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§1 Talk 1: Introduction and Overview (Speaker: Arshay Sheth)
Tate’s thesis is John Tate’s 1950 PhD thesis written under the supervision of Emil Artin
at Princeton University. Building on the work of Margaret Matchett, Artin’s previous
student, Tate gave a powerful approach to understand certain aspects of L-functions.
Before explaining the main ideas of Tate’s thesis, we first give a short overview on L-
functions to understand the broader context in which Tate’s Thesis fits.

§1.1 Background on L-functions
The simplest example of an L-function is the Riemann zeta function.

Definition 1.1. The Riemann zeta function is defined for all s ∈ C with Re(s) > 1 by

ζ(s) =

∞∑
n=1

n−s = 1−s + 2−s + 3−s + 4−s + · · ·

The Riemann zeta function satisfies three key properties: it has an Euler product, a
functional equation and an analytic continuation to the whole complex plane (with a
simple pole at s = 1). We briefly explain each of these three properties.

The Euler product of ζ(s) is an analytic way to reflect the fact that every natural
number can be written uniquely as a product of prime numbers.
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Theorem 1.2 (Euler, 1737)
We have that

ζ(s) =
∏
p

(1− p−s)−1

Proof.∏
p

(1− p−s)−1 = (1− 2−s)−1(1− 3−s)−1(1− 5−s)−1 · · ·

= (1 + 2−s + 4−s + · · · )(1 + 3−s + 9−s + · · · )(1 + 5−s + 25−s + · · · ) · · ·
= 1−s + 2−s + 3−s + 4−s + · · ·
= ζ(s).

The functional equation expresses a beautiful symmetry of ζ(s):

ζ(s)↔ ζ(1− s)

i.e. the values of ζ at s are related (but not equal) to the values of ζ at 1− s. To explain
this relationship precisely, let us define the completed Riemann zeta function.

Definition 1.3. Define Λ(s) = π−s/2Γ
(
s
2

)
ζ(s), where

Γ(s) :=

∫ ∞

0
xs−1e−xdx for Re(s) > 0.

is the Gamma function.

Theorem 1.4 (Riemann, 1859)
We have that

Λ(s) = Λ(1− s).

In other words, we have that

π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s) = π−s/2Γ

(s
2

)
ζ(s).

The functional equation can be used to extend the definition of ζ(s) to the entire
complex plane. Indeed, it is possible to extend the definition of ζ(s) to all s ∈ C with
Re(s) > 0 without using the functional equation; but since the functional equation
relates ζ(s) to ζ(1 − s) and since the Gamma function has an analytic continuation to
all of C (with simple poles at s = 0,−1,−2, . . .), we can use the functional equation to
define ζ(s) for all s ∈ C.

Before proceeding further, we briefly explain why having these three properties (Euler
product, functional equation and analytic continuation) is so important. We give two
examples to illustrate this: one from analytic number theory and one from algebraic
number theory.
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• The Euler product
ζ(s) =

∏
p

(1− p−s)−1

implies that ζ(s) 6= 0 for Re(s) > 1. However, studying the Euler product more
carefully actually reveals something much stronger:

ζ(s) 6= 0 for all s ∈ C with Re(s) ≥ 1.

Combining this fact with tools from complex analysis yields the prime number
theorem.

Theorem 1.5 (Hadamard, de la Vallée Poussin)
We have that

π(x) ∼ x

logx,

where π(x) = #{p prime : p ≤ x}.

• The first values of ζ(s) were computed by Euler in 1734. He showed that

ζ(2) =
1

12
+

1

22
+

1

32
+

1

42
+ · · · = π2

6
.

ζ(4) =
1

14
+

1

24
+

1

34
+

1

44
+ · · · = π4

90

In general, Euler gave an explicit formula for the value of ζ(s) at an even positive
integer:

ζ(2k) =
1

12k
+

1

22k
+

1

32k
+ · · · = π2k · (−1)k−1 22k

2(2k)!
B2k,

where Bn is the nth Bernoulli number defined by x
ex−1 =

∑∞
n=0

Bn
n! x

n.
Using the functional equation, we obtain that

ζ(−1) = − 1

12
, ζ(−3) = 1

120
, ζ(−5) = − 1

252

ζ(−7) = 1

240
, ζ(−9) = − 1

132
, ζ(−11) = 691

32760
, · · ·

Can we say anything interesting about the numerators and denominators of these
rational numbers?

Theorem 1.6
Let r be a positive even integer. Let Dr denote the numerator of ζ(1 − r)
when we write it as a reduced fraction. Then

– A prime number p divides Dr if and only if p− 1 divides r.
– If p divides Dr, ordp(Dr) = ordp(r) + 1.

Thus, the denominator Dr of ζ(1− r) when r is positive even is completely under-
stood.
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Corollary 1.7
12 divides Dr for all r.

Proof. This follows directly from the previous theorem: 2 divides Dr since 1 = 2−1
divides r; moreover, since r is even, we have that ord2(Dr) = ord2(r) + 1 ≥ 2.
Hence, 4 divides Dr. Similarly, 3 divides Dr since 2 = 3− 1 divides r.

The numerators of these rational numbers are much more mysterious and even
today remain poorly understood. For example, while extensive computation has
revealed that these numerators always seem to be squarefree, we still do not have a
proof of this fact. Nevertheless, we definitely know these numerators contain rich
arithmetic information. For instance, we have

Theorem 1.8 (Kummer’s criterion)
Let p be a prime number. Then p divides the size of the class group of
Q(µp) if and only if p divides the numerator of ζ(1− r) for some even r with
2 ≤ r ≤ p− 3.

There is also a connection of between the numerators of ζ(s) at negative odd
integers and modular forms; it is not a coincidence that the prime number 691
appears in both

ζ(−11) = 691

32760
and in τ(p) ≡ 1 + p11 mod 691,

where the τ(p)’s are the Fourier coefficients of Ramanujan’s Delta function

∆(q) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

These examples show that the Euler product, functional equation and analytic con-
tinuation lead to very interesting results and conjectures in number theory.

We now give a few other example of L-functions, which also a play an important role
in Tate’s thesis.
Definition 1.9 (Dirichlet L-functions). A Dirichlet character mod q is a group homo-
morphism

χ : (Z/qZ)× → C×.

The Dirichlet L-function attached to χ is defined to be

L(χ, s) :=
∞∑
n=1

χ(n)

ns
=

∏
p

(1− χ(p)p−s)−1.

Dirichlet L-functions also satisfy a functional equation. To explain this, this we intro-
duce the following terminology.

• A Dirichlet character is said to be even if χ(−1) = 1 and odd otherwise i.e if
χ(−1) = −1.

• Given a Dirichlet character χ, we set ε(χ) = 0 if χ is even and ε(χ) = 1 if χ is odd.

