Gal(κ(P)/κ(p)).

Any other choice of such a Frobenius element differs by an element of
the inertia group IP. Let ρ : Gal(L/K) → V be a finite-dimensional
representation of Gal(L/K). Le us write V IP for the fixed-points of
the subgroup IP under the action given by ρ. Thus, the group IP acts
trivially on V IP and hence, the C-linear automorphism

ρ(FrobP) : V IP → V IP

does not depend upon the choice of the Frobenius element FrobP.
Furthermore, let us observe that the sets {FrobP} and {FrobP′} of
Frobenius elements at P respectively P′, as well as the decomposition
groups and inertia groups, for two prime ideal P,P′ | p are conjugate
inside of Gal(L/K). Since the determinant of an element of GL(V)

does only depend on the conjugacy class in GL(V), for s ∈ C, the
complex number

det(1− ρ(FrobP)Np−s; V IP)

is well-defined and does only depend on p. This allows us to make the
following definition:

Lemma/Definition 3.14.1 (Artin L-function). Let L/K be a finite Galois
extension of number fields with Galois group G = Gal(L/K) and

ρ : G → GL(V)

a finite dimensional complex representation of G. The Artin L-function
of ρ is defined by

L(L/K, ρ, s) := ∏
p⊆OK

1
det(1− ρ(FrobP)Np−s; V IP)

,

here p runs through all non-zero prime ideals of K, P is a chosen
prime above p and FrobP ∈ GP is a Frobenius element in the decom-
position group GP of P. The product converges absolutely and locally
uniformly on Re(s) > 1 to a holomorphic function.

Proof. By the comment preceding the definition, the local factors are
well-defined. Let us briefly address the question of convergence. It is
enough to prove that for any ϵ > 0 the product converges absolutely
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and uniformly for every real numbers s > 1 + ϵ. For a prime p of OK,
the determinant in the local factor

det(1− ρ(FrobP)Np−s; V IP)

coincides with XnPρ(FrobP)(X−1) evaluated at X = Np−s where n =

dimC V IP and Pρ(FrobP)(X) ∈ C[X] denotes the characteristic polyno-
mial of ρ(FrobP) : V IP → V IP . Since ρ(FrobP) is of finite order, the
characteristic polynomial factors as

Pρ(FrobP)(X) =
n

∏
i=1

(X− ϵi)

for certain roots of unity ϵi. So,

det(1− ρ(FrobP)Np−s; V IP) =
n

∏
i=1

(1− ϵi Np−s).

For s > 1, we have 0 < Np−s < 1 and hence, we can estimate

|1− ϵi Np−s| ≥ 1− Np−s.

This gives the estimate

det(1− ρ(FrobP)Np−s; V IP)−1 ≤
n

∏
i=1

(1− Np−s).

The convergence follows now from the fact that the Dedekind zeta
function admits a convergent Euler product for Re(s) > 1. Let us first
recall the definition of the Dedekind zeta function:

ζK(s) := ∑
p⊆OK

1
Nps .

This function converges absolutely and uniformly for Re(s) > 1 and
admits an Euler product

ζK(s) = ∏
p

(1− Np−s)−1.

This has been proven in ANT 1. See also Neukrirch’s book on Alge-
braic Number Theory[48], Ch. VII, Thm. (5.2). [48] Jürgen Neukirch. Algebraic num-

ber theory, volume 322 of Grundlehren
der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 1999.
ISBN 3-540-65399-6. doi: 10.1007/978-3-
662-03983-0. URL https://doi.org/10.

1007/978-3-662-03983-0. Translated
from the 1992 German original and with
a note by Norbert Schappacher, With a
foreword by G. Harder

The following Theorem discusses some important properties of Artin
L-functions.

Theorem 3.14.2. Let L/K be a Galois extension of number fields with Galois
group G = Gal(L/K). Then

(a) (Trivial representation) For the trivial representation we have L(L/K, 1, s) =
ζK(s).

https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-3-662-03983-0
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(b) (Additivity) If ρ1 and ρ2 are two finite dimensional representations of G
then

L(L/K, ρ1 ⊕ ρ2, s) = L(L/K, ρ1, s)L(L/K, ρ2, s).

(c) (Restriction) If L′/K is Galois with L′ ⊇ L ⊇ K and ρ is a finite dimen-
sional representation of G then L(L′/K, f ∗ρ, s) = L(L/K, ρ, s) where
f : Gal(L′/K) ↠ Gal(L/K) = G.

(d) (Induction) If K′/K is Galois with L ⊇ K′ ⊇ K and ρ is a representation
of H = Gal(L/K′) then L(L/K′, ρ, s) = L(L/K, IndH

G ρ, s)

Proof. The proofs are not difficult, but we refer to Neukirch’s book[49] [49] Jürgen Neukirch. Algebraic num-
ber theory, volume 322 of Grundlehren
der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 1999.
ISBN 3-540-65399-6. doi: 10.1007/978-3-
662-03983-0. URL https://doi.org/10.

1007/978-3-662-03983-0. Translated
from the 1992 German original and with
a note by Norbert Schappacher, With a
foreword by G. Harder

on Algebraic Number Theory, Ch. VII, Thm. (10.4).

Let us observe that the statement (b) of the previous Theorem says
that the Artin L-function does not really depend on the field L.

An important Corollary is the following result:

Corollary 3.14.3. For a Galois extension of number fields L/K with Galois
group G = Gal(L/K) we have

ζL(s) = ζK(s) ∏
(ρ,V) ̸=1G irreducible

L(L/K, ρ, s)dimC V .

Proof. According to Theorem 3.14.2 (a) we have

ζL(s) = L(L/L, 1, s).

Now, using Theorem 3.14.2 (d) gives

ζL(s) = L(L/K, Ind{e}G 1, s).

On the other hand, we have already seen that

Ind{e}G 1G = C[G] =
⊕

(ρ,V)irreducible

ρdimC V .

Finally, we obtain the statement of the Corollary using Theorem 3.14.2
(b).

In general, it is rather difficult to prove analytic properties of L-
functions associated to Galois representations. Artin formulated the
following conjecture which is still vastly open:

Conjecture (Artin conjecture). Let L/K be a Galois extension of number
fields and ρ : Gal(L/K) → GL(V) a non-trivial irreducible representation
then L(L/K, ρ, s) extends to a holomorphic function on C.

The Kronecker-Weber Theorem allows us to compare 1-dimensional
Galois representations of Gal(Q/Q) to Dirichlet L-functions:

https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-3-662-03983-0
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Theorem 3.14.4. Let L/Q be a Galois extension of number fields and

ρ : Gal(L/Q)→ GL(C) = C×

a 1-dimensional Galois representation. Then, there exists a primitive Dirichlet
character χρ of conductor d such that

L(L/Q, ρ, s) = L(χρ, s).

Proof. Since C× is an abelian group the homomorphism ρ factors through
the abelian Galois group

Gal(Q
ker ρ

/Q) ∼= im(ρ) ⊆ C×

of the fixed field of ker ρ over Q. By the Kronecker-Weber Theorem
any such abelian extension is contained in a cyclotomic field. By The-
orem 3.14.2 (b), we may thus without loss of generality assume that
L = Q(ζd), where d is the minimal positive integers such that Q(ζd)

contains Q
ker ρ

. By the minimality of d, the homomorphism

χρ : (Z/dZ)× ∼= Gal(Q(ζd)/Q)
ρ−→ C×

is a primitive Dirichlet character of conductor d. It remains to show
that L(χρ, s) = L(L/Q, ρ, s). Since both L-functions are given for
Re(s) > 1 by an Euler product it suffices to prove

det(1− ρ(FrobP)p−s; CIp) = (1− χρ(p)p−s)

for all primes p, where P ⊆ Z[ζd] denotes a prime ideal above p. If
p | d then χρ(p) = 0 and the right hand side is 1. On the other hand, p
is ramified in Q(ζd). By Theorem 3.10.4 (e), the inertia group Ip corre-
sponds to the subgroup (Z/pνp(d)Z)× of (Z/dZ)×. The image of this

group under ρ is non-trivial, otherwise Q
ker ρ

would be contained in
Q(ζd′) with d′ = d/pνp(d). Hence, CIp = {0} and we conclude that also
the Euler factor in the right hand side of the above equation is trivial
for p | d. If p ∤ d then p is unramified at p and the Frobenius morphism
FrobP at p corresponds to p + dZ under (Z/dZ)× ∼= Gal(Q(ζd)/Q).
Thus ρ(FrobP) = χρ(p) and we deduce

det(1− ρ(FrobP)p−s; CIp) = det(1− χρ(p)p−s; C) = (1− χρ(p)p−s)

as desired.

We have already seen that Dirichlet L-functions of a non-trivial
Dirichlet character are entire. Thus, the Kronecker-Weber Theorem
proves the Artin conjecture for all 1-dimensional Galois representa-
tions over Q. Furthermore, we can now prove the non-vanishing of
L(χ, 1) for any non-trivial Dirichlet character. This has been used in
the proof of Dirichlet’s Theorem:
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Corollary 3.14.5. For any non-trivial Dirichlet character χ of modulus D,
we have L(χ, 1) ̸= 0.

Proof. By the previous Theorem together with Corollary 3.14.3, we see

ζK(s)
ζ(s)

= ∏
χ ̸=1

L(χ, s)

where K = Q(ζD) and χ runs through all non-trivial Dirichlet charac-
ters modulo D. By the analytic class number formula (proven in ANT
1), we know that the zeta functions on the right hand side have simple
poles and that the residues of ζ(s) and ζK(s) at s = 1 are non-zero.
Hence, the limit s → 1 of the right hand side exists and is non-zero.
Since the functions in the product on the right hand side are all holo-
morphic at s = 1, non of them can vanish at s = 1 and the result
follows.





4 Tate’s thesis

In the first chapter, we have studied the basic properties of the Rie-
mann zeta function. In particular, we have used the Poisson summa-
tion formula to prove its functional equation. At the end of the second
chapter, we have introduced Artin L-functions which encode many
interesting information about number fields but whose analytic prop-
erties are rather difficult to study. In the case of Artin L-functions
of 1-dimensional complex Galois representations we could use the
Kronecker-Weber Theorem to relate them to Dirichlet L-functions. We
have already seen that Dirichlet L-functions admit an analytic contin-
uation to the entire complex plane. The aim of this chapter is to prove
functional equations for Dirichlet L-functions using Fourier analysis
on the ring of adeles. This approach to functional equations (more
generally for Hecke L-functions[1]) goes back to the PhD thesis of John [1] Hecke L-functions are generalizations

of Dirichlet L-functions to more general
number fields.

Tate. Of course, the functional equation of such L-functions has been
known previously, but the proofs where tedious and not very con-
ceptional. It was Tate’s insight that the functional equation of Hecke
L-functions is a consequence of the Poisson summation formula on the
ring of adeles. We will explain Tate’s approach in the case of Dirich-
let characters, i.e., for K = Q. Although the general case is not much
more difficult, we belief that the key ideas can be explained better in
the slightly simpler case K = Q.

4.1 Harmonic analysis on locally compact abelian groups

We have already seen several instances of the Fourier inversion for-
mula, e.g. for the groups (R,+) and (R/Z,+). These groups be-
long to an important class of topological abelian groups called locally
compact abelian groups. Locally compact abelian groups provide the
correct framework for doing Fourier theory in a more general context.
The aim of this lecture is to introduce locally compact abelian groups
and to formulate Fourier theory (Harmonic Analysis) in this general
context.

Recall that a topological group is a group G equipped with a topol-
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ogy such that the multiplication

m : G× G → G

and the inversion
i : G → G

are continuous maps.

Definition 4.1.1. A locally compact abelian group, sometimes we will use
the abbreviation (LCA), is a topological group such that the multiplica-
tion is commutative and the underlying topological space is Hausdorff
and locally compact, i.e. every g ∈ G admits a compact neighbour-
hood.

We have already seen a plenty of examples for such groups:

Example 4.1.2. The following are examples (resp. non-examples) of
locally compact abelian groups:

(a) (R,+), (Z,+) and (T, ·) where T := {z ∈ C : |z| = 1} ∼= R/Z are
examples of locally compact abelian groups, if we equip them with
their usual topology.

(b) Every finite abelian group with the discrete topology is LCA.

(c) Every pro-finite abelian group is locally compact[2]. In particular, [2] Recall that pro-finite groups are ex-
actly the compact totally disconnected
Hausdorff groups

Gal(Qab/Q) ∼= Ẑ× is a locally compact abelian group.

