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Abstract

We prove homological stability results for the orthogonal group, special orthogonal

group, elementary orthogonal group and the spin group with respect to the hyper-

bolic form. We prove homological stability over a commutative local ring R with

infinite residue field such that 2 ∈ R∗.

In the orthogonal case, this improves the range for homological stability given

by Mirzaii by 1 and generalises the result obtained by Sprehn and Wahl to the case

of local rings. In the special orthogonal case, this generalises the result obtained

by Essert for infinite fields to the case of local rings, and is the first homological

stability result for the special orthogonal group over a local ring. For the elemen-

tary orthogonal group, this is the first known homological stability result. For the

spin group, this coincides with H1-stability and H2-stability results stated in Hahn-

O’Meara, and is the first homological stability result that accounts for all homology

groups.
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Chapter 1

Introduction

In this thesis, we prove homological stability results for the orthogonal group, special

orthogonal group, elementary orthogonal group and the spin group with respect to

the hyperbolic form.

For the orthogonal group, this improves the current best homological stability

range and generalises the analogous result for fields to the case of local rings. For

the special orthogonal group, this is the first homological stability result over a

local ring, and generalises the analogous result for infinite fields. For the elementary

orthogonal group, this is the first known homological stability result. For the spin

group, this coincides with known H1-stability and H2-stability results, and is the

first homological stability result that accounts for all homology groups.

Recall, for a ring R, the (split) orthogonal group On,n(R) ⊆ GL2n(R), is the

subgroup

On,n(R) := {A ∈ GL2n(R)| tAψ2nA = ψ2n}.

of R-linear automorphisms preserving the form

ψ2n =


ψ2

ψ2

. . .

ψ2

 =
n⊕
1

ψ2, ψ2 =

(
0 1

1 0

)
,

where tA denotes the transpose matrix of A. Define SOn,n(R) to be the subgroup

of On,n(R) consisting of all matrices with determinant 1. We will always consider

1



On,n(R) as a subgroup of On+1,n+1(R) via the embedding

On,n(R) ⊆ On+1,n+1(R) : A 7→

1 0 0

0 1 0

0 0 A

 .

We will be interested in studying homological stability under this embedding.

The homology of the orthogonal group On,n has long been known to stabilise,

in quite large generality; see, e.g., [Vog81], [Bet90], [Cha87]. Recently, Sprehn

and Wahl in [SW20] have shown that for every field F other than the field F2,

Hk(On,n(F);Z) → Hk(On+1,n+1(F);Z) is an isomorphism for k ≤ n−1 and surjective

for k ≤ n. In the context of fields, this is currently the best known range of stability.

However, they were unable to extend their results to local rings, essentially because

the framework that they use is only applicable to vector spaces, rather than modules

over local rings. In the context of local rings, the first precise range of stability was

given by Mirzaii in [Mir04]. Specfically, he proved that for R commutative local ring

with infinite residue field, Hk(On,n(R);Z) → Hk(On+1,n+1(R);Z) is an isomorphism

for k ≤ n− 2 and surjective for k ≤ n− 1.

Our first main result is an improvement on the known stability range for

On,n over local rings with infinite residue field, with the additional assumption that

we require 2 to be invertible. Specifically, we prove that:

Theorem 1.0.1. Let R be a commutative local ring with infinite residue field such

that 2 ∈ R∗. Then, the natural homomorphism

Hk(On,n(R)) −→ Hk(On+1,n+1(R))

is an isomorphism for k ≤ n− 1 and surjective for k ≤ n.

The proof is modelled on the homological stability proofs given in [NS89]

and [Sch17]. Specifically, we consider a highly acyclic chain complex on which

On,n acts, and analyse the resulting hyperhomology spectral sequences. This is a

standard method of proving such results, but the main innovation that gives us the

improvement in stability is the use of the technique of localising homology groups.

This technique was first introduced in [Sch17]. It is this technique that makes the

hyperhomology spectral sequences easy to analyse.

In addition, the methods we use to prove homological stability for On,n(R)

may be used to prove homological stability for SOn,n(R), which gives our second

main result:
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Theorem 1.0.2. Let R be a commutative local ring with infinite residue field such

that 2 ∈ R∗. Then, the natural homomorphism

Hk(SOn,n(R)) −→ Hk(SOn+1,n+1(R))

is an isomorphism for k ≤ n− 1 and surjective for k ≤ n.

This is the first homological stability result for the special orthogonal group

over a local ring, and generalises the analogous result for infinite fields obtained by

Essert [Ess13].

Next, the elementary orthogonal group EOn,n(R) may be defined in terms

of generators and should be viewed as the orthogonal analogue of the elementary

linear group En(R).

For r ∈ R and 1 ≤ k ̸= l ≤ n, define γkl(r) to be the n× n matrix with r in

the (k, l) position, −r in the (l, k) position, and 0 elsewhere. Define γkk(r) to be the

zero matrix. In addition, for 1 ≤ i ̸= j ≤ n, define eij(r) to be the n×n elementary

linear matrix with 1 along the diagonal and r in the (i, j) position. We then define

the family of elementary orthogonal matrices as

E2k,2l(r) :=

(
In

γkl(r) In

)
, (1.1)

E2k−1,2l−1(r) :=

(
In γkl(r)

In

)
, (1.2)

and for k ̸= l,

E2k−1,2l(r) :=

(
ekl(r)

elk(−r)

)
, (1.3)

E2k,2l−1(r) :=

(
elk(−r)

ekl(r)

)
. (1.4)

We define the elementary orthogonal group EOn,n(R) as the subgroup of On,n(R)

generated by the elementary orthogonal matrices. We refer the reader to [HO89,

Sections 5.3A and 5.3B] for more information about EOn,n(R), including a list of

relations amongst these generators.

Remark 1. For the sake of notation, we have in the above definitions used the con-

vention that the hyperbolic form on R2n is taken with respect to matrix

(
0 In

In 0

)
.

This convention therefore differs from the standard convention used in this thesis up
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to conjugation by a suitable permutation matrix, and we will always tacitly assume

this whenever working with EOn,n(R).

Our third main result:

Theorem 1.0.3. Let R be a commutative local ring with infinite residue field such

that 2 ∈ R∗. Then, the natural homomorphism

Hk(EOn,n(R)) −→ Hk(EOn+1,n+1(R))

is an isomorphism for k ≤ n− 1 and surjective for k ≤ n.

To our best knowledge, this is the first ever homological stability result given

for EOn,n.

Finally, let R be a commutative ring, which for the purposes of this article

is such that 2 ∈ R∗. We define Spinn,n(R) to be the Spin group of the quadratic

module (R2n, ⟨·, ·⟩), where ⟨·, ·⟩ is the symmetric bilinear form associated to the

matrix ψ2n as above. We refer the reader to the preliminaries for more information

about Spin groups. The reader may also want to look at [HO89], [Sch12] and [LM16]

as alternative references.

In the case R is a commutative local ring with infinite residue field such that

2 ∈ R∗, homological stability for Spinn,n will follow immediately from homological

stability of EOn,n via the relative Hochschild-Serre spectral sequence applied to

short exact sequence

1 −→ Z2 −→ Spinn,n −→ EOn,n −→ 1,

see Theorem 2.4.21 in the Preliminaries. Indeed, for the purposes of this thesis, it

is perhaps best to think of EOn,n(R) as being defined in terms of this short exact

sequence. This is the perspective that we will adopt.

This gives us our fourth main result:

Theorem 1.0.4. Let R be a commutative local ring with infinite residue field such

that 2 ∈ R∗. Then, the natural homomorphism

Hk(Spinn,n(R)) −→ Hk(Spinn+1,n+1(R))

is an isomorphism for k ≤ n− 1 and surjective for k ≤ n.

This coincides with known H1 and H2-stability results for Spinn,n given in

[HO89], and is the first such homological stability result that accounts for all ho-

mology groups.
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Chapter 2

Preliminaries

2.1 Group homology

In this section, we give a quick review of group homology.

Group homology is defined in terms of left derived functors, so we quickly

introduce this concept.

2.1.1 Left derived functors

Let A be an abelian category. See for example [Wei94, Definition 1.2.2] or [Sri07,

Appendix B] for equivalent definitions. An object P in A is called projective if

it satisfies the following lifting property: Given an epimorphism e : E ↠ X and

morphism f : P → X, there exists a morphism f̄ : P → E such that e◦ f̄ = f . That

is to say, the diagram

E

P X

e

f

∃f̄

commutes. As an example, when A is the the category of (left) R-modules for some

ring R, the projective objects are precisely the direct summands of free R-modules.

We say that A has enough projectives if for every object A of A there is an

epimorphism P → A with P projective.

Abelian categories with enough projectives are important because every ob-

ject has a projective resolution.

Definition 2.1.1. Let M be an object of A. A left resolution of M is a chain

complex P· with Pi = 0 for i < 0, together with a map ε : P0 → M so that the
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augmented complex

· · · → P2 → P1 → P0
ε−→M → 0

is exact. It is a projective resolution if moreover, each Pi is projective.

Lemma 2.1.2. Let A be an abelian category with enough projectives. Then, every

object M in A has a projective resolution.

Proof. See [Wei94, Lemma 2.2.5].

We say that an (additive) functor F : A → B is exact if whenever

0 → A→ B → C → 0

is a short exact sequence in A, then

0 → F (A) → F (B) → F (C) → 0

is a short exact sequence in B. Moreover, we say that F : A → B is right exact if

whenever

0 → A→ B → C → 0

is a short exact sequence in A, then

F (A) → F (B) → F (C) → 0

is an exact sequence in B.

It is the right exact functors which admit left derived functors.

Definition 2.1.3. Let F : A → B be a right exact functor between two abelian

categories, and suppose A has enough projectives. For i ≥ 0, we define the left

derived functors LiF as follows: For A an object of A, let P· → A be a projective

resolution of A. We define

LiF (A) := Hi(F (P·)).

Remark 2. The above definition does not depend in the choice of projective reso-

lution P· → A by [Wei94, Lemma 2.4.1].

Remark 3. The left derived functors L∗F are indeed functorial. That is to say, if

f : A′ → A is any map in A, there is a natural map LiF (f) : LiF (A′) → LiF (A)

for each i. We refer to [Wei94, Lemma 2.4.4] for the details.
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Remark 4. The definition is cooked up so that the left derived functors L∗F form a

universal homological δ-functor. We refer the reader to [Wei94, Definition 2.1.4] for

this definition and [Wei94, Theorem 2.4.7] for a proof of this fact. But intuitively,

this says that for every short exact sequence

0 → A→ B → C → 0

in A, the left derived functors L∗(F ) assemble into a long exact sequence

. . .

L2F (A) L2F (B) L2F (C)

L1F (A) L1F (B) L1F (C)

F (A) F (B) F (C) 0,

and are ‘universal’ with this property in some sense. This compensates for the fact

that F : A → B is right exact, rather than being exact.

Example 2.1.4. Let R be a ring, B a left R-module, so that

T : Mod −R→ Ab

A 7→ A⊗R B

is a functor from right R-modules to abelian groups. The tensor-hom adjunction

states that this functor is left-adjoint and therefore by [Wei94, Theorem 2.6.1], T

is right exact, so that it has left derived functors. Specfically, we define the Tor

functors as

TorRn (A,B) := Ln(T )(A).

We refer the reader to [Wei94] for more information about these functors. Perhaps

one property that should be mentioned explixitly is that Ln(−⊗RB)(A) ∼= Ln(A⊗R

−)(B). See [Wei94, Theorem 2.7.2].

2.1.2 Definition of group homology

Let G be a group. Group homology is defined in terms of G-modules, so we first

need to define this concept.
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Definition 2.1.5. Let G be a group. A (left) G-module is an abelian group A

together with a group action · : G×A→ A such that

g · (a+ b) = g · a+ g · b.

A morphism of G-modules φ : A → B is a morphism of abelian groups such that

φ(g · a) = g · φ(a) for every g ∈ G, a ∈ A.

We thus obtain a category G-mod of (left) G-modules. Note that this cate-

gory may be identified with the category of left Z[G] modules, where Z[G] denotes

the group ring of G. This identification is frequently used without mention. In

particular, the category of G-modules is an abelian category.

Group homology is defined as the left derived functors of the so called coin-

variants functor, which we shall now define.

Definition 2.1.6. Let G be a group and A be a G-module. Then, the coinvariants

AG of a G-module A are

AG := A/⟨g · a− a|g ∈ G, a ∈ A⟩,

where ⟨g·a−a|g ∈ G, a ∈ A⟩ means the smallest submodule generated by {g·a−a|g ∈
G, a ∈ A}.

Note that taking coinvariants is a functor −G : G − mod → Ab from the

category of G-modules to the category of Abelian groups. By [Wei94, Exercise

6.1.1], −G is a right exact functor, so that we can make the following definition.

