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1 Introduction

The function f : U → Rm, where U ⊆ Rn open is called Lipschitz if there exists K > 0

such that for any x, y ∈ U ,

‖f(x)− f(y)‖ ≤ K ‖x− y‖ .

We call K the Lipschitz constant of f in U . An alternative notation for the Lipschitz

constant of f is Lip(f). An example of a Lipschitz function is the norm function from Rn

to Rn, with Lipschitz constant 1.

It is not necessarily true that Lipschitz functions are everywhere differentiable in the

classical sense. For example, the norm function is not differentiable at the origin. Re-

markably however, Lipschitz functions are differentiable almost everywhere. This is the

statement of Rademacher’s theorem, for which we have provided a proof in this report.

Using Rademacher’s theorem, it is possible to well define the notion of the generalised

derivative of a Lipschitz function. This notion of derivative is due to F.H.Clarke and first

appears in his paper [1]. Let us define this derivative:

Definition 1.1. Let f : U → Rm be Lipschitz, U ⊆ Rn open and x0 ∈ U . Then, we define

the generalised derivative at x0, denoted ∂f(x0), as

∂f(x0) := convH
({

lim
m→∞

dxnf | xn → x0

})
where we consider all possible xn for which xn → x0, the classical derivative dxnf is defined

and limm→∞ dxnf exists. The notation convH denotes taking the convex hull in the space

of m× n real matrices.

We want to show that the generalised derivative is well defined. By Rademacher,

f is differentiable almost everywhere in U . In particular, taking balls centred at x0 of

decreasing radius, we deduce that there exists a sequence (xn)∞n=1 ⊂ U such that xn → x0

and dxnf exists in the classical sense. Furthermore, as f is Lipschitz in U , it follows that

there exists K > 0 such that for any x, y ∈ U ,

‖f(x)− f(y)‖ ≤ K ‖x− y‖ .

In particular, for x 6= y, we have

‖f(x)− f(y)‖
‖x− y‖

≤ K.

Therefore, where the partial derivatives of f exist, their norms are bounded above by K.

Thus, as the set of m × n real matrices with bounded supremum norm is a compact set

and

{dxnf | xn → x0}
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is a sequence in this set, by sequential compactness, this sequence must contain a conver-

gent subsequence. Hence, ∂f(x0) 6= ∅. Furthermore, the set{
lim
m→∞

dxnf | xn → x0

}
is bounded because f is Lipschitz at x0.

Now, Clarke claims that the above set is “obviously” closed. We think that he had a

diagonal argument for sequences in mind. However, one needs to be careful when using

such arguments, as the list of sequences

(1, 0, 0, 0, . . . )

(0, 1, 0, 0, . . . )

(0, 0, 1, 0, . . . )

demonstrates. We will continue assuming that he is correct (otherwise, one may replace

the set {limm→∞ dxnf | xn → x0} by its closure).

With this, it follows that {limm→∞ dxnf | xn → x0} is bounded and closed and there-

fore compact. Thus, ∂f(x0) is a convex and compact, as the convex hull of a compact set

in finite dimensional space is compact (see [6], Theorem 17.2).

Before we explain our motivations for this report, let us study an example to see how

we may compute the generalised derivative.

Let us consider the function

f : R2 → R2

f(x, y) := (|x|+ y, 2x+ |y|) .

Note, the derivative of f is defined everywhere in the classical sense except at the origin.

We seek to compute ∂f((0, 0)).

Suppose (xn, yn) → (0, 0) where xn < 0 and yn > 0. Then, f(xn, yn) = (−xn +

yn, 2xn + yn). Therefore, in this case, we have

d(xn,yn)f =

(
−1 1

2 1

)
.

Considering all other possible cases similarly, we conclude that

∂f((0, 0)) = convH

({(
−1 1

2 1

)
,

(
1 1

2 1

)
,

(
−1 1

2 −1

)
,

(
1 1

2 −1

)})

=

{(
s 1

2 t

)
: −1 ≤ s, t ≤ 1

}
.

The calculus of generalised derivatives is studied extensively in [2]. Of interest to us is an
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Inverse Function Theorem of Lipschitz functions, also stated and proved in [2][pp 253-255]:

Theorem 1.2. Let f : Rn → Rn be Lipschitz, x0 ∈ Rn. If every A ∈ ∂f(x0) is invertible,

then f is locally invertible with Lipschitz inverse. That is to say, there exists open neigh-

bourhoods U of x0, V of f(x0) and Lipschitz g : V → Rn such that g ◦ f(u) = u for all

u ∈ U and f ◦ g(v) = v for all v ∈ V .

We will use this Inverse Function Theorem to prove the following Implicit Function

Theorem:

Theorem 1.3. Let U ⊆ Rn+k be open; (x, y) = (x1, · · · , xn, y1, · · · , yk) ; let f : U → Rk

be Lipschitz at (a, b) in U and define c := f(a, b). If there exists a n × (n + k) matrix B

such that for every A ∈ ∂f((a, b)),

(
A

B

)
is invertible, then f−1(c) is locally a Lipschitz

submanifold of dim n.

We remark that this Implicit Function Theorem will be one of three Implicit function

theorems for Lipschitz functions that appear in this report. It is natural to ask if and how

they are related to each other. We have started to explore this question in this report,

but we believe our investigations are not complete.

We want to highlight the hypothesis of this theorem: If there exists a n × (n + k)

matrix B such that for every A ∈ ∂f((a, b)),

(
A

B

)
is invertible, then f−1(c) is

locally a Lipschitz submanifold of dim n. In practise, it is often easier to show that for

every A ∈ ∂f((a, b)), there exists a n× (n+ k) matrix BA such that

(
A

BA

)
is invertible.

This is equivalent to saying that every A ∈ ∂f((a, b)) has maximal rank. Thus, it is

natural to consider the following problem:

Problem 1.4. Let U ⊆ Rn be open; n > p; f : U → Rp Lipschitz and x0 ∈ U . Then, if

for every A ∈ ∂f(x0), there exists a p× n matrix BA such that

(
A

BA

)
is invertible, is it

true that there exists a p×n matrix B such that for every A ∈ ∂f(x0),

(
A

B

)
is invertible?

This is the problem that has motivated our project.

2 Rademacher’s Theorem

In this section, we will present a proof of Rademacher’s theorem, following the proof given

in [4] and [8]. The reader may wish to skip this section, as the details do not play an

important role in the rest of the project. Indeed, the author has included this section so

that he may get a better grade for his report! To prove Rademacher’s theorem, we will

need to define the notion of an absolutely continuous function.
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Definition 2.1. Let I be an interval in the real line R. A function f : I → R is absolutely

continuous on I if for every ε > 0 there exits δ > 0 such that whenever a finite sequence

of pairwise disjoint sub intervals (xk, yk) of I satisfy∑
k

|yk − xk| < δ,

then ∑
k

|f(yk)− f(xk)| < ε.

Note that a Lipschitz function f : I → R is also an absolutely continuous function, a

consequence of the the Lipschitz inequality of f .