(d) (Qp,+) with the topology induced by the p-adic absolute value | · |p
is LCA, since every x ∈ Qp admits the compact neighbourhood
x + Zp.

(e) The group (Q,+) with the subspace topology of R ist not locally
compact.

Our next aim is to define the notion of a Haar measure on a locally
compact abelian group. Therefore, let us first recall some definitions
from measure theory: Recall that the Borel sigma algebra B(X) on a
topological space X is the smallest σ-algebra[3] on X containing all the [3] A σ-algebra is a set A of subsets of X

s.t.:

(a) X ∈ A,

(b) A is closed under complements,

(c) A is closed under countable unions.

open subsets. A Borel measure µ : B(X) → R≥0 ∪∞ is a measure[4] on

[4] A measure on a set X with a σ-algebra
A is a function µ : A → R∪ {∞} s.t.

• µ(∅) = 0

• µ is σ-additive, i.e., µ(
⋃∞

n=1 Ei) =

∑∞
i=1 µ(Ei) for any countable family

of pairwise disjoint Borel sets Ei ∈ A.

the Borel σ-algebra of X. On (R,+) the Lebesgue measure provides
a very nice Borel measure which is invariant under translations. The
following definition can be seen as a generalization of the Lebesgue
measure to arbitrary locally compact abelian groups:

Definition 4.1.3. Let G be a locally compact abelian group. A Haar
measure on G is a Borel measure satisfying the following conditions[5]:

[5] A measure satisfying (a), (b) and (c)
is usually called Radon measure. Radon
measures are a class of Borel measures
with many good properties. So, we can
think about a Haar measure as a ’nice’
Borel measure which is translation in-
variant.

(a) µ is inner regular, i.e., for any A ∈ B(G), we have

µ(A) = sup{µ(K) | K ⊆ A compact }.
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(b) µ is outer regular, i.e., for any A ∈ B(G), we have

µ(A) = inf{µ(U) | A ⊆ U open }.

(c) µ is locally finite, i.e., for any compact set K ⊆ G we have µ(K) < ∞.

(d) µ is translation invariant, i.e., for any g ∈ G and X ∈ B(G), we have

µ(g + X) = µ(X).

An important example of a Haar measure on R is given by the
Lebesgue measure. It is the unique Haar measure on R with the prop-
erty µ([0, 1]) = 1. For a general LCA we do not have such distin-
guished subsets to normalize our measure. Nevertheless, we have:

Theorem 4.1.4. For any locally compact abelian group G, there exists a Haar
measure on G. The Haar measure is uniquely determined up to multiplication
with a positive real number.

Proof. We refer to Theorem 1-8 in the book ’Fourier Analysis on Num-
ber Fields’[6] for a proof. [6] D. Ramakrishnan and R. J. Valenza.

Fourier analysis on number fields, volume
186 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1999. ISBN
0-387-98436-4. doi: 10.1007/978-1-4757-
3085-2. URL https://doi.org/10.1007/

978-1-4757-3085-2

In some cases, there will be a canonical choice of normalization. For
example, for compact LCAs:

Corollary 4.1.5. If G is a LCA which is compact then there is a unique
normalized Haar measure, i.e., µ(G) = 1.

Next, we would like to define the Pontryagin dual of a locally com-
pact abelian group. We recall that the set of continuous functions
C(X, Y) between topological spaces X and Y can be equipped with
the compact-open topology, which is the topology defined by the sub-
base {V(K, U)}K,U with

V(K, U) := { f ∈ C(X, Y) | f (K) ⊆ U}

where U runs over all open subsets of Y and K over the compact sub-
sets of X. The following definition plays an important role for locally
compact abelian groups:

Definition 4.1.6. Let G be a locally compact abelian group.

(a) A character of a locally compact abelian group G is a continuous
homomorphism

χ : G → T := {z ∈ C : |z| = 1}.

The character g 7→ 1 for all g ∈ G is called the trivial character.

(b) The Pontryagin dual of G is the abelian topological group G∨ :=
Homcts(G, T) with the subspace topology given by the compact-
open topology via G∨ ⊆ C(G, T).

https://doi.org/10.1007/978-1-4757-3085-2
https://doi.org/10.1007/978-1-4757-3085-2
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Let us note, that Dirichlet characters fit in this general context of
characters of locally abelian groups:

Example 4.1.7. For G = Ẑ×, the group of characters G∨ consists ex-
actly of the primitive Dirichlet characters.

With this definition, one can prove the following result:

Proposition 4.1.8. The Pontyagin dual G∨ of a locally compact abelian
group G is a locally compact abelian group.

Proof. We do not prove this in full generality. In all cases of our in-
terest, there will be an explicit description of G∨ which proves that
G∨ is a locally compact abelian group. For the general case, we re-
fer to Theorem (23.15) in ’Abstract Harmonic Analysis’ by Hewitt and
Ross[7]. [7] E. Hewitt and K. A. Ross. Abstract

harmonic analysis. Vol. I, volume 115

of Grundlehren der Mathematischen Wis-
senschaften. Springer-Verlag, Berlin-New
York, 2nd edition, 1979. ISBN 3-540-
09434-2

Let following observation about integration of characters will be
useful:

Lemma 4.1.9. For a compact abelian group (G, ·), a character χ of G and a
Haar measure µ on G, we have

∫
G

χ(g)dµ(g) =

µ(G) if χ is trivial

0 if χ is non-trivial
.

Proof. Exercise.

For a locally compact abelian group G, we have a canonical evalua-
tion map G → G∨∨ given by g 7→ (χ 7→ χ(g)).

Theorem 4.1.10. The canonical evaluation map G → G∨∨ is a homeomor-
phism of locally compact abelian groups.

Proof. Actually, this is not so difficult to prove. Nevertheless, we re-
fer to Theorem (24.2) in ’Abstract Harmonic Analysis’ by Hewitt and
Ross[8]. [8] E. Hewitt and K. A. Ross. Abstract

harmonic analysis. Vol. I, volume 115

of Grundlehren der Mathematischen Wis-
senschaften. Springer-Verlag, Berlin-New
York, 2nd edition, 1979. ISBN 3-540-
09434-2

Let us now formulate Fourier theory in the general context of locally
compact abelian groups and discuss some important examples. For
the following, we fix a locally compact abelian group G and a Haar
measure µ on G.

Definition 4.1.11. We say that two measurable complex valued func-
tions f and h agree almost everywhere if the set {x ∈ G | f (x) ̸= h(x)}
has measure 0. This defines an equivalence relation ∼ on the space of
measurable complex functions. For p ≥ 1, consider the complex vector
space

Lp(G) :=
{

f : G → C | f measurable s.t.
∫

G
| f |pdµ < ∞

}
/ ∼
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and define the norm ∥·∥p on Lp(G) by

∥ f ∥p :=
(∫

G
| f |pdµ

)1/p
.

Note, that the norm ∥ f ∥2 is induced by the scalar product[9]. [9] The vector space L2(G) with this
scalar product is a Hilbert space, i.e., it
is a vector space with a scalar product
such that it is complete with respect to
the topology induced by the scalar prod-
uct.

⟨ f , g⟩L2 :=
∫

G
f gdµ,

In this general setup, we can define the Fourier transform of a mea-
surable function as follows:

Theorem 4.1.12. Let G be a locally compact abelian group with a Haar
measure µ.

(a) For f ∈ L2(G) ∩ L1(G), the Fourier transform

f̂ (χ) :=
∫

G
f (x)χ(x)dµ(x).

gives a well-defined map

L2(G) ∩ L1(G)→ L2(G∨), f 7→ f̂ .

There is a unique Haar measure µ∨ on G∨, called the dual Haar measure
of µ, such that ∥ f ∥L2(G)= ∥ f̂ ∥L2(G∨) for all f ∈ L2(G) ∩ L1(G).

(b) The Fourier transform of (a) extends to a well-defined isometry

L2(G)→ L2(G∨)

such that for all f ∈ L2(G) we have

̂̂f (x) = f (−x)

almost everywhere.

Proof. For a proof, we refer to Theorem 3-26 in ’Fourier Analysis on
Number Fields’[10]. [10] D. Ramakrishnan and R. J. Valenza.

Fourier analysis on number fields, volume
186 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1999. ISBN
0-387-98436-4. doi: 10.1007/978-1-4757-
3085-2. URL https://doi.org/10.1007/

978-1-4757-3085-2

4.2 Local Fourier Analysis

By Ostrowski’s Theorem (Theorem 3.1.8), we have seen that the equiv-
alence classes of absolute values on Q are precisely given by the ab-
solute values | · |∞ and Qp for the primes p ∈ P. We will call an
equivalence class of absolute values on a number field a place. We will
identify the set of places for Q with P ∪ {∞}. The additive groups
of the corresponding completions R and Qp for p ∈ P are all exam-
ples of locally compact abelian groups. In this section, we will make
the general statements about Harmonic Analysis explicit in the case

https://doi.org/10.1007/978-1-4757-3085-2
https://doi.org/10.1007/978-1-4757-3085-2
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(R,+) and (Qp,+). In particular, we will see that R and Qp are ex-
amples of self-dual (or auto-dual) locally compact abelian groups, i.e.,
they satisfy G ∼= G∨. In general, there is no canonical choice of such
an auto-duality isomorphism. Nevertheless, we will fix a rather natural
choice in the cases R and Qp.

4.2.1 Fourier Theory on R

In a first step, we want to prove the auto-duality of R, i.e., we want to
show R ∼= R∨. Let us start with fixing an explicit character in R∨.

Definition 4.2.1. Let us define the character e∞ ∈ R∨ = Homcts(R, T)

by
e∞ : R→ T, x 7→ e∞(x) := exp(2πix).

The next proposition shows that every character of R is given by
scaling e∞. More precisely:

Proposition 4.2.2. We have an explicit auto-duality isomorphism

R
∼−→ R∨ = Homcts(R, T), y 7→ (x 7→ e∞(x · y)).

Proof. The map in the statement gives an injective group homomor-
phism

Ψ : R→ R∨.

It remains to check that Ψ is surjective and a homeomorphism.
For the surjectivity, we will use the lifting property of coverings from
algebraic topology:
Fact: Let us fix t ∈ R and write t0 for its image in T under the exponen-
tial map, i.e., t0 := exp(2πit) ∈ T. For any continuous map f : R→ T

with f (0) = t0, there is a unique lift f̃ : R→ R with f̃ (0) = t such that
the following diagram commutes:

R

R T.

exp(2πi−)
f

f̃

Claim: The map Ψ is surjective.
Proof of the Claim: Let f ∈ Homcts(R, T). By the lifting property, we
find a unique lift f̃ with f̃ (0) = 0. For each α ∈ R, applying the lifting
property to both sides of the equation

f (α + x) = f (α) f (x).

shows f̃ (α + x) = f̃ (α) + f̃ (x) for all x ∈ R. Thus, the lift f̃ is a
continuous homomorphism

R→ R.
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But every continuous homomorphism f̃ : R → R is uniquely deter-
mined[11] by f̃ (1), namely f̃ (x) = f̃ (1) · x. Setting y := f̃ (1) proves [11] f̃ (1) determines f̃ : Q → R by

f̃ (n/m) = n f̃ (1)/m. Since Q is dense
in R, we deduce that f̃ (1) determines f̃ .

Ψ(y) = f . This shows the surjectivity of Ψ.
A basis of neighbourhoods of 1 ∈ R∨ for the compact-open topology
on R∨ is given by

{ f ∈ R∨ | f ([−1, 1]) ⊆ exp(2πi(−ϵ, ϵ))}ϵ>0.

It is straight forward to check that this basis corresponds under the
above bijection to the family of subsets

{y ∈ R : |y| < ϵ}ϵ>0

which is a basis for the topology on R. Thus, Ψ is an isomorphism of
locally compact abelian groups.

The above auto-duality isomorphism R → R∨ is not canonical.
It depends on the choice of a character e∞ and is characterized by
1 7→ e∞. For any other non-trivial character χ, we would similarly get
an auto-duality isomorphism R → R∨ by 1 7→ χ. Nevertheless, the
choice e∞ is in some sense distinguished. Recall from the last section
that for every fixed Haar measure µ on R, there is a unique ’dual’ Haar
measure µ∨ on R∨ such that the Fourier transform L2(R) → L2(R∨)

is an isometry. On R, we have a distinguished Haar measure, namely
the Lebesgue measure. In principle, we could take the any of the iso-
morphisms R ∼= R∨ to make the Fourier transform L2(R) → L2(R∨)

explicit, but the choice 1 7→ e∞ has the advantage that the ’dual’ Haar
measure of the Lebesgue measure is again the Lebesgue measure[12]. [12] Actually, this does not uniquely de-

termine e∞. The choice e−1
∞ (x) =

exp(−2πix) does also identify the dual
of the Lebesgue measure with the
Lebesgue measure. So it would be
equally fine to choose e−1

∞ .