Definition 2.1.7. Let G be a group and A be a G-module. Then, the homology

groups of G with coefficients in A, denoted H∗(G,A), are defined as the left derived

functors

H∗(G,A) := L∗(−G)(A).

Remark 5. It is standard convention to write H∗(G) := H∗(G,Z), where Z denotes

the integers given the trivial G-module structure i.e. g ·n = n for every g ∈ G,n ∈ Z.

The trivial G-module Z is universal amongst trivial G-modules in the follow-

ing sense: if A is an abelian group with trivial G-action, we have for every n a short

exact sequence of abelian groups

0 → Hn(G) ⊗A→ Hn(G,A) → TorZ1 (Hn−1(G), A) → 0.

This is known as the universal coefficient sequence for group homology. See [Bro94,

§III Exercise 1.3] for more details. In particular, if A is moreover assumed to be
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torsion-free, then by [Wei94, Corollary 3.1.5], we have

Hn(G,A) ∼= Hn(G) ⊗A.

Remark 6. Note that for any G-module A, AG
∼= Z ⊗G A, so that H∗(G,A) ∼=

TorZG∗ (Z, A).

Example 2.1.8. By definition, H0(G) = Z. By [Wei94, Theorem 6.1.11], H1(G) ∼=
G/[G,G], the abelianisation of G. By [Wei94, Theorem 6.8.8], H2(G) ∼= R∩[F,F ]

[F,R] ,

where G = ⟨F |R⟩ is a presentation of G. This is known as Hopf’s theorem.

Remark 7. The definition we present here is perhaps best suited for computations,

but there exists equivalent definitions. For example, for a group G, if we let BG :=

K(G, 1) denote the Eilenberg-Maclane space of G (see for example [Hat01]), by

[Wei94, Theorem 6.10.5], we have

H∗(BG,Z) ∼= H∗(G,Z),

where the left-hand side denotes singular homology. This result may be seen as the

start of homological algebra (see the remark after [Wei94, Theorem 6.10.5]).

Remark 8 (Functoriality of Group Homology). By definition, for a fixed group G,

group homology H∗(G,A) is functorial in G-modules A. However, it is also true

that group homology H∗(G,A) is functorial in the pair (G,A).

More specifically, let G,G′ be groups and A,A′ be G,G′-modules respec-

tively. Let (φ, f) : (G,A) → (G′, A′) a pair of maps where φ : G → G′ is a group

homomorphism and f : A → A′ is a homomorphism of abelian groups such that

f(g · a) = φ(g) · f(a) for every g ∈ G, a ∈ A. Then, (φ, f) induces a map on group

homology (φ, f)∗ : H∗(G,A) → H∗(G
′, A′). We refer the reader to [Bro94, §III.8]

for more details.

Remark 9 (Shapiro’s lemma). Shapiro’s lemma relates the homology of a sub-

group to the homology of its group. Unsurprisingly therefore, it is very useful when

performing computations.

In this thesis, we will use Shapiro’s lemma stated as follows:

Lemma 2.1.9. Let G be a group. Let H ≤ G be a subgroup. Then, the map of

pairs

(i, 1 ⊗ 1) : (H,Z) → (G,ZG⊗ZH Z)

9



given by the inclusion i : H ↪→ G and 1 ⊗ 1 : 1 7→ 1 ⊗ 1 induces an isomorphism on

homology groups

(i, 1 ⊗ 1)∗ : H∗(H,Z)
∼=−→ H∗(G,ZG⊗ZH Z).

We refer the reader to [Bro94, Chapter III, Exercise 8.2] for more details.

2.1.2.1 Relative homology

As in topology, we can define a notion of relative group homology.

Specifically, let G be a group and let H ≤ G be a subgroup. Let A be a

G-module. We want to define the relative homology groups H∗(G,H;A).

Let P· → Z be a (right) projective G-module resolution of Z. Note, P· → Z
is also a projective H-mod resolution.

Furthermore, note that P· ⊗G A can be used to compute H∗(G,A); P· ⊗H A

can be used to compute H∗(H,A) and there is a canonical map P·⊗H A→ P·⊗GA.

This motivates the following definition:

Definition 2.1.10. In the above notation, define

H∗(G,H;A) := H∗(Cone(P· ⊗H A→ P· ⊗G A)).

Here, recall that the cone of a map f : B· → C· between chain complexes is

a chain complex Cone(f) whose degree n part is Bn−1 ⊕ Cn and whose differential

is given by d(b, c) = (−d(b), d(c) − f(b)). In particular, by definition of the cone

construction, we have a long exact sequence

· · · → Hn(H,A) → Hn(G,A) → Hn(G,H;A) → Hn−1(H,A) → · · · .

(See [Wei94, 1.5.2] for more details.) Thus, by the 5-lemma, we see that this defini-

tion is well-defined, as usual group homology is well defined.

In addition, this definition is entirely analogous to the situation in topology.

Indeed, for a map of topological space f : X → Y , we have

H∗(Y,X) ∼= H∗(Cyl(f), X × {0})

∼= H̃∗(Cone(f)),

where the first isomorphism follows from the fact that the mapping cylinder Cyl(f)

deformation retracts onto Y , and the second isomorphism follows from the fact that

(Cyl(f), X × {0}) is a good pair, in the sense of [Hat01].
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There is also a universal coefficient theorem for relative group homology

which will be used to prove homological stability for the Spin groups. We outline a

proof, as there does not seem to be a proof written in the literature.

Theorem 2.1.11. Let G be a group, H ≤ G subgroup and A a trivial G-module.

Then, for all n ≥ 1, there are (noncanonical) isomorphisms

Hn(G,H;A) ∼= (Hn(G,H) ⊗A) ⊕ TorZ1 (Hn−1(G,H) ⊗A).

Proof. Let P· → Z be a free mod-G resolution of Z. As A is a trivial G-module, we

have P· ⊗H A ∼= (P·)H ⊗A and P· ⊗G A ∼= (P·)G ⊗A. Therefore,

Cone(P· ⊗H A→ P· ⊗G A) ∼= Cone((P·)H ⊗A→ (P·)G ⊗A)

∼= Cone((P·)H → (P·)G) ⊗A

∼= Cone(P· ⊗H Z → P· ⊗G Z) ⊗A.

Thus, by [Wei94, Theorem 3.6.2]

Hn(G,H;A) ∼= Hn(Cone(P· ⊗H Z → P· ⊗G Z) ⊗A)

∼= (Hn(G,H) ⊗A) ⊕ TorZ1 (Hn−1(G,H), A).

2.1.3 The homological stability problem

Let {Gn}n≥0 be a sequence of groups, equipped with inclusions Gn ↪→ Gn+1. By

remark 8, these maps induce maps on group homology Hk(Gn) → Hk(Gn+1). The

homological stability problem seeks to understand the behaviour of these maps.

This problem had been historically motivated by Algebraic K-Theory, and the idea

is that for a certain a collection of groups, the maps Hk(Gn) → Hk(Gn+1) even-

tually (depending on k) become isomorphisms. Note that by the above discussion

about relative homology groups, this problem is equivalent to the relative homology

Hk(Gn, Gn+1) vanishing in a certain range.

For example, for a ring R, its Algebraic K-Theory

Ki(R) = πi(BGL(R)+)

11



comes equipped with the hurewicz map into homology

πi(BGL(R)+) −→Hi(BGL(R)+)
∼=−→Hi(GL(R)).

It is therefore interesting to understand when does the homology of GLn(R) sta-

bilise? Indeed, this problem goes back to Quillen and has been studied by others,

for example [NS89]. We refer the reader to Wahl’s survey article [Wah22] for more

historical detail and motivation. The motivation for this thesis came from the anal-

ogous situation in Hermitian K-Theory, where for a ring R with 2 ∈ R∗, we have a

hurewicz map

GWi(R) ∼= πi(BO∞,∞(R)+) −→Hi(BO∞,∞(R)+)
∼=−→Hi(O∞,∞(R)),

where O∞,∞(R) := lim−→On,n(R) is the infinite orthogonal group.

The strategy to prove such homological stability results is standard and goes

back to Quillen. Specifically, the idea is to construct a highly acyclic chain complex

on which the groups Gn act on transitively, and analyse the resulting hyperhomology

spectral sequences. Hard work is usually necessary in proving the acyclicity of the

chain complex, and the analysis of the spectral sequences.

In particular, one needs to have a solid command of spectral sequences, so

we review this theory in the next section.

2.2 Spectral sequences

In this section, we give a quick review of the theory of spectral sequences, leading

to the hyperhomology spectral sequences that are needed to prove our homological

stability results.

Definition 2.2.1. A (homological) spectral sequence (starting with Ea) in an abelian

category A consists of the following data:

• A family of {Er
p,q} of objects in A for every p, q ∈ Z, r ≥ a. We refer to Er as

the r’th page of the spectral sequence, and we say the total degree of the term

Er
p,q is n := p+ q.

• A familily of maps drp,q : Er
p,q → Er

p−r,q+r−1, called differentials, such that

dr ◦ dr = 0. (We say that the differentials dr have bidegree (−r, r − 1)).

12



• Isomorphisms between Er+1
p,q and the homology of Er

∗∗ at the spot Er
p,q:

Er+1
p,q

∼= ker(drp,q)/ Im(drp+r,q−r+1).

Moreover, there is a category of homological spectral sequences: a morphism f :

E′ → E is a family of maps f rp,q : E′r
p,q → Er

p,q in A with drf r = f rd′r such that

f r+1
p,q is the map induced by f rp,q on homology.

See figure 2.1 for an example of what a homological spectral sequence looks

like.

Figure 2.1: An example of a homological spectral sequence. Image taken from
https://picturethismaths.wordpress.com/2016/02/04/spectral-sequences/

Example 2.2.2. We will usually be dealing with a specific type of spectral sequence,

namely a first quadrant spectral sequence. This is a spectral sequence where Ea
p,q = 0

unless p, q ≥ 0. Note, if this condition holds for a given page Er0 , then its holds for

every r ≥ r0. The spectral sequences shown in figure 2.1 shows the non-zero part

of a first quadrant spectral sequence. A first quadrant spectral sequence is itself an

example of a bounded spectral sequence: a spectral sequence {Er
p,q} that for every

n ∈ Z has only finitely many non-zero terms of total degree n on every page Er.

Remark 10. For a first quadrant spectral sequence, note that Er
p,q = Er+1

p,q for

every large r (taking r > max{p, q + 1} will do). We say that the spectral sequence

stabilises, and denote the stable value E∞
p,q. More generally, a bounded spectral

sequence {Er
p,q} will have stable values E∞

p,q of Er
p,q for every (p, q), for similar

reasons as above.
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The spectral sequences that actually buy you computations are the conver-

gent spectral sequences.

Definition 2.2.3. Let {Er
p,q} be a (bounded) spectral sequence. We say that this

spectral sequence converges to a Z-graded object H∗ (in the abelian category A) if

for every Hn, we have a finite filtration

0 = FsHn ⊆ · · · ⊆ Fp−1Hn ⊆ FpHn ⊆ Fp+1Hn ⊆ · · · ⊆ FtHn = Hn

such that for every (p, q) with p+ q = n, we are given isomorphisms

E∞
p,q

∼= FpHn/Fp−1Hn.

The traditional way to write such convergence is

Ea
p,q ⇒ Hp+q,

where Ea is the starting page of the spectral sequence. It is common to call H∗ =⊕
nHn the abutment of the spectral sequence.

Moreover, there is a sensible notion of a morphism between convergent spec-

tral sequences. Indeed, let H∗ and H ′
∗ be the abutments of convergent spectral

sequences {Er
p,q} and {E′r

p,q} respectively, and let f : E → E′ be a morphism of

spectral sequences. We say a map h : H∗ → H ′
∗ is compatible with morphism

f : E → E′ if h maps FpHn to FpH
′
n and the diagrams

E∞
p,q E′∞

p,q

FpHn/Fp−1Hn FpH
′
n/Fp−1H

′
n

f

∼= ∼=

h

commute. We then refer to the pair (f, h) as the morphism between the convergent

spectral sequences E and E′.

Let us see some examples of convergent spectral sequences.

Example 2.2.4 (Serre spectral sequence). Let F → X → B be a fibration with B

path connected. If π1(B) acts trivially on H∗(F ), we have a spectral sequence

E2
p,q = Hp(B,Hq(F )) ⇒ Hp+q(X).