• We define the Gauss sum G(χ) =
∑q−1

k=0 χ(k)e
2πi k

q .
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Theorem 1.10 (Functional equation for Dirichlet L-functions)
Define Λ(χ, s) = qs/2π−(s+ϵ(χ))/2Γ

(
s+ϵ(χ)

2

)
L(s, χ). Then

Λ(χ, s) =
G(χ)

iϵ(χ)
√
q
· Λ(χ, 1− s).

Just as with the Riemann zeta function, we can use Dirichlet L-functions to derive
interesting number theoretic information.

Theorem 1.11 (Dirichlet)
Let a and q be positive coprime integers. There are infinitely many primes p such
that p is congruent to a mod q. Moreover, the density of such primes is 1

φ(q) .

Corollary 1.12
We have that

• 25% of primes end in 1.

• 25% of primes end in 3.

• 25% of primes end in 7.

• 25% of primes end in 9.

Proof. Apply Dirichlet’s theorem with q = 10!

We now recall how to generalize the definition of ζ(s) to number fields.

Definition 1.13 (Dedekind zeta functions). Let K be a number field. We define the
Dedekind zeta function of K by setting

ζK(s) :=
∑

a⊆OK

1

N(a)s
,

where the sum is over all non-zero ideals of OK .

By the unique factorization of ideals into prime ideals in OK , it follows that

ζK(s) =
∏
p

(1−N(p)−s)−1.

The Dedekind zeta function ζK satisfies a functional equation and has an analytic con-
tinuation to the entire complex plane with a simple pole at s = 1. It has also captures
a tremendous information about the number field K:
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Theorem 1.14 (The analytic class number formula)
Let K be a number field, ζK its Dedekind zeta function, h its class number, DK its
discriminant, R the regulator, w the number of roots of unity in K, r1 the number
of real places and r2 the number of complex places of K. Then:

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hR

w
√
|DK |

Just as Dedekind zeta functions are generalizations of the Riemann zeta function to
a number field, we can define Hecke L-functions which are generalizations of Dirichlet
L-functions to number fields. Hecke L-functions also have Euler products, functional
equations and analytic continuation.
We now introduce an example which is slightly different from the previous examples:
L-functions attached to modular forms. We again consider Ramanujan’s Delta function

∆(q) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

In 1916, Ramanujan considered the L-function

L(f, s) :=
∞∑
n=1

τ(n)

ns

and observed that
L(f, s) =

∏
p

(1− τ(p)p−s + p11−2s).

This was historically the first example of a degree two L-function: each term in the
Euler product is a degree two polynomial in p−s i.e. the local Euler factor at p is
fp(p

−s), where fp(x) := 1−τ(p)x+p11x2. This discovery of a degree two L-function has
played a tremendous role in the development of number theory in the 20th century; for
instance, Ramanujan’s conjecture that the discriminant of fp is always negative was only
proven by Deligne in the 1970s as a consquence of his proof of the Riemann hypothesis
for varieties over finite fields.

A few years after Ramaujan, Artin in 1922 discovered that one can construct degree
n L-functions for any natural number n.

Definition 1.15 (Artin L-functions). Let L/K be a Galois extension of number fields
and let

ρ : Gal(L/K)→ GLn(C) ∼= GL(V )

be a Galois representation. The Artin L-function associated to ρ is defined to be

L(ρ, s) :=
∏
p

det(1−Nm(p)−sρ(Frobp)|V Ip)−1

This is an L-function of degree n, where n = dimC V . Artin L-functions are not very
well understood to this day; the analytic continuation of Artin L-functions is a big open
problem that goes under the name of Artin’s conjecture.
Having seen many examples of L-functions so far, we can ask the following question: Is
there a common source for all the L-functions that we have just considered? The answer
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to this question is, conjecturally, yes: Langlands conjectured that all these L-functions
arise as L-functions of cuspidal automorphic representations of GLn; indeed, one of the
goals of the Langlands program is to unify all zeta functions appearing in number theory.

We briefly summarize the discussion of this section with the following table:

Year Mathematician Contribution
1734 Euler Computed ζ(−1), ζ(−3), . . .
1837 Dirichlet Proved infinitely many primes in APs
1859 Riemann Proved functional equations for ζ

1896 Dedekind Proved analytic class number formula
1916 Ramanujan Introduced degree two L-functions
1923 Artin Introduced Artin L-functions
1970 Langlands Formulated the Langlands conjectures

§1.2 Tate’s Thesis: the main ideas
Where does Tate’s thesis fit into this timeline? Tate’s thesis (1950):

• gives a conceptual proof of the analytic continuation and functional equation of all
degree one L-functions;

• provides techniques and ideas that are used till today to understand higher degree
automorphic L-functions.

Thus, Tate’s thesis is so fundamental because it not only provides a new perspective
on a substantial portion of the theory of L-functions that was developed prior to 1950,
but it is also the origin of techniques that drive current research in the subject. We now
briefly explain the main ideas of Tate’s thesis; this explanation will be very brief and
will be covered in much more detail in the subsequent talks.
The first main theme of Tate’s thesis is that it uses the full power of adeles and ideles.

Definition 1.16 (The adele ring of Q). The ring of adeles of Q is defined to be

AQ := {x = (x∞)× (xp)p ∈ R×
∏
p

Qp : xp ∈ Zp for almost all p}.

We have an embedding

Q ↪→ AQ, a 7→ (a, a, a, a, . . .)

We can equip AQ with a topology: we define the basis of the topology to be sets of
the form U ×

∏
p Vp, with U ⊆ R open, Vp ⊆ Qp open and Vp = Zp for almost all p.

Definition 1.17 (The group of ideles of Q). The group of ideles of Q is defined to be

A×
Q := {x = (x∞)× (xp)p ∈ R× ×

∏
p

Q×
p : xp ∈ Z×

p for almost all p}.

As with the case of adeles, we have an embedding

Q× ↪→ A×
Q, a 7→ (a, a, a, a, . . .)
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and we can also equip A×
Q with a topology: we define the basis of the topology to be

sets of the form U ×
∏

p Vp, with U ⊆ R× open, Vp ⊆ Q×
p open and Vp = Z×

p for almost
all p.

Definition 1.18 (Absolute value of an idele). For x = (xv)v ∈ A×
Q, define

|x| =
∏
v

|xv|v = |x∞|∞ ·
∏
p

|xp|p.

Note that for all but finitely many v, |x|v = 1. Hence, this infinite product is actually
a finite product. We make two remarks on the definition of adeles and ideles:

• As the notation might suggest, A×
Q is indeed the group of units of the ring AQ (but

its topology is not the subspace topology!).

• In a similar fashion, we can define AK and A×
K for any number field K.