In the following, we will fix the Lebesgue measure µ∞ as the Haar
measure on R and the auto-duality isomorphism

R→ R∨, y 7→ (x 7→ e∞(xy)).

With this identification, the Theorem 4.1.12 reads in the special case
G = R as follows:

Corollary 4.2.3. Let us equip R with the Lebesgue measure µ∞.

(a) For f ∈ L2(R) ∩ L1(R), the Fourier transform

f̂ (y) :=
∫

R
f (x)e∞(−xy)dµ∞(x).

gives a well-defined map

L2(R) ∩ L1(R)→ L2(R), f 7→ f̂ ,

such that ∥ f ∥L2(R)= ∥ f̂ ∥L2(R) for all f ∈ L2(R) ∩ L1(R).
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(b) The Fourier transform of (a) extends to a well-defined isometry

L2(R)→ L2(R)

such that for all f ∈ L2(R) we have

̂̂f (x) = f (−x)

almost everywhere.

Proof. Follows immediately from Theorem 4.1.12 using

Ψ : R
∼−→ R∨, y 7→ (x 7→ e∞(xy))

and µ∞ = Ψ∗µ∨∞.

In Definition 2.3.1, we have defined a certain class of smooth func-
tions which behaves particularly nice under the Fourier transforma-
tion, namely the Schwartz functions S(R). It is not difficult to check
that S(R) is contained in L2(R) ∩ L1(R). The advantage of the space
S(R) is that it is stable under the Fourier transform, i.e., for f ∈ S(R)

we have f̂ ∈ S(R). With this observation, Theorem 2.3.3 turns out to
be a special case of Theorem 4.1.12.

4.2.2 Fourier Theory on Qp

Let us fix a prime p. Similarly to the case of R, we want to prove an
auto-duality isomorphism Qp ∼= Q∨p . As in the case of R, we first want
to define a character ep ∈ Q∨p .

For the definition of ep, let us first observe the following isomor-
phism of groups[13] [13] Probably it is better to write

lim−→n
p−nZ/Z instead of

⋃
n p−nZ/Z;

on the other hand, it is perfectly fine
for us to think about

⋃
n≥1 p−nZ/Z as

a subset of Qp/Zp. Observe, that it
carries the discrete topology.

Qp/Zp =
⋃

n≥1

p−nZp/Zp ∼=
⋃

n≥1

p−nZ/Z.

The latter group (with the discrete topology) admits a continuous
group homomorphism

Qp/Zp ∼=
⋃

n≥1

p−nZ/Z ↪→ R/Z.

Definition 4.2.4. Let us define the character ep ∈ Q∨p as follows[14] [14] If you prefer an explicit description of
this map:

ep

(
∞

∑
j=−N

aj pj

)
:= exp

(
−

−1

∑
j=−N

2πiaj pj

)
ep : Qp/Zp → R/Z

exp(−2πi(·))−−−−−−−→ T.

Again, all other characters of Qp are obtained by scaling ep:

Proposition 4.2.5. We have the following isomorphism of locally compact
groups

Qp
∼−→ Q∨p = Homcts(Qp, T), y 7→ (x 7→ ep(x · y)).
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Proof. See Exercises.

As in the case of the real numbers, we see that Qp is (non-canonically)
isomorphic to its own Pontryagin dual. Again, the choice of a measure
allows us to justify the above choice of an auto-duality isomorphism
Qp ∼= Q∨p . In the case of Qp, let us choose the unique Haar measure
µp on Qp such that µp(Zp) = 1. We will see in the exercises, that the
above choice has the property that µ∨p is identified with µp under the
isomorphism

Qp → Q∨p , y 7→ (x 7→ ep(x · y)).

In the following let us fix this isomorphism to identify Q∨p with Qp.

Corollary 4.2.6. Let us equip Qp with the unique measure µp such that
µp(Zp) = 1.

(a) For f ∈ L2(Qp) ∩ L1(Qp), the Fourier transform

f̂ (y) :=
∫

Qp
f (x)ep(−xy)dµ(x).

gives a well-defined map

L2(Qp) ∩ L1(Qp)→ L2(Qp), f 7→ f̂ ,

such that ∥ f ∥L2(Qp)
= ∥ f̂ ∥L2(Qp)

for all f ∈ L2(Qp) ∩ L1(Qp).

(b) The Fourier transform of (a) extends to a well-defined isometry

L2(Qp)→ L2(Qp)

such that for all f ∈ L2(Qp) we have

̂̂f (x) = f (−x)

almost everywhere.

Proof. Follows immediately from Theorem 4.1.12 using

Qp
∼−→ Q∨p , y 7→ (x 7→ ep(xy)).

In the case of G = R we have identified a suitable subspace of func-
tions in L2(R) ∩ L1(R) which is stable under the Fourier transform,
namely the Schwartz functions. Let us introduce a similar class of
functions in the non-Archimedean world:

Definition 4.2.7. A Schwartz-Bruhat function on Qp is a function f : Qp →
C which is locally constant with compact support. Let us denote by
S(Qp) the space of all Schwartz-Bruhat functions on Qp.
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A Schwartz-Bruhat function f is obviously contained in L2(Qp) ∩
L1(Qp), so its Fourier transform

f̂ (y) :=
∫

Qp
f (x)ep(−xy)dµ(x)

exists. Let us check that the Fourier transform of a Schwartz-Bruhat
function is again a Schwartz-Bruhat function:

Proposition 4.2.8. For f ∈ S(Qp), we have f̂ ∈ S(Qp) and

̂̂f (x) = f (−x).

Proof. The open subsets of Qp are exactly the subsets of the form
a + pkZp for a ∈ Qp and k ∈ Z, so every Schwartz-Bruhat function
is a finite linear combination of characteristic functions 1a+pkZp

.
A straightforward computation shows the following formulas for gen-
eral Schwartz-Bruhat functions:
Claim 1: For f ∈ S(Qp) we have:

(a) For a ∈ Qp and g(x) := ep(ax) f (x) we have ĝ(x) = f̂ (x− a).

(b) For a ∈ Qp and g(x) := f (x− a) we have ĝ(x) = f̂ (x)ep(−ax).

(c) For λ ∈ Q×p and g(x) := f (λx) we have ĝ(x) = 1
|λ|p f̂ ( x

λ ).

Proof of Claim 1: These are straightforward computations. For example,
let us prove (a):

ĝ(x) =
∫

Qp
g(y)ep(−xy)dµp(y) =

∫
Qp

f (y)ep(ay)ep(−xy)dµp(y) = f̂ (x− a).

The properties (b) and (c) follow similarly.

Since x 7→ ep(ax) is itself a locally constant function, it suffices by
Claim 1 to prove that the Fourier transform 1̂Zp is again a Schwartz-
Bruhat function. Indeed, we have:
Claim 2: The function 1Zp is its own Fourier transform.
Proof of Claim 2: We compute

1̂Zp(x) =
∫

Zp
ep(−xy)dµp(y)

On the other hand, the function y 7→ ep(−xy) is a character on Zp and
it is trivial if and only if x ∈ Zp. We deduce from Lemma 4.1.9 that

1̂Zp(x) =
∫

Zp
ep(−xy)dµp(y) = 1Zp(x).

This finishes the proof that f̂ ∈ S(Qp) for f ∈ S(Qp). The Fourier
inversion formula follows from the general Theorem 4.1.12 on Fourier
theory on locally compact abelian groups.
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4.3 Adeles and Ideles

In the last section, we have formulated Fourier theory for locally com-
pact abelian groups. We would like to do Fourier theory at all com-
pletions at the same time. A first naive approach would be to consider
the product

R× ∏
p prime

Qp.

Unfortunately, this turns out to be a topological group which is not
locally compact. Indeed, we have:

Lemma 4.3.1. Let (Xi)i∈I a family of locally compact topological spaces then
∏i∈I Xi is locally compact if and only if Xi is compact for almost all i ∈ I.

Proof. See Exercise 1 on Sheet 13.

To fix this, we introduce the following notion of a restricted product:

Definition 4.3.2. Let (Xi)i∈I be a family of topological spaces and let
(Ui)i∈I be a family of open subsets Ui ⊆ Xi. The restricted product
∏i∈I(Xi, Ui) is the topological space

∏
i∈I

(Xi, Ui) := {(xi)i∈I ∈∏
i∈I

Xi | xi ∈ Ui for almost all i ∈ I}

equipped with the topology given by the basis of open sets

B := {∏
i

Vi | Vi ⊆ Xi open for all i and Vi = Ui for almost all i ∈ I}.

Example 4.3.3. Let (Xi)i∈I be a family of topological spaces and let
(Ui)i∈I be a family of open subsets Ui ⊆ Xi.

(a) If I is finite then ∏i∈I(Xi, Ui) = ∏i∈I Xi.

(b) If Ui = Xi for almost all i ∈ I then ∏i∈I(Xi, Ui) = ∏i∈I Xi.

(c) If Xi is a sequence of vector spaces equipped with the discrete topol-
ogy and Ui := {0} then ∏i∈I(Xi, Ui) =

⊕
i∈I Xi.

Our main application of this construction will be in the following
situation. Let (Gi)i∈I be countable family of locally compact abelian
groups and (Hi)i∈I a family of compact open subgroups Hi ⊆ Gi. Of
course, we have that

G := ∏
i∈I

(Gi, Hi)

is again a locally compact abelian group. For locally compactness, let
us observe that for a given x ∈ ∏i∈I(Gi, Hi) the open neighbourhood
x + ∏i∈I Hi of x is compact. It is easily checked that the multiplica-
tion and inversion are continuous. For doing Fourier theory on the
restricted product, we have to choose a Haar measure on G. The fol-
lowing result shows that the choices of Haar measure µi on Gi induce
a unique Haar measure on G:
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Proposition 4.3.4. Let (Gi)i∈I a countable family of locally compact abelian
groups with compact open subgroups (Hi)i∈I . Furthermore for i ∈ I, let µi

be the unique Haar measure on Gi such that µi(Hi) = 1. Then there is a
unique Haar measure µ on G := ∏i∈I(Gi, Hi) such that:

(a) For every finite set S ⊆ I the restriction of µ to GS := ∏j∈S Gj ×
∏i∈I\S Hi ⊆ G is the product measure.

(b) For any family of integrable continuous functions ( fi)i∈I such that fi|Hi =

1 for almost all i ∈ I the product

f (g) := ∏
i∈I

fi(g)

for g ∈ G is well-defined and defines a continuous function on G. More-
over, we have ∫

G
f (g)dµ(g) = ∏

i∈I

∫
Gi

fi(gi)dµi(gi)

and the function f is in L1(G) if and only if the product on the right hand
side has a finite value.

Proof. We sketch the proof:
(a): For every finite set S ⊆ I there is a unique product measure
µS on GS := ∏j∈S Gi × ∏i∈I\S Hi. It is easily checked that µS is a
Haar measure; indeed, by measure theory the product measure µS is
a Radon measure (i.e., inner and outer regular and µS(K) < ∞ for
compact subsets). Furthermore, it is translation invariant since all µi

are translation invariant. For S ⊆ T the measure µT restricts to µS

under GS ⊆ GT . Thus, we get a unique measure µ on G = lim−→S
GS

restricting to µS for every finite S. The measure µ is a Haar measure
since all the measures µS are Haar measures on GS.
(b) The product

f (g) = ∏
i∈I

fi(gi)

is a finite product since gi ∈ Hi and fi|Hi = 1 for almost all i ∈ I. The
continuity follows from the continuity of fi because a base of G can be
chosen by subsets of the form ∏j∈T Uj ×∏i∈I\T Hi, where T is a finite
set containing all the i ∈ I with fi|Hi ̸= 1 and Uj is open in Gj; so f
can be computed locally by a finite product of continuous functions.
By the construction of µ, we have that f is integrable if and only if

lim
S

∫
GS

f (gS)dµS(gS) < ∞, (4.1)

where the limit is taken over larger and larger S. Since µS is the prod-
uct measure on GS, we have∫

GS

f (gS)dµS(gS) = ∏
j∈S

∫
Gj

f (gj)dµj(j) · ∏
i∈I\S

∫
Hi

f (hi)dµi(hi)︸ ︷︷ ︸
=1 for almost all i

.
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Without loss of generality, we may assume that all the S in the limit
contain the indices i ∈ I with fi|Hi ̸= 1. We get

lim
S

∫
GS

f (gS)dµS(gS) = lim
S

∏
j∈S

∫
Gj

f (gj)dµj(gj) = ∏
i∈I

∫
Gj

f (gj)dµj(gj)

and by (4.1) the product on the right hand side has finite value if and
only if f is integrable.