We refer to [SS89, §9] for more details. Note that the trivial action hypothesis may

be removed if one is willing to work with local coefficents.
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Example 2.2.5 (Group homology spectral sequence). Let

1 → N → G→ G/N → 1

be a short exact sequence of groups, and let A be a G-module. Then, there is a

convergent first quadrant spectral sequence

E2
p,q = Hp(G/N,Hq(N,A)) ⇒ Hp+q(G,A),

called the Hochschild-Serre Spectral Sequence. We refer the reader to [Bro94, §VII.6]

or [Wei94, §6.8] for more details. This spectral sequence will used frequently in this

thesis. Moreover, there is relative version of this spectral sequence. Specifically, let

1 → N → G1 → H1 → 1

and

1 → N → G2 → H2 → 1

be a pair of short exact sequences of groups, equipped with inclusions G1 ↪→ G2,

H1 ↪→ H2 such that the diagram

1 N G1 H1 1

1 N G2 H2 1

=

commutes. Let A be a G2-module. Then, there is a spectral sequence

E2
p,q = Hp(H2, H1;Hq(N,A)) ⇒ Hp+q(G2, G1;A),

called the relative Hochschild-Serre Spectral Sequence. We refer to [McC01, Exercise

5.5] for more details.

This spectral sequence will be used to immediately deduce homological sta-

bility of Spinn,n from homological stability of EOn,n.

Example 2.2.6 (Spectral sequence of a filtration). let

0 = FsC ⊆ · · · ⊆ Fp−1C ⊆ FpC ⊆ Fp+1C ⊆ · · · ⊆ FtC = C

be a bounded filtration of a chain complex C. Then, there is convergent spectral

sequence

E1
p,q = Hp+q(FpC/Fp−1C) ⇒ Hp+q(C).
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We refer the reader to [Wei94, §5.5] for a proof of this fact. This is an important

example, as this in particular allows you to prove the existence of many convergent

spectral sequences associated to a double complex, such as the Lyndon-Hochschild-

Serre Spectral Sequence above (see for example [Bro94, §VII.6]) and the hyperho-

mology spectral sequences that we are now about to introduce. We give some details

in the next section, but we refer the reader to [Wei94, §5.6] for more details about

how a double complex gives rise to convergent spectral sequences via the above

example.

Example 2.2.7 (Spectral sequences associated to a double complex). An important

application of the above example are the spectral sequences obtained from a double

complex.

Let C = C∗∗ be a double complex. This is simply a family of object {Cp,q}
in the abelian category A, together with maps

dh : Cp,q → Cp−1,q and dv : Cp,q → Cp,q−1

such that dh ◦ dh = dv ◦ dv = 0 and dv ◦ dh = −dh ◦ dv. (Note, some authors require

the condition dv ◦ dh = dh ◦ dv instead of dv ◦ dh = −dh ◦ dv, but the two definitions

give equivalent theories provided one keeps track of the signs).

For our purposes, we may assume C is bounded i.e. Cp,q = 0 along the

diagonal p+ q = n for all but finitely many (p, q). Let Tot(C) be the total complex

of C. This is a chain complex with Tot(C)n :=
⊕

p+q=nCp,q, with differential

d = dh + dv. There are two natural filtrations that one can consider on Tot(C):

• The column filtration, given by

· · · ⊆ IFn−1Tot(C) ⊆ IFnTot(C) ⊆ IFn+1Tot(C) ⊆ · · · ,

where
IFnTot(C) := Tot(Iτ≤n(C)),

Iτ≤n(C)p,q :=

Cp,q if p ≤ n,

0 if p > n.

• The row filtration, given by

· · · ⊆ IIFn−1Tot(C) ⊆ IIFnTot(C) ⊆ IIFn+1Tot(C) ⊆ · · · ,
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where
IIFnTot(C) := Tot(IIτ≤n(C)),

IIτ≤n(C)p,q :=

Cp,q if q ≤ n,

0 if q > n.

The reader should draw some pictures to visualise these filtrations. If C is a first

quadrant double complex, these two filtrations give rise to spectral sequences

IE2
p,q = Hh

pH
v
q (C) ⇒ Hp+q(Tot(C))

and
IIE2

p,q = Hv
pH

h
q (C) ⇒ Hp+q(Tot(C))

respectively, where the superscripts Hv and Hh denote the direction in which ho-

mology is taken. We refer to [Wei94, §5.6] for more details.

2.2.1 Hyperhomology

Let G be a group. For a (left) G-module M , we have

H∗(G,M) ∼= TorZG∗ (Z,M)

∼= H∗(F· ⊗G M),

where F· → Z is a (right) ZG-projective resolution of Z.

It is useful to generalise this, allowing coefficients to take values in complexes

of (non-negative) G-modules. (Here, a complex of G-modules means a chain complex

consisting of G-modules, such that the actions commute with the differentials).

Definition 2.2.8. Let G be a group, and let C· = (Cn)n≥0 be a complex of G-

modules. Define the homology of G with coefficients in C· as

H∗(G,C·) := H∗(Tot(F· ⊗G C·)),

where F· → Z is a (right) ZG-projective resolution of Z.

This is also known as the hyperhomology of G with coefficients in C·, or

simply the hyperhomology of G when the complex of G-modules is understood.

Remark 11. This definition is well-defined up to canonical isomorphism, although

it is not obvious to see this. One way to show this definition is well-defined is

to identify the hyperhomology of G with coefficients in C· with a certain type of
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left hyper-derived functor L∗F (C·), and use the fact that these functors are well-

defined. We will not go into the details, but we refer the reader to [Wei94, §5.7] for

the definition of left hyper-derived functor, and leave the connection between these

two concepts as an interesting exercise!

Remark 12. If C· is the single module M concentrated in degree 0, we have

H∗(G,C·) ∼= H∗(G,M). Thus, hyperhomology indeed generalizes usual group ho-

mology.

Since Tot(F· ⊗C·) is the total complex of double complex Dp,q := Fp ⊗G Cq,

by the discussion in example 2.2.6 applied to row filtration IIFpTot(D), noting that

Hp+q(
IIFpTot(D)/IIFp−1Tot(D)) ∼= Hq(F· ⊗G Cp) ∼= Hq(G,Cp),

we have the spectral sequence

E1
p,q = Hq(G,Cp) ⇒ Hp+q(G,C·).

In addition, by the discussion in example 2.2.7 applied to the column filtration
IFpTot(D), we have a convergent spectral sequence

E2
p,q = Hp(G,HqC·) ⇒ Hp+q(G,C·).

We call the spectral sequences

E2
p,q = Hp(G,HqC·) ⇒ Hp+q(G,C·)

E1
p,q = Hq(G,Cp) ⇒ Hp+q(G,C·)

the hyperhomology spectral sequences. We will use these spectral sequences to prove

our homological stability results.

For now, note that the first of these spectral sequences gives a slick proof

that quasi-isomorphic chain complexes have the same hyperhomology.

Proposition 2.2.9. Let τ : C → C ′ be a quasi-isomorphism of G-chain complexes

i.e. a G-equivariant chain map that induces an isomorphism on homology groups.

Then, τ induces an isomorphism in hyperhomology H∗(G,C)
∼=−→ H∗(G,C

′).

Proof. Note that τ induces a map of spectral sequences which is an isomorphism at

the E2-level, hence τ induces an isomorphism on the abutments.
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2.2.2 Exact couples

Exact couples are a general source of spectral sequences. The role that they will play

in this thesis is they will allow us to define actions on our hyperhomology spectral

sequences, as we will be able to act on their associated exact couples.

We briefly review the theory of exact couples and give some examples.

Definition 2.2.10. Let A be an abelian category. Then, an exact couple in A is a

commutative diagram of the form

(E,D) =

E D

D

k

i
j

which is exact at each vertex. A morphism of exact couples (E,D) → (Ê, D̂) is a

pair of maps (E → Ê,D → D̂) that commute with the structure maps defining the

exact couples.

For our purposes, we will need to extend this definition to include an abut-

ment.

Definition 2.2.11. An exact couple with (homological) abutment A is an an exact

couple as above with a map σ : D → A such that the diagram

(E,D,A) =

E D A

D

k

i

σ

j σ

commutes. A morphism of exact couples with abutment (E,D,A) → (Ê, D̂, Â) is

a triple of maps (E → Ê,D → D̂, A → Â) that commute with the structure maps

defining the exact couples with abutment.

Before introducing some examples, it is perhaps beneficial to see how exact

couples give rise to spectral sequences. This is done via the derived exact couple of

an exact couple.

Definition 2.2.12. Let

(E,D,A) =

E D A

D

k

i

σ

j σ
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be an exact couple with abutment. We define its derived exact couple with abutment

to be the diagram

(E′, D′, A) =

E′ D′ A

D′

k′

i′

σ′

j′ σ′

where

E′ :=
ker jk

Im jk
, D′ := Im i

and

k′([x]) := k(x), i′(y) := i(y), j′(iz) := [j(z)], σ′(y) := σ(y).

It is bookwork to check that the above definition is well-defined and results in

an exact couple with abutment. In particular, we can iterate the above construction

r-times to obtain an exact couple with abutment (Er, Dr, A). We call this the rth

derived exact couple with abutment of (E,D,A). We will denote the structure maps

in the rth derived exact couple with abutment by kr, ir, jr, σ. Sometimes, we may

omit the superscripts if the context is clear.

The idea then is that {Er} will assemble into a spectral sequence, converg-

ing to something associated with the abutment A. This happens in a particular

situation, which we shall now briefly describe.

In an exact couple, we typically have

E =
⊕
p,q∈Z

Ep,q, D =
⊕
p,q∈Z

Dp,q, A =
⊕
n∈Z

An,

with k, i, j of bidegrees (0,−1), (1,−1), (0, 0) respectively and σ homogeneous. In

other words, k, i, j, σ restrict to maps

k : Ep,q → Dp,q−1

i : Dp,q → Dp+1,q−1

j : Dp,q → Ep,q

σ : Dp,q → Ap+q.

In the derived exact couple, by definition of i′ and σ′, bidegree(i′) = bidegree(i)=

(1,−1), and σ′ is homogeneous. Furthermore, note thatD′
p,q := Im(Dp,q

i−→ Dp+1,q−1).

Therefore, by definition of j′, we deduce bidgree(j′) = bidegree(j)= (0, 0). It re-

mains to work out the bidegree of k′.
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Let [x] ∈ E′
p+1,q. Then, by definition,

x ∈ ker(jk) = {x ∈ Ep+1,q|jkx = 0}

= {x ∈ Ep+1,q|kx ∈ ker(j) = Im(i)}

= k−1(iDp,q).

Therefore, k(x) ∈ Im(Dp,q
i−→ Dp+1,q−1) = D′

p,q. Thus, we deduce

k′ : Ep+1,q → D′
p,q.

That is to say, bidegree(k′) = (−1, 0) = bidegree(k) − bidegree(i).

Iterating, we deduce that for an rth derived exact couple (Er, Dr, A), the

bidegree of kr is = (−r, r−1). More generally, if k starts of with bidegree (−a, a−1),

then the bidegree of kr is = (−a− r, r + a− 1).

Defining differentials drp,q as

dr+a
p,q : Er+a

p,q
kr−→ Dr+a

p−r−a,q+r+a−1
jr−→ Er+a

p−r−a,q+r+a−1

and putting the above together, we have established the following proposition:

Proposition 2.2.13. Let

(E,D) =

⊕
p,q Ep,q

⊕
p,qDp,q

⊕
p,qDp,q

k

i
j

be an exact couple in which k, i, j have bidegrees (−a, a − 1), (1,−1) and (0, 0) re-

spectively. Then, the derived exact couples {Er
p,q} assemble into a spectral sequence,

starting at the ath page with differentials

dr+a
p,q : Er+a

p,q
kr−→ Dr+a

p−r−a,q+r+a−1
jr−→ Er+a

p−r−a,q+r+a−1.

Moreover, note that a morphism of exact couples of the above type induce a

morphism of the corresponding spectral sequences. Thus, a map between spectral

sequences can be cooked up by defining a map on their corresponding exact couples.

Of course, what we are actually interested in are spectral sequence that

converge. This is where the abutment comes in.
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We begin by defining a filtration on An. Specifically, for n = p+ q, define

FpAp+q := Im(Dp,q
σ−→ Ap+q).

Note that the map Dp,q
σ−→ Ap+q factors as Dp−1,q+1

i−→ Dp,q
σ−→ Ap+q. Therefore,

we obtain a filtration

· · · ⊆ Fp−1Ap+q ⊆ FpAp+q ⊆ Fp+1Ap+q ⊆ · · · ⊆ Ap+q.

In addition, note that

Im(D1
p,q

σ−→ Ap+q) = Im(i(Dp,q)
σ−→ Ap+q)

= Im(Dp,q
σ−→ Ap+q).

Therefore, the filtration does not change when taking derived exact couples.

Proposition 2.2.14. Let {Er
p,q} be a spectral sequence constructed from an exact

couple with abutment as above, with starting page E1. Suppose

• For every p < 0, D1
p,q = 0.