The second main feature of Tate’s thesis is that Tate performs Fourier analysis or
harmonic analysis on adeles and ideles. The main idea of Fourier analysis is as follows:
Suppose we have a compact group G and we are interested in functions from G → C.
These functions from a C-vector space and we can equip this set of functions with an
inner product. The idea of Fourier analysis is to select an orthonormal basis (ei)i∈I for
this set of functions; these functions are called characters. Hence, for any f : G → C,
we have

f =
∑
i∈I

f̂(ei)ei, f̂(ei) ∈ C

where f̂ : Ĝ → C is called the Fourier transform of f . Thus, we have written f as C-
linear combination of “nice functions” (the characters). There is a similar theory (which
is often called harmonic analysis) for locally compact abelian groups by replacing the
sum above with an integral.

To perform harmonic analysis on adeles and ideles, we will work with Schwartz Bruhat
functions: these are functions f : AK → C that behave well with respect to Fourier
Transform. We will also need the following notion:

Definition 1.19 (Hecke characters). A Hecke character is a continuous group homo-
morphism χ : A×

K → C× that is trivial on K×.

Equipped with a Schwartz Bruhat function f and a Hecke character χ, Tate introduces
the following important definition.

Definition 1.20 (Adelic zeta function). Define the adelic zeta function of f and χ by
setting

ζ(f, χ, s) =

∫
A×
K

f(x)χ(x)|x|sd×x,

where d×x is a suitably chosen measure on A×
K .

The adelic zeta function ζ(f, χ, s) is a function of s ∈ C and Tate showed that it
converges when Re(s) is sufficiently large. The key point of Tate’s thesis is :

All degree one L-functions can be viewed as adelic zeta functions with
suitably chosen f and χ. .
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Thus, to prove the functional equation and analytic continuation of degree one L-
functions, it suffices to prove that these more general adelic zeta functions satisfy a
functional equation and have analytic continuation. Using the full power of the adelic
machinery (in particular, the Adelic Poisson summation formula), Tate shows that this
is indeed the case.

Theorem 1.21 (Main Theorem of Tate’s thesis)
We have that

• ζ(f, χ, s) admits an analytic continuation to the entire complex plane with the
only possible poles at s = 0 and s = 1.

• ζ(f, χ, s) = ζ(f̂ , χ−1, 1− s).

We conclude by very briefly outlining how this gives us the functional equation for the
Riemann zeta function.

Example 1.22 (The case of the Riemann zeta function)
Let K = Q, χ be the trivial character and f : AQ → C be defined by

f((x∞)× (xp)p) = e−πx2
∞ ·

∏
p

1Zp(xp)

Then

ζ(f, χ, s) =

∫
A×
Q

f(x)χ(x)|x|sd×x

= 2

∫ ∞

0
e−x∞xs−1

∞ dx∞ ·
∏
p

∫
Q×

p

1Zp |xp|spd×xp

= π−s/2Γ(s/2) ·
∏
p

(1− p−s)−1

= Λ(s)

By the adelic functional equation,

ζ(f, χ, s) = ζ(f̂ , χ−1, 1− s).

Since f̂ = f and χ is trivial, we get

ζ(f, χ, s) = ζ(f, χ, 1− s).

Hence,

Λ(s) = Λ(1− s)

Our study group will be divided in three parts: we will first introduce the necessary
background on adeles and ideles and on harmonic analysis on locally compact abelian
groups; we will then study Tate’s thesis itself and carry out the preceding steps in
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much more detail (Tate’s thesis works for all degree one L-functions, but we will restrict
to the case of Dirichlet L-functions for simplicity); finally, we will see some powerful
applications of these ideas beyond Tate’s thesis.
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§2 Talk 2: Adeles, Ideles and their properties (Speaker:
Katerina Santicola)

The goal of this talk is to introduce adeles and ideles and explain some of their basic
properties. For any number field K, these are obtained by collecting together all the
local fields associated to K (all completions of K); they provide a very good way to
relate local properties with global properties. In this talk, we restrict to the case when
K = Q.

§2.1 Adeles
Definition 2.1 (The adele ring of Q). The ring of adeles of Q is defined to be

AQ := {x = (x∞)× (xp)p ∈ R×
∏
p

Qp : xp ∈ Zp for almost all p}.

Note that AQ is a ring under pointwise addition and multiplication.

Proposition 2.2 (Q embeds in AQ)
We have an injective ring homomorphism

Q ↪→ AQ, a 7→ (a, a, a, a, . . .)

Proof. We only need to check that this map is well-defined; if we write a = m
n , where

m and n are integers, then for all p - n, we have that a ∈ Zp. Thus, (a, a, a, a, . . .) is a
well-defined element of AQ.

We can equip AQ with a topology: we define the basis of the topology to be sets of
the form U ×

∏
p Vp, with U ⊆ R open, Vp ⊆ Qp open and Vp = Zp for almost all p. The

ring of adeles satisfies two key properties:

Proposition 2.3
We have that

• Q is discrete in AQ (via the subspace topology).

• AQ/Q is compact (via the quotient topology).

Proof. • Consider the open set U := (−1/2, 1/2)×
∏

p Zp of AQ. Then U ∩Q = {0}
and so {0} is an open subset of Q. By continuity of addition, {a} is open in Q for
all a ∈ Q. Thus, Q is discrete in AQ.

• Let W := [0, 1)×
∏

p Zp. We first prove the following claim.
Claim: Every x ∈ AQ can be uniquely expressed in the form q +w for some q ∈ Q
and w ∈W .
Proof of claim: Pick x = (xv)v ∈ AQ. Then, there exists a finite set of primes S
such that for all primes p 6∈ S, xp ∈ Zp. For each p ∈ S, we let

xp =

∞∑
j=−Np

ajp
j ,

11
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where Np ∈ N≥1 and aj ∈ {0, . . . , p− 1} for all j. We define

rp :=

−1∑
j=−Np

ajp
j

and note that rp ∈ Q and xp − rp ∈ Zp for all p ∈ S. If ` 6= p is a prime, note that

|rp|ℓ ≤ max
−Np≤i≤−1

|ai|ℓ ≤ 1.

Thus, if we let r :=
∑

p∈S rp, the x− r lies in R×
∏

p Zp. Let z := bx− rc. Then

w := x− r − z ∈W

and so we can write x = w + (r + z) with w ∈ W and r + z ∈ Q as claimed. The
uniqueness of this decomposition follows from the fact that W ∩

∏
p Zp = {0}.

The claim implies that the image of the set [0, 1] × Zp under the quotient map
A ↠ AQ/Q is AQ/Q. Thus, AQ/Q is compact, being the image of a compact set
under a continuous map.

We can also define the following variant of AQ.

Definition 2.4 (The ring of finite adeles of Q). The ring of finite adeles of Q is defined
to be

AQ,fin := {x = (xp)p ∈
∏
p

Qp : xp ∈ Zp for almost all p}.