Let us now define the ring of adeles of the field Q:

Definition 4.3.5. Let Q be a number field. The ring of finite adeles is
the topological ring given by the restricted product

AQ,fin := ∏
p prime

(Qp, Zp)

where p runs over all primes. The ring of adeles is the topological ring

AQ := R× ∏
p prime

(Qp, Zp),

where R carries the usual topology. The ring of adeles can be defined
for more general number fields. In this lecture, we will mainly restrict
our attention to the case K = Q. Hence, we will often drop the sub-
script Q from the notation and simply write A (respectively Afin) for
the ring of (finite) adeles.

Note, that the ring of finite adeles is a locally compact topological
ring since it is the product of the two locally compact topological rings
Afin and R. Let us now study the structure of the adeles more care-
fully. Since ever rational number has negative valuation at only finitely
many primes, we get a well-defined injective ring homomorphism by
the diagonal embedding

Q ↪→ A, x 7→ (x)ν∈P∪{∞}

and similarly for Afin

Q ↪→ Afin, x 7→ (x)ν∈P.

Theorem 4.3.6. We have the following properties for the (finite) adeles:

(a) By the diagonal embedding, Q ⊆ A is a discrete subgroup.

(b) The quotient A/Q is compact.

(c) We have Afin
∼= Q⊗Z Ẑ and A ∼= Q⊗Z

(
R× Ẑ

)
.

(d) Q is dense in Afin.
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Proof. (a) The open subset U = (− 1
2 , 1

2 )×∏p∈P Zp satisfies U ∩Q =

{0}: Indeed, let x ∈ U ∩Q. Then |x|p ≤ 1 for all p ∈ P, hence x ∈ Z.
On the other hand, we have |x|∞ < 1/2 and the only integer with this
property is x = 0. This proves that {0} ⊆ Q is open and hence Q

inherts the discrete topology via the inclusion Q ⊆ A.
(b) For the compactness of A/Q it suffices to prove that W = [0, 1)×
∏p Zp is a set of representatives for A/Q. Indeed, this implies that
A/Q is compact as the image of the compact set [0, 1]×∏p Zp under
the continuous map A→ A/Q. So it suffices to prove the following:
Claim 1: Every x = (xν)ν ∈ A can be written uniquely as x = q + w
with q ∈ Q and w ∈W.
Proof of Claim 1: For x = (xν)ν ∈ A, there is a finite set of primes S
such that for all p ∈ P \ S we have xp ∈ Zp. For p ∈ S, let us write

xp =
∞

∑
j≥−N

aj pj.

Then rp := ∑−1
j≥−N aj pj ∈ Q and xp − rp ∈ Zp. For a second prime

number l ̸= p, we have

|rp|l ≤ max
−N≤j≤−1

|aj pj|l ≤ 1.

So subtracting rp from x does not destroy the integrality at the other
places. Thus, with r := ∑p∈S rp ∈ Q, we get x − r ∈ R×∏p∈P Zp.
Subtracting the integer z := ⌊x∞ − r⌋ from x− r gives

w := x− r− z ∈W.

So we obtain x = w + q with q := r + z ∈ Q and w ∈ W. The unique-
ness of the decomposition follows from W ∩Q = {0}.
(c) It suffices to prove Afin

∼= Q⊗Z Ẑ. The inclusion Ẑ ⊆ Afin induces
an injection

Q⊗Z Ẑ ↪→ Afin.

This map is surjective since for any x = (xp)p ∈ Afin there is a se-
quence (np)p∈P of non-negative integers such that np = 0 for almost
all p ∈ P and zp := xp · pnp ∈ Zp. Then z := (zp)p ∈ Ẑ = ∏p∈P Zp

and for n = ∏p pnp we get

1
n
⊗ z 7→ x

under Q⊗Z Ẑ ↪→ Afin.
(d) By (c) it suffices to prove that Z is dense in Ẑ. But any open subset
in Ẑ is of the form z + NẐ for some z ∈ Ẑ and N ∈ N. We have to
prove that there is a n ∈ Z with n ∈ z + NẐ. For this, we can take any
n ∈ Z mapping to z + NẐ under

Z ↠ Z/NZ = Ẑ/NẐ.
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Finally, we define the group of ideles as the units in the ring of
adeles:

Definition 4.3.7. The topological group of ideles is the group of units
I := A× with the topology induced by the subspace topology[15] of [15] Note that this topology is not the

same as the topology induced by the em-
bedding I ⊆ A.

the embedding

I = A× → A×A, x 7→ (x, x−1).

We have A× = R× ×A×fin and call Ifin := A×fin the group of finite
ideles.

Observe that every element of R× ×∏p∈P(Q
×
p , Z×p ) ⊆ A is a unit

in the ring of adeles, so we get an inclusion

R× × ∏
p∈P

(Q×p , Z×p ) ⊆ I.

Lemma 4.3.8. The inclusion

R× × ∏
p∈P

(Q×p , Z×p ) ⊆ I

is an equality and induces an isomorphism of topological groups if we equip
the left hand side with the restricted product topology. In particular, I is a
locally compact abelian group.

Proof. Exercise 2 on Sheet 13.

Let us now define the absolute value on the group of ideles. In the
following, we equip Qp with the absolute value | · |p on Qp which is
normalized by |p|p = p−1 and R with the usual absolute value | · |∞.

Definition 4.3.9. The absolute value of an idele x ∈ I is defined by

|x| := ∏
ν∈P∪{∞}

|xν|ν.

This product is well-defined as |xν|ν ̸= 1 for only finitely many factors.
We define

I1 := {x ∈ I | |x| = 1}.

By the diagonal embedding, we get an embedding

Q× ↪→ I.

Lemma 4.3.10. For x ∈ Q×, we have

|x| = ∏
ν∈P∪∞

|x|ν = 1.

In particular, Q× ⊆ I1 under the diagonal embedding Q× → I, x 7→ (x)ν.
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Proof. This is a straightforward computation if x = ±∏p∈P pαp with
αp ∈ Z then |x|p = p−αp and |x|∞ = ∏p∈P pαp . So taking the product
over all places gives 1.

Theorem 4.3.11. We have the following properties for the group of ideles.

(a) By the diagonal embedding, Q× ⊆ I is a discrete subgroup.

(b) The quotient I1/Q× is compact.

(c) We have I1/Q× ∼= Ẑ×.

(d) The absolute value induces an isomorphism of topological groups I/Q× ∼=
R>0 × Ẑ×.

Proof. (a) The open subgroup U = ( 1
2 , 3

2 ) × ∏p∈P Z×p satisfies U ∩
Q× = {1}: Indeed, for x ∈ U ∩Q× we have at all primes |x|p = 1 so
x ∈ {±1}. The condition x∞ rules out the possibility x = −1. Thus,
{1} is an open neighbourhood of 1 ∈ Q× which proves (a).
(c) Let us first observe that x = (xν)ν ∈ I1 satisfies x∞ ∈ Q. Indeed,
we have

|x|∞ = ∏
p
|xp|−1

and the right hand side is a finite product of rational numbers. So, the
map

I1 → Ẑ×, (xν)ν 7→ (xp/x∞)p

is a well-defined continuous map and contains Q× in the kernel, so it
induces

I1/Q× → Ẑ×.

The inverse to this map is given by

Ẑ× = ∏
p

Z×p → I1/Q×, z = (zp)p 7→ (1, z)Q×.

(b) Follows from (c) and the compactness of the pro-finite group Ẑ×.
(d) We have a short exact sequence

1→ I1/Q× → I/Q× → R>0 → 1

which is split by R>0 → I, r 7→ (r, 1)Q× ∈ (R× ×A×fin)/Q×.

By combining the previous result with the Kronecker-Weber Theo-
rem gives:

Corollary 4.3.12. We have an isomorphism

I1/Q×
∼−→ Gal(Qab/Q).
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Furthermore, we can identify the Pontryagin dual of I1/Q with the
group of all primitive Dirichlet characters:

(I1/Q)∨ = Homcts(I1/Q, C×) ∼= {primitive Dirichlet characters}.

These two points of view admit a natural generalization to other num-
ber fields different from Q and provide the natural framework for class
field theory for general number fields.

Outlook

The ring of adeles can be defined for an arbitrary of number field K:

Definition 4.3.13. Let K be a number field. The ring of finite adeles of
K is given by the following restricted product

AK,fin := ∏
p prime

(Kp,OKp)

where p runs over all non-zero prime ideals and Kp is the completion
of K at p and OKp is the discrete valuation ring of Kp. The ring of
adeles is the topological ring

AK := Rr ×Cs × ∏
p⊆ prime

(Kp,OKp),

where R and C carry their usual topology, r denotes the number of
real embeddings and s denotes the number of pairs of complex em-
beddings. The group of ideles IK := A×K is equipped with the topology
induced by

A×K ⊆ AK ×AK, x 7→ (x, x−1).

The ideles provide a natural framework for class field theory for
general number fields. The diagonal embedding K× → IK identifies
K× as a discrete subgroup of IK and the quotient

CK := IK/K×

is called the idele class group of K. For a finite abelian extension L/K
one can use the local norms between the completions of L and K to
define a norm map

NmL/K : CL → CK

between the idele class groups of L and K. Class field theory provides
for every number field K a map called Artin reciprocity map

ΦK : CK → Gal(Kab/K)

with the following properties:
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Theorem 4.3.14 (Global class field theory). Let us fix an algebraic closure
K of K. The Artin reciprocity map satisfies the following properties:

(a) For every finite abelian extension L/K, ΦK induces an isomorphism

ΦL/K : CK/ NmL/K CL
∼−→ Gal(L/K).

(b) The open subgroups of CK are in bijection with the norm groups NmL/K L
where L runs through all finite abelian extensions of K. In particular, we
have

lim←−
U

CK/U ∼−→ Gal(Kab/K),

where U runs through all open subgroups of CK.

Note that CK can be defined purely in terms of K. So global class
field theory says in particular that the Galois group of the maximal
abelian extension can be described purely in terms of data of K. In the
case K = Q, we have already seen that I/Q× ∼= R>0 × Ẑ×. The Artin
reciprocity map is in this case exactly the map

CQ = I/Q× ↠ Ẑ× ∼= Gal(Qab/Q)

induced by the Kronecker-Weber theorem.

4.4 Fourier theory on the adeles

Last week, we have studied Fourier theory for general locally compact
abelian groups and applied the theory to the additive groups of the
local fields R and Qp. In this section, we want to do Fourier theory
at all these completions at the same time. The locally compact ring of
adeles provides a natural framework for this.

In the following, let us write Qν for the completion of Q at ν ∈ P ∪
{∞} with respect to | · |ν, where | · |p and | · |∞ are the usual absolute
values on Q. In particular, we have Q∞ = R for ν = ∞.

Let us briefly recall the discussion about the local Fourier analysis
on Qν. For every ν ∈ P ∪ {∞}, we have fixed a Haar measure on µν

normalized by µν([0, 1]) = 1 for ν = ∞ (i.e., the Lebesgue measure)
and by µp(Zp) = 1 for ν = p. Furthermore, we have seen that the
Pontryagin dual of (Qν,+) is isomorphic to (Qν,+). We have fixed
one such isomorphism for every ν ∈ P∪ {∞}, namely: For ν = p ∈ P,
we fixed

Qp
∼−→ Q∨p , y 7→ (x 7→ ep(x · y))

and for ν = ∞ we fixed

R
∼−→ R∨, y 7→ (x 7→ e∞(x · y) = exp(2πix · y)).
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These choices have the advantage that our normalized measure µν

is identified with the Fourier dual µ∨ν measure under these isomor-
phisms.

By patching the local characters eν together, we obtain:

Lemma 4.4.1. The map

e : A→ T, x = (xν)ν 7→ e(x) := ∏
ν

eν(xν)

gives a well-defined character of the locally compact group (A,+).