• For every n, there exists p0(n) such that for every p ≥ p0(n), D1
p,n−p

σ−→ An is

an isomorphism.

Then, we have a convergent spectral sequence

E1
p,q ⇒ Ap+q.

Proof. By definition, Er+1
p,q is the homology of

Er
p+r,q−r+1

dr−→ Er
p,q

dr−→ Er
p−r,q+r−1.

To show that these terms stabilize, we will show each differential is zero for r suffi-

ciently large.
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For the first differential, consider the following commutative diagram

Er
p+r,q−r+1 Er

p,q

Dr
p+1,q−1 Dr

p,q

D1
p+r,q−r D1

p+r−1,q−r+1

Ap+q

dr

k

i

j

σ

i

σ

.

The map D1
p+r,q−r

σ−→ Ap+q is an isomorphism for every p+ r ≥ pp+q, and the map

D1
p+r−1,q−r+1

σ−→ Ap+q is an isomorphism for every p+r−1 ≥ pp+q. Therefore, both

maps are isomorphisms when r > p0− p, where p0 := p0(p+ q). Therefore, the map

i : D1
p+r−1,q−r+1

i−→ D1
p+r,q−r is an isomorphism when r > p0 − p.

Then, as the maps Dr
p,q ↪→ D1

p+r−1,q−r+1 and Dr
p+1,q−1 ↪→ D1

p+r,q−r are

injective, it follows that the map Dr
p,q

i−→ Dr
p+1,q−1 is injective when r > p0 − p.

Therefore, by exactness, we deduce that k = 0 when r > p0 − p. Thus, for every

r > p0 − p, the differential Er
p+r,q−r+1

dr−→ Er
p,q is zero.

For the second differential, consider the commutative diagram

Er
p,q Er

p−r,q+r−1

Dr
p−r,q+r−1

D1
p−r,q+r−1

dr

k j

.

Here, the bottom map D1
p−r,q+r−1 ↠ Dr

p−r,q+r−1 is the canonical projection.

By assumption, we have D1
p−r,q+r−1 = 0 for every p−r < 0. Therefore, k = 0

for every r > p.

Thus, for every r > max(p0 − p, p), we have

Er
p+r,q−r+1

dr=0−−−→ Er
p,q

dr=0−−−→ Er
p−r,q+r−1.

We have shown that the terms of the spectral sequence stabilize. It remains

to show E1
p,q ⇒ Ap+q.
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Recall, we have a filtration given by

FpAp+q := Im(D1
p,q

σ−→ Ap+q).

Note that this is a finite filtration as D1
p,q = 0 for every p < 0 and D1

p,n−p
σ−→ An is

an isomorphism for p sufficiently large.

Let r > max(p0− p, p) + 1. From the exact couple, we obtain a commutative

diagram with the top row exact and the bottom row exact by commutativity:

Dr
p−1,q+1 Dr

p,q Er
p,q Dr

p−r,q+r−1

0 Fp−1Ap+q FpAp+q E∞
p,q 0

i

∼=

j

∼=

k

= = .

Here, the mapDr
p,q → FpAp+q is an isomorphism for every r > p0−p asD1

p+r−1,q−r+1 →
Ap+q is an isomorphism in this range. Similarly, Dr

p−1,q+1 → Fp−1Ap+q is an iso-

morphism for every r > p0 − p+ 1.

Therefore, by exactness, we have

E∞
p,q

∼= FpAp+q/Fp−1Ap+q

i.e. E1
p,q ⇒ Ap+q.

Example 2.2.15 (Exact couple of a filtration). Let C· be a filtered chain complex,

with filtration

· · · ⊆ Fp−1C ⊆ FpC ⊆ Fp+1C ⊆ · · · ,

which for our purposes we may assume to be bounded. The short exact sequences

of chain complexes

0 → Fp−1C → FpC → FpC/Fp−1C → 0

gives a long exact sequence of homology groups

· · · → Hp+q(Fp−1C)
i−→ Hp+q(FpC)

j−→ Hp+q(FpC/Fp−1C)
k−→ Hp+q−1(Fp−1C) → · · · ,
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which may be rolled up into an exact couple

(E1, D1) =

⊕
p,qHp+q(FpC/Fp−1C)

⊕
p,qHp+q(FpC)

⊕
p,qHp+q(FpC)

k

i
j

satisfying the hypothesis of proposition 2.2.13 (with a = 1). Thus, by proposition

2.2.13, the derived couples assemble into a spectral sequence.

Moreover, if we assume further that C· = (Cn)n≥0 is bounded from above

and our filtration is of the form

0 = F−1C ⊆ · · · ⊆ Fp−1C ⊆ FpC ⊆ Fp+1C ⊆ · · · ⊆ FtC = C

it would follow that the conditions of proposition 2.2.14 are satisfied, with An =

Hn(C) and σ : Hn(FpC) → Hn(C) induced by the inclusion. This gives us a

convergent spectral sequence

E1
p,q = Hp+q(FpC/Fp−1C) ⇒ Ap+q = Hp+q(C)

associated to the exact couple with abutment

(E1, D1, A) =

⊕
p,qHp+q(FpC/Fp−1C)

⊕
p,qHp+q(FpC)

⊕
p,qHp+q(C)

⊕
p,qHp+q(FpC)

k

i

σ

j

σ .

One can show that this spectral sequence is naturally isomorphic to spectral sequence

cited in example 2.2.6, see for example [Wei94, Theorem 5.9.4].

As an important example of this, let G a group; C· = (Cn)n≥0 a bounded

chain complex of G-modules and F· → Z be a (right) ZG-projective resolution.

Then, for the double complex D := F ⊗G C, we have the row filtration

0 = IIF−1Tot(D) · · · ⊆ IIFpTot(D) ⊆ · · · ⊆ IIFtTot(D) = Tot(D),

where one can show

Hp+q(
IIFpTot(D)/IIFp−1Tot(D)) ∼= Hq(F· ⊗G Cp) ∼= Hq(G,Cp).
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Thus, we obtain the hyperhomology spectral sequence

E1
p,q = Hq(G,Cp) ⇒ Hp+q(G,C·)

from the exact couple with abutment

⊕
p,qHp+q(G,C≤p/C≤p−1)

⊕
p,qHp+q(G,C≤p)

⊕
p,qHp+q(G,C·)

⊕
p,qHp+q(G,C≤p)

k

i

σ

j

σ .

Remark 13. It is possible (but not obvious!) to identify the maps i, j, k with the

maps in the long exact sequence in hyperhomology associated to the short exact

sequence of complexes

0 → C≤p−1 → C≤p → C≤p/C≤p−1 → 0.

We do not need to use this in the thesis, so will not spell out the details.

2.3 The derived tensor product

In this thesis, it will be at times convenient to use the derived tensor product −⊗L−.

A complete exposition of the derived tensor product will take us too far afield. We

will only recall the main idea and state the properties that we will need to use in

this thesis. Precise references will be given throughout.

Annoyingly, almost all references about this material use cohomological in-

dexing convention (to keep the algebraic geometers happy), whereas we work exclu-

sively with homological indexing convention. Rather than reproduce all the proofs

in terms of homological indexing, we will just state the definitions and theorems

using this convention. The proofs we cite prove the analogous statements in the

other convention.

2.3.1 Derived category

Let A be an abelian category. Let Ch(A) denote the category of chain complexes

of A. Define K(A) to be the category given by datum:

• Objects of K(A) are the objects of Ch(A)

• Morphisms of K(A) are the chain homotopy equivalence classes of chain maps

in Ch(A).
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An important collection morphism in K(A) are the so called quasi-isomorphisms:

those morphisms which induce isomorphisms on homology groups. Denote the col-

lection of quasi-isomorphisms by Q. We then define the derived category D(A) to

be the localization of K(A) at the quasi-isomorphisms, i.e.

D(A) := K(A)[Q−1].

Intuitively, this means that the objects of D(A) are the same as K(A), but the

morphisms of D(A) have been changed so that every quasi-isomorphism becomes

an isomorphism. For more details, we refer the reader to [Wei94, Section 10]. We

will write q : K(A) → D(A) for the localization functor (so that in particular q(f)

is an isomorphism for every f in Q), and we will think of D(A) in terms of its

universal property corresponding to its definition as a localization.

Note that K(A) and D(A) are examples of triangulated categories. Intu-

itively, a triangulated category T is an additive category equipped with an auto-

equivalence Σ : T → T , called the suspension functor and exact triangles

X → Y → Z → ΣX

which are meant to mimic short exact sequences in abelian categories, and satisfy

various axioms. An exact functor is then a functor F : T → T ′ between triangulated

categories which commute the suspension functors up to natural isomorphism and

map exact triangles to exact triangles. For example, q : K(A) → D(A) is an exact

functor. Thus, the collection of all triangulated categories form a category in this

sense. We refer the reader to [Wei94] for more details about triangulated categories.

Many important features of K(A) and D(A) are proven using this triangulated

structure.

Denoting Chb(A), Ch−(A),Ch+(A) to be the full subcategories of Ch(A) con-

sisting of bounded, bounded above and bounded below chain complexes respectively,

one can analogously define Kb(A), K−(A), K+(A) and Db(A), D−(A), D+(A) re-

spectively.

2.3.2 Total derived functors

Let F : A → B be an additive functor between two abelian categories. Since F

preserves chain homotopy equivalences, F extends to a functor F : K(A) → K(B).

This is even an exact functor. However, F may not preserve quasi-isomorphisms,

so that it may not extend to a functor D(A) → D(B). Derived functors are meant

to ‘fix’ this issue.
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We state the following definition in terms of Kan extensions. We refer the

reader to [ML71] for more details about this important concept. Intuitively, Kan

extensions are maps that will make the forthcoming diagrams commute up to natural

transformation, and is the universal functor that does this in some sense.

Definition 2.3.1. Let F : K(A) → K(B) as above. We define the total left derived

functor of F , denoted LF , to be the exact functor LF : D(A) → D(B) which is the

right Kan extension of qF along q:

K(A) K(B) D(B)

D(A).

F

q

q

LF :=Ran(qF )
.

One similarly defines the total right derived functor as a left Kan extension,

but we do not need this in this thesis.

When the domain of F is K∗(A), the total left derived functor is denoted by

L∗(F ), where ∗ = b,−,+.

Example 2.3.2. If F : A → B is an exact functor, then F preserves quasi-

isomorphisms and therefore extends to a functor F : D(A) → D(B). One can

check F is its own left and right total derived functor.

The following theorem gives us a sufficient condition for the total left-derived

functor to exist, and a particular instance where we can compute the total left-

derived functor.

Theorem 2.3.3. Let F : K+(A) → K(B) be an exact functor of triangulated cat-

egories, and suppose A has enough projectives. Then, the total left derived functor

L+F on D+(A) exists. Moreover, if P is a bounded below chain complex of projec-

tives, then

L+F (P ) ∼= qF (P ),

where q : K(B) → D(B).

Proof. See [Wei94, Theorem 10.5.6].

Remark 14. With this existence theorem at hand, one is able to make a precise

connection between the total left-derived functor and the usual left-derived functors

defined at the beginning of the thesis. Namely, if A has enough projectives, then

for any X ∈ A,

LiF (X) ∼= HiL
+F (X),
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where X is viewed as a chain complex concentrated in degree 0. This follows from

the more general statement that for any X ∈ Ch(A),

LiF (X) ∼= HiL
+F (X),

where LiF is the left hyper-derived functors mentioned earlier in remark 11. One

deduces the former from the latter by noting that for every X ∈ A, LiF (X) ∼=
LiF (X), where X is viewed as a chain complex concentrated in degree 0. We refer

to [Wei94, Corollary 10.5.7] for more details.

2.3.3 The derived tensor product

We are now in a position to define the derived tensor product.

Let R be a ring. Let A ∈ K(Mod −R) and consider the functor

Tot(A⊗R −) :K−(R− Mod) → K(Ab)

B 7→ Tot(A⊗R B),

where A⊗R B is the double complex {Ap ⊗R Bq} with horizontal differentials d⊗ 1

and vertical differentials (−1)p ⊗ d.

Observe that R-Mod has enough projectives, so that Tot(A⊗R−) has a total

left derived functor.

Definition 2.3.4. In the above notation, the derived tensor product A ⊗L
R B is

defined as

A⊗L
R B := L−(Tot(A⊗R −))(B).

Remark 15. By [Wei94, Exercise 10.6.1], L−(Tot(A ⊗R −))(B) ∼= L−(Tot(− ⊗R

B))(A).

We list the properties of the derived tensor product that we will need in this

thesis.

Lemma 2.3.5. If A,A′ and B are bounded below chain complexes and A→ A′ is a

quasi-isomorphism, then A⊗L
R B

∼= A′ ⊗L
R B.

