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1 What is Algebraic K-Theory?

We briefly summarise the main idea of (Higher) Algebraic K-Theory:

Algebraic K-Theory starts with (a certain type of) category, applies some type construc-

tion to it to produce a topological space or topological spectrum, and then takes homo-

topy groups. The resulting homotopy groups are referred to as the (adjective depending

on the details of the construction) K-Theory of the starting category.

The exact details of the above procedure will give different types of K-Theory. Mathemati-

cians are interested in these K groups because it turns out that they give deep information

about your starting category.

The first example of this power came from Grothendieck, who was (arguably) the first to

discover a glimpse of this theory. Specifically, given a noetherian scheme X, Grothendieck

defined K(X) to be the quotient of the free abelian group generated by all isomorphism

classes of coherent sheaves on X, by the subgroup generated by all expressions

F − F ′ −F ′′

whenever there is an exact sequence

0 −→ F ′ −→ F −→ F ′′ −→ 0

of coherent sheaves on X.

(Grothendieck used the letter K to stand for word ‘klasse’, which is german for the english

word ‘class’. Grothendieck, having had a background in functional analysis, was hesitant

to use the letter C ).

In today’s language, what Grothendieck had defined was K0 of the abelian category of

isomorphism classes of coherent sheaves on X, denoted Coh(X) (see definition 2.9). De-

spite only being a ‘lower’ K-group in today’s language, this group is still very powerful:

Grothendieck used this group to prove his far-reaching Grothendieck–Riemann–Roch the-

orem, see [4] for details.

As to why homotopy groups are required to present the theory in full generality is not

at all obvious. Indeed, the discovery of these definitions, as well as the development of

the theory in full generality, was the reason why Quillen was awarded his Fields Medal.

Some attempts to explain the homotopy groups will be given in this essay, after we have

reviewed classical K-theory.

For a detailed history of Algebraic K-Theory, we refer the reader to Weibel’s article [23],

available on his webpage.
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2 Classical Algebraic K-Theory

The phrase ‘Classical Algebraic K-Theory’ refers to the groups K0,K1, and K2 that were

discovered before Quillen’s general definition in terms of homotopy groups. The group K0

may be defined in various contexts whereas the groups K1 and K2 were defined exclusively

in the context of rings.

A lot can be said about these three groups. For example, Milnor wrote a whole book [13]

about them. For the sake of brevity, we will in this section only briefly review the theory

of these groups and we will explain how these groups are related, which hopefully serve as

a motivation to define Higher Algebraic K-Theory.

2.1 The Grothendieck group K0

As mentioned above, the group K0 may be defined in various contexts. The common

theme amongst these various contexts is the use of the so called group completion (also

known as the Grothendieck group), which we now explain.

2.1.1 The group completion of a monoid

Group completion is an easy procedure that takes as input an (abelian) monoid and

produces as an output an (abelian) group. It is perhaps best stated in terms of its universal

property.

Definition 2.1. The group completion of an (abelian) monoid M is an (abelian) group

Mgp, together with a monoid morphism [·] : M → Mgp that has the following universal

property:

For any group A and any monoid morphism α : M → A, there exists an unique group

homomorphism α̃ : Mgp → A that makes the diagram

M Mgp

A

[·]

α
α̃

commute.

Note, by universality, if the group completion exists, it is unique up to unique isomorphism.

To construct the group completion for abelian monoids (the construction for monoids being

analogous), we may define

Mgp := F (M)/R(M)
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where F (M) is the free abelian group generated by symbols [m] for m ∈M and R(M) is

the subgroup of F (M) generated by all relations [m+ n]− [m]− [n] for m,n ∈M .

2.1.2 K0 of a ring

Let R be a ring. We will denote by P(R) the set of all isomorphism classes of finitely

generated projective (left) modules over R (we will explain shortly why we restrict our

attention to finitely generated projective modules). Note, P(R) is an abelian monoid under

direct sum ⊕, with additive identity 0.

Definition 2.2. In the above notation, we define

K0(R) := P(R)gp.

Remark 1. The reason why we restrict our attention to finitely generated projective mod-

ules is because of the so called Eilenberg Swindle, which would imply that K0(R) = 0.

Indeed, let R∞ denote the (countable) infinitely generated on R. Let P be a finitely

generated projective module. By definition, there exists a R module Q such that P ⊕Q ∼=
Rn for some n ∈ N. Therefore, we deduce that

P ⊕R∞ ∼= P ⊕ (Q⊕ P )⊕ (Q⊕ P )⊕ · · ·
∼= (P ⊕Q)⊕ (P ⊕Q)⊕ · · ·
∼= Rn ⊕Rn ⊕ · · ·
∼= R∞.

Therefore, in K0(R), we would have

[P ] + [R∞] = [P ⊕R∞] = [R∞]

i.e. [P ] = 0. As R∞ ∼= R∞ ⊕R∞, we deduce that K0(R) = 0.

Remark 2. The motivation behind the definition of K0(R) perhaps comes from the follow-

ing theorem, which says that when R is commutative, there is a correspondence between

finitely generated projective modules over R and vector bundles (i.e. locally free sheaves

of finite rank) over Spec(R).

Theorem 2.3. Let R be a commutative ring and let M be a R-module. Then, the following

are equivalent:

• M is finite projective

• M is finite locally free i.e. we can cover Spec(R) by standard opens D(fi), i ∈ I

such that the localizations Mfi are finite free Rfi-modules for all i ∈ I.