We have introduced absolutely continuous functions because we will need the following

lemma. We will not prove this lemma, but provide a reference for the interested reader.

Lemma 2.2. Let f : (a, b) → R be an absolutely continuous function. Then, f is differ-

entiable almost everywhere with integrable derivative such that

f(b)− f(a) =

∫ b

a
f ′(x) dx.

Proof. See [7], chapter 7.

We now state Rademacher’s theorem:

Theorem 2.3 (Rademacher’s theorem). Let f : Rn → Rm be Lipschitz. Then, f is

differentiable almost everywhere with respect to the Lebesgue measure on Rn (which we

denote by Ln). That is to say, the Jacobian of f , denoted Jf , exists and

lim
y→x

‖f(y)− f(x)− Jf(x)(y − x)‖
‖y − x‖

= 0

for Ln almost everywhere x ∈ Rn.

Proof. As a vector valued function is Lipschitz if and only if it is Lipschitz in each com-

ponent, we may assume without loss of generality that m = 1. We denote Jf by ∇f . The

proof will be divided into proving three claims.

Fix v ∈ Rn with ‖v‖ = 1, and define

Dvf(x) := lim
t→0

f(x+ tv)− f(x)

t

for x ∈ Rn whenever this limit exists.

Claim 1. Dvf(x) exists for Ln almost everywhere x ∈ Rn.
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Proof of Claim 1 . As f is Lipschitz, f is continuous, therefore Borel measurable. It

follows that

Dvf(x) := lim sup
t→0

f(x+ tv)− f(x)

t

is Borel measurable. This may be seen by recalling

• If fk are Borel measurable for all k ∈ N, then so is f(x) := limk→∞ fk(x) if the limit

exists almost everywhere,

• If fk are Borel measurable for all k ∈ N, then so is f(x) = supk∈N fk(x).

Similarly,

Dvf(x) := lim inf
t→0

f(x+ tv)− f(x)

t

is Borel measurable. Therefore, the set

Bv := {x ∈ Rn | Dvf(x) does not exist}

= {x ∈ Rn | Dvf(x) < Dvf(x)}

is Borel measurable.

Now, for each x, v ∈ Rn with ‖v‖ = 1, define φx,v : R→ R by

φx,v(t) := f(x+ tv).

Then, φx,v : R → R is Lipschitz, therefore absolutely continuous. Hence, φx,v is L1

differentiable almost everywhere by lemma 2.2. Thus, for each line L parallel to v, for the

one-dimensional Lebesgue measure L1, we have L1(Bv ∩ L) = 0. Finally, using Fubini’s

theorem, for the n dimensional Lebesgue measure Ln, we have

Ln(Bv) =

∫
{〈x,v〉=0}

L1(Bv ∩ Lx) dx = 0

where Lx is the line through x parallel to v. As a consequence, we see that

∇f = (D1(f), . . . , Dnf(x))

exists for Ln almost everywhere x ∈ Rn. This concludes the proof of claim 1.

We now state our second claim:

Claim 2. We have Dvf(x) = v · ∇f(x) for Ln almost everywhere x ∈ Rn.

Proof of claim 2. Let C∞0 (Rn) denote the set of smooth real valued functions on Rn with

compact support and let η ∈ C∞0 (Rn). Then,∫
Rn

f(x+ tv)− f(x)

t
η(x) dx = −

∫
Rn
f(x)

η(x)− η(x− tv)

t
dx (1)
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Equation 1 is true because∫
Rn

f(x+ tv)− f(x)

t
η(x) dx =

1

t

(∫
Rn
f(x+ tv)η(x) dx−

∫
Rn
f(x)η(x) dx

)
=

1

t

(∫
Rn
f(y)η(y − tv) dx−

∫
Rn
f(x)η(x) dx

)
(set y = x+ tv)

=
1

t

(∫
Rn
f(x)η(x− tv) dx−

∫
Rn
f(x)η(x) dx

)
(y is a dummy variable)

= −
∫
Rn
f(x)

η(x)− η(x− tv)

t
dx.

Let t = 1
k for k ∈ N in equation 1 and note∣∣∣∣∣f(x+ 1

kv)− f(x))
1
k

∣∣∣∣∣ ≤ Lip(f)‖v‖ = Lip(f) (as ‖v‖ = 1). (2)

Since f is Lipschitz, f is continuous and hence is bounded on every compact set. As

η ∈ C∞0 (Rn), it follows that∫
Rn

f(x+ tv)− f(x)

t
η(x) dx <∞.

Now, in claim 1, we have shown that Dvf(x) exists for Ln almost everywhere x ∈ Rn, and

have hence established the pointwise convergence for Dvf(x). Furthermore, the sequence

of functions Dvf(x) for t = 1
k is dominated by Lip(f) as shown in equation 2. As constants

are integrable on compact sets, it follows∫
Rn

Lip(f)|η(x)| dx <∞.

Thus, by the Dominated Convergence Theorem,

lim
t→0

∫
Rn

f(x+ tv)− f(x)

t
η(x) dx =

∫
Rn

lim
t→0

f(x+ tv)− f(x)

t
η(x) dx

=

∫
Rn
Dvf(x)η(x) dx.

But,

lim
t→0

∫
Rn

f(x+ tv)− f(x)

t
η(x) dx = lim

t→0
−
∫
Rn

η(x)− η(x− tv)

t
f(x) dx

and η ∈ C∞0 (Rn), so we have

lim
t→0
−
∫
Rn

η(x)− η(x− tv)

t
f(x) dx = −

∫
Rn
Dvη(x)f(x) dx.

Therefore, ∫
Rn
Dvf(x)η(x) dx = −

∫
Rn
Dvη(x)f(x) dx.
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But,

−
∫
Rn
f(x)Dvη(x) dx = −

∫
Rn
f(x)

n∑
i=1

vi
∂η

∂xi
(x) dx

= −
n∑
i=1

vi

(∫
Rn
f(x)

∂η

∂xi
(x) dx

)
.

Using the fact that an absolutely continuous function is differentiable almost everywhere

with integrable derivative (lemma 2.2) and Fubini’s theorem, we have∫
Rn
f(x)

∂η

∂xi
(x) dx =

∫
Rn−1

∫
R
f(x)

∂η

∂xi
(x) dx1 · · · dxn (Fubini)

=

∫
Rn−1

∫
R
− ∂f
∂xi

(x)η(x) dx1 · · · dxn (Absolute continuity)

=

∫
Rn
− ∂f
∂xi

(x)η(x) dx (Fubini).

Therefore, ∫
Rn
Dvf(x)η(x) dx =

n∑
i=1

vi

(∫
Rn

∂f

∂xi
(x)η(x) dx

)
=

∫
Rn

(v · ∇f)η(x) dx.

As this is true for any η ∈ C∞0 (Rn), it follows that Dvf(x) = v · ∇f(x) for Ln almost

everywhere x ∈ Rn. This proves claim 2.

Now, choose a countable dense subset {vk}∞k=1 of Sn−1 and define

Ak := {x ∈ Rn : ∃ Dvkf(x),∃ ∇f(x) and Dvkf(x) = vk · ∇f(x)}.