In a similar fashion as before, we can equip AQ,fin with a topology and we also have
that Q embeds in AQ,fin. We now list some other properties of AQ,fin without proof. To
do so, we first introduce the ring of profinite integers.

Definition 2.5 (Profinite integers). We define the ring of profinite integers by

Ẑ := lim←−
n

Z/nZ,

where the inverse limit is taken over natural numbers n and we have transition maps
Z/n1Z→ Z/n2Z if and only if n2 divides n1.

In subsequent discussions, we will often use the fact that Ẑ is isomorphic to
∏

p Zp as
topological rings.

Proposition 2.6 (Properties of AQ,fin)
We have that

• AQ,fin ∼= Q⊗Z Ẑ.

• Q is dense in AQ,fin.
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§2.2 Ideles
Definition 2.7 (The group of ideles of Q). The group of ideles of Q is defined to be

IQ := {x = (x∞)× (xp)p ∈ R× ×
∏
p

Q×
p : xp ∈ Z×

p for almost all p}.

As with the case of adeles, we have an embedding

Q× ↪→ IQ, a 7→ (a, a, a, a, . . .)

and we can also equip IQ with a topology: we define the basis of the topology to be
sets of the form U ×

∏
p Vp, with U ⊆ R× open, Vp ⊆ Q×

p open and Vp = Z×
p for almost

all p.

Proposition 2.8 (The ideles are the the units of the adeles)
We have that A×

Q = IQ.

Proof. Pick x = (xv)v ∈ IQ. Then xp ∈ Z×
p for almost all primes p. Hence, y := (x−1

v )v ∈
AQ and we have xy = 1 in AQ and so x is an invertible element of AQ i.e. x ∈ A×

Q.
Conversely, suppose that x = (xv)v ∈ A×

Q. Then there exists y = (yv) in AQ such that
x · y = 1 in AQ. For all but finitely many p, xp is in Zp; on the other hand, for all but
finitely many p, yp is also in Zp. Thus, for all but finitely many p, xp is in Z×

p and so
x ∈ IQ by definition.

Example 2.9 (The topology on IQ is not the subspace topology)
Even though the above proposition shows that IQ is the group of units of the ring
AQ, the topology on IQ is not the subspace topology. For instance, for each n ∈ N≥1,
define an ∈ IQ via the number 1 in the R component and the number n! + 1 in all
the other components. Then

• {an}n converges to 1 in IQ equipped with the subspace topology: the reason
for this is essentially that, for each prime number p, ordp(n!) tends to zero in
Zp as n tends to infinity.

• However, note that U := R× ×
∏

p Z×
p ⊆ IQ is an open neighbourhood of 1 in

the topology of IQ defined above. Since an 6∈ U for all n ≥ 1, {an}n does not
converge to 1 in the topology we equipped IQ with.

Definition 2.10 (Absolute value of an idele). For x = (xv)v ∈ A×
Q, define

|x| =
∏
v

|x|v.

Note that for all but finitely many v, |x|v = 1. Hence, this infinite product is actually
a finite product.
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Proposition 2.11 (The adelic absolute value of every rational number is one)
For all a ∈ Q×,

|a| =
∏
v

|a|v = 1.

Proof. Write x = ±pn1
1 · · · pnm

m for some primes p1, . . . , pm and n1, . . . , nm ∈ Z. Then
|a|∞ = pn1

1 · · · pnm
m , |a|pi = p−ni for all i ∈ {1, . . . ,m} and |a|v = 1 for all v 6=

∞, p1, . . . , pm. Thus,
∏

v |a|v = 1.

While Q× is discrete in IQ, it is not true that IQ/Q× is compact. However, if we
define,

I1Q := {x ∈ IQ : |x| = 1},

then I1/Q× is compact. We prove these statements below.

Proposition 2.12
We have that

• Q× is discrete in IQ.

• I1Q/Q× ∼= Ẑ×. In particular, I1Q/Q× is compact.

• IQ/Q× ∼= R>0 × Ẑ× In particular, IQ/Q× is not compact.

Proof. • Consider the open set U := (1/2, 3/2)×
∏

p Z×
p of IQ. Then U ∩Q× = {1}

and so {1} is an open subset of Q×. By continuity of multiplication, {a} is open
in Q× for all a ∈ Q×. Thus, Q× is discrete in IQ.

• For any x = (xv)v ∈ I1Q, note that x∞ ∈ Q and also that we have a well-defined
map

I1Q → Ẑ× =
∏
p

Z×
p (xv)v 7→ (xp/x∞)p.

Since Q× is in the kernel of this map, we get an induced map

I1Q/Q× → Ẑ× =
∏
p

Z×
p .

One can check that the inverse of this map is

Ẑ× =
∏
p

Z×
p → I1Q z = (zp) 7→ (1, z).

Hence, I1Q/Q× ∼= Ẑ× and so I1Q/Q× is compact.

• Note that the natural short exact sequence

1→ I1Q/Q× → IQ/Q× → R>0 → 1

splits: we can define a section R>0 → IQ/Q× by r 7→ (r, 1). The desired isomor-
phism now follows from the previous part.
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§3 Talk 3: Proof of finiteness of class groups and Dirichlet’s
Unit Theorem (Speaker: Philip Holdridge)

To demonstrate the power of adeles and ideles, we will use them to prove the two most
important theorems in classical algebraic number theory: finitness of class groups and
Dirichlet’s Unit Theorem.

§3.1 Preliminary background
We begin by generalizing the definition of adeles and ideles to an aribtrary number fields.

Let K be a number field with ring of integers OK .

Definition 3.1 (Finite places of a number field). A non-zero prime ideal of OK is called
a finite place of K.

Definition 3.2 (Infinite places of a number field). An infinite place of K is a field
homomorphism K ↪→ R or K ↪→ C (up to complex conjugation). Embeddings of the
former type are called real embeddings and embeddings of the latter type are called
complex embeddings.

If v = p is a finite place of K, then v gives rise to an absolute value on K: we define

|a|v := q−ordp(a),

where q is the cardinality of the residue field OK/p and ordp(a) ∈ Z is the exponent of p
in the prime ideal factorisation of (a). We let Kv to be the completion of K with respect
to the absolute value | · |v induced by v on K. When v is a real place, we let Kv := R
equipped with the usual absolute value on R and v is a complex place, we let Kv := C
with absolute value the square of the usual absolute value on C. In particular, for any
place v (finite or infinite), we have an embedding K ↪→ Kv.

Definition 3.3. The ring of adeles of K is defined to be

AK := {(xv)v ∈
∏
v

Kv : xv ∈ Ov for almost all v}.

The group of ideles of K is defined to be

IK := {(xv)v ∈
∏
v

Kv : xv ∈ O×
v for almost all v}.