Proof. See the Stacks project [2], tag 00NV.
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The correspondence then follows from the equivalence of categories between the category

of R-modules and the category of quasi-coherent OSpec(R)-modules (see Hartshorne [10],

Corollary 5.5, chapter II).

It would be beneficial to see an example of a computation of K0.

Example 2.4. Let R be a commutative PID (for example, R could be a field). Let P be a

finitely generated projective R-module. If we can show that P is necessarily free, then we

would have shown that

K0(R) ∼= Z.

Indeed, if P is finitely generated, then there exists a surjection π : Rn � P for some

n > 0. Therefore, as P is projective, the short exact sequence

0 −→ ker(π) −→ Rn −→ P −→ 0,

splits, so that P ⊕ker(π) ∼= Rn. Thus, P may be identified with a submodule of Rn. But,

R is a PID and Rn is free over R. Therefore, so is P .

2.1.3 K0 of an symmetric monoidal category

Let S be a symmetric monoidal category and suppose the isomorphism classes of objects in

S form a set, denoted Siso. We claim that (Siso,⊗, e) is an abelian monoid with product

[s] ⊗ [t] := [s ⊗ t]. Indeed, this follows from the fact that if s ∼= s′ and t ∼= t′, then

s⊗ t ∼= s′ ⊗ t′ since ⊗ : S × S → S is a bifunctor.

Remark 3. We remark that we really need to take isomorphisms classes as s ⊗ e 6= s in

general, only naturally isomorphic to it.

We define K0 of S in terms of this abelian monoid.

Definition 2.5. Let S be a symmetric monoidal category such that the isomorphism

classes of objects in S, denoted Siso, form a set. Then, we define K0 of S as the group

completion

K0(S) := (Siso)gp

of the abelian monoid (Siso,⊗, e).

For example, this is precisely the way we defined K0(R), with the symmetric monoidal

category S being the category of finitely generated projective modules over R.

2.1.4 K0 of an exact category

Exact categories were discovered by Quillen in [16]. Intuitively, they generalise abelian

categories in the sense that one may talk about short exact sequences without insisting

on the existence of kernels and cokernels.
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In the literature, there are two common ways people define exact categories. One is via

an embedding into an ambient abelian category and the other is via defining an exact

structure. The author prefers the latter because it is more intrinsic and it comes with

a theorem (see Theorem 2.8) which gives an embedding into an abelian category that

preserves the exact structure. For more information, we refer the reader to Bühler’s

article [5].

Definition 2.6. Let A be an additive category. Then, a kernel-cokernel pair (i, p) in A
is a pair of composable morphisms

A′
i−→ A

p−→ A′′

such that i is the kernel of p and p is the cokernel of i.

If a class E of kernel-cokernel pairs is fixed, we say that i is an admissible monic if there

exists a morphism p such that (i, p) ∈ E. Admissible epics are defined dually. We will

denote admissible monics by � and admissible epics as �.

Definition 2.7. Let A be an additive category. An exact structure on A is a class E of

kernel-cokernel pairs which is closed under isomorphisms and satisfy the following axioms:

E0) For any A ∈ A, 1A is an admissible monic.

E0op) For any A ∈ A, 1A is an admissible epic.

E1) Admissible monics are closed under composition.

E1op) Admissible epics are closed under composition.

E2) For any admissible monic A � B and for any morphism A → A′, there exists a

pushout diagram

A B

A′ B′
p

.

E2op) For any admissible epic A � B and for any morphism B′ → B, there exists a

pullback diagram

A′ B′

A B

y .

The pair (A, E) is called an exact category. If the exact structure E is understood, we may

simply write A. The elements of E are called short exact sequences.

Remark 4. Some of these axioms are actually redundant. See Remark 2.4 [5].
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Remark 5. Note that for any A,B ∈ A, the sequence

A
( 1

0 )
� A⊕B

( 0 1 )
� B

is a short exact sequence because we have pushout diagram

0 B

A A⊕B
p

and short exact sequences are closed under isomorphisms.

Here is the relevant embedding theorem:

Theorem 2.8 (Gabriel-Quillen). Let (A, E) be a small exact category. Then, there is an

embedding A ↪→ B into an abelian category B such that A is closed under extensions in B
and E is the class of all sequences in A which are short exact in B.

Proof. See appendix of [5].

Remark 6. There is also a ‘recognition theorem’ for exact categories. Specifically, let B be

an abelian category and let A be a full subcategory of B that is closed under extensions.

Then it follows that A is an exact category with exact structure E given by all short

sequences in A which are exact in B. For more details, see appendix of [5], remark A.2.

We will refer to B as the ambient abelian category of A.

Abelian categories are obvious examples of exact categories. Another important example

of an exact category is the category P(R) of finitely generated projective modules of ring

R. To see this, firstly note that we have a canonical embedding P(R) ↪→ R − mod.

Secondly, suppose

0 −→M ′ −→M −→M ′′ −→ 0

is a short exact sequence in R − mod with M ′ and M ′′ finitely generated projective.

Then, as M ′′ is projective, the above short exact sequence splits to give (noncanonical)

isomorphism M ∼= M ′⊕M ′′. Therefore, we deduce that M is finitely generated projective,

so that P(R) is closed under extensions and therefore by remark 6 is an exact category.

This is the prototypical example of an exact category to keep in mind. Moreover, this

argument shows that P(R) is actually a split exact category i.e. every short exact sequence

splits.

Next, let us define K0 of a small exact category.

Definition 2.9. Let A be a small exact category. We define K0(A) as the abelian group

with presentation

K0(A) := 〈G|R〉
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where

G := {[C] : C ∈ ObjA}

and

R := {[C]− [B]− [D] : 0 −→ B −→ C −→ D −→ 0 short exact sequence in A} .

