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1 Introduction

In this report, we will develop a mathematical model of metal ring rolling. Essentially, the idea of
metal ring rolling is to use rollers to expand the diameter of a metal ring. To see this process in
action, we refer the reader to this video : https://youtu.be/jvfHNNXRiYk by QSC Forge.

∗s.sood.1@warwick.ac.uk
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Prerequisites and Literature recommendations

The reader is assumed to be familiar with solid mechanics. An excellent book to learn solid mechanics
is “Plasticity Theory” by Jacob Lubliner [2]. We also assume that the reader is familiar with the
basics of metal ring rolling. To learn more about metal rolling, we recommend the reader to read
Minton’s PhD thesis [3]. The relevant chapter for this report is chapter 6.

Furthermore, we advise the reader to have the research study group (RSG) report on metal ring
rolling [1] with them. Indeed, this work is a continuation of their work, so it is natural that we refer
to their report many times here. There is no need to study there work, but it is a good idea to have
a copy of their report whilst reading this.

Finally, we recommend the reader to have Timoshenko’s Applied Elasticity [5] with them as well.

Outcomes of the report

The main achievement of this report was to develop a mathematical model for metal ring rolling.
The equations we derive generalise the equations derived by the RSG in [1, p12] and apply to the
entire system. We also successfully generalise the friction model developed by the RSG in [1, p13]
and we propose a set of constitutive laws (stress-strain relations) for different sections of the ring
rolling system.

However, in this report, we fail to test our model against specific examples and see whether
the results obtained agree with the results obtained using existing theory e.g. the theory given in
Timoshenko’s Applied Elasticity [5]. We also failed to computerise our model using software such
as MATLAB or Mathematica.

Furthermore, we do not know how stress is distributed within the roll gap. In reality, the stresses
within the roll gap will probably have very complicated distributions. Nevertheless, there could exist
relatively simple distributions that sufficiently approximate the true distributions of the stresses and
which may be used within a mathematical model. We leave the future researcher to explore these
avenues!

2 The set up

Consider an arbitrary ring rolling configuration as shown in figure 1. We choose to parametrise the
neutral axis of the workpiece by the arc length parameterisation c(s). We chose the neutral axis
(as supposed to the centreline of the workpiece) because, by definition, there is no compression or
tension along this axis. Hence, we know the horizontal and vertical stresses are zero along this axis.
This may be useful in later calculations.

Next, we define
ht(s) := c(s) + ht(s)er(s)

and
hb(s) := c(s) + hb(s)er(s)

where ht(s) and hb(s) are functions that describe the perpendicular displacement between the neutral
axis and the edges of the workpiece at point s. These parametrisation may be recognised as shown
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Figure 1: Showing an arbitrary ring rolling configuration

in figure 1. We define

es(s) :=
dc

ds
(s)

and

er(s) :=

(
dc

ds
(s)

)⊥
where the latter is understood to be facing outwards. See figure 2 for an example.

Notice how the direction of these vectors depend on the arc length parameter s but they always
remain mutually orthogonal. When clear, we will omit the arguments on the vectors. These vectors
define an orthogonal curvilinear coordinate system which we will use to develop a model for the ring
rolling process.

3 Developing a model

The idea is to subdivide the entire model into slices corresponding to a δs change in the arc length
parameter. These are called slabs and an example of a slab is shown in figure 3.

Then, we use force and torque balance on a slab to derive three differential equations. Using
equilibrium may seem inappropriate since the system is clearly dynamical, but we model the system
as a quasi-static system. By quasi-static , we mean that the expansion of the ring is occurring slowly
enough to reasonably approximate the system as a static system (to convince yourself, watch the
youtube video https://youtu.be/jvfHNNXRiYk again).
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er(s)

es(s)

Figure 2: Showing the basis vectors

c(s0) c(s0 +δs)

Figure 3: Showing a possible slab

Now, consider the following slab as shown in the figure 3. We seek to calculate the unit normal
vectors to each side of the slab.

Firstly, if we let κ(s) denote the curvature of the neutral axis at s, then using the Frenet - Serret
formulae, we have

des
ds

= κer

and
der
ds

= −κes.

Next, recall
ht(s) = c(s) + ht(s)er(s)

and
hb(s) = c(s) + hb(s)er(s).

A simple computation shows that

dht
ds

= (1 − htκ) es + h′ter

and
dhb
ds

= (1 − hbκ) es + h′ber.
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c(s0) c(s0 + δs)

ηt (-h 't es +(1 -htκ)er)

ηb (h 'b es -(1 -hbκ)er)

Figure 4: Showing the unit normal vectors on the slab

Then, we need two rotate the first vector 90 degrees anticlockwise, the second vector 90 degrees
clockwise and normalise both. This gives us the two unit normals at the top and bottom of the slab.
Using column notation (es occupying the first slot, er the second slot), these vectors are

nt = ηt

(
−h′t

1 − htκ

)
and

nb = ηb

(
h′b

−1 + hbκ

)
respectively where

ηt :=
1√

h′2t + (1 − htκ)2

and

ηb :=
1√

h′2b + (1 − hbκ)2
.

The unit normal vectors on the left and right of the slab as shown in figure 3 are −es(s0) and
es(s0 + δs) respectively. These vectors are on display in figure 4. Now, suppose that the Cauchy
stress tensor at c(s) + rer in our curvilinear coordinate system is

σ =

(
σs τ
τ σr

)
.