We make AK into a topological rings by declaring the basis of topology for AK to be
open sets of the form

∏
v∈S Uv×

∏
v ̸∈S Kv, where S is a finite set containing all the infinite

places of K and Uv is an open set of Ov. Similarly, we make IK into a topological group
by declaring the basis of the topology to be open sets of the form

∏
v∈S Uv ×

∏
v ̸∈S v×,

where S is a finite set containing all the infinite places of K and Uv is an open set of
K×

v . Just as in the K = Q case, we have the following facts:

• K is discrete in AK and AK/K is compact.

• K× is discrete in IK and I1K/K is compact,

where I1K := {a ∈ IK : |a| = 1} and for a = (av)v ∈ IK , we define

|a| :=
∏
v

|av|v

15
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§3.2 Finiteness of class groups
Recall that the class group of a number field K is defined by

Cl(K) = JK/PK ,

where JK is the multiplicative group of fractional ideals and PK ⊆ JK is the subgroup
of principal fractional ideals. Note that

Cl(K) = coker(K× → JK , a 7→ (a)).

To prove the finiteness of class groups, a key role will be played by the following “adelic
version” of the class group.

Definition 3.4 (Idele class groups). The group CK := IK/K× is called the idele class
group of K. We also let C1

K := I1K/K×.

Let P denote the set of finite places of K and S denote the set of finite places of K.
We make two observations that will allow us to relate the class group with the idele class
group:

• We have an isomorphism of groups⊕
p∈P

Z ∼= JK via (np)p 7→
∏
p

pnv .

• Define
U :=

∏
v∈S

K×
v ×

∏
v∈P
O×

v .

Note that U is an open subset of IK . Then

IK/U ∼=
⊕
v∈P

K×
v /O×

v
∼=

⊕
v∈P

Z.

Combining these observations, we conclude that

Cl(K) = coker(K× → JK , a 7→ (a))

∼= coker(K× →
⊕
p∈P

Z)

∼= coker(K× → IK/U)

∼= CK/U,

where U is the image of U in CK .
The key point is thus:

We have realized the ideal class group as a quotient of the idele class
group.

16
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We now recall/prove three topological facts.

Lemma 3.5
A discrete and compact topological space X is finite.

Proof. Since X is discrete, we have an open cover

X =
⋃
x∈X
{x}.

Since X is compact, this cover must have a finite sub-cover and so X must be finite.

Lemma 3.6
If f : X → Y is a continuous surjective map and if f is compact, then Y is compact.

Proof. Let {Ui}i∈I be an open cover of Y . Then {f−1(Ui)}i∈I is an open cover of X.
Since X is compact, this cover must have a finite subcover: there exists i1, . . . , in ∈ I
such that

X = f−1(Ui1) ∪ · · · ∪ f−1(Uin).

Then

Y = f(X) = f(f−1(Ui1)∪· · ·∪f−1(Uin)) = f(f−1(Ui1))∪· · ·∪f(f−1(Uin)) = U1∪· · ·∪Un,

where the last equality follows since f is surjective. Hence, Y is compact.

Lemma 3.7
Let H be a subgroup of a topological group G. Then H is open if and only G/H is
discrete.

Theorem 3.8
The class group of a number field is finite.

Proof. Since U ⊆ IK is open, U is open in CK . By Lemma 3.7, CK/U is discrete. Let
f denote the natural map

C1
K → CK/U.

We claim that f is surjective. To prove this claim, it suffices to prove that

g : I1K → IK/U

is surjective. Pick a ∈ IK/U . Let v be an infinite place of K. Choose b ∈ K×
v such that

|b|v = |a|. Define an element b̃ ∈ U via setting b in the v component and 1 in all the
other components. Then |b̃| = |a| and so |ab̃|−1 ∈ I1K . Hence, g(ab̃−1) = a and so g is
surjective.

Thus f is surjective, and so CK/U is compact by Lemma 3.6. Hence, by Lemma 3.5,
Cl(K) ∼= CK/U is finite.

17
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§3.3 Dirichlet’s Unit Theorem
In this section, we will give a proof of Dirichlet’s Unit Theorem. While we will not
prove every fact needed to prove the theorem, we will try to give a hint of how adelic
techniques are employed in the proof.

Theorem 3.9
Let K be a number field. Then

O×
K
∼= Zr1+r2−1 ⊕ µK ,

where r1 is the number of real embedddings of K, r2 is the number of pairs of
complex embeddings and µK is the number of roots of unity in K.

Note that r1+ r2− 1 = |S| − 1 where S is the set of infinite places of K, so Dirichlet’s
Unit Theorem states that O×

K
∼= Z|S|−1 ⊕ µK .

The first step in proving this theorem is:

Proposition 3.10 (The roots of unity in a number field are finite. )
The group µK is finite.

Proof. For any place v, let

Cv := {x ∈ Kv : |x|v = 1}.

Thus, when v is an infinite, Cv is either {±1} or the circle S1, and when v is a finite
place, cv is O×

v . Let C =
∏

v Cv. By Tychonoff’s theorem, C is compact. Since K× is
discrete in IK , it is closed in IK . Thus, C ∩K× is a closed subset of a compact set and
is thus compact. Also, C ∩K× is discrete. Thus, C ∩K× is finite.
Now since C ∩ K× is a finite subgroup of K×, C ∩ K× ⊆ µK . On the other hand,
µK ⊆ C ∩K×. Thus, µK = C ∩K× and so µK is finite.

We now define a regulator map, which gives us a logarithmic embedding of O×
K into

Euclidean space:

R : O×
K → R|S| x 7→ (log(|x|v))v∈S .

It is a standard fact that any algebraic integer whose all conjugates have absolute value
1 are roots of unity. Thus, kerR = µK . Since units in a number field have norm ±1,
note that the image of R lies in the |S| − 1 dimesnional subspace

(R|S|)0 := {(cv)v ∈ R|S| :
∑
v∈S

cv = 0}.

This is essentially the reason why O×
K has rank |S|−1. Using adelic techniques arguments

similar to those we have seen before, it is possible to prove that

Proposition 3.11
The image of O×

K is discrete in (R|S|)0 and the quotient (R|S|)0/R(O×
K) is compact.

We also need the following fact:

18



Warwick Number Theory Study Group Tate’s Thesis

Proposition 3.12
Let V be an n-dimensional topological vector space and Γ be a discrete subgroup
such that V /Γ is compact. Then Γ ∼= Zn as abelian groups.

Proof of Dirichlet’s Unit Theorem. Combining the previous two propositions, we have
that

R(O×
K) ∼= Z|S|−1.