In K0(A), we have the following identities, whose proof is left as a routine exercise.

Proposition 2.10. We have the following identities in K0(A):

• [0] = 0K0(A)

• C ∼= C ′ ⇒ [C] = [C ′]

• [C ′ ⊕ C ′′] = [C ′] + [C ′′].

Proof. Exercise.

As an example, we compute that for exact category P(R),

K0(P(R)) =
〈

[M ]
∣∣∣[M ] = [M ′] + [M ′′] for 0 −→M ′ −→M −→M ′′ −→ 0 short exact sequence in P(R)

〉
=
〈

[M ]
∣∣∣[M ′ ⊕M ′′] = [M ′] + [M ′′]

〉
(short exact sequences split)

∼= K0(R).

This example also shows that if A is a split exact category, then

K0(A) ∼= K⊕0 (A)

where we regard (A,⊕, 0) as a symmetric monoidal category. If A is not a split exact

category, this isomorphism in general will not hold.

2.2 K1 of a ring

Denote by GLn(R) the n × n general linear matrices on R. Note, there is an embedding

GLn(R) ↪→ GLn+1(R) given by g 7→

(
g 0

0 1

)
. This gives a directed system

GL1(R) ⊂ GL2(R) ⊂ · · · ⊂ GLn(R) ⊂ GLn+1(R) ⊂ · · · . (1)

The direct limit GL(R) := lim
−→n

GLn(R) is called the infinite general linear group of R.

The group K1(R) is then defined as the abelianization of this infinite general linear

group:
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Definition 2.11. We define

K1(R) := GL(R)/[GL(R), GL(R)].

Remark 7. This group, also known as the Whitehead group of a ring, was first explicitly

defined by Milnor in the appendix of [11]. It is related to an obstruction in homotopy

theory, see [23] for references.

It is beneficial to state an alternate description of K1(R), first discovered by Whitehead.

To state it, let us first establish some notation.

For i 6= j and r ∈ R, define the elementary matrix eij(r) to be the matrix in GL(R) which

has 1 in every diagonal spot; has r in the (i, j)-spot and has zero everywhere else. Let

En(R) denote the subgroup of GLn(R) generated by all elementary matrices eij(r) with

1 ≤ i, j ≤ n.

Note, we have a directed system for the En(R) analogous the directed system 1. The

direct limit E(R) := lim
−→n

En(R) is called the infinite group of elementary matrices on R.

Lemma 2.12 (Whitehead’s lemma). In the above notation, we have

E(R) = [GL(R), GL(R)].

For the sake of brevity, we refer the reader to Srinivas [21] proposition 1.5 for a proof (the

proof uses elementary techniques). For now, let us see an application of this result.

Proposition 2.13. Let F be a field. Then,

K1(F) ∼= F×.

Proof. By standard linear algebra arguments, we have that for n ≥ 1,

En(F) = SLn(F).

Therefore, E(F) = SL(F), where SL(F) := lim
−→n

SLn(F) under the usual embedding.

Then, notice that

ker(GL(F)
det−−→ F×) = SL(F).

Hence,

GL(F)/SL(F) ∼= F×.

Thus, we have

GL(F)/E(F) = GL(F)/SL(F) ∼= F×.

The proposition then follows from Whitehead’s lemma.
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2.3 K2 of a ring

The group K2 of a ring was originally defined by Milnor in 1967 following a paper by

R.Steinberg on universal central extensions of Chevally groups. To define K2(R), we first

need to define the Steinberg group.

Definition 2.14. For n ≥ 3 1, the Steinberg group Stn(R) of a ring R is defined as the

group generated by symbols xij(r) where (i, j) distinct pair of integers between 1 and n,

r ∈ R; subject to the following ‘Steinberg relations’:

xij(r)xij(s) = xij(r + s) (2)

[xij(r), xkl(s)] =


1 if j 6= k and i 6= l

xil(rs) if j = k and i 6= l

xkj(−sr) if j 6= k and i = l.

(3)

Note, it may be checked that the elementary matrices eij(r) which generate En(R) ≤
GLn(R) also satisfy the Steinberg relations (indeed, they probably inspired the definition),

so that there is a canonical group surjection

φn : Stn(R) −→ En(R)

sending xij(r) to eij(r).

In addition, note that the Steinberg relations for n + 1 clearly include the Steinberg

relations for n, so that there is a canonical map Stn(R)→ Stn+1(R). These maps form a

directed system, and allow us to write St(R) := lim
−→n

Stn(R), the infinite Steinberg group.

Note, by the universal property of colimit, from the φn : Stn(R) → En(R), we obtain a

map

φ : St(R) −→ E(R).

Notice that φ : St(R)→ E(R) is a surjection as the φn are.

Definition 2.15. In the above notation, we define

K2(R) := ker(φ : St(R) −→ E(R)).

Remark 8. Intuitively speaking, we may think of K2(R) as the set of all nontrivial relations

between elementary matrices, the Steinberg relations 2 and 3 being the ‘trivial’ relations.

The following theorem shows that K2(R) is in fact an abelian group:

Theorem 2.16. We have

K2(R) = Z(St(R)),

1To avoid technical complications, St2(R) is not defined.
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where Z(St(R)) denotes the center of St(R).

Proof. See Weibel’s K-book [24], Theorem 5.2.1 III.

In addition, one may actually prove that

0 −→ K2(R) −→ St(R) −→ E(R) −→ 0

is a universal central extension of E(R), see [24] Theorem 5.5 III.