Recall that the traction vector (force per unit length) in direction n is given by

Tn = n · σ.
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We will now calculate the traction vectors on the edges of the slab. Note how the basis vectors will
be different depending on which portion of the slab we are considering. This is why we make explicit
reference to the basis vectors in the following calculations.

Firstly,

Tnt = nt · σ

= ηt(s)
(
− h′t(s)es(s) + (1 − ht(s)κ(s))er(s)

)
·
(
σs(s, ht(s)) τ(s, ht(s))
τ(s, ht(s)) σr(s, ht(s))

)
= ηt(s) (−h′t(s)σs(s, ht(s)) + τ(s, ht(s))(1 − ht(s)κ(s))) es(s)

+ ηt(s) (−h′t(s)τ(s, ht(s)) + σr(s, ht(s))(1 − ht(s)κ(s))) er(s).

Similarly,

Tnb = nb · σ

= ηb(s)
(
h′b(s)es(s) − (1 − hb(s)κ(s))er(s)

)
·
(
σs(s, hb(s)) τ(s, hb(s))
τ(s, hb(s)) σr(s, hb(s))

)
= ηb(s) (h′b(s)σs(s, hb(s)) − τ(s, hb(s))(1 − hb(s)κ(s))) es(s)

+ ηb(s) (h′b(s)τ(s, hb(s)) − σr(s, hb(s))(1 − hb(s)κ(s))) er(s).

Next,

T−es(s0) = −es(s0) ·
(
σs(s0, r) τ(s0, r)
τ(s0, r) σr(s0, r)

)
= −σs(s0, r)es(s0) − τ(s0, r)er(s0).

Finally,

Tes(s0+δs) = es(s0 + δs) ·
(
σs(s0 + δs, r) τ(s0 + δs, r)
τ(s0 + δs, r) σr(s0 + δs, r)

)
= σs(s0 + δs, r)es(s0 + δs) + τ(s0 + δs, r)er(s0 + δs)

=
(
σs(s0, r) + δs∂sσs(s0, r) +O(δs2)

)(
es(s0) + δs

des
ds

(s0) +O(δs2)

)
+
(
τ(s0, r) + δs∂sτ(s0, r) +O(δs2)

)(
er(s0) + δs

der
ds

(s0) +O(δs2)

)
=
(
σs(s0, r) + δs∂sσs(s0, r) +O(δs2)

) (
es(s0) + δsκ(s0)er(s0) +O(δs2)

)
+
(
τ(s0, r) + δs∂sτ(s0, r) +O(δs2)

) (
er(s0) − δsκ(s0)es(s0) +O(δs2)

)
= (σs(s0, r) + δs(∂sσs(s0, r) − κ(s0)τ(s0, r))) es(s0)

+ (τ(s0, r) + δs(∂sτ(s0, r) + κ(s0)σs(s0, r))) er(s0) (To first order in δs).

These traction vectors are displayed in figure 5 in column notation with the arguments removed.
We emphasis that the basis vectors are different corresponding to the portion of the slab under
consideration.

Now, we resolve forces in the es(s0) and er(s0) and consider moments about the point c(s0) to
derive 3 differential equations. We do this as we know that the slab is in equilibrium due to our
quasi-static assumption.
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c s0
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Figure 5: Showing the traction vectors on the slab

3.1 Force balance in the es(s0) direction.

Computing the forces in the es(s0) direction and using dlt and dlb to denote the elemental length
on the top and bottom part of the slab respectively, we have

0 =

∫ ht(s0)

hb(s0)

T−es(s0) · es(s0) dr +

∫ ht(s0+δs)

hb(s0+δs)

Tes(s0+δs) · es(s0) dr

+

∫ s=s0+δs

s=s0

Tnt · es(s0) dlt +

∫ s=s0+δs

s=s0

Tnb · es(s0) dlb.

Let us consider that latter two integrals first. We have∫ s=s0+δs

s=s0

Tnt · es(s0) dlt +

∫ s=s0+δs

s=s0

Tnb · es(s0) dlb

=

∫ s0+δs

s0

Tnt · es(s0)
dlt
ds
ds+

∫ s0+δs

s0

Tnb · es(s0)
dlb
ds
ds.

Now, observe that

dlt
ds

=
∥∥∥dht
ds

∥∥∥ =
1

ηt
dlb
ds

=
∥∥∥dhb
ds

∥∥∥ =
1

ηb
.

Furthermore, note that

es(s) · es(s0) = es(s0 + s− s0) · es(s0)

=
(
es(s0) + (s− s0)κer(s0) +O((s− s0)2)

)
· es(s0)

= 1 (To first order in δs)
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and

er(s) · es(s0) = er(s0 + s− s0) · es(s0)

=
(
er(s0) − (s− s0)κes(s0) +O((s− s0)2)

)
· es(s0)

= −(s− s0)κ (To first order in δs).

Hence, ∫ s0+δs

s0

Tnt · es(s0)
dlt
ds
ds+

∫ s0+δs

s0

Tnb · es(s0)
dlb
ds
ds

=

∫ s0+δs

s0

−h′t(s)σs(s, ht(s)) + τ(s, ht(s))(1 − ht(s)κ(s))

+ (s− s0) (−h′t(s)τ(s, ht(s)) + σr(s, ht(s))(1 − ht(s)κ(s))) ds

+

∫ s0+δs

s0

h′b(s)σs(s, hb(s)) − τ(s, hb(s))(1 − hb(s)κ(s))

+ (s− s0) (h′b(s)τ(s, hb(s)) − σr(s, hb(s))(1 − hb(s)κ(s))) ds.