Proof. See [Wei94, Lemma 10.6.2].

Lemma 2.3.6 (Shapiro’s lemma). Let 1 → N → G → G/N → 1 be a short exact

sequence of groups. Let M be a left G-module. Then,

Z[G/N ] ⊗L
G M

∼= Z⊗L
N M.
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Proof. Note that

Z[G/N ] ∼= Z⊗N ZG
∼= Z⊗L

N ZG,

where the second isomorphism uses the fact that ZG is a free N -module (combine

lemma 2.3.5 and Theorem 2.3.3).

Therefore,

Z[G/N ] ⊗L
G M

∼= (Z⊗L
N ZG) ⊗L

G M

∼= Z⊗L
N (ZG⊗L

G M)

∼= Z⊗L
N M,

where the last two isomorphisms follow from the corresponding isomorphisms at the

level of usual tensor products.

2.4 Clifford algebras and spin groups

This section is needed to prove Homological stability for EOn,n and Spinn,n. Al-

though we do not claim any material in this section is new, it is perhaps the first

time anybody needed to prove theorem 2.4.21 in the case of local rings. In the

author’s opinion, this theorem is an important structural result in the context of

orthogonal groups, so may be of independent interest. This section can be safely

skipped until one needs to read chapter 5.

2.4.1 Definitions, existence and basic properties

To begin with, let M = (M, q) be a non-singular quadratic module over a commu-

tative ring R, which for the purposes of this thesis, is such that 2 ∈ R∗. We will

call an element x ∈ M anisotropic if q(x) ∈ R∗. We define b(x, y) = bq(x, y) :=
1
2(q(x+ y)− q(x)− q(y)) to be the symmetric bilinear form associated to q. We will

say that x, y ∈M are orthogonal if b(x, y) = 0.

Definition 2.4.1. A pair (A, f) consisting of an R-algebra A and a homomorphism

of R-modules f : M → A is said to be compatible with M if for every x ∈M ,

f(x)2 = q(x)1A.

Definition 2.4.2. A Clifford algebra of M is a compatible pair (Cl(M), i) which
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satisfies the following universal property:

If (A, f) is any pair which is compatible with M , then there exists a unique

homomorphism of R-algebras g : Cl(M) → A such that the diagram

M Cl(M)

A

i

f
g

commutes.

We establish that any quadratic module M has a Clifford algebra:

Theorem 2.4.3. Let M be a quadratic module over R. Then, M has a Clifford

algebra (Cl(M), i), which is unique up to unique isomorphism.

Proof. The uniqueness statement follows from the universal property of the Clifford

algebra, so it suffices to prove existence. We define

M⊗n := M ⊗R · · · ⊗R M (n times) for n > 0,

M⊗0 := R,

M⊗n := 0 for n < 0,

and define

T (M) :=
⊕
n∈Z

M⊗n,

the tensor algebra of M . Let i : M → T (M) denote the inclusion.

Note that the tensor algebra T (M) is a Z-graded R-algebra, with product

(x1 ⊗ · · · ⊗ xm)(xm+1 ⊗ · · · ⊗ xn) := (x1 ⊗ · · · ⊗ xm ⊗ xm+1 ⊗ · · · ⊗ xn).

Also note that T (M) has the following universal property: If A is a R-algebra and

f : M → A is a R-module homomorphism, then there exists a unique R-algebra

homomorphism g : T (M) → A such that the diagram

M T (M)

A

i

f
g
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commutes. Of course, g is defined by

g(x1 ⊗ · · · ⊗ xn) := f(x1) . . . f(xn).

Continuing with the construction, define I(q) to be the two-sided ideal of

T (M) generated by the set

{x⊗ x− q(x)|x ∈M}.

We then define the quotient R-algebra

Cl(M) := T (M)/I(q),

and define i : M → Cl(M) to be the canonical map. By construction, it is clear

that (Cl(M), i) is a compatible pair, so it remains to check the universal property.

Let (A, f) be a pair compatible with M . By the universal property of T (M),

there exists an unique R-algebra homomorphism g : T (M) → A such that gi = f .

Furthermore, note that

g(x⊗ x− q(x)) = g(x)2 − q(x) = f(x)2 − q(x) = q(x) − q(x) = 0.

Thus, g factors through the quotient, to give a map g : Cl(M) → A.

Remark 16. If x, y ∈M are orthogonal, then in Cl(M), xy = −yx, as 0 = b(x, y) =

q(x+ y) − q(x) − q(y) = (x+ y)2 − x2 − y2 = xy + yx.

Remark 17. The identity of Cl(M), denoted 1Cl(M), together with the elements

{i(x)|x ∈M}, generate Cl(M) as an R-algebra.

Remark 18. The Clifford algebra Cl(M) is canonically a Z2-graded algebra, with

the grading defined as follows: We define Cl0(M) be the submodule of Cl(M)

spanned by 1Cl(M) and {i(xi1) . . . i(xik)|k even}; and we define Cl1(M) be the sub-

module of Cl(M) spanned by {i(xi1) . . . i(xik)|k odd}. Clearly, Cl0(M) is a subal-

gebra of Cl(M).

Remark 19. Consider the graded centre Zgr(Cl(M)) of the Clifford algebra Cl(M).

This is defined to be the graded subspace of the Clifford algebra Cl(M) whose

homogeneous elements h(Zgr(Cl(M))) are determined by

c ∈ h(Zgr(Cl(M))) ⇐⇒ cs = −(1)∂s∂csc ∀s ∈ h(Cl(M)),
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where h(Cl(M)) denotes the homogeneous elements of Cl(M) and ∂ denotes the

degree of the homogeneous element.

When M is free of finite rank, we cite the following important structural

result:

Lemma 2.4.4. Let M be a free non-singular quadratic module of finite rank. Then

Zgr(Cl(M)) = R.

Proof. See [HO89, Theorem 7.1.11.].

Remark 20. By the universal property of the Clifford algebra, every σ ∈ O(M)

uniquely determines an automorphism of R-algebras Cl(σ) : Cl(M) → Cl(M). This

association gives rise to a group homomorphism

Cl : O(M) → Aut(Cl(M)).

In particular, taking σ := −1M provides a unique automorphism Cl(−1M ) : Cl(M) →
Cl(M) such that Cl(−1M )(i(x)) = −i(x) for all x ∈M . Observe that Cl(−1M )|Cl0(M) =

1Cl0(M) and Cl(−1M )|Cl1(M) = −1Cl1(M).

The map Cl(−1M ) is used to define the so called ‘canonical involution’ on

Cl(M).

But first, let Cl(M)op denote the opposite algebra of Cl(M). By the universal

property of the Clifford algebra, there exists an unique algebra homomorphism ∼:

Cl(M) → Cl(M)op such that the diagram

M Cl(M)

Cl(M)op

i

i
∼

commutes. We will consider ∼ as a map ∼: Cl(M) → Cl(M). Note that c̃d = d̃c̃

for every c, d ∈ Cl(M), and ĩ(x) = i(x) for every x ∈ M , so that ˜̃c = c for every

c ∈ Cl(M) and ∼ is therefore an involution on Cl(M).

We then define the canonical involution : Cl(M) → Cl(M) to be the

composite

Cl(M)
Cl(−1)−−−−→ Cl(M)

∼−→ Cl(M).

One easily checks that this does indeed define an involution on Cl(M). Observe that

is the unique R-linear anti-automorphism of Cl(M) which satisfies i(x) = −i(x)
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for every x ∈ M . We will use the canonical involution in our definition of the Spin

group.

2.4.2 The groups Γ(M), SΓ(M), Spin(M) and the Spinor Norm

We define the groups Γ(M), SΓ(M) and Spin(M). We also define the Spinor norm

and study some of its basic properties, as needed in this thesis. Unless stated

otherwise, our exposition will closely follow [HO89, Chapter 7].

2.4.2.1 The Groups Γ(M), SΓ(M), Spin(M)

Definition 2.4.5. We define the Clifford group Γ(M) to be the group

Γ(M) := {c ∈ Cl(M)∗|cMc−1 = M}.

Note that for every c ∈ Γ(M), we canonically obtain a map

πc : M →M

(πc)(x) := cxc−1.

Furthermore, note that πc preserves the quadratic form q as q(πc(x)) = q(cxc−1) =

cxc−1 ⊗ cxc−1 = cx2c−1 = q(x). Thus, the assignment c 7→ πc defines a group

homomorphism

π : Γ(M) → O(M).

Definition 2.4.6. We define the Special Clifford group SΓ(M) to be the group

SΓ(M) := {c ∈ Cl(M)∗0|cMc−1 = M}.

Note that SΓ(M) = Γ(M) ∩ Cl∗0.

Definition 2.4.7. We define the Spin group Spin(M) to be the group

Spin(M) := {c ∈ SΓ(M)|cc = 1}.

Thus, by construction, we have a chain of inclusions Spin(M) ⊆ SΓ(M) ⊆
Γ(M).

Later, it will be important for us to understand ker(π|SΓ(M)) and ker(π|Spin(M)).

Proposition 2.4.8. ker(π : SΓ(M) → O(M)) = R∗.
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Proof. Let c ∈ ker(π|SΓ(M)). Then, c ∈ Cl∗0(M) and cxc−1 = x for every x ∈ M .

Therefore, as M generates Cl(M) as an R-algebra, we use lemma 2.4.4 to conclude

that c ∈ Zgr(Cl(M)) = R. Similarly, c−1 ∈ R, so that ker(π|SΓ(M)) ⊆ R∗. The

other inclusion is trivial.

Corollary 2.4.9. ker(π : Spin(M) → O(M)) ∼= Z2.

Proof. From proposition 2.4.8, it is clear that

ker(π : Spin(M) → O(M)) = {r ∈ R∗|r2 = 1}.

Passing to the residue field, we deduce that the square roots of 1 are of the form

r = ε ± 1 for some ε in the maximal ideal. Using the equation r2 = 1, we obtain

equation ε(ε± 2) = 0. As 2 is a unit, we deduce ε± 2 is a unit, so that ε = 0.

Definition 2.4.10. We define the spinorial kernel

O′(M)

to be the image of the homomorphism π : Spin(M) → O(M).

When R is a local ring with 2 ∈ R∗, we show that O′(M) is precisely the

kernel of the spinor map θ : SO(M) → R∗/R∗2, see definition 2.4.16 and proposition

2.4.20.

In addition, we cite the following theorem, which says that when R2n is a

free hyperbolic module over a (semi-)local ring R, the spinorial kernel is precisely

the elementary orthogonal group EOn,n(R) when n ≥ 2.

Theorem 2.4.11. Let R be a commutative semi-local ring. Let R2n be the free

hyperbolic module. Denote O′
n,n(R) := O′(R2n). Then, for every n ≥ 2, O′

n,n(R) =

EOn,n(R).

Proof. See [HO89, Theorem 9.2.8.].

Thus, when R is a (semi-)local ring with 2 ∈ R∗ and n ≥ 2, we have the

short exact sequences

1 → Z2 → Spinn,n(R)
π−→ EOn,n(R) → 1.

From now on, we will assume that R is a local ring with 2 ∈ R∗, and all

modules over R are finitely generated projective, so that they are free of finite rank.
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2.4.2.2 The Spinor Norm

In order to define the spinor norm, we first need to define an important class of

isometries.

Definition 2.4.12. Let x ∈M anisotropic and define N := ⟨x⟩⊥. Then, the linear

map

τx : M →M

y 7→ y − 2
b(x, y)

b(x, x)
x

is called a reflection in hyperplane N orthogonal to x.

This name is suggested by the following lemma:

Lemma 2.4.13. 1. τx(x) = −x, τx|N = 1N .

2. τx is an isometry of (M, b).

3. τx ◦ τx = 1M .

4. det τx = −1.

Proof. The first three statements follow from direct computations. For the last

statement, note that M = ⟨x⟩ ⊕ N . Therefore, by Witt’s Cancellation Theorem

[MH73, Chapter I, Theorem 4.4], we may choose a basis e2, . . . , en of N and complete

it to a basis of M by setting e1 = x. The matrix of τx with respect to this basis

shows that det τx = −1.

Proposition 2.4.14. For every x ∈M anisotropic, we have π(x) = −τx.

Proof. For every y ∈M , we have

τx(y) = y − 2
b(x, y)

b(x, x)
x

= y − q(x+ y) − q(x) − q(y)

q(x)
x

= y − (xy + yx)x−1

= −xyx−1

= −π(x)(y).
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The next proposition will be used to show that our definition of the spinor

norm is well-defined.

Proposition 2.4.15. Let u1, . . . , ur be anisotropic elements in M. If the product

τu1τu2 · · · τur is the identity in O(M), then the product q(u1) · · · q(ur) belongs to

R∗2.