Then, since E(R) is perfect (for n ≥ 3, En(R) is perfect as for i, j, k distinct, eij(r) =

[eik(r), ekj(1)]), it follows (see [24], Theorem 5.4 III) that

K2(R) ∼= H2(E(R);Z), (4)

the second group homology of E(R). This isomorphism is used for example to show that

the definition for K2 of a ring in terms of higher K-theory is in agreement with the classical

definition up to isomorphism, see Corollary 3.4.

2.3.1 K2 of fields

Recall that if F is a field, then K0(F) ∼= Z and K1(F) ∼= F×. For K2, we have the following

theorem, due to Matsumoto:

Theorem 2.17 (Matsumoto). Let F be a field. Then, K2(F) is the free abelian group

generated by the set of symbols (often called the ‘Steinberg symbols’) {x, y} with x, y ∈ F×,

subject to the following relations:

1. (Bilinearity) {xx′, y} = {x, y}{x′, y} and {x, yy′} = {x, y}{x, y′}.

2. (Steinberg identity) {x, 1− x} = 1 for all x 6= 0, 1.

From these two relations, it is also possible to prove that for any x, y ∈ F×, we have

relation {x, y}−1 = {y, x}.

The proof of Matsumoto’s theorem is difficult and we therefore omit it from this essay.

We refer the reader to Milnor [13], section 12.

Notice that from the above presentation, we may identify K2(F) with the quotient of

F× ⊗ F× by the subgroup generated by the elements x⊗ (1− x), x 6= 0, 1. That is to say,

we have

K2(F) ∼=
F× ⊗ F×

〈x⊗ (1− x)|x 6= 0, 1〉
.

Note that the module structure on F× is taken to be multiplication, and we often write

elements of the right hand side as {x, y}.

This isomorphism gives us the following snappy corollary:
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Corollary 2.18. Let Fq be a finite field. Then,

K2(Fq) = 1.

Proof. Recall a famous result that F×q is cyclic. Let x ∈ F×q generate it. Note, x ⊗ x
generates cyclic group F×q ⊗ F×q . Thus, it suffices to prove that x⊗ x vanishes in K2.

Suppose q is even. Note, by Lagrange’s theorem applied to finite group (Fq,+), it follows

that char(Fq) = |〈1〉| divides q. But, char(Fq) is prime and q is even and hence some power

of 2 (as it is the cardinality of some finite field). Therefore, we deduce that char(Fq) = 2.

Thus, we have x = −x and therefore, {x, x} = {x,−x} = 1.

Now suppose q is odd. Then, note in F×q we have x
q−1
2 = −1. Therefore, we have

{x, x}
q+1
2 = {x, x

q+1
2 } = {x,−x} = 1.

Also, note that xq−1 = 1. Therefore

{x, x}q−1 = {x, xq−1} = {x, 1} = 1.

Thus, if we define d := |{x, x}|, we deduce that d
∣∣ q+1

2 and d
∣∣q − 1. But, we also have

gcd( q+1
2 , q − 1) = 2 as 2 q+1

2 − (q − 1) = 2. Hence, we deduce that d ≤ 2.

Therefore, to prove d = 1 (which will finish the proof), it suffices to prove d is odd.

Note, v 7→ 1− v is an involution of F×q \ {1}. Also, note that F×q \ {1} = {x, x2, . . . , xq−2}.
Therefore, we deduce that F×q \ {1} has q−3

2 even powers of x and q−1
2 odd powers of x.

Thus, by the pigeonhole principle, we conclude that there exists a v ∈ F×q \ {1} such that

v and 1− v are odd powers of x, say v = xm and 1− v = xn. Therefore, we have

1 = {v, 1− v} = {xm, xn} = {x, x}mn.

Hence, it follows d
∣∣mn. But mn is odd, so d must be odd.

2.4 Milnor K-theory of fields

Let F be a field. Recall that K0(F) ∼= Z, K1(F) ∼= F× and by Matsumoto

K2(F) ∼=
F× ⊗ F×

〈x⊗ (1− x)|x 6= 0, 1〉
.

Milnor took the hypothesis that these were the only relations and in his paper [12] gave

an ad-hoc 2 definition of what is now known as Milnor K-theory.

2to quote from his paper: ‘for n ≥ 3, the definition is purely ad-hoc’
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Define T 0(F×) := Z and for k ≥ 1, define

T k(F×) := F× ⊗ · · · ⊗ F×

tensored k times over Z and given multiplicative module structure. We then define the

tensor algebra of F× to be

T (F×) :=

∞⊕
k=0

T k(F×).

It is customary to write l(x) for the element of degree one in T (F×) corresponding to

x ∈ F×.

Definition 2.19. In the above notation, we define the Milnor K-theory of a field F to be

the graded ring

KM
∗ (F) :=

T (F×)

〈l(x)⊗ l(1− x)|x 6= 0, 1〉
.

Remark 9. These definitions make perfect sense for commutative rings. They are stated

in terms of fields to emphasis the connection with the above discussions.

We define the Milnor K-group KM
n (F) as the abelian subgroup generated by elements of

degree n and it is customary to write {x1, . . . , xn} for the image of l(x1) ⊗ · · · ⊗ l(xn)

in KM
n (F). Thus, KM

n (F) may be presented as the abelian group generated by symbols

{x1, . . . , xn} subject to bilinearity of multiplication in each slot (coming from the tensor

product), and equals to zero if xi + xi+1 = 1 for some i.

Note, by construction, we have that KM
i (F) ∼= Ki(F) for all i = 0, 1, 2.