As δs is small, we may reasonably approximate these integrals as δs multiplied by the integrand
evaluated at s0. Hence, defining νt := 1 − ht(s0)κ(s0), νb := 1 − hb(s0)κ(s0), τ(s0, ht(s0)) := τt,
τ(s0, hb(s0)) := τb and if we drop the arguments involving s0, we have∫ s0+δs

s0

Tnt · es(s0)
dlt
ds
ds+

∫ s0+δs

s0

Tnb · es(s0)
dlb
ds
ds

= δs (−h′tσs(ht) + τtνt + h′bσs(hb) − τbνb) .

Now, returning to our first two integrals, we have∫ ht(s0)

hb(s0)

T−es(s0) · es(s0) dr +

∫ ht(s0+δs)

hb(s0+δs)

Tes(s0+δs) · es(s0) dr

=

∫ ht(s0)

hb(s0)

−σs(s0, r) dr +

∫ ht(s0+δs)

hb(s0+δs)

σs(s0, r) + δs(∂sσs(s0, r) − κ(s0)τ(s0, r)) dr.

The integral ∫ ht(s0+δs)

hb(s0+δs)

δs∂sσs(s0, r) dr

to first order in δs is equivalent to∫ ht(s0+δs)

hb(s0+δs)

σs(s0 + δs, r) − σs(s0, r) dr

and the integral ∫ ht(s0+δs)

hb(s0+δs)

−δsκ(s0)τ(s0, r) dr

to first order in δs is equivalent to

−δs
∫ ht(s0)

hb(s0)

κ(s0)τ(s0, r) dr.
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Thus, our integrals become∫ ht(s0+δs)

hb(s0+δs)

σs(s0 + δs, r) dr −
∫ ht(s0)

hb(s0)

σs(s0, r) dr − δs

∫ ht(s0)

hb(s0)

κ(s0)τ(s0, r) dr.

Now, if we define

Q(s) :=

∫ ht(s)

hb(s)

σs(s, r) dr

and compute Q(s0 + δs) −Q(s0) using a Taylor expansion up to first order in δs, we find that∫ ht(s0+δs)

hb(s0+δs)

σs(s0 + δs, r) dr −
∫ ht(s0)

hb(s0)

σs(s0, r) dr = δs
d

ds

∫ ht(s0)

hb(s0)

σs(s0, r) dr.

Thus, our balance equation becomes

0 = δs
d

ds

∫ ht(s0)

hb(s0)

σs(s0, r) dr − δs

∫ ht(s0)

hb(s0)

κ(s0)τ(s0, r) dr

− δs (h′tσs(ht) + τtνt + h′bσs(hb) − τbνb) .

Rearranging, cancelling and dropping arguments we obtain

d

ds

∫ ht

hb

σs dr = κ

∫ ht

hb

τ dr + (h′tσs(ht) − τtνt) − (h′bσs(hb) − τbνb) .

3.2 Force balance in the er(s0) direction.

Computing the forces in the er(s0) direction and using equilibrium, we have

0 =

∫ ht(s0)

hb(s0)

T−es(s0) · er(s0) dr +

∫ ht(s0+δs)

hb(s0+δs)

Tes(s0+δs) · er(s0) dr

+

∫ s=s0+δs

s=s0

Tnt · er(s0) dlt +

∫ s=s0+δs

s=s0

Tnb · er(s0) dlb.

Continuing in the exact same way as above, we find that∫ s=s0+δs

s=s0

Tnt · er(s0) dlt +

∫ s=s0+δs

s=s0

Tnb · er(s0) dlb

= δs (−h′tτt + σr(ht)νt + h′bτb − σr(hb)νb) .

Similarly, we also find that∫ ht(s0)

hb(s0)

T−es(s0) · er(s0) dr +

∫ ht(s0+δs)

hb(s0+δs)

Tes(s0+δs) · er(s0) dr

= δs
d

ds

∫ ht(s0)

hb(s0)

τ(s0, r) dr + δs

∫ ht(s0)

hb(s0)

κ(s0)σs(s0, r) dr.

Thus, our balance equation becomes

d

ds

∫ ht

hb

τ dr = −κ
∫ ht

hb

σs dr + (h′tτt − σr(ht)νt) − (h′bτb − σr(hb)νb) .
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3.3 Rotational balance

Suppose that the force at an arbitrary point in the slab, c(s) + rer(s), is F(s, r). Then, the moment
of this force about c(s0) is [(

c(s) + rer(s) − c(s0)
)
× F(s, r)

]
3

.

Thus, by rotational equilibrium, we have∫
s,r∈Ω

[(
c(s) + rer(s) − c(s0)

)
× F(s, r)

]
3

dΩ = 0

where Ω is the boundary of the slab. We will now compute this integral. We have∫
s,r∈Ω

[(
c(s) + rer(s) − c(s0)

)
× F(s, r)

]
3

dΩ =

∫ ht(s0)

hb(s0)

[(
c(s0) + rer(s0) − c(s0)

)
×
(
−σs(s0, r)
−τ(s0, r)

)]
3

dr

+

∫ ht(s0+δs)

hb(s0+δs)

[(
c(s0 + δs) + rer(s0 + δs) − c(s0)

)
×
(
σs(s0, r) + δs(∂sσs(s0, r) − κ(s0)τ(s0, r))
τ(s0, r) + δs(∂sτ(s0, r) + κ(s0)σs(s0, r))

)]
3

dr

+

∫ s=s0+δs

s=s0

[(
c(s) + ht(s)er(s) − c(s0)

)
× ηt(s)

(
−h′t(s)σs(s, ht(s)) + τ(s, ht(s))νt(s)
−h′t(s)τ(s, ht(s)) + σr(s, ht(s))νt(s)

)]
3

dlt

+

∫ s=s0+δs

s=s0

[(
c(s) + hb(s)er(s) − c(s0)

)
× ηb(s)

(
h′b(s)σs(s, hb(s)) − τ(s, hb(s))νb(s)
h′b(s)τ(s, hb(s)) − σr(s, hb(s))νb(s)

)]
3

dlb.