Also define

A :=

∞⋂
k=1

Ak.

Note, by claim 2, for any k, Ln(Rn \Ak) = 0. Thus, as A is countable intersection of the

Ak, it follows Ln(Rn \A) = 0. We now prove our third claim, which proves Rademacher’s

theorem:

Claim 3. f is differentiable at every x ∈ A.

Proof of claim 3. Define

Q : A× Sn−1 × R \ {0} → R

Q(x, v, t) :=
f(x+ tv)− f(x)

t
− v · ∇f(x).
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Then, if x ∈ A and v, w ∈ Sn−1, we obtain

|Q(x, v, t)−Q(x,w, t)| ≤
∣∣∣∣f(x+ tv)− f(x+ tw)

t

∣∣∣∣+ |(v − w) · ∇f(x)| (triangle inequality)

≤ Lip(f)‖v − w‖+ ‖v − w‖‖∇f(x)‖ (Lipschitz and Cauchy inequality).

But note,

|Dejf(x)| = lim
h→0

∣∣∣∣f(x+ ejh)− f(x)

h

∣∣∣∣
≤ lim

h→0
Lip(f)

= Lip(f).

Therefore, we obtain the inequality

|Q(x, v, t)−Q(x,w, t)| ≤ (
√
n+ 1)Lip(f)‖v − w‖. (3)

Now, let ε > 0. Then, by the compactness of Sn−1 and the density of {vk}∞k=1, there exists

a N ∈ N such that for any v ∈ Sn−1, there exists a k < N so that

‖v − vk‖ ≤
ε

2(
√
n+ 1)Lip(f)

. (4)

Furthermore, by the definition of A, we have limt→0Q(x, vk, t) = 0. Therefore, there exists

a δ > 0 such that

|Q(x, vk, t)| <
ε

2
(5)

for all 0 < |t| < δ, for k < N . Therefore, for any x ∈ Sn−1, there exists a k < N such that

|Q(x, v, t)| ≤ |Q(x, vk, t)|+ |Q(x, v, t)−Q(x, vk, t)|

<
ε

2
+ (
√
n+ 1)Lip(f)

ε

2(
√
n+ 1)Lip(f)

(by inequalities 3, 4 and 5)

= ε

whenever 0 < |t| < δ. Also, notice that the same δ works for all v ∈ Sn−1. Therefore, for

any x ∈ A and for any v ∈ Sn−1, we have

lim
t→0

Q(x, v, t) = 0.

Finally, choose any y ∈ Rn, y 6= x ∈ A and define

v :=
y − x
‖y − x‖

.
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Then, y = x+ tv where t = ‖y − x‖ and

lim
y→x

|f(y)− f(x)− (y − x) · ∇f(x)|
‖y − x‖

= lim
y→x

Q(x, v, ‖y − x‖) = 0.

This concludes the proof of claim 3, and therefore the proof of Rademacher’s theorem.

3 An Inverse and Implicit Function Theorem for Lipschitz

Functions using Generalised Derivatives

3.1 Clarke’s Inverse Function Theorem

We want to provide an expanded proof of Clarke’s Inverse Function Theorem. The ideas

of this proof (at least up to the proof of lemma 3.7) will be used later on in the report,

so the reader is encouraged to read the proof carefully. We follow the proof given in

[2][pp253-255]:

Theorem 3.1. Let f : Rn → Rn be Lipschitz, x0 ∈ Rn. If ∂f(x0) is of maximal rank, then

f is locally invertible with Lipschitz inverse. That is to say, there exists open neighbourhoods

U of x0, V of f(x0) and Lipschitz g : V → Rn such that g ◦ f(u) = u for all u ∈ U and

f ◦ g(v) = v for all v ∈ V .

To prove this theorem, we will need the following facts about generalised derivatives.

We will not prove them, but will provide a reference for the reader.

Proposition 3.2 (Upper semicontinuity of the generalised derivative ). Let f : Rn → Rm

be Lipschitz, x0 ∈ Rn. Then, ∂f is upper semicontinuous at x0. That is to say, for any

ε > 0 there exits δ > 0 such that for any y ∈ Bδ(x0),

∂f(y) ⊆ Ωε.

where Ωε consists of matrices A such that ‖A−B‖ < ε for at least one B ∈ ∂f(x0).

Proof. See Clarke [2][pp 70-71].

Proposition 3.3 (Local extrema). If g : Rn → R is Lipschitz and attains a local minimum

or maximum at x0, then 0 ∈ ∂g(x0).

Proof. See Clarke [2][p38].

Proposition 3.4 (A chain rule). Let h = g ◦ f , where f : Rn → Rm is Lipschitz at x and

g : Rm → R is Lipschitz at f(x). Then, h is Lipschitz near x and one has

∂h(x) ⊆ convH {∂g(f(x))∂f(x)}
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Figure 1: Diagram illustrating the geometry of the separation proposition 3.5.

where the right hand side means the convex hull of all matricies of the form AB, A ∈
∂g(f(x)), B ∈ ∂f(x).

Proof. See Clarke [2][pp72-74].

In addition, we will also need the following strict separation theorem for a point and

a closed convex set:

Proposition 3.5 (Strict separation theorem for a point and a closed convex set). Let C
be a closed convex subset of Rn and let p ∈ Rn be a point not on C. Then, there exists a

nonzero vector v and a real number c such that 〈x , v〉 > c for all x ∈ C and 〈p , v〉 < c.

Geometrically, this result says that a closed convex set C and a point p not on C may

be separated by the affine hyperplane {x ∈ Rn | 〈x , v〉 = c} (see figure 1). We will need

this proposition to obtain a lower bound of an inner product when proving the Inverse

Function Theorem(see lemma 3.6).

Proof. See [3], example 2.20 [p49].

Proof of the Inverse Function Theorem following [2], pp 253-255. The proof will be given

in lemma steps.
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Lemma 3.6. Let f and x0 be as in theorem 3.1. There exists r, δ > 0 such that for any

unit vector v ∈ Rn there exists a unit vector w ∈ Rn such that whenever x ∈ Br(x0) and

M ∈ ∂f(x), then

〈w ,Mv〉 ≥ δ. (6)

Proof of lemma 3.6. Let Sn−1 be the unit sphere in Rn. Denote by ∂f(x0)S
n−1 to mean

the union of A(Sn−1) for every A ∈ ∂f(x0). As ∂f(x0) is of maximal rank, it follows that

∂f(x0)S
n−1 ⊆ Rn does not contain 0. Clarke also states that ∂f(x0)S

n−1 is compact. We

think this follows from the fact that ∂f(x0) is of maximal rank or the fact that ∂f(x0) is

compact, but we are not sure. We continue assuming that he is correct. Therefore, there

exists a δ′ > 0 such that the distance between ∂f(x0)S
n−1 and 0 is 2δ′. By continuity, for

ε > 0 sufficiently small, ΩεS
n−1 (with Ωε as defined as in proposition 3.2) is distance at

least δ′ from 0. By proposition 3.2, there exists an r > 0 such that for any x ∈ Br(x0),

∂f(x) ⊆ Ωε. (7)

Now, let v ∈ Rn be any unit vector. So, v ∈ Sn−1. Thus, the set Ωεv := {Av | A ∈ Ωε}
is a convex set that is distance at least δ′ from 0. This is also true for the closure Ωεv.