Proof. This follows from Exercise 4 (a) on Sheet 13.

Similarly, as in the local case we can use this character to prove
the following auto-duality isomorphism for the locally compact group
(A,+).

Proposition 4.4.2. We have an isomorphism of locally compact abelian groups:

A→ A∨, y 7→ (x 7→ e(x · y)).

Proof. The map y 7→ (x 7→ e(x · y)) gives a continuous and injec-
tive group homomorphism. Exercise 4 on Sheet 13 shows that ever
character χ ∈ A∨ can be written as a product χ = χ∞ ∏p∈P χp with
χ∞ ∈ R∨, χp ∈ Q∨p and χp|Zp = 1 for almost all p ∈ P. By Proposition
4.2.2 and Proposition 4.2.5, there exists a unique yν ∈ Qν for every ν

such that
χν(−) = eν(− · yν).

Furthermore, yp ∈ Zp for almost all p ∈ P since χp|Zp = 1. This
shows y = (yν)ν ∈ A and proves the surjectivity. It is easily checked
that this map is also open and the result follows.

From now on, let us fix the Haar measure µ on A determined by
the local Haar measures µν, see Proposition 4.3.4. From the general
Fourier theory of locally compact abelian groups, we get:

Corollary 4.4.3. Let us equip (A,+) with the Haar measure µ determined
by the local Haar measures µν for ν ∈ P∪ {∞} .

(a) For f ∈ L2(A) ∩ L1(A), the Fourier transform

f̂ (y) :=
∫

A
f (x)e(−xy)dµ(x).

gives a well-defined map

L2(A) ∩ L1(A)→ L2(A), f 7→ f̂ ,

such that ∥ f ∥L2(A)= ∥ f̂ ∥L2(A) for all f ∈ L2(A) ∩ L1(A).
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(b) The Fourier transform of (a) extends to a well-defined isometry

L2(A)→ L2(A)

such that for all f ∈ L2(A) we have

̂̂f (x) = f (−x)

almost everywhere.

Proof. Follows immediately from Theorem 4.1.12 using

A
∼−→ A∨, y 7→ (x 7→ e(xy)).

As in the local cases, there will be a class of Schwartz functions
in L1(A) ∩ L2(A) which is stable under the Fourier transform and
satisfies the Fourier inversion formula.

Definition 4.4.4. A simple Schwartz-Bruhat function on A is a function
f : A→ C of the form

f = ∏
ν∈P∩{∞}

fν

where fν ∈ S(Qν) for ν ∈ P ∪ {∞} is a Schwartz(-Bruhat) function
on Qν and fp = 1Zp for almost all p ∈ P. A Schwartz-Bruhat function
on A is a function f : A → C which is a finite linear combination of
simple Schwartz-Bruhat functions. We will write S(A) for the space
of Schwartz-Bruhat functions on A.

Let us observe the following Lemma:

Lemma 4.4.5. Every Schwartz-Bruhat function f on A is a finite linear
combination of functions of the form

f (x) = f∞(x∞) · 1a+NẐ
(xfin) = f∞(x∞) · ∏

p∈P

1ap+NZp(xp),

where f∞ ∈ S(R), a = (ap)p ∈ Afin and N ∈ Z. Note that ap + NZp =

Zp for almost all p ∈ P.

Proof. Every compact open subset of Afin is a finite disjoint union of
sets of the form a + NẐ. This proves that every Schwartz-Bruhat func-
tion can be written as a finite linear combinations of functions of the
form f∞ · 1a+NẐ

. On the other hand, we have a + NẐ = ∏p∈P ap +

NZp by the Chinese Remainder Theorem. This proves

1a+NẐ
= ∏

p∈P

1ap+NZp .
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Proposition 4.4.6. For a simple Schwartz-Bruhat function f = ∏ν∈P∩{∞} fν,
we have

f̂ = ∏
ν∈P∩{∞}

f̂ν.

In particular, we have f̂ ∈ S(A) for f ∈ S(A) and the Fourier inversion
formula holds, i.e., ̂̂f (x) = f (−x).

Proof. We have

f̂ (x) =
∫

A
f (y)e(−xy)dµA(y) =

∫
A

∏
ν

fν(yν)eν(−xνyν)dµA(y))

= ∏
ν

∫
A

fν(yν)eν(−xνyν)dµA(y)) = ∏
ν

f̂ν(xν).

For each ν, f̂ν is again a Schwartz(-Bruhat) function by Proposition
4.2.8 and Theorem 2.3.3. Furthermore, we have 1̂Zp = 1Zp so f̂p =

1Zp for almost all p ∈ P. Thus, f̂ is again a simple Schwartz-Bruhat
function. Since every Schwartz-Bruhat function on A is a finite linear
combination of simple Schwartz-Bruhat functions, we deduce that the
Fourier transform of a Schwartz-Bruhat function is again a Schwartz-
Bruhat function. The statement about Fourier inversion follows from
the general Theorem on Harmonic analysis.

4.5 Adelic zeta functions

In the following, we want to imitate the proof of the functional equa-
tion for the Riemann zeta function. Recall the following main steps in
the proof:

• We used Fourier theory to prove the classical Poisson summation
formula.

• We used the Poisson summation formula to prove the functional
equation

θ(t) =
1√

t
θ(1/t).

of the classical theta function θ.

• We wrote the Riemann zeta function as a Mellin transform of the
classical theta function

ξ(s) =
∫ ∞

0

1
2
(θ(x)− 1)xs/2 dx

x
.

• We divided the Mellin integral in two parts

ξ(s) =
∫ 1

0

1
2
(θ(x)− 1)xs/2 dx

x
+
∫ ∞

1

1
2
(θ(x)− 1)xs/2 dx

x
.
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The second integral extends to all s ∈ C. Using the functional equa-
tion, we were able to extend the first integral to all of C with simple
poles at s = 0 and s = 1 and the functional equation follows from
the functional equation of θ.

In the following, we want to follow these steps in the adelic setup. Let
us first prove an adelic version of the Poisson summation formula:

Theorem 4.5.1 (The adelic Poisson summation formula). For every f ∈
S(A), we have

∑
q∈Q

f (q) = ∑
q∈Q

f̂ (q)

and both series are absolutely convergent.

Proof. By Lemma 4.4.5, it is enough to prove the statement for f =

f∞1a+NẐ
. Since Q is dense in Afin, we may without loss of generality

assume that a ∈ Q. We get

∑
q∈Q

f (q) = ∑
q∈(a+NẐ)∩Q

f∞(q)

= ∑
q∈NẐ∩Q

f∞(q− a) = ∑
q∈NZ

f∞(q− a) = ∑
q∈Z

f∞(Nq− a). (4.2)

Since f∞ is a Schwartz function on R, the last series converges abso-
lutely. Since this holds for arbitrary Schwartz-Bruhat functions, it also
shows the absolute convergence of the series on the right hand side of
the statement.
Claim 1: For a ∈ Q, λ ∈ Q× and h ∈ S(A), we define

g(x) := h(λ(x− a)).

Then ĝ(x) = e(−ax)ĥ(λ−1x).
Proof: It is enough to prove this for simple Schwartz-Bruhat functions
h = ∏ν hν. For such functions, we have ĝ = ∏ν ĝν and the claim
follows from the local computation

ĝν(xν) = eν(−axν)|N|ν f̂ν(λ
−1xν),

together with the product formula ∏ν |a|ν = 1. For the local computa-
tion, see also Claim 1 in the proof of Proposition 4.2.8.

Using Claim 1, we obtain:
Claim 2: Let λ ∈ Q× and a ∈ Q. If the Poisson summation formula
holds for h ∈ S(A) then it also holds for g ∈ S(A) with g(x) :=
h(λ(x− a)).
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Proof of Claim 2: Using claim 1, we compute:

∑
q∈Q

ĝ(q) = ∑
q∈Q

e(−aq)︸ ︷︷ ︸
=1

ĥ(λ−1q) = ∑
q∈Q

ĥ(q)

= ∑
q∈Q

h(q) = ∑
q∈Q

h(λ(q− a)) = ∑
q∈Q

g(q).

Now, we observe that 1a+NẐ
(x) = 1

Ẑ
( 1

N (x − a)). By Claim 2, we
can thus reduce the proof of the general Poisson summation formula
to the case f = f∞1

Ẑ
. In this case, we have f̂ = f̂∞1

Ẑ
. Finally, equation

(4.2) for f gives

∑
q∈Q

f (q) = ∑
q∈Z

f∞(q),

while (4.2) gives

∑
q∈Q

f̂ (q) = ∑
q∈Z

f̂∞(q).

The statement follows now from the classical Poisson summation for-
mula for R, namely

∑
q∈Z

f∞(q) = ∑
q∈Z

f̂∞(q).

Definition 4.5.2. For a Schwartz-Bruhat function f ∈ S(A) let us de-
fine the adelic theta function E( f ) : I→ C by

E( f )(x) := |x|1/2 ∑
q∈Q×

f (qx).

for x ∈ I.

Lemma 4.5.3. For f ∈ S(A), we have:

(a) The series defining E( f ) converges absolutely and locally uniformly on I

and give a well-defined function on I/Q×.

(b) For every integer n ≥ 2, there exists a positive constant Cn such that

|E( f )(x)| ≤ Cn|x|−n, for all x ∈ I with |x| > 1.

(c) For all x ∈ I:

E( f )(x) = E( f̂ )(
1
x
) + |x|−1/2 f̂ (0)− |x|1/2 f (0).

Proof. By Lemma 4.4.5, it is enough to prove the Lemma for simple
Schwartz-Bruhat functions of the form

f = 1a+NẐ
· f∞
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with a ∈ A, N ∈ Z>0 and f∞ ∈ S(R). Since Q is dense in Afin, we
may assume a ∈ Q. We have

∑
q∈Q×

f (qxfin) = ∑
q∈Q×

qxfin∈a+NẐ

f∞(qx) = ∑
q∈Q×

qx∈NẐ

f∞(qx + a).

So by replacing f∞(x) by f∞(x + a), we may without loss of generality
assume that a = 0, i.e., it suffices to prove the statements (a)− (c) for
simple Schwartz-Bruhat functions of the form f = 1NẐ

· f∞.
(a) Since f∞ ∈ S(R) we find some positive real number C such that
| f∞(x)| ≤ C(1 + |x|)−2 for every x ∈ R. So we get the estimate

∑
q∈Q×

| f (qx)| ≤ C ∑
q∈Q×

qxfin∈NẐ

(1 + |qx∞|∞)2 .

We show that the right hand side converges locally on subsets of the
form U := (α, β) × 1

M Ẑ× ⊆ R× × Ifin, where (α, β) ⊆ R is an open
interval which is contained in R×. For x ∈ U and q ∈ Q×, we have
qxfin ∈ NẐ if and only if q ∈ NMẐ ∩Q× = NMZ \ {0}. So we get
for x ∈ U

∑
q∈Q×

| f (qx)| ≤ C ∑
q∈Q×

qxfin∈NẐ

(1 + |qx∞|∞)2 = C ∑
q∈NMZ\{0}

(1 + |qx∞|∞)2 .

The last sum converges uniformly for x∞ ∈ (α, β). This proves that
the series in the statement converges locally uniformly on I. Further-
more, E( f ) is obviously invariant under Q× and we obtain a continu-
ous function on I/Q×.
(b) Next, we prove the estimate in (b), i.e., we prove for f = 1NẐ

· f∞

and n ≥ 2 that there exists a Cn ∈ R>0 s.t. for all x ∈ I with |x| ≥ 1

|E( f )| ≤ Cn|x|−n.

So let x ∈ I with |x| ≥ 1. Since Q× is dense in Ifin, we may without
loss of generality assume xfin ∈ Q×. For q ∈ Q we have f (qx) = 0
if qxfin /∈ NẐ. On the other hand, qxfin ∈ NẐ and |x| ≥ 1 imply
|qx∞|∞ ≥ N. Since f∞ ∈ S(R) we can find for any n ≥ 2 a positive
constant cn such that f∞(qx∞) < cn|qx∞|−n for all |qx∞|∞ ≥ N. The
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above discussion implies

∑
q∈Q×

| f (qx)| ≤ cn ∑
q∈Q×

qxfin∈NẐ

|qx∞|−n
∞

= cn ∑
q∈Q×

qxfin∈NẐ

|qx|−n|qxfin|nfin

= cn|x|−n ∑
q∈Q×

qxfin∈NẐ

|qxfin|nfin

= cn|x|−n ∑
k∈NZ

|k|−n

︸ ︷︷ ︸
<∞

.