Thus, O×
K/µK

∼= Z|S|−1 and since µK is finite, it follows that O×
K is a finitely generated

abelian group i.e.
O×

K
∼= Zr ⊕ T,

where r ∈ N and T is a finite abelian group. Hence, we must have that T = µK and
r = |S| − 1.
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§4 Talk 4: Harmonic analysis on locally compact abelian
groups (Speaker: Katerina Santicola)

As explained in the first talk, one of the main themes of Tate’s Thesis is to perform
harmonic analysis on adeles and ideles. In this talk, we will set up a general framework
to perform harmonic analysis on any locally compact abelian group.

§4.1 The Haar measure
We begin by recalling some notions from measure theory.

Definition 4.1 (σ-algebra). A σ-algebra of a set X is a set A of subsets of X such that

• X ∈ A.

• A is closed under complements.

• A is closed under countable union.

Definition 4.2 (Measure). A measure on a set X with a σ algebra A is a function

µ : A → R ∪ {∞}

such that

• µ(∅) = 0.

• µ is countably additive: if E1, E2, . . . are disjoint sets in A, then

µ(
∞⋃
i=0

Ei) =
∞∑
i=1

µ(Ei).

Example 4.3 (The Lebesgue measure)
The Borel σ-algebra of a topological space X is the smallest σ-algebra containing all
the open sets of X. A Borel measure is a measure on the Borel σ-algebra of X. The
usual Lebesgue measure µ on R (µ([0, 1]) = 1, µ([21, 24)) = 3) etc.) is an example
of a Borel measure.

We would like to generalize this concept to general locally compact abelian groups.

Definition 4.4 (Locally compact abelian groups). A topological group G is a group
equipped with a topology such that the multiplication map G×G→ G and the inverse
map G → G is continuous. A topological group G is called locally compact if it is
Hausdorff and if for every x ∈ G, there is an open set U ⊆ X and a compact set K ⊆ X
such that x ∈ U and U ⊆ K.

Henceforth, we will use the term “LCA” to denote “locally compact abelian”.
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Example 4.5 • Any finite abelian group with discrete topology is compact and
hence is LCA.

• The circle group T := {z ∈ C : |z| = 1} is compact and hence is LCA.

• The group (R,+) of real numbers is LCA.

• The group (Qp,+) of p-adic numbers is LCA; for any x ∈ Qp, the set x+ Zp

is an open compact set containing x.

• Let K be a number field. Then both the adeles AK and the ideles IK are
locally compact abelian groups.

• The group of rational numbers Q is not LCA.

Definition 4.6 (Haar measure). Let G be LCA. A Haar measure on G is a Borel measure
µ on G satisfying the following conditions:

• µ is inner regular: for any A ∈ B(G),

µ(X) = sup{µ(A)|K ⊆ A compact}.

• µ is outer regular: for any A ∈ B(G),

µ(X) = inf{µ(U)|A ⊆ U open}.

• µ is locally finite: for any compact set K ⊆ G, we have µ(K) <∞.

• µ is translation invariant: for any g ∈ G and any X ∈ B(G), we have that

µ(g +X) = µ(g)

.

Theorem 4.7 (Existence of Haar measure)
For any locally compact abelian group G, there exists a Haar measure on G. More-
over, this measure is unique up to scaling by a constant.

Corollary 4.8
If G is an LCA which is also compact, there is a unique Haar measure µ on G such
that µ(G) = 1.

Example 4.9 • The counting measure on a discrete group (the measure which
assigns the value one to every singleton) is a Haar measure.

• The Lebesgue measure µ on R is an example of a Haar measure.

• There is a unique Haar measure µ on Qp such that µ(Zp) = 1. This measure
has the property that for an open set of the form a+ pnZp, where a ∈ Qp and
n ∈ Z, we have that

µ(a+ pnZp) = p−n.
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We now explain an important construction: given a measure µ on an LCA group and
a function f : G→ C, we explain what it means to integrate a function with respect to
this measure. This procedure is done in three steps:

1. If A is a measurable set (i.e. A lies in the σ algebra) and 1A denotes the char-
acteristic function of A (i.e. f(x) = 0 if x 6∈ A and f(x) = 1 if x ∈ A), then we
define ∫

G
1Adµ := µ(A).

2. Let A1, . . . , An be a finite collection of measurable sets and c1, . . . , cn be complex
numbers. We define ∫

G
(

n∑
i=1

ci1Ai)dµ :=

n∑
i=1

ciµ(Ai).

Functions of these kind (i.e. those which are linear combination of characteristic
functions) are called simple functions.

3. If f : G → C is a function such that f = limn→∞ fi, where each fi is a simple
function, we define∫

G
fdµ := lim

n→∞

∫
G
fidµ (provided the latter limit exists).

These integrals satisfy the usual properties properties that Riemann integrals satisfy:
for instance, they are additive and we have a “change of variables formula”.

Example 4.10 (A p-adic integral)
Let s ∈ C and let us consider a function

f : Zp → C, x 7→ |x|sp.

Then∫
Zp

fdµ =

∫
Zp\{0}

fdµ

=
∞∑
n=0

∫
pnZ×

p

fdµ (since Zp \ {0} =
∞⊔
n=0

pnZ×
p )

=

∞∑
n=0

∫
pnZ×

p

p−nsdµ (since f is the constant function p−ns on pnZ×
p )

=
∞∑
n=0

p−nsµ(pnZ×
p ) (by definition of integration)

=
∞∑
n=0

p−ns(p− 1)p−(n+1) (since pnZ×
p = pn ·

p−1⊔
i=1

i+ pZp =

p−1⊔
i=1

i+ pn+1Zp)

=
p− 1

p
· 1

1− p−(s+1)
(by summing the geometric series)

22



Warwick Number Theory Study Group Tate’s Thesis

§4.2 Fourier Theory on LCA groups
Definition 4.11 (Pontryagin dual). Let G be an LCA group.
(a) A character of G is a continuous group homomorphism f : G → T, where T = {z ∈
C : |z| = 1} is the circle group.
(b) The Pontraygin dual Ĝ of G is defined to be the set of all characters of G.

We equip the Pontryagin dual Ĝ with the compact open topology: a basis of open
sets is given by {V (K,U)}K,U , where

V (K,U) := {f : G→ T|f is a character &f(K) ⊆ U}

and where K runs over all compact sets of G and U runs over all open sets of T.

Theorem 4.12 (G LCA =⇒ Ĝ LCA)
If G is LCA, its Pontryagin dual group Ĝ is also LCA.

Example 4.13 • If G = Z, then Ĝ ∼= S1 since any group homomorphism (which
is always continuous) is determined by the image of 1.

• If G = S1, then then Ĝ ∼= Z since it is a fact that all characters of S1 are of
the form x 7→ xn.

• If G = Z/nZ, then Ĝ ∼= Z/nZ since any character is determined by the image
of 1 which must be an n-th root of unity.