The first integral may be computed as follows:∫ ht(s0)

hb(s0)

[(
c(s0) + rer(s0) − c(s0)

)
×
(
−σs(s0, r)
−τ(s0, r)

)]
3

dr

=

∫ ht(s0)

hb(s0)

[(
0
r

)
×
(
−σs(s0, r)
−τ(s0, r)

)]
3

dr

=

∫ ht(s0)

hb(s0)

rσs(s0, r) dr.

To compute the second integral, we first find an expression for c(s0 + δs) + rer(s0 + δs) − c(s0) up
to first order in δs. We have

c(s0 + δs) + rer(s0 + δs) − c(s0)

= c(s0) + δs
dc

ds
(s0) +O(δs2) + r

(
er(s0) + δs

der
ds

(s0) +O(δs2)
)
− c(s0)

= δses(s0) − δsκ(s0)res(s0) + rer(s0)

=

(
δs
(
1 − κ(s0)r

)
r

)
.
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Thus, up to first order∫ ht(s0+δs)

hb(s0+δs)

[(
c(s0 + δs) + rer(s0 + δs) − c(s0)

)
×
(
σs(s0, r) + δs(∂sσs(s0, r) − κ(s0)τ(s0, r))
τ(s0, r) + δs(∂sτ(s0, r) + κ(s0)σs(s0, r))

)]
3

dr

=

∫ ht(s0+δs)

hb(s0+δs)

[(
δs
(
1 − κ(s0)r

)
r

)
×
(
σs(s0, r) + δs(∂sσs(s0, r) − κ(s0)τ(s0, r))
τ(s0, r) + δs(∂sτ(s0, r) + κ(s0)σs(s0, r))

)]
3

dr

=

∫ ht(s0+δs)

hb(s0+δs)

δsτ(s0, r) − rσs(s0, r) − δsr∂sσs(s0, r) dr

= −
∫ ht(s0)

hb(s0)

rσs(s0 + δs, r) dr + δs

∫ ht(s0)

hb(s0)

τ(s0, r) dr

Finally, using the fact that δs is small, we may compute the final two integrals in our rotational
balance equation as follows:∫ s=s0+δs

s=s0

[(
c(s) + ht(s)er(s) − c(s0)

)
× ηt(s)

(
−h′t(s)σs(s, ht(s)) + τ(s, ht(s))νt(s)
−h′t(s)τ(s, ht(s)) + σr(s, ht(s))νt(s)

)]
3

dlt

+

∫ s=s0+δs

s=s0

[(
c(s) + hb(s)er(s) − c(s0)

)
× ηb(s)

(
h′b(s)σs(s, hb(s)) − τ(s, hb(s))νb(s)
h′b(s)τ(s, hb(s)) − σr(s, hb(s))νb(s)

)]
3

dlb

= δs

((
c(s0) + ht(s0)er(s0) − c(s0)

)
×
(
−h′t(s0)σs(s0, ht(s0)) + τ(s0, ht(s0))νt(s0)
−h′t(s0)τ(s0, ht(s0)) + σr(s0, ht(s0))νt(s0)

))

+ δs

((
c(s0) + hb(s0)er(s0) − c(s0)

)
×
(
h′b(s0)σs(s0, hb(s0)) − τ(s0, hb(s0))νb(s0)
h′b(s0)τ(s0, hb(s0)) − σr(s0, hb(s0))νb(s0)

))
= δs

(
ht(s0)h′t(s0)σs(s0, ht(s0)) − ht(s0)τ(s0, ht(s0))νt(s0)

)
− δs

(
hb(s0)h′b(s0)σs(s0, hb(s0)) − hb(s0)τ(s0, hb(s0))νb(s0)

)
.

Thus, our rotational balance equation becomes

0 = δs

∫ ht(s0)

hb(s0)

τ(s0, r) dr

−

[∫ ht(s0+δs)

hb(s0+δs)

rσs(s0 + δs, r) dr −
∫ ht(s0)

hb(s0)

rσs(s0, r) dr

]
+ δs

(
ht(s0)h′t(s0)σs(s0, ht(s0)) − ht(s0)τ(s0, ht(s0))νt(s0)

)
− δs

(
hb(s0)h′b(s0)σs(s0, hb(s0)) − hb(s0)τ(s0, hb(s0))νb(s0)

)
.

Using similar reasoning and notation as earlier, we obtain the following differential equation:

d

ds

∫ ht

hb

rσs dr =

∫ ht

hb

τ dr +
(
hth
′
tσs(ht) − htτtνt

)
−
(
hbh
′
bσs(hb) − hbτbνb

)
.