Thus, by proposition 3.5 applied to Ωεv and the origin 0, there exists an unit vector w

and a δ > 0 such that

〈w ,Ωεv〉 ≥ δ.

Thus, 6 follows from this and equation 7.

Lemma 3.7. Let r, δ be as above. If x, y ∈ Br(x0), then

‖f(x)− f(y)‖ ≥ δ‖x− y‖.

Proof. Without loss of generality, we may suppose x 6= y and as f is continuous, we may

suppose x, y ∈ Br(x0). Set

v :=
y − x
‖y − x‖

and

λ := ‖y − x‖

so that

y = x+ λv.

Let Π be the hyperplane perpendicular to v passing through x, see figure 2. By Rademacher’s

theorem, the set P of points x′ in Br(x0) where Df(x′) fails to exist is of measure 0. Thus,

by Fubini, for almost every x′ in Π, the ray,

x′ + tv
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Figure 2: A diagram illustrating what is happening in lemma 3.7.

for t ≥ 0 meets P in a set of 0 one dimensional measure. Choose x′ with the above property

and sufficiently close to x such that x′ + tv lies in Br(x0) for all t ∈ [0, λ]. Therefore, the

map

φ : [0, λ]→ Rn

t 7−→ f(x′ + tv)

is Lipschitz and for almost every t ∈ [0, λ], it’s classical derivative exists. The classical

derivative of this map is Jf(x′+tv)v (this means the jacobian matrix Jf(x′+tv) multiplied

by v.) Then, we have

f(x′ + λv)− f(x′) =

∫ λ

0
Jf(x′ + tv)v dt.

A priori, this does not follow immediately from the Fundamental Theorem of Calculus

(since the derivative of this function exists only almost everywhere). An example of a

function which illustrates the failure of such an equality is the Cantor function. The

above equality is true because φ : [0, λ] → Rn is Lipschitz and hence Lipschitz in each

component. Therefore, it is absolutely continuous in each component (see definition

2.1). Thus, by lemma 2.2, each component has integrable derivative such that integrating

this derivative on [0, λ] gives an equality like in lemma 2.2. The above equality then

follows. Let w correspond to v as in Lemma 3.6. We deduce

w ·
(
f(x′ + λv)− f(x′)

)
=

∫ λ

0
w · Jf(x′ + tv)v dt

≥
∫ λ

0
δ dt

= δλ

= δ‖y − x‖.
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Thus, as w is an unit vector, it follows that

‖f(x′ + λv)− f(x′))‖ ≥ δ‖x− y‖.

This may be done for x′ arbitrarily close to x. Since f is continuous, the lemma follows.

Lemma 3.8. Let r, δ be as above. Then, B rδ
2

(f(x0)) ⊆ f(Br(x0)). Moreover, for any

y ∈ B rδ
2

(f(x0)), there exits an unique x ∈ Br(x0) such that f(x) = y.

Proof. Let y ∈ B rδ
2

(f(x0)). Let a local minimum of ‖y− f(·)‖2 over Br(x0) be attained at

x (the minimum of a continuous function on a compact set is always attained). We claim

that actually x ∈ Br(x0). Otherwise, we have

δr

2
> ‖y − f(x0)‖ (as y ∈ B rδ

2
(f(x0)))

≥ ‖f(x)− f(x0)‖ − ‖y − f(x)‖

≥ δ‖x− x0‖ − ‖y − f(x)‖ (lemma 3.7)

≥ δ‖x− x0‖ − ‖y − f(x0)‖ (minimality of x0)

≥ δr − ‖y − f(x0)‖ (assumption that x /∈ Br(x0))

> δr − δr

2

=
δr

2
.

This is a contradiction. Thus, x ∈ Br(x0). If we can show that y = f(x), the inclusion in

the lemma is proven.

We have shown that x yields a local minimum for the function ‖y − f(·)‖2 within

Br(x0). By proposition 3.3, it follows that 0 ∈ ∂‖y − f(x)‖2. We want to apply the chain

rule as described in proposition 3.4 to ∂‖y − f(x)‖2. Let

F : Rn → Rn

F (x) := y − f(x)

and let

g : Rn → R

g(z) := z · (y − f(x)) .

Then, by proposition 3.4, we have

∂‖y − f(x)‖2 = ∂(g ◦ F )(x) ⊆ convH {∂g (F (x)) ∂F (x)} .

We seek to calculate ∂g(z) for any z ∈ Rn. Note, if we denote z = (z1, . . . , zn), (y−f(x)) =
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(y1 − f1(x), . . . , yn − fn(x)), we have

g(z) = z · (y − f(x))

=

n∑
i=1

zi(yi − fi(x)).

Therefore,

∂g

∂zj
=

n∑
i=1

∂

∂zj
(zi(yi − fi(x)))

= yj − fj(x).

Thus, g is classically differentiable everywhere with derivative Jg(z) = (y − f(x))t. This

means that for any z ∈ Rn, we have ∂g(z) = {(y − f(x))t}. Therefore,

convH {∂g (F (x)) ∂F (x)} = convH
{
{(y − f(x))t}∂F (x)

}
= (y − f(x))t∂F (x)

= (y − f(x))t∂(y − f(x))

= (y − f(x))t∂(−f(x))

= −(y − f(x))t∂f(x).

Hence, we conclude that 0 ∈ −(y − f(x))t∂f(x). But lemma 3.6 implies that every

matrix in ∂f(x) has maximal rank and is therefore invertible. Thus, we conclude that

y = f(x). To prove uniqueness, suppose there exists x1, x2 ∈ Br(x0) such that x1 6= x2

and f(x1) = f(x2) = y. Then, ‖f(x1)− f(x2)‖ = 0. But this contradicts lemma 3.7.

Now, to prove the theorem, we define

V := B rδ
2

(f(x0))

and we define the value g(v) for v ∈ V of function g to be the unique x ∈ Br(x0) such

that f(x) = v. We may define

U := f−1(V )

which is open neighbourhood of x0 as f is continuous. Finally, g : V → U is Lipschitz

with Lipschitz constant 1/δ because of lemma 3.7.

3.2 Clarke’s Implicit Function Theorem

From this Inverse function theorem, Clarke goes on to prove an Implicit function theo-

rem for Lipschitz functions. To state his Implicit function theorem, we must first give a

definition.
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Definition 3.9. Let f : Rn+k → Rk be Lipschitz, (a, b) ∈ Rn+k. Use coordinates (x, y) :=

(x1, . . . , xn, y1, . . . , yk). We define

Πy∂f(a, b) :=
{
N ∈ Rk×k | there exists M ∈ Rk×nsuch that (MN) ∈ ∂f(a, b)

}
.