The above examples show that ̂̂Z ∼= Z and ̂̂Z/nZ ∼= Z/nZ. This fact is true in in
general:

Theorem 4.14 (Pontryagin duality)
Let G be an LCA group. Then

G ∼= ̂̂
G via g 7→ (f 7→ (f(g)).

Before proceeding to explain Fourier Theory on LCA groups, we record the following
lemma which will be useful for us later.

Lemma 4.15 (Integrating characters)
For any compact group (G, ·), a character χ on G and a Haar measure µ on G, we
have that ∫

G
χdµ =

{
µ(G) if χ trivial
0 otherwise

Proof. If χ is trivial, then we have by definition∫
G
χdµ =

∫
G

1Gdµ = µ(G).
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If χ is not trivial, there exists an h ∈ G such that χ(h) 6= 1. Then, since Haar meausures
are translation invariant,∫

G
χ(g)dµ =

∫
G
χ(gh)dµ = χ(h)

∫
G
χ(g)dµ.

Since χ(h) 6= 1, we have that ∫
G
χ(g)dµ = 0

as desired.

Example 4.16 (Integrating characters over the circle)
. We saw above that all non-trivial characters of the circle T are of the form z 7→ zn

for n ∈ N>1. The above lemma is thus a generlisation of the following well-known
fact from complex analysis:

∫
T z

ndz = 0. for n ∈ N≥1.

Definition 4.17. We say that two complex measurable functions agree everywhere if
the set {x ∈ G : f(x) 6= h(x)} has measure zero. This defines an equivalanece relation
∼ on the space of complex measurable functions. For p ∈ N≥1, we define

Lp(G) := {f : G→ C|
∫
G
|f |pdµ <∞}/ ∼ .

and define a norm || · ||p on Lp(G) by

||f ||p :=
(∫

G
|f |pdµ

)1/p

.

Theorem 4.18 (Fourier Theory on LCA groups)
Let G be a locally compact abelian group with Haar measure µ.

• For f ∈ L2(G) ∩ L1(G), the Fourier transform

f̂(χ) :=

∫
G
f(x)χ̄(x)dµ(x)

gives a well-defined map

L2(G) ∩ L1(G)→ L1(Ĝ), f 7→ f̂ .

There is a unique Haar measure µ̂, called the dual Haar meausre of µ, such
that ||f ||L2(G) = ||f̂ ||L2(Ĝ)

.

• The Fourier transform above extends to a well-defined isometry

L2(G)→ L2(Ĝ)

such that ̂̂
f(x) = f(−x)

almost everywhere.
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§4.3 Two examples: R and Qp

.

Definition 4.19. We define a character e∞ ∈ R̂ by setting

e∞ : R→ T, x 7→ exp(2πix).

Proposition 4.20 (R is self-dual)
We have an isomorphism of LCA groups

R ∼= R̂ via y 7→ (x 7→ e∞(x · y)).

Remark 4.21. From now on, we let µ∞ denote the Lebesgue measure on R. This is a very
natural choice, but it also satisfies the following property: the dual measure µ̂∞ on R̂ ∼= R
is again the Lebesgue measure.

Corollary 4.22 (Fourier Theory on R)
We have that

• For f ∈ L2(R) ∩ L1(R), the Fourier transform

f̂(y) :=

∫
R
f(x)e∞(−xy)dµ∞(x)

gives a well-defined map

L2(R) ∩ L1(R)→ L2(R), f 7→ f̂ ,

such that ||f ||L2(R) = ||f̂ ||L2(R̂).

• The Fourier transform above extends to a well-defined isometry

L2(R)→ L2(R̂).

such that ̂̂
f(x) = f(−x)

almost everywhere.

Proof. This follows by combining Theorem 4.18, Proposition 4.20 and Remark 4.21.

Definition 4.23. We define a character ep ∈ Q̂p by setting

ep : Qp → T, x =
∞∑

j=−N

ajp
j 7→ exp

−2πi −1∑
j=−N

ajp
j

 .
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Proposition 4.24 (Qp is self-dual)
We have an isomorphism of LCA groups

Qp
∼= Q̂p via y 7→ (x 7→ ep(x · y)).

Remark 4.25. From now on, we let µp denote the unique Haar measure on Qp such that
µ(Zp) = 1. As before, not only is this is a very natural choice, but it also satisfies the
following property: the dual measure µ̂p on Q̂p

∼= Qp is again µp.

Corollary 4.26 (Fourier Theory on Qp)
We have that

• For f ∈ L2(Qp) ∩ L1(Qp), the Fourier transform

f̂(y) :=

∫
Qp

f(x)ep(−xy)dµp(x)

gives a well-defined map

L2(Qp) ∩ L1(Qp)→ L2(Qp), f 7→ f̂ ,

such that ||f ||L2(Qp) = ||f̂ ||L2(Q̂p)
.

• The Fourier transform above extends to a well-defined isometry

L2(Qp)→ L2(Q̂p).

such that ̂̂
f(x) = f(−x)

almost everywhere.

Proof. This follows by combining Theorem 4.18, Proposition 4.24 and Remark 4.25.
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§5 Talk 5: Harmonic analysis on adeles and ideles (Speaker:
Ben Moore)

The goal of this talk is to apply the results of the last talk, where we discussed harmonic
analysis on general locally compact abelian groups with an emphasis on R and Qp, to
develop harmonic on the adeles. We first continue to discuss harmonic analysis on R and
Qp by introducing a nice class of functions which are stable under Fourier transfrom.

§5.1 Schwartz and Schwartz Bruhat functions
Definition 5.1 (Rapidly decreasing functions). Let D be an unbounded subset of R. A
function f : D → C is called rapidly decreasing if for every N ∈ N, |t|N |f(t)| → 0 as
t→∞.
Definition 5.2. A smooth function f ∈ C∞(R) is called a Schwartz function if all its
derivatives are rapidly decreasing on R.

We write S(R) for the space of all Schwartz-functions.

Example 5.3
The function f : R→ R defined by f(x) = e−πx2 is a Schwartz function.

Proposition 5.4 (Schwartz functions are stable under Fourier transform)
For f ∈ S(R), we have that f̂ ∈ S(R) and that

̂̂
f(x) = f(−x).

Definition 5.5 (Schwartz-Bruhat functions). A Schwartz-Bruhat function is a function
f : Qp → C which is locally constant with compact support.

Proposition 5.6 (Schwartz-Bruhat functions are stable under Fourier transform)
For f ∈ S(Qp), we have that f̂ ∈ S(Qp) and that

̂̂
f(x) = f(−x).

Proof. The basic open subsets of Qp are exactly of the form a + pkZp for some a ∈ Qp

and k ∈ Z. Hence, every Schwartz-Bruhat function is a finite linear combination of
characteristic functions of the form 1a+pkZp

. Using this, one can show (see Proposition
4.2.8 in Sprang) that it suffices to prove the following claim:

Claim : 1̂Zp = 1Zp .
Proof of Claim : Note that

1̂Zp(x) =

∫
Qp

1Zp(y)ep(−xy)dµp =

∫
Zp

ep(−xy)dµp.