11



4 The Governing Differential Equations

Thus, from the above, we have obtained the following three differential equations:

d

ds

∫ ht

hb

σs dr = κ

∫ ht

hb

τ dr + (h′tσs(ht) − τtνt) − (h′bσs(hb) − τbνb) (1)

d

ds

∫ ht

hb

τ dr = −κ
∫ ht

hb

σs dr + (h′tτt − σr(ht)νt) − (h′bτb − σr(hb)νb) (2)

d

ds

∫ ht

hb

rσs dr =

∫ ht

hb

τ dr +
(
hth
′
tσs(ht) − htτtνt

)
−
(
hbh
′
bσs(hb) − hbτbνb

)
. (3)

Note well that setting the curvature to zero, we obtain the differential equations derived in the RSG
report [1, p12]. This shows that we have successfully generalised their equations for arbitray ring
rolling configurations.

Now, notice that we have six unknowns in the form of stresses at the top and bottom rollers
but only three equations. We will need to make modelling assumptions to reduce the number of
unknowns to three. The modelling assumptions that we will make are

• A friction law for the workpiece

• The workpiece within the roll gap is at yield

• The workpiece does not have normal stresses outside of the roll gap

We begin with the friction law.

5 Friction Law

We use Coulomb friction to derive some equations. However, before doing this, we need some
preliminary definitions.

Assume the workpiece is going into the rolls at a velocity smaller than the velocity of both rollers.
By conservation of mass and making the approximate assumption that the workpiece behaves like a
fluid when going through the roll gap, it may be shown that the velocity of the work piece increases
as it goes through the roll gap. We assume that there is a point for both rollers at which the velocity
of the workpiece and the roller is the same. These are the neutral points and the corresponding arc
length parameters are labelled snt and snb for the top and bottom rollers respectively on figure 6.
By considering friction and the relative velocities between the workpiece and the rollers, it may be
concluded that before a neutral point, the roller is pushing the work piece into the roll gap. After
a neutral point, the roller is pulling the workpiece back into the roll gap. Thus, to ensure we have
the right signs in our equations, we define

signt(s) := sign(snt − s)H(s− sint )H(soutt − s)

and
signb(s) := sign(snb − s)H(s− sinb )H(soutb − s)

where H denotes the Heaviside step function. We are now ready to derive our equations.
Recall the Coulomb friction law

F = µN.

12
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Figure 6: A diagram to show the significant points within the roll gap when considering our friction
law

The idea is to derive the tangential and normal components of the traction vector associated with
the rollers and conclude they are related by this friction law. Recall that

nt = ηt

(
−h′t
νt

)
and

nb = ηb

(
h′b
−νb

)
.

Furthermore, note that

Tn = n · σ
=
(
t · (n · σ)

)
t +

(
n · (n · σ)

)
n.

Now, we have

nt · (nt · σ) = ηt

(
−h′t
νt

)
· ηt
(
−h′tσs + τtνt
−h′tτt + σrνt

)
= η2

t (h′2t σs − 2h′tτtνt + σrν
2
t )

and

tt · (nt · σ) = ηt

(
νt
h′t

)
· ηt
(
−h′tσs + τtνt
−h′tτt + σrνt

)
= η2

t (−h′tσsνt + τtν
2
t − h′2t τt + h′tσrνt).
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Hence, within the roll gap, we have

µ(h′2t σs − 2h′tτtνt + σrν
2
t )signt(s) = −h′tσsνt + τtν

2
t − h′2t τt + h′tσrνt

= τt(ν
2
t − h′2t ) + h′tνt(σr − σs).

Outside of the roll gap, as there is virtually no friction experienced by the workpiece, µ = 0 and it
follows

τt(ν
2
t − h′2t ) + h′tνt(σr − σs) = 0.

Applying the exact same reasoning to the bottom roller we have in the roll gap

−µ(h′2b σs − 2h′bτbνb + σrν
2
b )signb(s) = τb(ν

2
b − h′2b ) + h′bνb(σr − σs).

and outside of the roll gap, we have

τb(ν
2
b − h′2b ) + h′bνb(σr − σs) = 0.

Notice that if we set the curvature to zero, we obtain the exact same equations as in [1, p 13].

6 Constitutive laws

Having calculated the stresses, we may calculate the subsequent strains. This relation is a constitu-
tive law. We model the workpiece into three regions:

• An isotropic linearly elastic region outside the roll gap

• A rigid perfectly plastic region between the roll gap

• A region where elastic and plastic deformation occurs. This corresponds to the “boundary”
between the roll gap and the outer region.

Having calculated the strains, we may calculate the displacements and thus predict how our work-
piece bends.

6.1 Constitutive law for the isotropic linearly elastic region

The constitutive law we will use in this case is

εij =
1

E

(
(1 + ψ)σij − ψσkkδij

)
where ψ is the Poisson ratio and E is Young’s modulus (normally ν is used for Poisson’s ratio but
we have already used that letter !). The justification for the use of this Constitutive law is omitted
here but is given in Lubliner [2, pp 51-52].

6.2 Constitutive law for the rigid perfectly plastic region

Firstly, when considering plastic regions, we must consider incremental strains rather than usual
strains. This is because in general, in a plastic region, a specific stress may correspond to more than
one strain and vice versa. This may be seen from a stress - strain curve.

14



Secondly, we assume that the workpiece in the roll gap satisfies Drucker stability criterion. This
criterion say that the work done by tractions ∆ti through a displacement ∆ui is positive or zero for
all i. This seems a reasonable assumption for our problem.