We say Πy∂f(a, b) is of maximal rank if every matrix N ∈ Πy∂f(a, b) has maximal rank.

Corollary 3.10 (Clarke’s Implicit function theorem). Suppose f : Rn × Rk → Rk is

Lipschitz and f(a, b) = 0. Then, if Πy∂f(a, b) is of maximal rank, then there exists a open

neighbourhood X ⊂ Rn of a and a Lipschitz function ξ : X → Rk such that ξ(a) = b and

for any x ∈ X,

f(x, ξ(x)) = 0.

Proof following [2] p256. Let m := n+ k and consider

F : Rm → Rm

F (x, y) = (x, f(x, y)) .

When the Jacobian matrix JF exists, it is of the form

(
I 0

Jxf Jyf

)
. It follows that

∂F (a, b) is of maximal rank. Thus, by Clarke’s Inverse function theorem, there exits open

neighbourhoods U of (a, b); V of F (a, b) = (a, f(a, b)) = (a, 0) and a Lipschitz G : V → U

such that F ◦G = idV and G ◦ F = idU . Shrinking U and V if necessary, we may assume

the V may be written as the product of two open neighbourhoods V = X × Y , X ⊆ Rn,

Y ⊆ Rk.
Suppose G(x, y) = (G1(x, y), G2(x, y)). Then, we have

(x, y) = F ◦G(x, y)

= F (G1(x, y), G2(x, y))

= (G1(x, y), f (G1(x, y), G2(x, y))) .

Therefore, x = G1(x, y) and y = f(x,G2(x, y)). Setting y = 0 we deduce that

0 = f(x,G2(x, 0))

and setting x = a, we deduce that

G2(a, 0) = b.

Thus, if we define

ξ : X → Rk

ξ(x) := G2(x, 0),
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we have ξ(a) = b and f(x, ξ(x)) = 0.

4 Another Implicit Function Theorem using Generalised

Derivatives

We now prove another Implicit function theorem, which is similar to Clarke’s Implicit

function theorem but has a slightly weaker hypothesis and conclusion. We will present two

proofs of the theorem: one longer direct proof using ideas taken from Lee’s Introduction to

smooth manifolds [5][pp661-662], and the other using Clarke’s Implicit function theorem.

Theorem 4.1. Let U ⊆ Rn+k be open; (x, y) = (x1, · · · , xn, y1, · · · , yk) ; f : U → Rk

Lipschitz at (a, b) in U and define c := f(a, b). Then, if there exists a n× (n+ k) matrix

B such that for every A ∈ ∂f((a, b)),

(
A

B

)
is invertible, then f−1(c) is locally a Lipschitz

submanifold of dim n.

Proof 1 using ideas from Lee’s introduction to smooth manifolds. As

(
A

B

)
is invertible for

every A ∈ ∂f((a, b)), it follows that B is of maximal rank. Thus, using elementary row

and column operations, we may deduce that there exists invertible matrices P,Q such that

PBQ =
(
In 0n×k

)
.

Define B̃ :=
(
In 0n×k

)
and define f̃ := f ◦ Q. Thus f̃ : Q−1(U) → Rk. Let (ã, b̃) :=

Q−1((a, b)). We claim that

∂f̃((ã, b̃)) = {Ã := AQ | A ∈ ∂f((a, b))}.

Indeed,

∂f̃((ã, b̃)) = convH
({

lim
m→∞

dQ−1(xm,ym)(f ◦Q) | (xm, ym)→ (a, b)
})

= convH
({

lim
m→∞

d(xm,ym)f ◦Q | (xm, ym)→ (a, b)
})

= {AQ | A ∈ ∂f((a, b))} .

Now, we define

ψ̃ : Q−1(U)→ Rn+k

ψ̃(x, y) :=
(
P−1 ◦ B̃(x, y), f̃(x, y)

)
=
(
P−1(x), f̃(x, y)

)
.
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Then, one may show that ∂ψ̃((ã, b̃)) consists of invertible matrices{(
B

A

)
Q | A ∈ ∂f((a, b))

}
.

Hence, by Clarke’s Inverse Function Theorem, there exists open neighbourhoods Ũ0 of

(ã, b̃) and Ỹ0 of ψ̃((ã, b̃)) = (P−1(ã), c) such that ψ̃ : Ũ0 → Ỹ0 is invertible with Lipschitz

inverse. Shrinking if necessary, we may assume Ũ0 is the product of neighbourhoods

Ũ0 = Ṽ × W̃ .

Now, suppose

ψ̃−1(x, y) =
(
C̃(x, y), D̃(x, y)

)
for some functions C̃ : Ỹ0 → Ṽ , D̃ : Ỹ0 → W̃ . Then,

(x, y) = ψ̃
(
ψ̃−1(x, y)

)
= ψ̃

(
C̃(x, y), D̃(x, y)

)
=
(
P−1

(
C̃(x, y)

)
, f̃
(
C̃(x, y), D̃(x, y)

))
.

Thus, P−1
(
C̃(x, y)

)
= x, and so C̃(x, y) = P (x). Therefore,

ψ̃−1(x, y) =
(
P (x), D̃(x, y)

)
.

We define Ṽ0 :=
{
x ∈ Ṽ |

(
P−1(x), c

)
∈ Ỹ0

}
and let W̃0 = W̃ (note, Ṽ0 is an open neigh-

bourhood of (P−1(ã), c)). Further, let us define

F̃ : Ṽ0 → W̃0

F̃ (x) = D̃(P−1(x), c).

We have

(
P−1(x), c

)
= ψ̃ ◦ ψ̃−1

(
P−1(x), c

)
= ψ̃

(
x, D̃

(
P−1(x), c

))
= ψ̃

(
x, F̃ (x)

)
=
(
P−1(x), f̃(x, F̃ (x))

)
.

Therefore, c = f̃(x, F̃ (x)) when x ∈ Ṽ0. Hence, graph F̃ ⊆ f̃−1 (c).
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Now, suppose (x, y) ∈ Ṽ0 × W̃0 such that f̃(x, y) = c. We have

ψ̃(x, y) =
(
P−1(x), f̃(x, y)

)
= (P−1(x), c).

Thus,

(x, y) = ψ̃−1
(
P−1(x), c

)
=
(
x, D̃(P−1(x), c)

)
=
(
x, F̃ (x)

)
.

Therefore, f̃−1 (c) |Ṽ0×W̃0
⊆ graph F̃ . Thus, we have showed that f̃−1 (c) is the graph of

some Lipschitz function on some open domain. Therefore, f̃−1 (c) is locally a Lipschitz

submanifold.

However,

f̃−1 (c) = (f ◦Q)−1 (c)

= Q−1
(
f−1(c)

)
.

Therefore, Q−1
(
f−1(c)

)
is locally a Lipschitz submanifold. But Q is an isomorphism.

Thus

Q
(
Q−1

(
f−1(c)

))
= f−1(c)

is also locally a Lipschitz submanifold.