Despite the ad-hoc nature of the construction, Milnor K-theory has deep connections to

other areas of mathematics. We refer the reader to the MathOverflow answer [1] for an

interesting discussion on this.

2.5 Motivation for Higher Algebraic K-Theory

Motivation to define a Higher Algebraic K-Theory of course depends on personal taste,

but we will briefly mention the author’s perspective on this question.

Let I E R be a two sided ideal of a ring R. Then, it is possible to define Ki(I) for

i = 0, 1, 2 so that the functor K2 is related to K1 and K0 for example by means of the
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following exact sequence:

K2I K2R K2(R/I)

K1I K1R K2(R/I)

K0I K0R K0(R/I).

For more details, we refer the reader to Milnor [13], section 6.

(This exact sequence perhaps also justifies the indexing of these classical K-groups.)

Any algebraist looking at this sequence will have the urge to extend this to a long exact

sequence, which in the author’s opinion provides a good motivation to define the higher K-

groups. We will later see how the higher algebraic K-groups fit into a long exact sequence.

3 Higher Algebraic K-Theory

We will shall define Higher Algebraic K-Theory is three settings:

• For rings,

• For exact categories,

• For symmetric monoidal categories.

(For the sake of brevity, we have unfortunately decided not to write about K-Theory for

Waldhausen categories. However, this is an important subject and the reader is encouraged

to read Waldhausen’s paper [22] for more details).

In each case, the idea is to define a ‘K-theory space’ KA from you starting category A
and take homotopy groups. Of course, the K-theory spaces are defined so that we have

an agreement isomorphism with classical K-theory, but this will be far from obvious when

first introduced to the definitions.

The ideas here are primarily due to Daniel Quillen, with important contributions made

also by Daniel Grayson, Graeme Segal and Friedhelm Waldhausen.

3.1 BGL+ definition for rings

Quillen’s first definition of Higher Algebraic K-Theory for a ring R is given in terms of a

topological space BGL(R)+. This definition first appeared in [15].
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The space BGL(R) is simply the classifying space of the infinite general linear group

GL(R) defined in section 2.2. The ‘+′ on the other hand is something Quillen discovered

for the purposes of Higher Algebraic K-Theory. It is called the Quillen +-construction. It

has properties which are uniquely characterised up to homotopy. This is described by the

following theorem:

Theorem 3.1 (Quillen). Let (X,x) be a path connected CW complex, N E π1(X,x) a

perfect normal subgroup. Then, there exists a continuous map between CW complexes

f : (X,x) −→ (X+, x+)

such that

1. There is an exact sequence

0 −→ N −→ π1(X,x)
f∗−→ π1(X+, x+) −→ 0.

2. For all n ≥ 0, we have isomorphisms

f∗ : Hn(X,Z) −→ Hn(X+,Z)

(this is actually true for any local coefficient system L on X+).

3. If g : (X,x) −→ (Y, y) is a continuous map between CW complexes such that

N ⊂ ker (g∗ : π1(X,x) −→ π1(Y, y)) ,

then there exists a continuous map h : (X+, x+) −→ (Y, y), unique up to homotopy,

making the diagram

(X,x) (X+, x+)

(Y, y)

f

g h

commute.

Proof. See Srinivas [21].

Definition 3.2 (Quillen). Let R be a ring. Then, we define the K-theory space of R,

denoted K(R), as

K(R) := K0(R)×BGL(R)+

where K0(R) is the classical K0 group of R endowed with the discrete topology, and the plus

construction is taken with respect to normal subgroup E(R) = [GL(R), GL(R)] E GL(R).
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Remark 10. Note that

π0(K0(R)×BGL(R)+) ∼= π0(K0(R))× π0(BGL(R)+)

∼= K0(R)

and for n ≥ 1,

πn(K0(R)×BGL(R)+) ∼= πn(K0(R))× πn(BGL(R)+)

∼= 1× πn(BGL(R)+)

∼= πn(BGL(R)+).

Thus, for n ≥ 1, it suffices to study πn(BGL(R)+). Indeed, BGL(R)+ is the ‘main’ part

of the definition.

Thus, we have that π0(K(R)) ∼= K0(R) and

π1(K(R)) = π1(BGL(R)+) ∼=
π1(BGL(R))

E(R)
(by definition of plus construction)

∼=
GL(R)

E(R)

= K1(R).

On the other hand, the fact that π2(K(R)) ∼= K2(R) is far from obvious. We give a proof

in which we unashamedly cite big hammers.

Proposition 3.3. Let P be a perfect normal subgroup of a group G, with corresponding

+-construction f : BG → BG+. If F (f) is the homotopy fiver of f , then π1F (f) is the

universal central extension of P , and

π2(BG+) ∼= H2(P,Z).

Proof. Consider the exact sequence

π2F (f) π2BG = 0 π2BG
+

π1F (f) G G
P 1.

By identifying the long exact sequence of homotopy groups of pair (BG+, BG) and the

long exact sequence of fibration associated to homotopy fibre F (f), by Corollary 3.5 IV

of Whitehead’s Elements of Homotopy Theory [25], it follows

Im(π2BG
+ → π1F (f)) ⊆ Z(π1F (f)).
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Therefore, we deduce that

0→ π2BG
+ → π1F (f)→ P → 1 (5)

is a central extension of P . But be Lemma 1.6 IV of Weibel [24], F (f) is acyclic (i.e. has

the homology of a point). Therefore, by Lemma 1.3.1 IV in op.cit., π1F (f) is perfect and

H2(π1F (f),Z) = 0.

Moreover, as π1F (f) is perfect, we also have

H1(π1F (f),Z) ∼= (π1F (f))ab

∼= 0.