With this assumption made and denoting the incremental strain due to plastic deformation as
dεpij , we use the flow rule as stated in [4, p 11]

dεpij = dλ
∂f

∂σij

where f is the yield function

f(σ, ξ) =
1

4
(σ11 − σ22)2 + τ2 − k2

as described in [1, p5] and dλ is called the consistency parameter. Applying this rule and remem-
bering τ = σ12 = σ21, we find that

dεp11 =
dλ

2
(σ11 − σ22)

dεp22 =
dλ

2
(σ22 − σ11)

dεp12 = dεp21 = 2dλτ.

These equations define the constitutive law for the rigid perfectly plastic region.

6.3 Constitutive law for the elastic - plastic region

We make the ansatz that the incremental strain splits linearly into an elastic part and an plastic
part. That is to say, if the incremental strain due to elastic deformation is denoted as dεeij , we
assume that

dεij = dεeij + dεpij .

This is by no means true all the time but we believe it is reasonable to assume this in our problem.
Then, the constitutive law for this region will be a sum for the analogous incremental constitutive
law for the isotropic linearly elastic region and the rigid perfectly plastic region.

7 A closed system of equations for the workpiece

We will now derive a closed system of three differential equations which in principle may be solved
numerically by a computer. As stated before, we will need to make some assumptions to achieve
this. We will comment on the validity of the assumptions when we make them.

The idea is to manipulate our system of equations so that we are solving for three quantities:
σs(ht), σs(hb) and τ (which we shall define shortly). To do this, we will have to make some modelling
assumptions about the distributions of the stresses within the workpiece. Then, using additional
modelling assumptions (such as our friction law), we will be able to solve our system of equations
(using a computer) for the three unknowns stated above. This will allow to fully determine the
distribution of the stresses within the workpiece.

To begin with, we introduce the following lemma.
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Lemma 1. We have

d

dx

∫ b(x)

a(x)

f(x, y) dy =
db

dx
f(x, b(x)) − da

dx
f(x, a(x)) +

∫ b(x)

a(x)

∂f

∂x
(x, y) dy.

Proof. Let F (x, y) be the antiderivative of f(x, y) with respect to y. Then, using the FTC, we have

d

dx

∫ b(x)

a(x)

f(x, y) dy =
d

dx
(F (x, b(x)) − F (x, a(x)))

=
d

dx
(F (x, b(x))) − d

dx
(F (x, a(x)))

=
∂F

∂y
(x, b(x))

db

dx
− ∂F

∂y
(x, a(x))

da

dx
+
∂F

∂x
(x, b(x)) − ∂F

∂x
(x, a(x))︸ ︷︷ ︸

differentiate w.r.t xth position!

.

The result is then obtained using the fact that F (x, y) is the antiderivative of f(x, y) with respect
to y and ∂F

∂x (x, y) is the antiderivative of ∂f
∂x (x, y) with respect to x and the FTC.

We will need this lemma to calculate the partial derivatives of integrals as can be seen from our
PDEs. We begin by deriving a system of closed equations for the workpiece outside of the roll gap.

7.1 Outside the roll gap

Firstly, we assume that there is no normal stress acting through the workpiece outside of the roll
gap. This is likely to be a good approximation as there are no compressive forces acting on the
workpiece outside of the roll gap. Thus, our equations become

d

ds

∫ ht

hb

σs dr = κ

∫ ht

hb

τ dr + (h′tσs(ht) − τtνt) − (h′bσs(hb) − τbνb)

d

ds

∫ ht

hb

τ dr = −κ
∫ ht

hb

σs dr + h′tτt − h′bτb

d

ds

∫ ht

hb

rσs dr =

∫ ht

hb

τ dr +
(
hth
′
tσs(ht) − htτtνt

)
−
(
hbh
′
bσs(hb) − hbτbνb

)
.

We define our average shear stress as

τ :=
1

∆h

∫ ht

hb

τ dr

where
∆h := ht − hb

as was done in [1]. This gives us the following system of equations:

d

ds

∫ ht

hb

σs dr = ∆hκτ + (h′tσs(ht) − τtνt) − (h′bσs(hb) − τbνb)

d

ds
τ =

1

∆h

(
−κ
∫ ht

hb

σs dr + h′tτt − h′bτb − τ
d∆h

ds

)
d

ds

∫ ht

hb

rσs dr = ∆hτ +
(
hth
′
tσs(ht) − htτtνt

)
−
(
hbh
′
bσs(hb) − hbτbνb

)
.
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We will now evaluate the remaining integrals by introducing a distribution for σs. We will assume
that σs varies linearly through the workpiece. That is to say, we assume

σs(r) = ar + b

for some constants a and b. This is not the most accurate assumption we can make as Timoshenko in
[5, p 217] derives a hyperbolic distribution for a beam in bending. The reason we have not assumed
a hyperbolic distribution is because the computations become horrendously messy and we believe
using a linear assumption will lead to sufficiently accurate results. If we are wrong, it is our hope
that the hyperbolic case is explored in the future.

Using the values σs(ht) and σs(hb), we conclude that

σs(r) =
σs(ht) − σs(hb)

∆h
r +

σs(hb)ht − σs(ht)hb
∆h

. (4)

We may use this to calculate
d

ds

∫ ht

hb

σs dr,

−κ
∫ ht

hb

σs dr

and
d

ds

∫ ht

hb

rσs dr.

Firstly, a simple computation shows that

−κ
∫ ht

hb

σs dr = −κ∆h

2
(σs(ht) + σs(hb)) .