Proof 2 using Clarke’s Implicit function theorem. In the notation of the above proof, ∂ψ̃(ã, b̃)

consists of invertible matrices{(
B

A

)
Q | A ∈ ∂f((a, b))

}

=

{(
P−1 0n×k

AQ

)
| A ∈ ∂f((a, b))

}
.

Therefore, the far right k × k minor of AQ must have maximal rank. That is to say,

Πy∂f̃(ã, b̃) is of maximal rank. Thus, by Clarke’s Implicit function theorem, there exists

an open neighbourhood X̃ ⊆ Rn of ã and a Lipschitz function ξ̃ : X̃ → Rk such that

ξ̃(ã) = b̃ and f̃(x̃, ξ̃(x̃)) = c for all x̃ ∈ X̃. Thus, we have showed that f̃−1(c) is locally the

graph of some Lipschitz function i.e. it is locally a Lipschitz submanifold. However,

f̃−1 (c) = (f ◦Q)−1 (c)

= Q−1
(
f−1(c)

)
.
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Therefore, Q−1
(
f−1(c)

)
is locally a Lipschitz submanifold. But Q is an isomorphism.

Thus

Q
(
Q−1

(
f−1(c)

))
= f−1(c)

is also locally a Lipschitz submanifold.

Note, we cannot apply Clarke’s Implicit function theorem directly, as A being of

maximal rank k does not imply that its far right k × k minor is of maximal rank. For

example, consider the 2× 3 matrix

(
1 0 0

0 1 1

)
.

5 Clarke’s Implicit Function Theorem implies Wuertz’s Im-

plicit Function Theorem

5.1 Wuertz’s Implicit Function Theorem

The Implicit function theorem given by Clarke is not the only Implicit function theorem

given for Lipschitz functions. Michael Wuertz in his Masters Thesis states and proves a

different Implicit function theorem for Lipschitz functions. The theorems of Clarke and

Wuertz give the same conclusion but have different hypotheses. It seems as if Wuertz was

unaware of Clarke’s theorem, as he does not reference him within his bibliography.

Wuertz’s Implicit function theorem (see [8]) is as follows:

Theorem 5.1 (Wuertz’s Implicit function theorem). Let Un ⊆ Rn and Uk ⊆ Rk be open.

Next, fix a ∈ Un and b ∈ Uk and define U := Un × Uk. Consider

F : Un × Uk → Rk

a Lipschitz function such that

F (a, b) = 0

and with the property that there exists a constant K > 0 for which

‖F (x, y1)− F (x, y2)‖ ≥ K‖y1 − y2‖ for all (x, yj) ∈ U.

Then, there exists Vn ⊆ Rn open, such that a ∈ Vn, and a Lipschitz function ϕ : Vn → Uk

such that ϕ(a) = b, and

{(x, y) ∈ Vn × Uk : F (x, y) = 0} = {(x, ϕ(x)) : x ∈ Vn} .

In particular,

F (x, ϕ(x)) = 0, for all x ∈ Vn.

Therefore, the difference between Clarke’s Implicit function theorem and Wuertz’s

Implicit function theorem is in their respective hypotheses. Specifically, Clarke requires
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Πyf(a, b) to be of maximal rank, whereas Wuertz requires ‖F (x, y1)−F (x, y2)‖ ≥ K‖y1−
y2‖ for all (x, yj) ∈ U . A priori, there appears to be no relation between the two conditions.

However, examining the proof of Clarke’s Inverse function theorem carefully, we see that

he proves a similar inequality in his second lemma.

We have adapted his arguments to prove that if Πyf(a, b) is of maximal rank, then we

have the inequality ‖F (x, y1)− F (x, y2)‖ ≥ K‖y1 − y2‖ for all (x, yj) ∈ U , where U is an

open neighbourhood of (a, b).

5.2 A Proof of the Implication

The proof of this implication is very similar to the proof of lemma 3.7 in Clarke’s Inverse

Function theorem. The reader is encouraged to read the proof of 3.7, as he/she will better

understand the proof given here having read that proof.

Proposition 5.2. Let f : Rn+k → Rk be Lipschitz, (a, b) ∈ Rn+k such that f(a, b) = 0

and Πy∂f(a, b) has maximal rank. Then, there exists an open neighbourhood U of (a, b)

and K > 0 such that

‖f(x, y1)− f(x, y2)‖ ≥ K‖y1 − y2‖

for all (x, yj) ∈ U .

Proof. The proof will consist of two lemma steps, similar to the steps as in the proof of

theorem 3.1.

Lemma 5.3. There exists r,K > 0 such that for any unit vector (v1, . . . , vn+k) ∈ Rn+k

such that (v1, . . . , vn) = 0, there exists unit vector w ∈ Rk such that whenever (x, y) ∈
Br(a, b) and M ∈ ∂f(a, b),

〈w,Mv〉 ≥ K.

Proof of lemma 5.3 . Let Sn+k−1 be the unit sphere in Rn+k.
Define S̃n+k−1 :=

{
v ∈ Sn+k−1 | (v1, . . . , vn) = 0

}
. As Πy∂f(a, b) is of maximal rank,

it follows (Πy∂f(a, b)) S̃n+k−1 does not contain 0 and is compact. Hence, there exists a

K ′ > 0 such that the distance between (Πy∂f(a, b)) S̃n+k−1 and 0 is 2K ′.

Define Ωε to be the set containing (n+ k)× k matrices η such that ‖η − ξ‖ < ε for at

least one ξ ∈ ∂f(a, b).

By continuity, for ε > 0 sufficiently small, ΩεS̃
n+k−1 is distance at least K ′ from 0. By

the upper semicontinuity of the generalised derivative (see proposition 3.2), there exists

r > 0 such that for any (x, y) ∈ Br(a, b),

∂f(x, y) ⊆ Ωε. (8)

Now, let v ∈ S̃n+k−1. Then, Ωεv is a convex set that is distance at least K ′ from 0. This

is also true for Ωεv. By proposition 3.5 applied to Ωεv and 0, there exists an unit vector
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Figure 3: A diagram illustrating what is happening in lemma 5.4].

w ∈ Rk and K > 0 such that

〈w,Ωεv〉 ≥ K.

The lemma follows from this and equation 8.

Lemma 5.4. Let (x, y1), (x, y2) ∈ Br(a, b). Then,

‖f(x, y1)− f(x, y2)‖ ≥ K‖y1 − y2‖.

Proof of lemma 5.4. Without loss of generality, y1 6= y2. Let

v :=
(0, y1 − y2)
‖y1 − y2‖

and

λ := ‖y1 − y2‖.

Hence, (x, y1) = (x, y2) + λv.