Proof. Similar to [Lam05, Proposition 1.12.V]. By proposition 2.4.14, π(u)|M =

−τu, so that 1M = (−1)rπ(u1 · · ·ur)|M . But,

(−1)r = det(τu1τu2 · · · τur) = det(1M ) = 1.

Thus, we deduce that r must be even. Therefore, we have that

c := u1 · · ·ur ∈ Cl0(M) ∩ Z(Cl(M)) ⊂ Zgr(Cl(M)) = R.

Similarly, we have that c−1 ∈ R, so that c ∈ R∗. We conclude that

R∗2 ∋ c2 = cc̄ = u1 · · ·urur · · ·u1 = q(u1) · · · q(ur).

Consider any isometry σ ∈ O(M), where the rank of M is at least 2. By

the Cartan-Dieudonné theorem for local rings, see for example [Kli61, Theorem 2],

there exists a factorisation σ = τu1τu2 · · · τur , where the ui are anisotropic vectors.

We define

θ(σ) := q(u1) · · · q(ur) ∈ R∗/R∗2.

By proposition 2.4.15, θ(σ) does not depend on the choice of factorisation chosen to

represent σ.

Definition 2.4.16. The map θ : O(M) → R∗/R∗2 is called the spinor norm.

The spinor norm is the unique group homomorphism satisfying the property

θ(τu) = q(u)R∗2 for every anisotropic element u ∈M .

For R a local ring with 2 ∈ R∗, we want to establish the existence of short

exact sequences

1 → EOn,n(R) → SOn,n(R)
θ−→ R∗/R∗2 → 1

1 → EOn,n(R) → On,n(R)
θ×det−−−−→ R∗/R∗2 × Z2 → 1.
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We begin with the following proposition, which is useful when computing

with the Spinor norm.

Proposition 2.4.17. Let (M, qM ) and (N, qN ) be free non-singular quadratic mod-

ules of finite rank over R. Let A ∈ O(M) and let B ∈ O(N), considered as matrices.

Let A⊕B ∈ O(M ⊥ N) denote the block sum of matrices A⊕B =

(
A

B

)
. Then,

θ(A⊕B) = θ(A)θ(B).

Proof. Suppose A ∈ O(M) is represented by A = τv1 · · · τvk and suppose B ∈ O(N)

is represented by B = τw1 · · · τwl . Then, A ⊕ B ∈ O(M ⊥ N) is represented by

τv̄1 · · · τv̄kτw̄1 · · · τw̄l , where v̄i, w̄j ∈ M ⊥ N are the images of of the vectors vi and

wj under the canonical embeddings M ↪→M ⊥ N and N ↪→M ⊥ N respectively.

Therefore,

θ(A⊕B) = qM⊥N (v̄1) · · · qM⊥N (v̄k)qM⊥N (w̄1) · · · qM⊥N (w̄l)

= qM (v1) · · · qM (v1)qN (w1) · · · qN (wl)

= θ(A)θ(B).

The above proposition is used to prove that the spinor norm θ : SOn,n(R) →
R∗/R∗2 is surjective.

Proposition 2.4.18. The spinor norm θ : SOn,n(R) → R∗/R∗2 is surjective.

Proof. Let r ∈ R∗, and consider the matrix σ =

r r−1

1

 . Note that

σ ∈ SOn,n(R). By proposition 2.4.17, we have that θ(σ) = θ

((
r 0

0 r−1

))
. As(

r 0

0 r−1

)
=

(
0 r

r−1 0

)(
0 1

1 0

)
is a product of reflections defined by vectors (r,−1)

and (1,−1), we compute that

θ

((
r 0

0 r−1

))
= q(r,−1)q(1,−1) = 4r = r (mod R∗2).
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Finally, we want to show that the spinorial kernel O′(M) is precisely the

kernel of the spinor map θ : SO(M) → R∗/R∗2. This is done in by the following

two propositions.

Proposition 2.4.19. Im(π : SΓ(M) → O(M)) = SO(M).

Proof. Firstly, note that SO(M) ⊆ Im(π). Indeed, if τvτw are a product of any two

reflections, then π(vw) = τvτw.

Suppose that SO(M) ⊊ Im(π). Then, there exists a σ ∈ O(M) \ SO(M)

such that σ ∈ Im(π). As σ ∈ O(M) \ SO(M), we have that σ = τv1 · · · τvk for vi

anisotropic and k odd. Furthermore, as σ ∈ Im(π), there exists c ∈ SΓ(M) such

that π(c) = σ. Note, π(v1 · · · vk) = −τv1 · · · τvk = −σ. Defining d := v1 · · · vk, we

deduce π(cd−1) = −1M . This means that cd−1x(cd−1)−1 = −x for every x ∈M .

Note that c ∈ Cl0(M) and d−1 ∈ Cl1(M). Therefore, cd−1 ∈ Cl1(M). As

cd−1x(cd−1)−1 = −x for every x ∈M and M generates Cl(M) as an R-algebra, we

use lemma 2.4.4 to conclude that cd−1 ∈ Zgr(Cl(M)) = R. Thus, c = dr for some

r ∈ R, and it therefore follows that c ∈ Cl1(M). Thus, c ∈ Cl0(M) ∩ Cl1(M) = 0,

which is a contradiction as c is invertible.

Proposition 2.4.20. We have O′(M) = ker(θ : SO(M) → R∗/R∗2).

Proof. Let σ ∈ ker(θ|SO(M)). We want to show σ ∈ O′
n,n(M). Suppose σ =

τv1 · · · τvk . Note that k is even and each vi is anisotropic.

By definition, 1 = θ(σ) = q(v1) · · · q(vk). Therefore, r := q(v1) · · · q(vk) ∈
R∗2. Suppose that r = s2. As τv1 = τs−1v1 , we may replace v1 with s−1v1 to obtain

σ = τv1 · · · τvk such that q(v1) · · · q(vk) = 1. Therefore, in Cl(M), v1 · · · vkv1 · · · vk =

1. Define c := v1 . . . vk. As all vi ∈ Cl(M)∗ and k is even, we deduce c ∈ Spin(M).

By construction, π(c) = τv1 · · · τvk = σ, so that σ ∈ O′(M).

Now let c ∈ Spin(M) and consider π(c) ∈ O′(M). We want to show π(c) ∈
ker(θ|SO(M)). By proposition 2.4.19, π(c) ∈ SO(M). Therefore, π(c) = τv1 · · · τvk
for vi anisotropic and k even. As k is even, we deduce c−1v1 · · · vk ∈ SΓ(M).

Furthermore, by definition, π(c−1v1 · · · vk) = 1. Therefore, by proposition 2.4.8

c−1v1 . . . vk ∈ ker(π|SΓ) = R∗. Thus, c = rv1 · · · vk for some r ∈ R∗. As c ∈
Spin(M), we obtain 1 = cc = r2q(v1) · · · q(vk), so that q(v1) · · · q(vk) ∈ R∗2. Thus,

by definition, θ(π(c)) = 1.

Thus, for R a local ring with 2 ∈ R∗, we have established the following

theorem:
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Theorem 2.4.21. Let R be a commutative local ring with 2 ∈ R∗, and let n ≥ 2.

Then, we have short exact sequences

1 → Z2 → Spinn,n(R)
π−→ EOn,n(R) → 1

1 → EOn,n(R) → SOn,n(R)
θ−→ R∗/R∗2 → 1

1 → EOn,n(R) → On,n(R)
θ×det−−−−→ R∗/R∗2 × Z2 → 1.

Proof. Combine corollary 2.4.9; theorem 2.4.11; proposition 2.4.20 and proposition

2.4.18.

These short exact sequences are used to prove homological stability for

EOn,n(R) and Spinn,n(R), when R is a local ring with infinite residue field such

that 2 ∈ R∗.

2.4.2.3 Homological stability for Spinn(F)

As a fun aside, we can use the spinor norm to immediately prove a homological

stability result for Spinn(F), using a homological stability result for SOn(F) due

to Nakada [Nak15]. Here, F is a Pythagorean field of characteristic ̸= 2, and the

quadratic form is the Euclidean form q(x) =
∑n

i x
2
i . (A Pythagorean field is a field

where the sum of two squares is always a square, for example the real numbers.)

Theorem 2.4.22. Let F be a Pythagorean field of characteristic ̸= 2. Then, the

natural homomorphism

Hk(Spinn(F)) → Hk(Spinn+1(F))

is an isomorphism for 2k ≤ n− 1 and surjective for 2k ≤ n.

Proof. We want to prove

1 → Z2 → Spinn(F)
π−→ SOn(F) → 1

is a short exact sequence. The theorem then immediately follows from the relative

Serre spectral sequence

E2
p,q = Hp(SOn(F), SOn−1(F);Hq(Z2)) ⇒ Hp+q(Spinn(F),Spinn−1(F)),

and Nakada’s result [Nak15]. What needs to be proved is O′
n(F) = SOn(F).

By proposition 2.4.20, O′
n(F) = ker(θ : SOn(F) → F∗/F2∗), so that it suffices

to prove the spinor norm in this case is the zero map.
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For σ = τv1 · · · τvk ∈ SOn(F), θ(σ) = q(v1) · · · q(vk). But, F is Pythagorean

and q is the Euclidean form, so that q(vi) ∈ F2∗ for every vi. Thus, θ(σ) = 0.
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Chapter 3

Homological Stability for On,n

From now on, unless stated otherwise, R will be a commutative local ring with

infinite residue field such that 2 invertible.

3.1 The complex of totally isotropic unimodular sequences

3.1.1 Notation and conventions

Let Mn(R) denote the collection of n × n matrices with coefficients in R. Let

GLn(R) ⊆Mn(R) denote group of all invertible n× n matrices in Mn(R).

Let ψ := ψ2n := ψ2 ⊕ · · · ⊕ ψ2 be the standard hyperbolic form of rank 2n

ψ2n =


ψ2

ψ2

. . .

ψ2

 =

n⊕
1

ψ2, ψ2 =

(
0 1

1 0

)
.

For u, v ∈ R2n, we will always use the notation

⟨u, v⟩ := tuψ2nv

to denote the inner product of u and v with respect to form ψ2n. Note that the

form ψ2n defines a symmetric bilinear form, so that ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ R2n.

In addition, we will always denote the ordered standard basis vectors of R2n as

e1, f1, . . . , en, fn, so that ⟨ei, ej⟩ = ⟨fi, fj⟩ = 0 and ⟨ei, fj⟩ = δij for all 1 ≤ i, j ≤ n.

For instance, e1 = (1, 0, 0, ...0), f1 = (0, 1, 0, 0, ..., 0), e2 = (0, 0, 1, 0, ..., 0), f2 =

(0, 0, 0, 1, 0, ..., 0) etc. considered as column vectors.

42



For a ring R, the (split) orthogonal group On,n(R) ⊆ GL2n(R), is the sub-

group

On,n(R) := {A ∈ GL2n(R)| tAψ2nA = ψ2n}

of R-linear automorphisms preserving the form ψ2n, where tA denotes the transpose

matrix of A. We define SOn,n(R) to be the subgroup of On,n(R) consisting of

all matrices with determinant 1. We define EOn,n(R) as the subgroup of On,n(R)

generated by matrices of the form (1.1),(1.2), (1.3) and (1.4). For R commutative

ring such that 2 ∈ R∗, we define Spinn,n(R) to be the Spin group of quadratic

module (R2n, ⟨·, ·⟩), where ⟨·, ·⟩ is the symmetric bilinear form defined with respect

to matrix ψ2n. We will use the convention Spin0,0(R) = EO0,0(R) = SO0,0(R) =

O0,0(R) := 1 are the trivial groups. We will always consider R2n embedded in R2n+2

via v 7→ (0, 0, v) and On,n(R) as a subgroup of On+1,n+1(R) via the embedding

On,n(R) ⊆ On+1,n+1(R) : A 7→

1 0 0

0 1 0

0 0 A

 .

We will be interested studying the homological stability of On,n, SOn,n, EOn,n and

Spinn,n with respect to the above embeddings. We will sometimes write On,n, SOn,n,

EOn,n and Spinn,n instead of On,n(R), SOn,n(R), EOn,n(R) and Spinn,n(R) when

the ring R is understood from context.

3.1.2 The chain complex

To define the chain complex we want to consider, we need to make some preliminary

definitions.

Definition 3.1.1. A space over a ring R is a projective R-module of finite rank. A

submodule M ⊂ V of a space V is called a subspace if it is a direct factor.

Definition 3.1.2. Let q ≥ 0 be an integer, and W a free R-module of rank n. A

sequence of q vectors (v1, . . . , vq) in W will be called unimodular if every subsequence

of length r ≤ min{n, q} generates a subspace of rank r. We denote by Uq(W ) the

set of unimodular sequences of length q in W .