Next, the integral
d

ds

∫ ht

hb

σs dr

was computed in [1, p15] (with a slight change of notation) using lemma 1 and our linear assumption.
The details are omitted for the sake of brevity but the result is

d

ds

∫ ht

hb

σs dr = (h′t − h′b)(σs(ht) + σs(hb)) +

(
d

ds
σs(ht) +

d

ds
σs(hb)

)
∆h

2
− σs(ht) + σs(hb)

2

d∆h

ds
.

Similarly, the remaining integral was also calculated in [1, p14] with a slight change in notation.
The result is

d

ds

∫ ht

hb

rσs dr = h′thtσs(ht) − h′bhbσs(hb) −
ρt
6

d

ds
σs(ht) +

ρb
6

d

ds
σs(hb)

+
( ρt

6∆h
σs(ht) −

ρb
6∆h

σs(hb)
) d∆h

ds
+

(
h′tσs(hb) − h′bσs(ht)

)
(ht + hb)

2
.
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Thus, after substituting our remaining expressions into our system of equations and rearranging, we
have the following system of equations:

d

ds
σs(ht) =

2

∆h
(−τtνt + τbνb − h′tσs(hb) + h′bσs(ht) + ∆hκτ) +

σs(ht) + σs(hb)

∆h

d∆h

ds
− d

ds
σs(hb)

d

ds
τ =

1

∆h

(
−κ∆h

2
(σs(ht) + σs(hb)) + h′tτt − h′bτb − τ

d∆h

ds

)
d

ds
σs(hb) =

6

ρb

(
∆hτ − htτtνt + hbτbνb

)
+

(
− ρt
ρb
σs(ht) + σs(hb)

)
1

∆h

d∆h

ds
− 3

ρb

(
h′tσs(hb) − h′bσs(ht)

)
(ht + hb)

+
ρt
ρb

d

ds
σs(ht).

Note well that setting the curvature to zero, we obtain the exact same differential equations derived
in [1] with the normal stresses set to zero.

Finally, we may express τt and τb in terms of σs(ht) and σs(hb) by using our friction law outside
of the roll gap, remembering that the normal stress is assumed to be zero. In this way, we have a
closed system of 3 differential equations which may be solved on a computer. Having solved for the
three unknowns, the function that describes the distribution of σs may be determined using equation
4. For the shear stress, we assume that τ varies quadratically through the workpiece. Timoshenko
derives this quadratic variation in [5, pp 63-64] for a straight beam but states on page 220 that the
same distribution may also be taken for a curved beam (as we have here). Justification for this is
empirical. This assumption may be used to determine the distribution of τ .

7.2 Inside the roll gap

Because of the large forces exerted on the workpiece within the roll gap by the rolls, the distributions
of the stresses within the workpiece are likely to be very complicated. Indeed, the distributions we
will use here are probably inaccurate. It is our hope that research will be conducted to determine
the most accurate distributions for modelling the stresses within the roll gap.

Having made this assumptions, we will use our yield condition and the friction law to make our
system of equations closed. This approach is taken from [1].

We assume that the distributions for the shear stress and σs are the same as previously. That
is to say, we assume the shear stress varies quadratically and σs is determined by equation 4. We
emphasise that this is most likely inaccurate.

Having made these assumptions, it is easy to see that the working of the previous subsection
follows through to this section but we must now remember to include the end normal stresses because
they cannot be assumed to be zero (due to the force applied onto the workpiece by the rollers). We
obtain the following system of equations:

d

ds
σs(ht) =

2

∆h
(−τtνt + τbνb − h′tσs(hb) + h′bσs(ht) + ∆hκτ) +

σs(ht) + σs(hb)

∆h

d∆h

ds
− d

ds
σs(hb)

d

ds
τ =

1

∆h

(
−κ∆h

2
(σs(ht) + σs(hb)) + (h′tτt − σr(ht)νt) − (h′bτb − σr(hb)νb) − τ

d∆h

ds

)
d

ds
σs(hb) =

6

ρb

(
∆hτ − htτtνt + hbτbνb

)
+

(
− ρt
ρb
σs(ht) + σs(hb)

)
1

∆h

d∆h

ds
− 3

ρb

(
h′tσs(hb) − h′bσs(ht)

)
(ht + hb)

+
ρt
ρb

d

ds
σs(ht).
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Setting the curvature to zero, we get the same equations derived by the RSG in [1]. We may express
τt and τb in terms of σr(ht), σr(hb), σs(ht) and σs(hb) using our friction law. Then, we may express
σr(ht) and σr(hb) in terms of σs(ht) and σs(hb) by using the yield criterion as was done in [1,
pp24-25]. This will give us a closed system of equations which may be solved using a computer.

8 Concluding remarks

To conclude, we have developed a mathematical model for metal ring rolling. To do this, we assumed
that the system was in a quasi-static state and considered equilibrium of an arbitrary slab to derive 3
differential equations. We developed a friction law and proposed a set of constitutive laws. However,
there are many things that we were unable to do in this report. It still remains to

• Test our model against simple examples and see whether existing theory predicts the same
behaviour

• Computerise our model on software such as MATLAB or Mathematica

• Investigate the distribution of the stresses within the roll gap.

We hope that someone will be able to continue from where we finished and hopefully complete our
work!