Therefore, by the Recognition Theorem 5.4 III in op.cit., it follows that exact sequence 5

is a universal central extension of P . Thus, as P is perfect, it follows

π2BG
+ ∼= H2(P ;Z).

Corollary 3.4. We have

π2(BGL(R)+) ∼= K2(R).

Proof. Note, E(R) = [GL(R), GL(R)] E GL(R) is a perfect normal subgroup. Then, by

the preceding proposition,

π2(BGL(R)+) ∼= H2(E(R),Z) ∼= K2(R),

where the last isomorphism is the isomorphism 4.

3.2 Quillen’s Q-construction for exact categories

The reader is referred to section 2.1.4 to refresh her memory on exact categories. We will

in this section define Quillen’s Q-construction for exact categories. This definition first

appeared in Quillen’s paper [16].

Definition 3.5 (Quillen). Let A be a small exact category. Then, the category QA is

given by the following datum:

• The objects of QA are the objects of A.

• For any objects A,B ∈ QA,

HomQA(A,B) =

{
A

j
� E

i
� B : j admissible epic, i admissible monic

}
∼

16



where (A
j
� E

i
� B) ∼ (A

j′

� E′
i′

� B) if there exists commutative diagram

A E B

A E′ B

∼ ,

the middle map being an isomorphism.

Composition of (A
j
� E

i
� B) and (B

j
� E′

i
� C) is given by pullback diagram

E′′ E′ C

A E B

y .

in the ambient abelian category of A.

One may check that these definitions do not depend on choice.

Remark 11. Note, by construction, we have that

ker(E′′ → E) ∼= ker(E′ � B) ∈ A.

Therefore, as A is closed under extensions in the ambient abelian category of A, it follows

E′′ ∈ A and E′′ � E is an admissible epic. Similarly, E′′� E′ is an admissible monic.

Remark 12. Note that there are two distinguished types of morphisms that play a special

role in QA. They are the admissible monics

(i! : A→ B) := (A = A
i
� B)

and the (oppositely oriented) admissible epics

(q! : A→ B) := (A
q
� B = B)

These are closed under composition and every morphism in QA factors as a composition

of these (uniquely up to isomorphism).

We can now define the K-theory of a small exact category. Again, the definition is due to

Quillen [16].

Definition 3.6. Let A be a small exact category. Define

KA := ΩBQA,

the loop space of the classifying space of QA. We define the K-Theory of A as

Kn(A) := πnKA.
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Remark 13. For n = 0, this definition coincides with definition 2.9 but this is not easy to

prove. We refer the reader to Srinivas [21], Example 4.10 for a ‘bare hands’ proof.

3.2.1 The long exact sequence

For the sake of brevity, we unfortunately do not include all of the ‘fundamental’ theorems

for Higher Algebraic K-Theory for exact categories. These theorems were first proved by

Quillen in his paper [16]. The reader is referred to Quillen’s paper or Srinivas [21] for

statements and proofs. However, to make a connection with the exact sequence in section

2.5, we state one of these theorems about how the higher K-groups fit into a long exact

sequence.

The theorem will be stated in terms of quotients of abelian categories. The reader is

referred to the appendix of Srinivas [21] for more details.

Theorem 3.7. Let B be a Serre subcategory of an abelian category A, with quotient abelian

category A/B. Let e : B → A and s : A → A/B be the canonical functors. Then, there is

a long exact sequence

· · · → Ki+1(A/B)→ Ki(B)
e∗→ Ki(A)

s∗→ Ki(A/B)→ Ki−1(B) · · ·
e∗→ K0(A)

s∗→ K0(A/B)→ 0.

Further, the sequence is functorial for exact functors (A,B) −→ (A′,B′).

Proof. See Srinivas [21], Theorem 4.9.

Remark 14. We should remark that this long exact sequence comes from the long exact

sequence of homotopy groups associated to a homotopy fibration. This perhaps gives some

very vague intuition as to why homotopy groups are used, but we emphasis that there are

other more significant reasons for the use of homotopy groups in K-theory.

3.3 The S−1S-Construction

The Higher K-theory of symmetric monoidal categories is defined in terms of the S−1S-

Construction. It first appeared in [9]. The motivation for this construction comes from

the group completion of an abelian monoid (see section 2.1.1). This will be an analogous

group completion, but this time in the context of topological spaces.

Definition 3.8. Let S be a symmetric monoidal category. Define the category S−1S by

the following datum:

• Objects in S−1S are pairs (m,n) where m,n ∈ obj(S).
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• A morphism in S−1S is an equivalence class of composites

(m1,m2)
s⊗−−→ (s⊗m1, s⊗m2)

f,g−→ (n1, n2).

This composite is equivalent to the composite

(m1,m2)
t⊗−−→ (t⊗m1, t⊗m2)

f ′,g′−→ (n1, n2)

precisely when there exists an isomorphism α : s
'−→ t such that f = f ′ ◦ (α ⊗m1)

and g = g′ ◦ (α⊗m2).

Remark 15. Note, there are two distinguished types of morphisms in S−1S. First we have

maps of the form (f1, f2) : (m1,m2) → (n1, n2); and second we have maps of the form

s⊗− : (m,n)→ (s⊗m, s⊗ n) obtained by taking (f, g) = (id, id).

Remark 16. Note that a strict symmetric monodial functor S −→ T induces a functor

S−1S −→ T−1T in the canonical way.

Remark 17. Note that S−1S is itself a symmetric monoidal category with product

(m,n)⊗ (m′, n′) := (m⊗m′, n⊗ n′).