Remark 21. For R a local ring, the sequence of vectors (v1, . . . , vq) in R2n is

unimodular if and only if (v̄1, . . . , v̄q) in k2n is unimodular, where k denotes the

residue field of R and v̄i the class of vi in k2n.

Definition 3.1.3. A sequence of vectors (v1, . . . , vq) in R2n will be called totally

isotropic if for every i, j = 1, ...q we have ⟨vi, vj⟩ = 0.
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We now introduce the chain complex that we want to consider. Specifically,

consider chain complex

C∗(n) := (C∗(R
2n), d) = · · · → C2(R

2n) → C1(R
2n)

ε−→ Z → 0 (3.1)

where for k ≥ 1, Ck(R2n) is defined as the free abelian group Ck(R2n) := Z[IUk(R2n)]

generated by the set of unimodular totally isotropic sequences of length k in R2n:

IUk(R2n) := {(v1, . . . , vk) : vi ∈ R2n, (v1, . . . , vk) totally isotropic and unimodular}.

We set C0(n) := Z.

The differential d is defined on basis elements by

d(v1, . . . , vk) :=
k∑

i=1

(−1)i+1di(v1, . . . , vk),

di(v1, . . . , vk) := (v1, . . . , v̂i, . . . , vk).

Remark 22. The simplicial set that gives rise to chain complex (3.1) has already

been studied in [Pan87] and [Mir04]. As we do not need to consider simplicial sets

in this article, we stick to chain complex notation.

Note that for A ∈ On,n(R), A acts from the left on the chain complex

(C∗(R
2n), d) by acting on basis elements:

A · (v1, . . . , vk) := (Av1, . . . , Avk).

For a resolution P∗ of the trivial On,n(R)-module Z by projective right On,n(R)-

modules, the bicomplex P∗ ⊗On,n C∗(n) gives rise to two hyperhomology spectral

sequences

E2
p,q(n) = Hp(On,n, Hq(C∗(n))) ⇒ Hp+q(On,n, C∗(n)) (3.2)

E1
p,q(n) = Hq(On,n, Cp(n)) ⇒ Hp+q(On,n, C∗(n)). (3.3)

Replacing On,n with SOn,n and EOn,n, we similarly obtain hyperhomology spectral

sequences

E2
p,q(n) = Hp(SOn,n, Hq(C∗(n))) ⇒ Hp+q(SOn,n, C∗(n))

E1
p,q(n) = Hq(SOn,n, Cp(n)) ⇒ Hp+q(SOn,n, C∗(n))
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and

E2
p,q(n) = Hp(EOn,n, Hq(C∗(n))) ⇒ Hp+q(EOn,n, C∗(n))

E1
p,q(n) = Hq(EOn,n, Cp(n)) ⇒ Hp+q(EOn,n, C∗(n)).

These spectral sequences will eventually give us our desired homological stability

results.

3.1.3 Proving acyclicity

We would like to prove that the complex (C∗(n), d) is (n − 1)-acyclic. This has

already been proven by Mirzaii [Mir04], but our proof has the advantage that it

does not refer to the simplicial techniques used in [vdK80]. However, we do make

use of a concept general position. This was first defined in [Pan87], and used in

both [Pan87] and [Mir04] to prove their respective acyclicity results. We give the

definition as stated in [Mir04].

Definition 3.1.4. Let S = {v1, . . . , vk} and T = {w1, . . . , wk′} be basis of two

totally isotropic free summands of R2n. We say that T is in general position with

S, if k ≤ k′ and the k′ × k- matrix (⟨wi, vj⟩) has a left inverse.

We may also say that a totally isotropic subspace W is in general position

with respect to a totally isotropic subspace V if there is a basis T of W which is in

general position with respect to a basis S of V as in definition 3.1.4. The following

result, whose proof we refer to [Mir04, Chapter 2, Proposition 4.2], will be used to

prove acyclicity.

Proposition 3.1.5. Let n ≥ 2 be an integer and assume Ti, i = 1, ..., ℓ are finitely

many subsets of R2n such that each Ti is a basis of a free totally isotropic summand

of R2n with k elements, where k ≤ n− 1. Then, there is a basis, T = {w1, . . . , wn},
of a free totally isotropic summand of R2n such that T is in general position with

all Ti, i = 1, ..., ℓ. Moreover, dim(W ∩ V ⊥
i ) = n − k, where W =Span(T ) and

Vi =Span(Ti), i = 1, ..., ℓ.

In addition, the following lemma will be both useful and reassuring.

Lemma 3.1.6. Let W and V be totally isotropic subspaces of R2n. Assume that W

is in general position with respect to V . Then W ∩ V = {0}.
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Remark 23. If R is a local ring, lemma 3.1.6 implies that if W is in general position

with respect to a unimodular sequence (u1, . . . , uk) for k < n, then (u1, . . . , uk, w)

is unimodular for every unimodular vector w ∈W .

Proof of lemma 3.1.6. As W is in general position with respect to V , the map

π :W ↠ Rk

w 7→ (⟨w, v1⟩, . . . , ⟨w, vk⟩)

is surjective. Therefore, for every 1 ≤ i ≤ k, there exists a v#i ∈ W such that

π(v#i ) = (0, . . . , 0, 1, 0, . . . , 0), the 1 being in the ith position. Now, let y ∈ W ∩ V .

Note, as y ∈ V and V is free with basis v1, . . . , vk, we may write y uniquely as

y =
∑

i aivi for some ai ∈ R. Evaluating ⟨v#i , ·⟩ on y and noting that ⟨v#i , vj⟩ = δij ,

we deduce that ai = ⟨v#i , y⟩ for every i = 1, ., , , k. But v#i , y ∈ W and W is totally

isotropic, so ⟨v#i , y⟩ = 0 for i = 1, ..., k. Therefore, y = 0.

For u =
∑

imiui ∈ Z[IUp(R
2n)] and v =

∑
j njvj ∈ Z[IUq(R

2n)] such that

(ui, vj) ∈ IUp+q(R
2n) for all i, j, we will write (u, v) for the element

(u, v) =
∑
i,j

minj(ui, vj) ∈ Z[IUp+q(R
2n)].

Using proposition 3.1.5 and lemma 3.1.6, we prove the following.

Lemma 3.1.7. Let p, q ≥ 0 and p + q < n. Let (u, f) ∈ Z[IUp+q(R
2n)] such

that u ∈ IUp and f ∈ Z[Uq(W )], where W is a free totally isotropic summand of

R2n of dimension n in general position with respect to U =Span(u). If df = 0 ∈
Z[Uq−1(W )], then there exists an element g ∈ Z[Uq+1(W )] such that dg = f and

(u, g) ∈ Z[IUp+q+1(R
2n)].

Proof. Since f ∈ Z[Uq(W )] and (u, f) ∈ Z[IUp+q(R
2n)], we have f ∈ Z[Uq(L)],

where L = W ∩ U⊥. As W is in general position with respect to U , L is a finitely

generated free R-module of rank n− p. Write f =
∑

i ni(v
i
1, . . . , v

i
q). Then, as R is

a local ring with infinite residue field and L is a finitely generated free R-module of

rank n−p > q, we deduce that there exists a v ∈ L, such that (v, vi1, . . . , v
i
q) ∈ Uq(L)

for every i. This is standard; see for instance [Sch17, Lemmas 5.5 and 5.6]. Let

g :=
∑

i ni(v, v
i
1, . . . , v

i
q). Then dg = f by construction. Moreover as g ∈ Z[Uq+1(L)],

(u, g) defines a totally isotropic sequence of vectors and as g ∈ Z[Uq+1(W )], by

lemma 3.1.6, (u, g) is a unimodular sequence, so that (u, g) ∈ Z[IUp+q+1(R
2n)].
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Corollary 3.1.8. Let k ≤ n − 1, and let z ∈ Ck(n) = Z[IUk(R2n)] be a cycle.

Then, z is homologous to a cycle z′ ∈ Z[Uk(W )] ⊂ Ck(n) contained within a free

totally isotropic summand W of R2n of dimension n.

Proof. Suppose z =
∑

i niui where ni ∈ Z and ui ∈ IUk(R2n). By proposition

3.1.5, there exists a free totally isotropic subspace W of rank n in general position

with respect to all Ui =Span(ui). Choose unimodular vectors fi ∈ W ∩ U⊥
i which

is possible since dimW ∩ U⊥
i ≥ 1, by proposition 3.1.5. Note, by lemma 3.1.6,

(ui, fi) ∈ IUk+1(R
2n) for every i. Consider the chain ξ :=

∑
i ni(ui, fi) ∈ Ck+1(n).

Note that

dξ =
∑
i

ni(dui, fi) + (−1)k+1
∑
i

niui =
∑
i

ni(dui, fi) + (−1)k+1z,

so that z1 := (−1)k+1
∑

i ni(dui, fi) is homologous to z, which we write as z1 ∼ z.

Now, recursively assume that zq ∈ Ck(n) is cycle such that zq ∼
∑

i(ui, fi), where

ui ∈ IUp; fi ∈ Z[Uq(W )], W is a free totally isotropic summand of R2n of dimension

n in general position with respect to all ui, p, q ≥ 0 such that p+ q = k < n. Then

we collect terms so that ui ̸= uj for every i ̸= j. By assumption, we have

0 = dzq =
∑
i

d(ui, fi) =
∑
i

[
(dui, fi) + (−1)p+1(ui, dfi)

]
.

As ui ̸= uj and W is in general position with every ui, hence, no column vector of

ui is in W , we deduce dfi = 0 for every i. Therefore, by lemma 3.1.7, for every i,

there exists gi ∈ Z[Uq+1(W )] such that dgi = fi and (ui, gi) ∈ Z[IUk+1(R
2n)]. Note

that

d(ui, gi) = (dui, gi) + (−1)p+1(ui, dgi) = (dui, gi) + (−1)p+1(ui, fi).

We deduce zq ∼
∑

i(ui, fi) ∼ (−1)p
∑

i(dui, gi) = zq+1. The corollary is the case

q = k, p = 0 setting z′ = zk.

Theorem 3.1.9. The complex (C∗(n), d) is (n− 1) − acyclic, that is,

Hi(C∗(n), d) = 0 for i ≤ n− 1.

Proof. Let k ≤ n− 1 and let z ∈ Ck(n) a cycle. By corollary 3.1.8, z is homologous

to a cycle z′ ∈ Z[Uk(W )] contained within a free totally isotropic summand W of

R2n of dimension n. As R is a local ring with infinite residue field, we deduce

that there exists a τ ∈ Z[Uk+1(W )] ⊂ Ck+1(n) such that dτ = z′, by the standard
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argument recalled in the proof of Lemma 3.1.7. In paricular, z is a boundary.

3.2 Homological stability for On,n

3.2.1 Transitivity of the group action

We need to prove that the action of On,n on IUp(R
2n) is transitive for all p ≤ n. It

suffices to prove the following lemma.

Lemma 3.2.1. Let p ≤ n and let (u1, . . . , up) ∈ IUp(R
2n). Then, (u1, . . . , up) may

be extended to a hyperbolic basis of R2n.

Proof. By Witt’s Cancelation theorem, which holds when R is a local ring with 2 in-

vertible (cf. [MH73, Chapter I, Theorem 4.4]), it will be sufficient to find u#1 , . . . , u
#
p

such that (u1, u
#
1 , . . . , up, u

#
p ) has Gram matrix ψ2p. (Note that Span{u1, u#1 , . . . , up, u

#
p }

is a non-degenerate subspace).

We have that (u1, . . . , up) ∈ IUp(R
2n), so this sequence is in particular a

unimodular sequence of vectors in R2n. Thus, the matrix u = (u1, . . . , up) is left

invertible. Therefore, the matrix tuψ2n is right invertible. This is equivalent to

saying that the map

T :R2n → Rp

x 7→ (⟨u1, x⟩, . . . , ⟨up, x⟩)

is surjective. Thus, for i = 1, ..., p, there exists u#i such that T (u#i ) is the i-th

standard basis vector of Rp. Replacing u#i with u#i − ⟨u#
i ,u#

i ⟩
2 ui, we conclude the

Gram matrix of (u1, u
#
1 , . . . , up, u

#
p ) is ψ2p.

3.2.2 Analysis of stabilisers

3.2.2.1 Computation of stabilisers

Let G be a group acting on a set S from the left. Shapiro’s lemma gives an isomor-

phism ⊕
[x]∈S/G

(ix, x)∗ :
⊕

[x]∈S/G

H∗(Gx,Z)
∼=−→ H∗(G,Z[S])

of homology groups, where the direct sum is over a set of representatives x ∈ S of

equivalence classes [x] ∈ S/G; the group Gx is the stabiliser of G at x ∈ S; the

homomorphism ix : Gx ⊆ G is the inclusion; and x also denotes the homomorphism

of abelian groups Z → Z[S] : 1 7→ x.
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We apply Shapiro’s lemma in the case G = On,n(R) and S = IUp(R
2n). In

particular, as the action of On,n(R) on IUp(R
2n) is transitive for all p ≤ n, Shapiro’s

lemma gives isomorphisms

H∗(St(e1, . . . , ep))
∼=−→ H∗(On,n, Cp(n)), (3.4)

for all p ≤ n, where St(e1, . . . , ep) denotes the stabiliser of (e1, . . . , ep) ∈ IUp(R
2n).