9 Appendix

In this appendix, we will calculate the displacement field of a straight beam as predicted by our
equations for outside the roll gap. We consider a straight beam as our linear variation assumption
is likely to be true for straight beams outside the roll gap and the neutral axis coincides with the
centreline of the beam making the problem symmetric. By reading this section, the future researcher
may be more prepared to calculate the displacements of other beams such as semi circular rings.

For the straight beam case, the curvature will be zero and as we are assuming the beam to
be outside the roll gap, there are no normal stresses through the beam. In addition, as we are
considering a straight beam, it follows

h′t = h′b =
d∆h

ds
= 0.

Furthermore, using the above, our friction law predicts

τt = τb = 0.

Thus, we obtain the following system of equations:

d

ds
σs(ht) = − d

ds
σs(hb)

d

ds
τ = 0

d

ds
σs(hb) =

6

ρb
∆hτ +

ρt
ρb

d

ds
σs(ht).
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After some algebra, we obtain

d

ds
σs(ht) = − 6∆h

ρt + ρb
τ

d

ds
τ = 0

d

ds
σs(hb) =

6∆h

ρt + ρb
τ .

Now, we know from Timoshenko that the shear stress varies quadratically through the workpiece
and we know that τt = τb = 0. Furthermore, as the mean shear stress does not change with respect
to s, we guess that τ(s, r) = τ(r) i.e. is independent of s. This leads us to guess that

τ(r) = −τmax(r − ht)(r − hb)

where τmax is the maximum shear stress within the beam (this maximum will be achieved at the
neutral axis). Then, using the fact that

τ =
1

∆h

∫ ht

hb

τ(r) dr,

it follows

τ =
∆h2

6
τmax.

Hence,

d

ds
σs(ht) = − ∆h3

ρt + ρb
τmax

d

ds
σs(hb) =

∆h3

ρt + ρb
τmax.

Therefore, solving these differential equations and using the fact that

σs(r) =
σs(ht) − σs(hb)

∆h
r +

σs(hb)ht − σs(ht)hb
∆h

,

we obtain the following expression for σs(s, r):

σs(s, r) =

(
− 2∆h2

ρt + ρb
τmaxs+ k1

)
r +

∆h2(ht + hb)

ρt + ρb
τmaxs+ k2

where k1 and k2 are constants which appear when solving the differential equations. Thus, for a
straight beam outside the roll gap, we have

σs(s, r) =

(
− 2∆h2

ρt + ρb
τmaxs+ k1

)
r +

∆h2(ht + hb)

ρt + ρb
τmaxs+ k2

τ(r) = −τmax(r − ht)(r − hb)

σr(s, r) = 0.
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We could proceed further in generality, but we know consider the case where ht = 1 and hb = −1.
This is simply a straight beam of depth 2. In this case, the equations of stress become

σs(s, r) = (2τmaxs+ k1) r + k2

τ(r) = −τmax(r − 1)(r + 1)

σr(s, r) = 0.

Now, recall our constitutive law outside the roll gap

εij =
1

E

(
(1 + ψ)σij − ψσkkδij

)
.

Remembering that σ11 = σs, σ22 = σr and σ12 = σ21 = τ , we have

ε11(s, r) =
1

E
[(2τmaxs+ k1) r + k2]

ε22(s, r) =
−ψ
E

[(2τmaxs+ k1) r + k2]

ε12(r) = ε21(r) =
−τmax(1 + ψ)

E
(r − 1)(r + 1).

Now, recall that

εij =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
where ui(s, r) is the displacement field in the i direction. Thus, we have the following 3 PDEs:

∂us
∂s

=
1

E
[(2τmaxs+ k1) r + k2]

∂ur
∂r

=
−ψ
E

[(2τmaxs+ k1) r + k2]

1

2

(
∂us
∂r

+
∂ur
∂s

)
=

−τmax(1 + ψ)

E
(r − 1)(r + 1).

From the first equation, we conclude

us(s, r) =
1

E

[(
τmaxs

2 + k1s
)
r + k2s

]
+ f(r)

for some function f(r). Similarly, from the second equation, we conclude

ur(s, r) =
−ψ
E

[(
τmaxs+

k1

2

)
r2 + k2r

]
+ g(s)

for some function g(s). If we substitute both these equations in the third PDE and rearrange, we
find that

1

E

(
τmaxs

2 + k1s
)

+ g′(s) = −2τmax(1 + ψ)

E
(r2 − 1) +

ψτmax
E

r2 − f ′(r).

Noting the separation of variables, it must follow

g′(s) +
1

E

(
τmaxs

2 + k1s
)

= Φ

−f ′(r) − 2τmax(1 + ψ)

E
(r2 − 1) +

ψτmax
E

r2 = Φ
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for some separation constant Φ. Solving these ODEs, we find that

g(s) = Φs− 1

E

(
τmax

3
s3 +

k1

2
s2

)
+A

for some constant A and

f(r) = − (2 + ψ)τmax
3E

r3 +
2τmax(1 + ψ)

E
r − Φr +B

for some constant B. Thus, we have

us(s, r) =
1

E

[(
τmaxs

2 + k1s
)
r + k2s

]
− (2 + ψ)τmax

3E
r3 +

2τmax(1 + ψ)

E
r − Φr +B

ur(s, r) =
−ψ
E

[(
τmaxs+

k1

2

)
r2 + k2r

]
+ Φs− 1

E

(
τmax

3
s3 +

k1

2
s2

)
+A.

This describes the displacement filed for a straight beam outside of the roll gap as predicted by our
model. A computer package may be used to visual the bending.
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