Let Π be the hyperplane perpendicular to v passing through (x, y2) (see figure 3). The

set P of points (x′, y′) in Br(a, b) where Df(x′, y′) fails to exist is of measure 0, hence by

Fubini’s theorem, for almost everywhere (x′, y′) ∈ Π, the ray

(x′, y′) + tv, t ≥ 0

meets P in a set of 0 one dimensional measure. Choose a (x′, y′) with the above property

and sufficiently close to (x, y2) so that (x′, y′) + tv lies in Br(a, b) for all t ∈ [0, λ]. Then,

the function

t 7→ f((x′, y′) + tv)
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is Lipschitz and differentiable almost everywhere. It’s derivative is Jf((x′, y′)+tv)v. Then,

as explained in the proof of lemma 3.7 we have

f((x′, y′) + λv)− f((x′, y′)) =

∫ λ

0
Jf((x′, y′) + tv)v dt.

Let w ∈ Rk be as in lemma 5.3. Then,

w ·
(
f((x′, y′) + λv)− f((x′, y′))

)
=

∫ λ

0
w · (Jf((x′, y′) + tv)v) dt

≥
∫ λ

0
K dt

= K‖y1 − y2‖.

Thus, as w is an unit vector, it follows that

‖f((x′, y′) + λv)− f((x′, y′))‖ ≥ K‖y1 − y2‖.

By continuity, we have

‖f(x, y1)− f(x, y2)‖ ≥ K‖y1 − y2‖.

This concludes the proof of the proposition, thus showing that if the hypothesis of

Clarke’s Implicit function theorem are satisfied, then the hypothesis of Wuertz’s Implicit

function theorem are satisfied.

5.3 A Partial Converse

It is natural to ask whether Wuertz’s hypothesis implies Clarke’s hypothesis. We believe

that this should be true, as a priori we see no reason why Wuertz’s Implicit function

theorem should be superior to Clarke’s Implicit function theorem. However, we were only

able to prove this implication in the special case where f is classically differentiable at

(a, b) and Πy∂f(a, b) = {∂yf(a, b)}, where ∂yf(a, b) is the far right k × k minor of d(a,b)f .

Maybe our method could be generalised to prove the general case, or maybe a completely

different approach is required.

We prove the contrapositive:

Proposition 5.5. Let f : Rn+k → Rk be Lipschitz and classically differentiable at (a, b) ∈
Rn+k. Suppose Πy∂f(a, b) = {∂yf(a, b)}, where ∂yf(a, b) is the far right k × k minor of

d(a,b)f .

If ∂yf(a, b) is not invertible, then for any open neighbourhood U of (a, b) and for any
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K > 0, there exists (x, y1), (x, y2) ∈ U such that

‖f(x, y1)− f(x, y2)‖ < K‖y1 − y2‖.

Proof. It suffices to prove that there exists (a, yi)
∞
i=1 such that

(a, yi)→ (a, b)

and
‖f(a, yi+1)− f(a, yi)‖

‖yi+1 − yi‖
→ 0.

As ∂yf(a, b) is not invertible, it follows that there exists a nonzero v ∈ Rk such that

∂yf(a, b)v = 0. Let us consider the vector (0, v) ∈ Rn+k. Then, by the definition of the

classical derivative,

lim
λ→0 in R

‖f(a, b+ λv)− f(a, b)− λd(a,b)f(0, v)‖
‖λv‖

= 0.

But, by construction, d(a,b)f(0, v) = 0. Therefore, we have

lim
λ→0 in R

‖f(a, b+ λv)− f(a, b)‖
‖λv‖

= 0.

Define the sequence (a, yi) ⊆ Rn+k where

yi :=

b i odd

b+ 1
i v i even.

Then, we have (a, yi)→ (a, b) and, by the above, we have

‖f(a, yi+1)− f(a, yi)‖
‖yi+1 − yi‖

→ 0.

6 The Motivating Problem

We now want to consider the following question: Let U ⊆ Rn be open; n > p; f : U → Rp

Lipschitz and x0 ∈ U . Then, if for every A ∈ ∂f(x0), there exists a p× n matrix BA such

that

(
A

BA

)
is invertible, is it true that there exists a p× n matrix B such that for every

A ∈ ∂f(x0),

(
A

B

)
is invertible? Recall that we are considering this problem as it offers a

criterion to apply the Implicit function theorem stated before in this report. We did not

manage to prove the result or give a counterexample, but we were able to prove a weaker
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result.

6.1 A Weak Result about The Motivating Problem

We were able to prove that if for every A ∈ ∂f(x0) there exists a (n− p)× n matrix BA

such that

(
A

BA

)
is invertible, then there exists a bounded finite set of (n−p)×n matrices

{B1, . . . , Bm} such that for every A ∈ ∂f(x0),

(
A

Bi

)
is invertible for some 1 ≤ i ≤ m. Our

proof will show that if p = 1, then m = 1 and if p > 1, then m ≤
∏p−1
k=1(n− k). The ideas

required to prove this are no more sophisticated than compactness, but we can conclude

for example that for n = 3 and p = 2, we only require a set of two matrices {B1, B2} so

that for every A ∈ ∂f(x0), either

(
A

B1

)
is invertible or

(
A

B2

)
is invertible.

The proof is given as an inductive argument, for which the next proposition acts as

the base case:

Proposition 6.1. Let C ⊆ Rn be compact and convex such that 0 /∈ C. Then, there exists

a (n− 1)× n matrix B such that for every v ∈ C,

(
vt

B

)
is invertible.

Proof. Let C ⊆ Rn be compact and convex such that 0 /∈ C. We claim that there exists an

unique v̂ ∈ C which is closest to the origin (see figure 4). Indeed, let us define

f : C → R

f(v) := ‖v‖.

Then, f is a continuous function on a compact set. Therefore, f achieves a minimum.

This proves the existence of v̂. To prove uniqueness, suppose v1 and v2 are minima of f .

Consider (1−t)v1+tv2 for t ∈ [0, 1]. This is in C for all t as C is convex. Thus, 0.5v1+0.5v2

is closer to the origin than v1 or v2, which is of course a contradiction unless v1 = v2.

Now consider the hyperplane H through the origin that is orthogonal to v̂. Suppose

H has basis {b1, . . . , bn−1}. The claim is that

B :=


· · · bt1 · · ·

...

· · · btn−1 · · ·


works. Indeed, it suffices to prove that no v ∈ C lies in the span of {b1, . . . , bn−1}.

Suppose otherwise. Let v ∈ C lie in the span of {b1, . . . , bn−1}. Then, as C is convex,

it follows that (1 − t)v + tv̂ ∈ C for all t ∈ [0, 1]. Therefore, 0.5v + 0.5v̂ is closer to the

origin than v̂. This is a contradiction.
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Figure 4: Showing the hyperplane through the origin orthogonal to the vector with smallest
size.

We have proven the base case of the inductive proof of the following proposition:

Proposition 6.2. Suppose U ⊆ Rn is open, f : U → Rp is Lipschitz at x0 ∈ U and n > p.

If for every A ∈ ∂f(x0) there exists a (n−p)×n matrix BA such that

(
A

BA

)
is invertible,

then there exists a bounded finite set of (n− p)× n matrices {B1, . . . , Bm} such that for

every A ∈ ∂f(x0),

(
A

Bi

)
is invertible for some 1 ≤ i ≤ m. Our proof will show that for

p > 1, m ≤
∏p−1
k=1(n− k).