(c) For x ∈ I let us compute the Fourier transform of g(y) := f (xy):

ĝ(y) =
∫

A
f (xz)e(−zy)dµ(z) = |x|−1 f̂ (

y
x
).

Applying now the Poisson summation formula to g gives

E( f )(x) = |x|
1
2 ∑

q∈Q×
f (qx) = |x|

1
2 ∑

q∈Q

g(q)− |x|
1
2 f (0)

= |x|
1
2 ∑

q∈Q

ĝ(q)− |x|
1
2 f (0) = |x|−

1
2 ∑

q∈Q

f̂ (
q
x
)− |x|

1
2 f (0)

= E( f )(
1
x
) + |x|

1
2 f (0)− |x|−

1
2 f̂ (0).

Next, we want to associate a zeta function to an arbitrary Schwartz-
Bruhat function. Since the ideles can be written as a restricted product
we get from Proposition 4.3.4 a unique Haar measure on the ideles
from the local Haar measures. More concretely, let us define µ× :=
µ×∞ × µ×fin, where µ×∞ is the Haar measure dt

|t| on R× and µ×fin is the
unique Haar measure on Ifin normalized by

µ×fin(Ẑ
×) = 1.

With this fixed Haar measure, we define the following adelic zeta func-
tion:

Definition 4.5.4. For f ∈ S(A) and χ : Ẑ× → C a Dirichlet character,
let us define the adelic zeta function of f as[16] [16] It can be shown that any continuous

homomorphism χ : I/Q×C× is of the
form χ(x) = χ0(x) · |x∞|s∞ for a unique
s ∈ C and a Dirichlet character χ0. Thus,
we could equally well write ζ( f , χ) for
ζ( f , χ0, s).

ζ( f , χ, s) :=
∫

I
f (x)χ(x)|x|sdµ×fin(x).

Here, we view χ as a character on I via the projection

I→ I/Q× ∼= Ẑ× ×R>0 → Ẑ×,

see Theorem 4.3.11.
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For the following, let us recall that F := R>0 × Ẑ× ⊆ I maps iso-
morphically to I/Q× under the quotient map, see Theorem 4.3.11 (d).
By abuse of notation, let us denote the induced Haar measure on I/Q×

obtained by restriction of µ× to F ∼= I/Q× again by µ×. As in the case
of the Riemann zeta function, we can write ζ( f , χ, s) as a ’adelic Mellin
tranform’ of the theta function E( f )(x).

Lemma 4.5.5. The integral defining ζ( f , χ, s) converges locally uniformly
for Re(s) > 1 and we have for such s

ζ( f , χ, s) =
∫

I/Q×
E( f )(x)χ(x)|x|s−1/2dµ×(x).

Proof. Since f is a Schwartz-Bruhat function, | f (x)| can be estimated
by C · 1N−1Ẑ

(xfin)(1 + |x∞|N∞)−1 for a suitable constant C ∈ R>0 and a
positive integer N > Re(s). The claimed convergence follows from the
estimate∫

I
| f (x)||x|sdµ×(x) ≤ C

∫
Ifin

|xfin|sfin · 1N−1Ẑ
(xfin)dµ×fin(xfin)

×
∫

R×
(1 + |x∞|N∞)−1|x∞|s

dx∞

|x∞|

and the convergence of the integrals on the right hand side; for the
convergence of the integral over the finite ideles, observe∫

Ifin

|xfin|sfin · 1N−1Ẑ
(xfin)dµ×fin(xfin) = Ns

∫
Ifin

|xfin|sfin · 1Ẑ
(xfin)dµ×fin(xfin)

= Ns ∑
k∈N

∫
kẐ×
|xfin|sfindµ×fin(xfin)

= Ns ∑
k∈N

k−s
∫

Ẑ×
|xfin|sfindµ×fin(xfin)︸ ︷︷ ︸

=1

< ∞.

These estimates hold locally uniformly for Re(s) > 1 and the statement
about convergence follows. The set F := R>0 × Ẑ× is by Theorem
4.3.11 (d) a set of representatives for I/Q×. By absolute convergence,
we can compute for Re(s) > 1:

ζ( f , χ, s) =
∫

I
f (x)χ(x)|x|sdµ×(x) = ∑

q∈Q

∫
qF

f (x)χ(x)|x|sdµ×(x)

= ∑
q∈Q

∫
F

f (qx)χ(qx)|qx|sdµ×(x) =
∫

I/Q×
E( f )(x)χ(x)|x|s−1/2dµ×(x)

Finally, we can use the functional equation of the adelic theta func-
tion E( f )(x) to prove the analytic continuation and functional equation
of the adelic zeta function:



algebraic number theory ii 139

Theorem 4.5.6. The adelic zeta function ζ( f , χ, s) admits a holomorphic
continuation to C \ {0, 1} with at most simple poles at s = 0, 1 with residues

Ress=0 ζ( f , χ, s) =

− f (0) χ is trivial

0 χ is non-trivial

Ress=1 ζ( f , χ, s) =

 f̂ (0) χ is trivial

0 χ is non-trivial
.

Furthermore, it satisfies the functional equation

ζ( f , χ, s) = ζ( f̂ , χ, 1− s).

Proof. The set {1} has measure zero in R>0, so I1/Q× is a set of mea-
sure zero in I/Q×. Therefore, we can decompose the above integral
into a problematic part and an unproblematic part:

ζ( f , χ, s) =
∫

I/Q×
E( f )(x)χ(x)|x|s−1/2dµ×(x)

=
∫
|·|<1

E( f )(x)χ(x)|x|s−1/2dµ×(x)︸ ︷︷ ︸
problematic part

+
∫
|·|>1

E( f )(x)χ(x)|x|s−1/2dµ×(x)︸ ︷︷ ︸
unproblematic part

.

Let us first check that the unproblematic integral converges for all s ∈
C. By Lemma 4.5.3 we find for every positive integer n a constant Cn

such that |E( f )(x)| < Cn|x|−n for |x| > 1. Thus, we get∫
|x|>1

|E( f )(x)||x|Re s− 1
2 dµ×(x) ≤ Cn

∫
|x|>1

|x|Re s− 1
2−ndµ×(x)

= Cn

∫ ∞

1
tRe s− 1

2−n dt
t
·
∫

Ẑ×
1dµ×fin(x)︸ ︷︷ ︸
=1

= Cn

∫ ∞

1
tRe s− 1

2−n dt
t

.

The last integral converges for Re(s) < n− 1
2 . Since n was arbitrary,

we get the desired convergence.
As in the proof of the functional equation for the Riemann zeta func-
tion, we will use the functional equation from Lemma 4.5.3

E( f )(x) = E( f̂ )(
1
x
) + |x|−1/2 f̂ (0)− |x|1/2 f (0).

to extend the problematic integral meromorphically. Using this func-
tional equation, we can rewrite the problematic integral as follows:

∫
|·|<1

E( f )(x)χ(x)|x|s−1/2dµ×(x) =
∫
|·|<1

E( f̂ )
(

1
x

)
χ(x)|x|s−1/2dµ×(x)

+ f̂ (0)
∫
|·|<1

χ(x)|x|s−1dµ×(x) + f (0)
∫
|·|<1

χ(x)|x|sdµ×(x).
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The first integral is∫
|·|>1

E( f̂ )(x)χ(x)|x|1/2−sdµ×(x),

while the second and third integral are given by∫
|·|<1

χ(x)|x|s−1dµ×(x) =
∫ 1

0
ts−1 dt

t
·
∫

Ẑ×
χ(x)dµ×fin(x)

=
1

s− 1

0 if χ is non-trivial

1 if χ is trivial

and similarly

∫
|·|<1

χ(x)|x|sdµ×(x) =
1
s

0 if χ is non-trivial

1 if χ is trivial
.

Thus, we may write the adelic zeta function as follows:

ζ( f , χ, s) =
∫

I/Q×
E( f )(x)χ(x)|x|s−1/2dµ×(x)

=
∫
|·|>1

E( f )(x)χ(x)|x|s−1/2dµ×(x)

+
∫
|·|>1

E( f̂ )(x)χ(x)|x|1/2−sdµ×(x)

−
(

f̂ (0)
1− s

+
f (0)

s

)0 if χ is non-trivial

1 if χ is trivial

This formula proves that ζ( f , χ, s) admits an analytic continuation
with at most simple poles at s = 0 and s = 1 and residues Ress=0 ζ( f , χ, s) =
f (0) and Ress=1 ζ( f , χ, s) = − f̂ (0). The functional equation follows by
comparing this formula to the corresponding formula for ζ( f̂ , χ, 1−
s).

4.6 Functional equation for Dirichlet L-functions

In this section, we prove the functional equation for Dirichlet L-functions.
Therefore, we want to apply the abstract functional equation for adelic
zeta functions for a suitable choice of Schwartz-Bruhat function f ∈
S(A). It will turn out that the following choice gives the desired re-
sult:

Definition 4.6.1. For a Dirichlet character χ of conductor D let us de-
fine S to be the set of primes dividing D. Furthermore, let us define
depending on the parity of χ the quantity ϵ ∈ {0, 1} by

χ(−1) = (−1)ϵ.

Furthermore, we define
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• For p ∈ S, we set fp := pk(1− 1/p)11+pkZp
with k := νp(D).

• For p ∈ P \ S, we set fp := 1Zp .

• For ν = ∞, we set f∞(x) := xϵ exp(−π2x).

This defines a Schwartz-Bruhat function f := ∏ν∈P∪{∞} fν ∈ S(A).

Theorem 4.6.2. Let χ be a Dirichlet character of conductor D and choose the
Schwartz-Bruhat function as in Definition 4.6.1. Then

ζ( f , χ, s) = L∞(χ, s)L(χ, s)

where L∞(χ, s) is the Gamma factor given by

L∞(χ, s) = Γ
(

s + ϵ

2

)
π−

s+ϵ
2 .

In particular, the Dirichlet L-function satisfies the functional

L∞(χ, s)L(χ, s) = (−i)ϵD−sG(χ)L∞(χ, 1− s)L(χ, 1− s)

with[17] [17] Here, µ×fin denotes the ’restricted
product’ measure on Ifin.G(χ) = φ(D)

∫
1
D Ẑ×

χ(x)efin(−x)dµ×fin(x)

and efin = ∏p∈P ep. Furthermore, we have |G(χ)| =
√

D.

Proof. For ν ∈ P∪ {∞}, let us write χν for the local character

Q×ν → I/Q× → C×,

given by the inclusion Q×ν → I, x 7→ (1, . . . , 1, x, 1, . . . ). With the choice
of f from Definition 4.6.1, we can write the adelic zeta function as a
product of local integrals

ζ( f , χ, s) =
∫

I
f (x)χ(x)|x|sdµ×(x) = ∏

ν∈P∪{∞}

∫
Q×ν

fν(xν)χν(xν)|x|sνdµ×ν .

where dµ×ν denotes the Haar measure dt/|t| for ν = ∞ and the unique
Haar measure on Q×p with µ×p (Z

×
p ) = 1 for ν = p ∈ P. Our aim is

to identify the local integrals with the Euler factors of the Dirichlet
L-function. Let us start with p ∈ P \ S. For such a prime, we have
fp = 1Zp and χp|Z×p = 1 and hence we compute

∫
Q×p

fp(x)χp(x)|x|spdµ×p (x) =
∫

Zp\{0}
χp(x)|x|spdµ×p (x)

=
∞

∑
j=0

∫
pjZ×p

χp(x)p−jsdµ×p (x) =
∞

∑
j=0

χp(p)j p−js =
1

1− p−sχp(1/p)
.

Finally, let us observe that

χp(1/p) = χ(1, . . . , 1, 1/p, 1, . . . ) = χ(p, . . . , p, 1, p, . . . ).
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The latter element is contained in Ẑ× and hence χp(1/p) = χ(p) since
p ∈ P \ {S} and χ factors over the projection to ∏p∈S Z×p .

For p ∈ S, we have fp = pk(1− 1/p)11+pkZp
and χp(1 + pkZp) = 1

with k := νp(D). We get∫
Q×p

fp(x)χp(x)|x|spdµ×p (x) = pk(1− 1/p)
∫

1+pkZp
χp(x)|x|spdµ×p (x)

= pk(1− 1/p)
∫

1+pkZp
dµ×p (x) = 1

Finally, the Archimedean place gives the contribution

∫
R×

e−πx2
xϵ χ∞(x)︸ ︷︷ ︸

sign(x)

|x|s dx
|x| =

∫
R×

e−πx2 |x|s+ϵ dx
|x|

=
∫

R×
e−πx2

(x2)
s+ϵ

2
dx
|x| =

∫
R>0

e−πtt
s+ϵ

2
dt
t
= Γ

(
s + ϵ

2

)
π−

s+ϵ
2 .