The functor in the preceding remark then becomes a strict symmetric monoidal functor

between symmetric monoidal categories.

The Higher K-Theory of S is defined in terms of the following construction.

Definition 3.9. Let S be a symmetric monoidal category. Define

KS := B(S−1S)

the classifying space of S−1S. We define the K-Theory of S as

Kn(S) := πn(KS).

Remark 18. For n = 0, this definition agrees with definition 2.5 when all arrows in S are

isomorphisms. See proposition 3.18.

Remark 19. Recall that S−1S is symmetric monoidal and note that the functor S −→
S−1S, m 7→ (m, e) is monoidal. Thus, we have that B(S−1S) is a homotopy commutative,

homotopy associative H-space and the induced map BS −→ B(S−1S) is a H-space map.

Indeed, if S is any monoidal category with product ⊗ : S × S −→ S, then the H-space

multiplication is given by

µ : BS ×BS ∼= B(S × S)
B⊗−→ BS.

The natural isos e ⊗ s ∼= s ⊗ e ∼= s imply that e is the homotopy identity of µ. Also,

any monoidal functor S −→ T between monodial categories induces a map of H-spaces
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BS −→ BT . If in addition S is a symmetric monoidal category, then the symmetric

monoidal axioms imply that BS is a homotopy commutative, homotopy associative H-

space. We refer the reader to Whitehead [25] Chapter III for more details, including

precise definitions of the homotopy theory language used here.

Remark 20. Let Y be a (based) H-space, with multiplication µ : Y × Y −→ Y . We claim

that for any (based) space X, we can define a product in [X,Y ], the homotopy classes of

(based) maps.

Indeed, given f1, f2 : X −→ Y , define product f1 · f2 to be the composition

X
∆−→ X ×X f1×f2−→ Y × Y µ−→ Y

where ∆ is the diagonal map x 7→ (x, x). This product is compatible with homotopy

and therefore fines a product in [X,Y ]. This product is associative precisely when Y

is homotopy associative and commutative precisely when Y is homotopy commutative.

See Whitehead [25] Chapter III for more details.

Remark 21. By the above remark, if Y is a homotopy commutative and homotopy asso-

ciative H-space, then π0(Y ) becomes an abelian monoid and H0(Y ;Z) is the monoid ring

Z[π0(Y )]. Moreover, with the same assumption,

H∗(Y ;Z) =
∞⊕
n=0

Hn(Y ;Z)

becomes an associative graded commutative ring with unit, multiplication being defined

as

Hi(Y ;Z)×Hj(Y ;Z)
×−→ Hi+j(Y × Y ;Z)

µ∗−→ Hi+j(Y ;Z),

the first map being the homology cross product. Note that, in this context, π0(Y ) is a

multiplicatively closed subset of ring H∗(Y ;Z) as in the sense of commutative algebra.

We are now in a position to define group completion in the context of topology. The above

remarks will make the following definition make sense.

Definition 3.10. Let X be a homotopy commutative, homotopy associative H-space. A

group completion of X is a H-space Y , together with a H-space map X −→ Y such that

π0(Y ) is the group completion of the abelian monoid π0(X) and the canonical map

π0(X)−1H∗(X;Z) −→ H∗(Y ;Z)

from the localization π0(X)−1H∗(X;Z) into H∗(Y ;Z) induced by X −→ Y is an isomor-

phism of graded rings.

We would like to show that for S symmetric monoidal category, B(S−1S) is a group

completion of BS when S satisfies some suitable conditions (see Theorem 3.17 and the

remark after it). However, this will involve fitting S−1S into a more general framework.
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Definition 3.11. A monoidal category (S,⊗, 1) is said to act upon a category X by a

functor � : S × X −→ X if for every s, t, u ∈ S and x ∈ X , there exists natural isomor-

phisms

s� (t� x)
'−→ (s⊗ t)� x

1� x '−→ x

such that diagrams

s⊗ (1� x) (s⊗ 1)� x

s� x

(s⊗ t)� (u� x)

((s⊗ t)⊗ u)� x s� (t� (u� x))

(s⊗ (t⊗ u))� x s� ((t⊗ u)� x)

commute.

For example, S acts on itself by ⊗.

From an action, we can obtain a category.

Definition 3.12. Let S be a monoidal category acting on X . Then, the category 〈S,X〉
is defined by the following datum:

• The objects of 〈S,X〉 are the same as the objects of X .

• A morphism between x and y in 〈S,X〉 is an equivalence class of pairs

(s, s� x ρ−→ y).

This is equivalent to composite

(s′, s′ � x ρ′−→ y)

precisely when there exists an isomorphism ψ : s′
'−→ s such that ρ′ is equal to the

composite

s′ � x (−�id)(ψ)−→ s� x ρ−→ y.
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If S is a monoidal category acting on X , we write

S−1X := 〈S, S ×X〉,

where � : S× (S×X ) −→ S×X is the canonical action that acts on both factors. Setting

X = S, we recover our original definition:

Proposition 3.13. We have an isomorphism of categories

〈S, S × S〉 ∼= S−1S.

Proof. The isomorphism is given by

F : 〈S, S × S〉 −→ S−1S

F (s, s� (m1,m2)
(f,g)−→ (n1, n2)) := (m1,m2)

s⊗−−→ (s⊗m1, s⊗m2)
(f,g)−→ (n1, n2).

The following definition will be important:

Definition 3.14. An action � : S×X −→ X is said to be invertible if for any s ∈ S, the

translation map

s�− : X −→ X

x 7→ s� x

is a homotopy equivalence i.e. induces a homotopy equivalence on classifying spaces.