Also, ep(−xy) is the trivial character on Zp if and only if x ∈ Zp. Thus, using Lemma
4.15, we deduce that 1̂Zp = 1Zp .
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§5.2 Harmonic analysis on adeles

Lemma 5.7
The map

e : AQ → T (xv)v 7→
∏
v

ev(xv)

gives a well-defined character on AQ.

Proof. For all but finitely many primes p, xp is in Zp and hence ep(xp) = 1 for all but
finitely many primes.

Proposition 5.8 (AQ is self-dual)
We have an isomorphism of LCA groups

AQ ∼= ÂQ via y 7→ (x 7→ e(x · y)).

Proof. This map is injective: if y 6= 0 in AQ, then (by choosing x = 1), we see that the
image of y is not the trivial character. To prove surjectivity, we first prove the following
claim.

Claim: Any character χ of AQ can be written in the form χ = χ∞
∏

p χp, where
χ∞ ∈ R̂, χp ∈ Q̂p and χv|Zp is trivial for all but finitely many primes p.
Proof of Claim: For any place (finite or infinite) v, if we let

χv : Qv → T a 7→ χ(1, 1, . . . , a, . . . , 1, 1, . . .),

where a is in the v-th place, then we have that χ =
∏

v χv.
We will take the following fact (which is true for any Lie group) for granted: we can

find an open neighbourhood V ⊆ T of 1 containing no non-trivial subgroups. Since
χ is continuous, χ−1(V ) is open and hence contains a neighbourhood U of the form
U = U ′ ×

∏
p Vp, with U ′ ⊆ R open, Vp ⊆ Qp open and Vp = Zp for almost all p. For all

such primes p, we can view Zp as a subgroup contained inside U , and since we have that
χ(Zp) ⊆ V , we conclude that χv|Zp is trivial for all but finitely many primes p. This
proves the claim.
Now pick any χÂQ. By the above claim, χ = χ∞

∏
p χp, where χ∞ ∈ R̂, χp ∈ Q̂p and

χv|Zp is trivial for all but finitely many primes p. By Theorem 4.20 and Theorem 4.24,
there exists y∞ ∈ R and yp ∈ Qp such that

χv(−) = ev(− · yv).

Since χp|Zp = 1 for all almost all primes p, it follows that yp ∈ Zp for almost all primes
p. Hence, y = (yv)v ∈ AQ maps to χ and hence the map in the proposition is surjective.
One can also check that both the map and its inverse are continuous and hence AQ ∼= ÂQ
as LCA groups.

We would now like to fix a Haar measure on AQ; the following proposition gives us a
natural way to do this.
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Proposition 5.9
Let {Gi}i∈I be a countable family of LCA groups with corresponding open compact
subgroup {Hi}i∈I . For each i ∈ I, let µi be the unique Haar measure on Gi such
that µ(Hi) = 1. Then there is a unique Haar measure on G :=

∏
i∈I(Gi : Hi) such

that : for any family of continuous integrable functions {fi}i∈I such that fi|Hi = 1
for almost all i, the function

f(g) :=
∏
i∈I

f(gi)

for g = (gi)i∈I is well-defined and continuous. Moreover,∫
G
fdµ =

∏
i∈I

∫
Gi

fidµi.

and the function is in L1(G) if and only if the right hand side has a finite value.

Remark 5.10. As mentioned in the last talk, we have fixed the Lebesgue measure µ∞ on R
and the unique Haar measure µp on Qp such that µp(Zp) = 1. Using the above proposition,
we obtain a Haar measure µ on AQ. Henceforth, we will always use this Haar measure on
AQ.

Corollary 5.11 (Fourier Theory on AQ)
We have that

• For f ∈ L2(AQ) ∩ L1(AQ), the Fourier transform

f̂(y) :=

∫
AQ

f(x)e(−xy)dµ(x)

gives a well-defined map

L2(AQ) ∩ L1(AQ)→ L2(AQ), f 7→ f̂ ,

such that ||f ||L2(AQ) = ||f̂ ||L2(ÂQ)
.

• The Fourier transform above extends to a well-defined isometry

L2(AQ)→ L2(ÂQ).

such that ̂̂
f(x) = f(−x)

almost everywhere.

§5.3 Schwartz-Bruhat functions on AQ.
Just like the case for R and Qp, we introduce a class of functions on AQ which are stable
under Fourier transform.
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Definition 5.12. A simple Schwartz-Bruhat function on AQ is a function of the form

f : AQ → C, f =
∏
v

fv,

where f ∈ S(Qv) is a Schwartz-Bruhat function on Qv and f = 1Zp for almost all
primes p. A Schwartz-Bruhat function on AQ is a finite linear combination of simple
Schwartz-Bruhat functions.

We write S(AQ) to denote the set of all Schwartz-Bruhat functions on AQ.

Lemma 5.13 (The shape of Schwartz-Bruhat functions on AQ)
Every Schwartz-Bruhat function on AQ is a finite linear combination of functions of
the form

f(x) = f∞(x∞) · 1
a+N Ẑ(xfin) = f∞(x∞) ·

∏
p

1ap+NZp(xp),

where f∞ ∈ S(R), a = (ap) ∈ AQ,fin and N ∈ Z.

Proposition 5.14 (Schwartz-Bruhat functions are stable under Fourier transform)
For a simple Schwartz-Bruhat function f =

∏
v fv ∈ S(AQ), we have that

f̂ =
∏
v

f̂v.

In particular, for f ∈ S(AQ), we have that f̂ ∈ S(AQ) and that

̂̂
f(x) = f(−x).

Proof. For a simple Schwartz-Bruhat function f =
∏

v fv ∈ S(AQ) and y = (yv)v ∈ AQ,
we have that

f̂(y) =

∫
AQ

f(x)e(−xy)dµ(x)

=

∫
AQ

(
∏
v

fv(xv)) · ev(−xvyv)dµ(x)

=
∏
v

∫
Qv

fv(xv)ev(−xvyv)dµ(x)

=
∏
v

f̂v(yv)

Since f ∈ S(AQ), we have that fp = 1Zp for almost all prime p. Since, 1̂Zp = 1Zp , the
fact that f̂ =

∏
v f̂v implies that f̂ is also a simple Schwartz-Bruhat function. Since

every Schwartz-Bruhat function on AQ is a finite linear combination of simple Schwartz-
Bruhat functions, we deduce that the Fourier transform of a Schwartz-Bruhat function
is again a Schwartz- Bruhat function. The statement about Fourier inversion follows
from the general Theorem on Harmonic analysis (Theorem 4.18).
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