Combining everything gives for Re(s) > 1 the desired equality

ζ( f , χ, s) = L∞(χ, s)L(χ, s).

Let us now deduce the functional equation of the Dirichlet L-function
from the abstract adelic functional equation:

ζ( f , χ, s) = ζ( f̂ , χ, 1− s).

Therefore, we have to compute the local zeta integrals∫
Q×ν

f̂ν(x)χν(x)|x|1−s
ν dµ×ν (x)

for the Fourier transform of fν for ν ∈ P ∪ {∞}. For p ∈ P \ S, we
have fp = 1Zp and hence f̂p = 1p. The local zeta integral is then given
by a similar computation as above by∫

Q×p
f̂p(x)χp(x)|x|1−s

p dµ×p (x) =
1

1− χ(p)p−(1−s)
.

For ν = ∞ and ϵ = 0, we get f̂∞ = f∞. For ν = ∞ and ϵ = 1, we
compute

f̂∞(x) =
∫

R
ye−πy2

e−2πixydy = − 1
2πi

∂

∂x

∫
R×

e−πy2
e−2πixydy

= − 1
2πi

∂

∂x
e−πx2

= −ixe−πx2
= −i f∞(x).

So, for ν = ∞, we have f̂∞ = (−i)ϵ f∞ and the above computation
shows ∫

R×
f̂∞(x)χ∞(x)|x|1−s

∞ dµ×∞(x) = (−i)ϵL∞(χ, 1− s).
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For p ∈ S, we have fp = pk(1− 1/p)11+pkZp
and its Fourier transform

is readily computed;

1̂1+pkZp
(x) = pk

(
1− 1

p

) ∫
1+pkZp

ep(−xy)dµp(y)

= pk
(

1− 1
p

)
p−kep(−x)

∫
Zp

ep(−pkxy)dµp(y)

=

(
1− 1

p

)
ep(−x)1p−kZp

(x).

We start computing the local zeta integral:

∫
Q×p

f̂p(x)χp(x)|x|1−s
p dµ×p (x) =

(
1− 1

p

) ∫
p−kZp\{0}

ep(−x)χp(x)|x|1−sdµ×p (x)

=

(
1− 1

p

) ∞

∑
j=−k

pjs−j
∫

pjZ×p
ep(−x)χp(x)dµ×p (x) (4.3)

Claim: For j > −k, we have∫
pjZ×p

ep(−x)χp(x)dµ×p (x) = 0.

Proof of the Claim: For j ≥ 0, we have ep(x) = 1 for all x ∈ pjZ×p and
hence ∫

pjZ×p
ep(−x)χp(x)dµ×p (x) =

∫
pjZ×p

χp(x)dµ×p (x)

vanishes since it is an integral over a non-trivial character on a compact
group, see Lemma 4.1.9. On the other hand, for −k < j < 0, the
character χp is non-trivial on 1 + pk−1Zp. So, let us choose a λ ∈
1+ pk−1Zp with χ(λ) ̸= 1. Since j > −k, we have xλ ≡ x mod Zp for
every x ∈ pjZ×p . This implies ep(−λx) = ep(−x) and we get

χp(λ)
∫

pjZ×p
ep(−x)χp(x)dµ×p (x) =

∫
pjZ×p

ep(−λx)χp(λx)dµ×p (x)

=
∫

pjZ×p
ep(−x)χp(x)dµ×p (x).

From χ(λ) ̸= 1, we deduce∫
pjZ×p

ep(−x)χp(x)dµ×p (x) = 0

as desired. This proves the claim.

Using the above claim in equation (4.3) gives for p ∈ S∫
Q×p

f̂p(x)χp(x)|x|1−s
p dµ×p (x) =

(
pk − pk−1

)
p−sk

∫
p−kZ×p

ep(−x)χp(x)dµ×p (x).
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Combining the above computations of the local zeta integrals for f̂ and
taking the product over all ν gives

∏
ν

∫
Q×ν

f̂ν(x)χν(x)|x|1−s
ν dµ×ν (x) = (−i)ϵD−sG(χ)L∞(χ, 1− s)L(χ, 1− s)

and the functional equation follows. It remains to compute the ab-
solute value of G(χ): Applying the functional equation twice shows
|G(χ)G(χ)| = D. On the other hand, we have

G(χ) = φ(D)
∫

1
D Ẑ×

χ(x)efin(−x)dµ×fin(x)

= φ(D)χ(−1)
∫

1
D Ẑ×

χ(x)efin(−x)dµ×fin(x) = χ(−1)G(χ).

So G(χ) and G(χ) only differ by a sign and we conclude |G(χ)| =√
D.

Outlook

The approach of Tate’s thesis works for more general number fields.
For a general number field K, we define a Hecke character as a contin-
uous homomorphism

χ : IK/K× → C×.

Such homomorphisms to C× generalize characters and are often called
quasi-characters. We have seen in the exercises that every such homo-
morphism for K = Q is of the form

χ0

| · |s

for some s ∈ C and χ0 a Dirichlet character. So a Hecke character
for K = Q generalizes the concept of Dirichlet characters. This point
of view is quite convenient; if Re(s) > 1 such a Hecke character for
K = Q allows us to write the Dirichlet L-function in the convenient
way

L(χ0, s) = ∑
n≥1

χ(n).

So in some sense, we do not distinguish between the part of the char-
acter | · |s coming from the Archimedean part of the ideles and the
part χ0 coming form the finite ideles. Among all these Hecke charac-
ters there are certain algebraic Hecke characters. In the case of K = Q,
these are the Hecke characters corresponding to χ0

|·|n for n ∈ Z. Fur-
thermore, it is useful to introduce the notion of a dual Hecke character.
In the case K = Q, this is the Hecke character χ∨ := χ0

|·|1−s . So it is
exactly the Hecke character on the other side of the adelic functional
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equation, i.e., if we write ζ( f , χ) := ζ( f , χ0, s) we may write the adelic
functional equation as

ζ( f , χ) = ζ( f̂ , χ∨).

This point of view generalizes to arbitrary number fields. The adelic
zeta function can be defined for arbitrary number fields and satisfies a
nice functional equation:

ζ( f , χ) = ζ( f , χ∨).

For a suitable choice of adelic Schwartz-Bruhat functions, we can relate
the adelic zeta function ζ( f , χ) to classical Hecke L-functions. In par-
ticular, we obtain the functional equation for all Dedekind zeta func-
tions. Furthermore, one can use Tate’s thesis to give a conceptional
proof of the analytic class number formula:

Ress=1 ζK(s) =
2r(2π)shKRegK

eK
√
|dK|

,

where r (resp.) s are the number of real (resp. pairs of complex)
embeddings of K, hK is the class number, RegK the regulator, ek the
number of roots of unity in K and dK the discriminant of K. The
point is that the residues in the adelic functional equation are given
for general number fields by

− f (0)Vol(C1
K) resp. f̂ (0)Vol(C1

K),

where C1
K is the idele class group I1,K/K× and Vol(C1

K) is the volume
of this compact group with respect to the measure induced by the
normalized measure on the ideles. It turns out that

Vol(C1
K) =

2r(2π)shKRegK

eK
√
|dK|

which proves the analytic class number formula for Dedekind zeta
functions.





5 Towards Iwasawa Theory

In this final chapter of the lecture notes, we will prove Kummer’s crite-
rion relating the p-divisibility of zeta values to the p-divisibility of the
class group of the number field Q(ζp). The proof will combine many
of the aspects of L-functions we have seen in this lecture. In particular,
it involves generalized Bernoulli numbers, the functional equation of
Dirichlet L-functions, the explicit formula for the values of Dirichlet
L-functions and the analytic class number formula.

5.1 More on generalized Bernoulli numbers

For the proof of Kummer’s criterion, we will need to study generalized
Bernoulli numbers more carefully.

Recall that, for a Dirichlet character χ modulo D, we have defined
the generalized Bernoulli numbers as linear combinations of values of
the Bernoulli polynomials, more precisely:

Bn,χ := Dn−1
D

∑
d=1

χ(d)Bn(d/D).

Together with the generating function[1] of the Bernoulli polynomials [1] Recall

teXt

et − 1
=

∞

∑
n=1

Bn(X)
tn

n!
.

this gives immediately the following generating function for the gen-
eralized Bernoulli numbers:

D

∑
d=1

χ(d)
tedt

eDt − 1
=

∞

∑
n=1

Bn,χ
tn

n!
.

It will be useful to introduce Bernoulli polynomials twisted by a Dirich-
let character:

Definition 5.1.1. For a Dirichlet character χ modulo D, let us define
the generalized Bernoulli polynomials by the generating series

D

∑
d=1

χ(d)
te(d+X)t

eDt − 1
=

∞

∑
n=1

Bn,χ(X)
tn

n!
.

In Exercises 3 and 4 on Sheet 4, we have already seen that there is a
close relation between power sums ∑n

i=1 ik and the Bernoulli numbers.
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The generlized Bernoulli numbers are related to the following twisted
power sums:

Proposition 5.1.2. Let k be a positive integer and χ a Dirichlet character
modulo D. The generalized Bernoulli polynomials satisfy the following for-
mula

Dk

∑
d=1

χ(d)dn =
1

n + 1
(

Bn+1,χ(Dk)− Bn+1,χ
)

.

Proof. Let us write f (t, X) for the generating function of the general-
ized Bernoulli polynomials and consider

f (T, X+D)− f (T, X) = (e(X+D)t− eXt)
D

∑
d=1

χ(d)tedt

eDt − 1
=

D

∑
d=1

χ(d)te(d+X)t.

Comparing the coefficients of tn+1/(n + 1)! on both sides of the equal-
ity shows

Bn+1,χ(X + f )− Bn+1,χ(X) = (n + 1)
D

∑
d=1

χ(d)(d + X)n.

Evaluating at X = jD for 0 ≤ j < k and summing over these values
gives

Bn+1,χ(kD)− Bn+1,χ(0) = (n+ 1)
k−1

∑
j=0

D

∑
d=1

χ(d)(d+ jD)n = (n+ 1)
Dk

∑
d=1

χ(d)dn.

We have already seen in one of the question hours that the Bernoulli
numbers satisfy certain p-adic congruences, the Kummer congruences.

Theorem 5.1.3 (Kummer). Let p be a prime and m, n be positive integers
satisfying n ≡ m ̸≡ 0 mod p− 1. If m ≡ n mod pk then

(1− pm−1)
Bm

m
≡ (1− pn−1)

Bn

n
mod pk+1.

Proof. The proof is not too difficult, but we have to skip it due to time
reasons.

In the following, let p be an odd prime. In the next section, we want
to relate the class number of Q(ζp) to the p-adic properties of zeta
values. For this, the Teichmüller character of Q(ζp) plays an important
role. In Exercise 2 of Sheet 6, we have shown that there is a unique
group homomorphism

ω : (Z/pZ)× → µp−1(Zp) ⊆ Z×p

satisfying ω(x) mod p = x. Let us choose an isomorphism µp−1(Zp) ∼=
µp−1(C). Note that this isomorphism is equivalent to the choice of a
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prime ideal p over p in Q(µp−1(C)); indeed, the choice of an embed-
ding Q(µp−1(C)) ↪→ Qp is equivalent to the choice of a prime ideal
p above p. Using this isomorphism, we may view ω as a Dirichlet
character

ω : (Z/pZ)× → C×.

In the following, we will fix an isomorphism µp−1(Zp) ∼= µp−1(C) and
regard ω as a Dirichlet character.

Corollary 5.1.4. For a positive integer k with 1 + k ̸≡ 0 mod p− 1, we
have

B1,ωk ≡ B1+k mod p,

and for 1 + k ≡ 0 mod p− 1, we get

pB1,ωk ≡ −1 mod p.

Proof. A straightforward computations with the generating function of
the generalized Bernoulli polynomials shows for an arbitrary Dirichlet
character χ

Bn,ωk (X) =
1
n

n

∑
k=0

(
n
k

)
Bn−k,χ · Xk. (5.1)

In particular, we obtain for n = 2 and χ = ωk the equation B2,ωk (X) =

B2,ωk + 2B1,ωk X + B0,ωk . Proposition 5.1.2 gives

p

∑
d=1

ωk(d)d =
1
2

(
2B1,ωk · p + B0,ωk · p2

)
.