Proof. We prove by induction on p. If p = 1, the result follows from proposition 6.1. Thus,

in this case, we may take m = 1.

Suppose we have proven the result for everything less than p. We want to prove the

result for p. Let πRp−1 : Rp → Rp−1 be the projection onto the first p − 1 coordinates.

Define f̂ := πRp−1 ◦ f . Thus, f̂ : U → Rp−1. We claim the following: every Â ∈ ∂f̂(x0)

may be realised as an A ∈ δx0f with its last row deleted. Recall,

∂f̂(x0) = convH
({

lim
m→∞

dxm f̂ | xm → x0

})
.

It suffices to prove every M̂ = limm→∞ dxm f̂ may be realised as an M = limi→∞ dxif with

its last row deleted. Let

M̂ = lim
m→∞

dxm f̂

= lim
m→∞

dxm (πRp−1 ◦ f)

= lim
m→∞

(πRp−1 ◦ dxmf) .
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It is not necessarily true that limm→∞ dxmf exists. However, by sequential compact-

ness, there exists a subsequence (xmk)∞k=1 such that limk→∞ dxmk f exists. Note, M̂ =

limk→∞ dxmk f̂ . Thus, defining M := limk→∞ dxmk f , it follows πRp−1 ◦M = M̂ .

Furthermore, by similar reasoning as above, it follows that deleting the last row of

some A ∈ ∂f(x0) gives some Â ∈ ∂f̂(x0).

Now, from the above, it follows that every Â ∈ ∂f̂(x0) is of maximal rank, as its

corresponding A ∈ ∂f(x0) is of maximal rank by hypothesis. Therefore, there exists

a (n − p + 1) × n matrix BÂ such that

(
Â

BÂ

)
is invertible. Thus, by the inductive

hypothesis, there exists a finite set of (n− p+ 1)× n matrices {B1, . . . , Br} such that for

every Â ∈ ∂f̂(x0),

(
Â

Bi

)
is invertible for some Bi ∈ {B1, . . . , Br}.

Now, let A ∈ ∂f(x0) with

A =


· · · at1 · · ·

...

· · · atp · · ·

 .

Then,

Â =


· · · at1 · · ·

...

· · · atp−1 · · ·

 .

Let

Bi =


· · · bt1 · · ·

...

· · · btn−p+1 · · ·


be the matrix such that

(
Â

Bi

)
is invertible. Then, as a1, . . . , ap−1, b1, . . . , bn−p+1 form a

basis of Rn and a1, . . . , ap are linearly independent, it follows there exists constants such

that

ap = λ1a1 + · · ·+ λp−1ap−1 + µ1b1 + · · ·+ µn−p+1bn−p+1

where µj 6= 0 for some j. Thus,{a1, . . . , ap, b1, . . . , bj−1, bj+1, . . . , bn−p+1} are linearly

independent. Thus, (
A

Bi,j

)
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is invertible where

Bi,j :=



· · · bt1 · · ·
...

· · · btj−1 · · ·
· · · btj+1 · · ·

...

· · · btn−p+1 · · ·


.

6.2 Difficulties Trying to Solve The Motivating Problem

Having discovered a positive result for the motivating problem in the special case p = 1

(see proposition 6.1), we attempted to generalise our arguments in the hope of finding a

positive result for general p.

Specifically, for n > p, consider g : U ⊆ Rn → Rp Lipschitz and let x0 ∈ U . Define

C := ∂g(x0) and define

Σ := {M ∈ Rp×n | rank(M) < p}.

We considered the function

d : C × Σ→ R

d(A, σ) := ‖A− σ‖2

where the norm is understood to be the Euclidean distance norm. This function is intended

to generalise the function f considered in proposition 6.1. It was relatively straightforward

to prove that f in proposition 6.1 achieved an unique minimum. However, this property

is not clear for the function d.

Being optimistic and assuming that d does achieve an unique minimum in all cases,

we then tried to mimic our proof of proposition 6.1. Specifically, if we denote the unique

minimum of d by (Â, σ̂), we considered the orthogonal complement of the minimal

length vector v := Â − σ̂ within the space Rp×n (the reader should perhaps pause here

and consider why this mimics the proof of proposition 6.1). This vector subspace of Rp×n,

denoted H, has dimension pn− 1.

In the proof of proposition 6.1, the dimension of H was n− 1 and a basis set of H was

sufficent to construct our desired n − 1 × n matrix B. However, in the general case, the

reader will see that a basis set of H consists of pn− 1 matrices. It is not clear how one

constructs a n− p× n matrix B from a set of pn− 1 matrices, each of dimension p× n.

Maybe a completely new method is required, or maybe we were not smart enough to

make such a construction!
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7 Conclusion

To summarise, this dissertation was motivated by the following problem: Let U ⊆ Rn be

open; n > p; f : U → Rp Lipschitz and x0 ∈ U . Then, if for every A ∈ ∂f(x0), there

exists a p× n matrix BA such that

(
A

BA

)
is invertible, is it true that there exists a p× n

matrix B such that for every A ∈ ∂f(x0),

(
A

B

)
is invertible? Although we could not find

a proof or a suitable counterexample to this problem, we did manage to prove a weaker

result. We proved that, under the same hypothesis, that there exists a bounded finite

set of (n − p) × n matrices {B1, . . . , Bm} with m = 1 if p = 1 and m ≤
∏p−1
k=1(n − k) if

p > 1 such that for every A ∈ ∂f(x0),

(
A

Bi

)
is invertible for some 1 ≤ i ≤ m. If the

author had more time, he would try to find a counterexample to the original problem, as

he conjectures that the statement of the problem is false.

In addition, we managed to prove a weaker Implicit function theorem for Lipschitz

functions stated in terms of generalised derivatives. We provided two proofs: one using

the ideas from Lee’s Introduction to Smooth Manifolds [5] and another proof using Clarke’s

Implicit function theorem 3.10.

However, in the author’s opinion, the most interesting part of the dissertation was

studying the link between Clarke’s Implicit function theorem 3.10 and Wuertz’s Implicit

function theorem 5.1. Specifically, we proved that if for Lipschitz f : Rn+k → Rk,

Πy∂f(a, b) :=
{
N ∈ Rk×k | there exists M ∈ Rk×nsuch that (MN) ∈ ∂f(a, b)

}
consists of invertible k× k matrices, then, there exists an open neighbourhood U of (a, b)

and K > 0 such that

‖f(x, y1)− f(x, y2)‖ ≥ K‖y1 − y2‖

for all (x, yj) ∈ U . Naturally, we asked whether the converse was true, but we only

managed to prove the converse in the special case where f is classically differentiable at

(a, b) and Πy∂f(a, b) only contains the far right k×k minor of the Jacobian Jf(a, b). The

author conjectures that the converse implication should be true, as he sees no reason why

Wuertz’s Implicit function theorem 5.1 should be superior to Clarke’s Implicit function

theorem 3.10. If the author had more time, he would definitely try to prove this result.

Thus, the original problem remains unsolved and we have discovered another interest-

ing question!
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