We will need to prove the following proposition:

Proposition 3.15. If S is a symmetric monoidal category acting on X by �, then the

action

�̂ : S × (S−1X ) −→ (S−1X )

s�̂(t, x) :=(t, s� x)

is invertible.

Proof. Given s ∈ S, we claim that the functor F : (t, x) 7→ (t, s�x) has homotopy inverse

G : (t, x) 7→ (s⊗ t, x). Indeed, both F ◦G and G ◦ F are the functors

(t, x) 7→ (s⊗ t, s� x)
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and there is a natural transformation in S−1X

η(t,x) : (t, x) −→ (s⊗ t, s� x)

η(t,x) := (s, s� (t, x) = (s⊗ t, s� x)).

Another definition that will be important to us will be that of a faithful action.

Definition 3.16. Let S be a monoidal category. The action ⊗ : S×S −→ S is said to be

(left) faithful if for every s ∈ S, the functor

s⊗− : S −→ S

t 7→ s⊗ t

is a faithful functor.

Now, let S be a symmetric monoidal category. Recall, BS is a homotopy commutative,

homotopy associative H-space. Therefore, as explained above, π0(S) = π0(BS) is an

abelian monoid. Furthermore, π0(S) is a multiplicatively closed subset of commutative

ring H0(S) = Z[π0(S)]. Therefore, if S acts on X , then π0(S) acts on Hp(X )(= Hp(BX ))

via the homology cross product

H0(S)×Hp(X ) −→ H0+p(S ×X ) −→ Hp(X ).

In addition, in proposition 3.13 we showed that S acts invertibly on S−1X via s�̂(t, x) =

(t, s� x). Therefore, immediately from the definition of invertible action, we deduce that

for every γ ∈ π0(BS), the map induced by the action of γ

γ· : Hp(S
−1X ) −→ Hp(S

−1X )

is an isomorphism.

Thus, given the map

ϕ : H∗(X ;Z) −→ H∗(S
−1X ;Z)

induced by the functor x 7→ (1, x), we localize H∗(X ;Z) at multiplicatively closed subset

π0(S) to obtain π0(S)−1H∗(X ;Z) and we have the induced map

ϕ : π0(S)−1H∗(X ;Z) −→ H∗(S
−1X ;Z)

σ

γ
7→ (γ·)−1ϕ(σ)

where (γ·)−1 is the inverse of γ· : Hp(S
−1X ) −→ Hp(S

−1X ).

Theorem 3.17. Let S be a symmetric monoidal category such that all arrow in S are
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isomorphisms and the action ⊗ : S × S −→ S is faithful (see definition 3.16). Suppose S

acts on X .

Then, for every p ≥ 0, the maps described above

π0(S)−1Hp(X ;Z) −→ Hp(S
−1X ;Z)

are isomorphisms.

Remark 22. Setting X = S, this theorem together with proposition 3.18 says that B(S−1S)

is a group completion of BS in the sense of definition 3.10 when S satisfies the conditions

of the theorem.

Proof. See Srinivas [21], Theorem 7.2.

Proposition 3.18. Let S be a symmetric monoidal category. Recall, π0(S) is an abelian

monoid. We have

π0(S)gp ∼= π0(S−1S).

Proof. Let A := π0(S)gp. Consider

α : S−1S −→ A

α(m,n) := [m]− [n].

We want to show α induces a map

α : π0(S−1S) −→ A.

To do this, we need to show α maps objects which are connected by a morphism to the

same element in A.

For s ∈ S and m,n ∈ S, we have

α(s⊗m, s⊗ n) = [s⊗m]− [s⊗ n]

= [s] + [m]− ([s] + [n])

= [m]− [n]

= α(m,n).

Moreover, for fi : mi → ni morphisms in S, have

α(m1,m2) = [m1]− [m2] = [n1]− [n2] = α(n1, n2).

Therefore, deduce α induces a map

α : π0(S−1S) −→ A.
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Now, by universal property of group completion, we have a diagram

π0(S) A

π0(S−1S)

[·]

ϕ
ϕ

where ϕ induced map m 7→ (m, e). The claim is that α−1 = ϕ. The proof is a simple

computation.

3.4 The + = Q theorem

Let R be a ring and consider P(R) the category of finitely generated projective R-modules.

Note, we may consider P(R) as an exact category and take K-Theory via theQ-construction

Kn(P(R)) = πn(ΩBQP(R)).

But in addition, note that we may also consider the symmetric monoidal category S :=

iso(P(R)) where iso(P(R)) is the subcategory of P(R) with the same objects as P(R),

whose arrows are all isomorphisms. We can take the K-Theory of S via the S−1S con-

struction to obtain

K⊕n (P(R)) = πnB(S−1S).

Finally, we may just take the K-Theory of R via the the BGL+ construction

Kn(R) = πn(K0(R)×BGL(R)+).

We commented earlier that as P(R) is a split exact category, all of these constructions

coincide for n = 0. Rather miraculously, this is true for all n ≥ 0:

Theorem 3.19. In the above notation,, we have that B(S−1S) is homotopy equivalent to

K0(R)×BGL(R)+ and there is a natural homotopy equivalence

ΩBQP(R)
'−→ B(S−1S).

Proof. See Srinivas [21], Theorem 7.4 and Theorem 7.7.

In some sense the S−1S construction provides a ‘bridge’ between the BGL+ construction

and the Q-construction.
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4 Conclusion

In summary, we hope that the reader has been convinced that the author is worthy enough

to continue his PhD.
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