This implies[2] [2] Note that p ̸= 2 by the assumption k +
1 ̸≡ 0 mod p− 1.

B1,ωk ≡
1
p

p

∑
d=1

ωk(d)d mod p. (5.2)

By the defining property of the Teichmüller character, we have

ωk(d) ≡ dk mod p

and hence[3] ωkp(d) ≡ dkp mod p · p. Together with (5.2) this yields [3] Using that the Binomial coefficients
(p

i ) are divisible by p for 1 ≤ i ≤ p− 1,
it is not difficult to check that x ≡ y
mod p implies xp ≡ yp mod p · p.B1,ωk ≡

1
p

p

∑
d=1

dpk+1 mod p.

If 1 + k ≡ 0 mod p − 1, each 1 ≤ d < p satisfies dpk+1 ≡ 1 mod p
and we get pB1,ωp−2 ≡ −1 mod p. For k + 1 ̸≡ 0 mod p− 1, the same
argument as above using (5.1) and Proposition 5.1.2 shows

Bk+1 ≡
1
p

p

∑
d=1

dpk+1 mod p.

Comparing the congruences for Bk+1 and B1,ωk proves the statement
of the Corollary.[4] [4] The congruence in the statement can

also be deduced using general Kum-
mer congruences between generalized
Bernoulli numbers.
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5.2 The Kummer criterion

We are now well-prepared to prove Kummer’s criterion. Let us first
recall the class number formula for the Dedekind zeta function

ζK(s) = ∑
a⊆OK

1
Nas

of a number field K from Algebraic Number Theory 1:

Theorem 5.2.1 (Analytic class number formula). For a number field K
we have

Ress=1 ζK(s) =
2r(2π)shKRegK

eK
√
|dK|

,

where r (resp.) s are the number of real (resp. pairs of complex) embeddings
of K, hK is the class number, RegK the regulator, ek the number of roots of
unity in K and dK the discriminant of K.

On the other hand, we can use Theorem ?? and the functional equa-
tion to get the following explicit formula for the value of the Dirichlet
L-function at s = 1 for an odd[5] Dirichlet character χ of conductor D [5] i.e., χ(−1) = −1

L(χ, 1) = πi
G(χ)

D
B1,χ.

Let us recall that the Dedekind zeta function of an abelian extension
of Q can be expressed as a product of Dirichlet L-functions. More
precisely, we obtain the following Corollary of Theorem 3.14.2 and
Theorem 3.14.4:

Corollary 5.2.2. Let K be an abelian extension of Q and Q(ζD) the smallest
cyclotomic extension containing K. Let us denote by

X := {χ ∈ Gal(Q(ζD)/Q)∨ : χ|Gal(Q(ζD)/K) = 1}

the set of characters of Gal(Q(ζD)/Q) which are trivial on Gal(Q(ζD)/K).
Using Gal(Q(ζD)/Q) ∼= (Z/DZ)× we will view X as a subset of the
Dirichlet characters modulo D. Then[6] [6] Here, we view each χ ∈ X as a prim-

itive Dirichlet character of a certain con-
ductor d | D.ζK(s) = ∏

χ∈X
L(χ, s).

Finally, we will use the following facts about cyclotomic fields with-
out proof[7]: [7] Some of these properties will be dis-

cussed in my lecture about ’Iwasawa the-
ory and cyclotomic fields’ in the winter
term

Theorem 5.2.3. For a prime p > 2, let us consider the cyclotomic extension
K = Q(ζp) and its maximal totally real subfield K+ := Q(ζp + ζ−1

p ). We
have:

(a) The class number hK+ of K+ divides the class number hK of K.
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(b) The regulators of K respectively K+ satisfy:

RegK
RegK+

= 2
p−3

2 .

(c) p | hK
hK+

if and only if p | hK.

(d) |dK| = pp−2 and |dK+ | = p
p−3

2 .

Proof. We will treat some of these results in the winter term.

We are now well-prepared for the proof of the following Theorem:

Theorem 5.2.4 (Kummer criterion). Let p be an odd prime and consider
the class group hK of the cyclotomic field K = Q(ζp). Then p | hK if and
only if p divides one of the zeta values

ζ(1− 2n) = −B2n

2n
,

for 2 ≤ 2n < p− 1.

Proof. Let us write K = Q(ζp) and K+ = Q(ζp + ζ−1
p ). The idea is to

compare the following two explicit formulas for ζK(s)/ζK+(s) at s = 1:
The first one comes from the analytic class number formula

ζK(s)
ζK+(s)

∣∣∣
s=1

= π
p−1

2
hK

hK+

RegK
RegK+

√
|dK|
|dK+ |

eK
eK+

.

The second formula comes from the explicit decomposition into Dirich-
let L-functions and the explicit formula for these values:

ζK(s)
ζK+(s)

∣∣∣
s=1

= ∏
χ(−1)=−1

L(χ, 1) = (πi)
p−1

2 ∏
χ(−1)=−1

G(χ)
p

B1,χ,

where χ runs over the odd Dirichlet characters of conductor p. By
taking absolute values and comparing both equations, we obtain

hK
hK+

=
|RegK+ |
|RegK|

√
|dK+ |
|dK|

eK+

eK
∏

χ(−1)=−1

|G(χ)|
p
|B1,χ|.

In Theorem 4.6.2, we have already seen that |G(χ)| = √p. The field K+

is totally real, so it only contains the roots of unity {±1} and we get
eK+ = 2. The field K contains the roots of unity {±ζp | ζp ∈ µp(Q)}
and hence eK = 2p. By Theorem 5.2.3, we have the following equations

RegK
RegK+

= 2
p−3

2 ,
|dK|
|dK+ | = p

p−1
2 .

Combining this with the above equation for hK
hK+

gives

hK
hK+

= 2−
p−3

2 p ∏
χ(−1)=−1

|B1,χ|.
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Now, observe that ω is an odd Dirichlet character of conductor p and
induces an isomorphism of cyclic groups (Z/pZ)× ∼= µp−1(C). Thus,
the odd Dirichlet characters of conductor p are exactly the odd powers
ω, ω3, . . . , ωp−2. Furthermore, by Theorem 5.1.4, we have for k + 1 ̸≡ 0
mod p− 1 the congruence

B1,ωk ≡ B1+k mod p,

and for k = p− 2 we get |pB1,ωp−2 | ≡ 1 mod p. This implies

hK
hK+
≡ 2−

p−3
2

p−3
2

∏
j=1
|B2j| mod p.

So hK
hK+

is divisible by p if and only if p divides at least one B2j for

1 ≤ j ≤ p−3
2 . On the other hand, by Theorem 5.2.3 hK

hK+
is an integer

and it is divisible by p if and only if hK is divisible by p. Thus, we have
shown that p divides hK if and only if p divides one of the Bernoulli
numbers

B2, B4, . . . , Bp−3.

The Theorem follows now from the explicit formula for the values of
the Riemann zeta function

ζ(1− 2n) = −B2n

2n

observing that p does not divide any of the denominators 2, 4, . . . , p−
3.

If you ever tried to compute the class number of a number field by
hands you will certainly know to appreciate Kummer’s criterion. For
example, we have B12 = − 691

2730 so the prime p = 691 divides B12 and
we deduce that the class number of Q(ζ691) is divisible by 691.

Outlook

As often in mathematics, the answer to a mathematical problem usu-
ally raises many new questions. For example, Kummer’s criterion
immediately raises many questions about the relation of cyclotomic
fields and p-adic properties of zeta values:

• Can we generalize Kummer’s criterion to cyclotomic fields of the
form Q(ζpn)?

• What does it mean in terms of class groups that p divides a partic-
ular zeta value ζ(2k)?

• We have seen that p | hK
hK+

is equivalent to p | hK. Is it possible that
p | hK+?
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• Are there infinitely many primes such that p does (not) divide the
class group of Q(ζp)?

• The Kummer congruences allow us to interpolate the Riemann zeta
function p-adically. What is the relation between the p-adic zeta
function and the p-divisibility of class groups of cyclotomic fields?

• and many more ...

Some of these questions have surprising answers and some of them are
even unsolved conjectures. So Kummer’s criterion can be seen as the
tip of the iceberg of many deep relations between p-adic L-functions
and class groups in cyclotomic extensions[8]. This area of number the- [8] Or more generally Zp-extensions

ory is usually summarized under the term Iwasawa theory. If you are
interested to learn more about the p-adic aspect of L-functions and
their arithmetic interpretation then I would like to cordially invite you
to my lecture on Iwasawa theory in the winter semester.





6 Epilogue

I hope that I could give you some ideas about various different aspects
of L-functions. Of course, this area of mathematics is far too extensive
to ever fully understand everything about L-functions. And of course,
there are also plenty of aspects of L-functions we have never said a
word about in this lecture. In some sense, we have only touched certain
particular parts of a baby L-ephant. Nevertheless, I hope that I could
give you an impression about the existence of many different facets of
L-functions.

Acknowledgement

I would like to thank all participants of this course. Special thanks
go to Manuel Hoff for the excellent organization and presentation of
the exercises. Furthermore, I would also like to thank him for many
valuable corrections and suggestions. Many thanks also to Florian
Leptien, Federico Mocchetti, Niklas Müller and Reinier Sorgdrager for
pointing out many typos and corrections in these notes and for all the
interesting contributions in the weekly question hour.





Bibliography

Eberhard Freitag and Rolf Busam. Funktionentheorie. Springer-Verlag,
Berlin, 1993. ISBN 3-540-50618-7.

Loukas Grafakos. Classical Fourier analysis, volume 249 of Graduate
Texts in Mathematics. Springer, New York, second edition, 2008. ISBN
978-0-387-09431-1.

E. Hewitt and K. A. Ross. Abstract harmonic analysis. Vol. I, volume 115

of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag,
Berlin-New York, 2nd edition, 1979. ISBN 3-540-09434-2.

James S. Milne. Fields and galois theory (v4.61), 2020. Available at
www.jmilne.org/math/.

Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer-Verlag, Berlin, 1999. ISBN 3-540-65399-6.
doi: 10.1007/978-3-662-03983-0. URL https://doi.org/10.1007/

978-3-662-03983-0. Translated from the 1992 German original and
with a note by Norbert Schappacher, With a foreword by G. Harder.

D. Ramakrishnan and R. J. Valenza. Fourier analysis on number fields,
volume 186 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 1999. ISBN 0-387-98436-4. doi: 10.1007/978-1-4757-3085-2.
URL https://doi.org/10.1007/978-1-4757-3085-2.

L. Ribes and P. Zalesskii. Profinite Groups. A Series of Modern
Surveys in Mathematics. Springer Berlin Heidelberg, 2010. ISBN
9783642016424.

Jean-Pierre Serre. Linear representations of finite groups. Graduate Texts
in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg,
1977. ISBN 0-387-90190-6. Translated from the second French edition
by Leonard L. Scott.

D. Zagier. Newman’s short proof of the prime number theorem.
Amer. Math. Monthly, 104(8):705–708, 1997. ISSN 0002-9890. doi:
10.2307/2975232. URL https://doi.org/10.2307/2975232.

https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-1-4757-3085-2
https://doi.org/10.2307/2975232

	Introduction and Overview
	Overview

	The Riemann zeta function
	Basic properties of the Riemann zeta function
	The functional equation
	Fourier Theory
	Chebyshev bounds for primes
	The Prime Number Theorem
	Euler's Formula
	A proof that Euler missed

	The Kronecker-Weber Theorem
	Absolute values and valuation rings
	Completions
	Hensel's Lemma
	Ramification and completion
	Unramified and totally ramified extensions of Qp
	Krasner's Lemma
	Infinite Galois theory
	Kummer theory
	Proof of the local Kronecker–Weber Theorem
	The global Kronecker–Weber Theorem
	Dirichlet L-functions
	Dirichlet characters as Galois representations
	Complex representations
	Artin L-functions

	Tate's thesis
	Harmonic analysis on locally compact abelian groups
	Local Fourier Analysis
	Adeles and Ideles
	Fourier theory on the adeles
	Adelic zeta functions
	Functional equation for Dirichlet L-functions

	Towards Iwasawa Theory
	More on generalized Bernoulli numbers
	The Kummer criterion

	Epilogue
	Bibliography