We compute these stabilisers:

Proposition 3.2.2. Let 1 ≤ k ≤ n. Then, in the above notation, the stabilisers

A ∈ St(e1, . . . , ek) are of the form

A =



1 c11 0 c12 · · · 0 c1k
tu1

0 1 0 0 · · · 0 0 0

0 c21 1 c22 · · · 0 c2k
tu2

0 0 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 ck1 0 ck2 · · · 1 ckk
tuk

0 0 0 0 · · · 0 1 0

0 x1 0 x2 · · · 0 xk B


where cij ∈ R;ui, xi ∈ R2(n−k) and B ∈M2(n−k)(R), subject to the conditions

ui + tBψ2(n−k)xi = 0, (3.5)

cij + cji + ⟨xi, xj⟩ = 0, (3.6)

B ∈ On−k,n−k. (3.7)

For example, for k = 1, we have

St(e1) =


1 c tu

0 1 0

0 x B

∣∣∣∣∣ u+ tBψx = 0; 2c+ ⟨x, x⟩ = 0; B ∈ On−1,n−1.

 .

Proof. Let A ∈ St(e1, . . . , ek). Then, Aei = ei for all 1 ≤ i ≤ k by definition, which

gives the 1st, 3rd, . . . , (2k− 1)st columns of A. Moreover, for a fixed 1 ≤ i ≤ k and

any 1 ≤ j ≤ n, we have

⟨ei, Aej⟩ = ⟨Aei, Aej⟩ = ⟨ei, ej⟩ = 0
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and

⟨ei, Afj⟩ = ⟨Aei, Afj⟩ = ⟨ei, fj⟩ = δij .

Therefore, as ⟨ek, el⟩ = 0 and ⟨ek, fl⟩ = δkl for all 1 ≤ k, l ≤ n, we deduce that the
coefficient of fi in the expression for Aej and Afj is 0 for all j ̸= i and the coefficient
of fi in the expression for Afi is 1. This gives the 2nd, 4th, . . . , 2kth rows of A. The
remaining coefficients give the cij ∈ R;ui, xi ∈ R2(n−k) and B ∈M2(n−k)(R). We use

the equation tAψA = ψ to determine the conditions on these variables. Specifically,
one has that for any A ∈ St(e1, . . . , ek),

tAψA =



1 0 0 0 · · · 0 0 0

c11 1 c21 0 · · · ck1 0 tx1
0 0 1 0 · · · 0 0 0

c12 0 c22 1 · · · ck2 0 tx2

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · 1 0 0

c1k 0 c2k 0 · · · ckk 1 txk
u1 0 u2 0 · · · uk 0 tB


ψ



1 c11 0 c12 · · · 0 c1k
tu1

0 1 0 0 · · · 0 0 0

0 c21 1 c22 · · · 0 c2k
tu2

0 0 0 1 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

0 ck1 0 ck2 · · · 1 ckk
tuk

0 0 0 0 · · · 0 1 0

0 x1 0 x2 · · · 0 xk B



=



0 1 0 0 · · · 0 0 0

1 c11 + c11 + ⟨x1, x1⟩ 0 c12 + c21 + ⟨x1, x2⟩ · · · 0 c1k + ck1 + ⟨x1, xk⟩ tu1 + tx1ψB

0 0 0 1 · · · 0 0 0

0 c12 + c21 + ⟨x2, x1⟩ 1 c22 + c22 + ⟨x2, x2⟩ · · · 0 c2k + ck2 + ⟨x2, xk⟩ tu2 + tx2ψB

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · 0 1 0

0 c1k + ck1 + ⟨xk, x1⟩ 0 c2k + ck2 + ⟨xk, x2⟩ · · · 1 ckk + ckk + ⟨xk, xk⟩ tuk + txkψB

0 u1 + tBψx1 0 u2 + tBψx2 · · · 0 uk + tBψxk
tBψB


= ψ.

Whence the equations.

To ease notation, we will from now on denote Tk := St(e1, . . . , ek). We will

use the convention that T0 = On,n. Note, we may see from the structure of the

matrices in Tk that the projection map ρ : Tk ↠ On−k,n−k, sending the matrix A

in proposition 3.2.2 to ρ(A) = B, defines a group homomorphism. We denote its

kernel by Lk, so that we have a short exact sequence of groups

1 → Lk → Tk
ρ−→ On−k,n−k → 1. (3.8)

The associated Hochschild-Serre sepectral sequence is

E2
p,q = Hp(On−k,n−k;Hq(Lk)) ⇒ Hp+q(Tk). (3.9)

3.2.2.2 The local R∗-action

In this section, we will define an R∗-action on short exact sequence (3.8) which we

call ‘local action’. Using spectral sequence (3.9), we will show that, after localisation,
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the homology of Tk and On−k,n−k coincide. In the next section, we will see that the

local actions are induced by a ‘global’ R∗-action on the spectral sequence (3.3).

Definition 3.2.3 (Local action). Let a ∈ R∗. For 0 ≤ k ≤ n, define a 2n × 2n

matrix Da,k by

Da,k :=


Da

. . .

Da

12n−2k

 =

(
k⊕
1

Da

)⊕
12(n−k), Da :=

(
a 0

0 a−1

)
.

Note that Da,k ∈ On,n(R). The local action of R∗ on Tk is the conjugation action

of Da,k on Tk.

The local action preserves Tk because

Da,k



1 c11 0 c12 · · · 0 c1k
tu1

0 1 0 0 · · · 0 0 0

0 c21 1 c22 · · · 0 c2k
tu2

0 0 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 ck1 0 ck2 · · · 1 ckk
tuk

0 0 0 0 · · · 0 1 0

0 x1 0 x2 · · · 0 xk B


D−1

a,k

=



1 a2c11 0 a2c12 · · · 0 a2c1k atu1

0 1 0 0 · · · 0 0 0

0 a2c21 1 a2c22 · · · 0 a2c2k atu2

0 0 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 a2ck1 0 a2ck2 · · · 1 a2ckk atuk

0 0 0 0 · · · 0 1 0

0 ax1 0 ax2 · · · 0 axk B


∈ Tk.

Also notice that this conjugation action restricted to On−k,n−k ⊂ Tk is trivial. Thus,

we have an R∗-action on short exact sequence (3.8), which will induce an R∗-action

on spectral sequence (3.9).

We now introduce the idea of localising homology groups. Let m ≥ 1 be
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an integer. Choose units a1, . . . , am ∈ R∗ such that for every non-empty subset

I ⊂ {1, . . . ,m}, the partial sum aI :=
∑

i∈I ai is a unit in R. Call such a sequence

(a1, . . . , am) an S(m)-sequence. Choosing an S(m)-sequence is possible for every

m > 0 because R has infinite residue field.

Let sm ∈ Z[R∗] be the element

sm = −
∑

∅≠I⊂{1,...,m}

(−1)|I|⟨aI⟩ ∈ Z[R∗],

first considered in [Sch17], where ⟨u⟩ ∈ Z[R∗] denotes the element of the group ring

corresponding to u ∈ R∗. Note that

1 = −
∑

∅≠I⊂{1,...,m}

(−1)|I|,

so that a trivial R∗-action induces a trivial action by the elements sm. The magic

of these elements sm lie in the following proposition, for the proof of which we refer

the reader to [Sch21, Proposition D.4.].

Proposition 3.2.4. Let R be a commutative ring and u = (u1, . . . , um) an S(m)-

sequence in R. Let

N → G→ A

be a central extension of groups. Assume that the group of units R∗ acts on the

exact sequence. Assume furthermore that the groups A and N are the underlying

abelian groups (A,+, 0) and (N,+, 0) of R-modules (A,+, 0, ·) and (N,+, 0, ·), and
the R∗-actions on A and N in the exact sequence are given by

R∗ ×A→ A : (t, a) 7→ t · a

and

R∗ ×N → N : (t, y) 7→ t2 · y

respectively. Then, for every 1 ≤ n < m/2,

s−1
m Hn(G) = 0.

We may now localise the spectral sequence (3.9) with respect to the elements
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sm to obtain for all m ≥ 1 the localised spectral sequences

s−1
m E2

pq = s−1
m Hp(On−k,n−k;Hq(Lk))

∼= Hp(On−k,n−k; s−1
m Hq(Lk))

⇒ s−1
m Hp+q(Tk), (3.10)

the isomorphism coming from the fact that R∗ acts trivially on On−k,n−k.

We show that localising with respect to the elements sm kills the non-zero

homology groups of Lk when m is taken to infinity.

Lemma 3.2.5. We have s−1
m H0(Lk) = Z and for all 1 ≤ 2q < m, s−1

m Hq(Lk) = 0.

Proof. We claim there is a short exact sequence of groups

1 → (R(k2),+) → Lk → ((R2(n−k))k,+) → 1. (3.11)

The first arrow maps

(c1, . . . ) 7→ A(c1,... )

where A(c1,... ) ∈ Lk is defined by the conditions (3.5), (3.6) and (3.7) subject to

B = 1, xi = 0 and using equation (3.6) to determine the remaining constants

(with some ordering specified beforehand). Note that we have used here that 2 is

invertible, as (3.6) implies 2cii = 0 for all i. The second arrow maps

1 c11 0 c12 · · · 0 c1k
tu1

0 1 0 0 · · · 0 0 0

0 c21 1 c22 · · · 0 c2k
tu2

0 0 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 ck1 0 ck2 · · · 1 ckk
tuk

0 0 0 0 · · · 0 1 0

0 x1 0 x2 · · · 0 xk 1


7→ (x1, . . . , xk).

One may check that these arrows define group homomorphisms, fitting into the short

exact sequence (3.11), and (3.11) is actually a central extension.

Furthermore, this central extension is R∗-equivariant where b ∈ R∗ acts on

(R(k2),+) via pointwise multiplication by b2, the element b ∈ R∗ acts on Lk via

conjugation by Db,k, and it acts on ((R2(n−k))k,+) via pointwise multiplication

by b. By Proposition 3.2.4, s−1
m Hq(Lk) = 0 for all 1 ≤ 2q < m. The equality

s−1
m H0(Lk) = Z follows from fact that R∗ acts trivially on H0(Lk).
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Corollary 3.2.6. The inclusion On−k,n−k ↪→ Tk induces isomorphism

Ht(On−k,n−k)
∼=−→ s−1

m Ht(Tk)

for all t < m/2.

Proof. By lemma 3.2.5, the localised Hochschild-Serre spectral sequence degenerates

at E2 for 1 ≤ 2t < m to yield isomorphism

ρ : s−1
m Ht(Tk)

∼=−→ Ht(On−k,n−k)

for all t < m/2. Since ρ is a retract of the inclusion, we are done.

3.2.2.3 A global action on the spectral sequence

Next, we want to realise these ‘local actions’ as a ‘global action’ on the spectral

sequence

E1
p,q(n) = Hq(On,n, Cp(n)) ⇒ Hp+q(On,n, C∗(n)). (3.12)

We do this by defining an action on the associated exact couple with abutment.

Recall that for a group G and a chain complex of G-modules C∗, the spectral

sequence

E1
p,q = Hq(G,Cp) ⇒ Hp+q(G,C∗)

may be obtained from the exact couple with abutment

⊕
p,q E

1
p,q

⊕
p,qD

1
p,q

⊕
p+q Ap+q

⊕
p,qD

1
p,q

k

i

σ

j

σ (3.13)

with E1
p,q = Hp+q(G,C≤p/C≤p−1); D

1
p,q = Hp+q(G,C≤p); Ap+q = Hp+q(G,C∗); the

maps i, j, k being the maps of the long exact sequence of homology groups associated

to the short exact sequence of complexes

0 → C≤p−1 → C≤p → C≤p/C≤p−1 → 0,

and σ is induced by the inclusion.

To define the global action, it will be convenient to introduce the general

split orthogonal group, which is defined as follows.
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Definition 3.2.7. For a ring R, define GOn,n(R) ⊂ GL2n(R) as the subgroup

GOn,n(R) := {A ∈ GL2n(R)| tAψ2nA = aψ2n, for some a ∈ R∗}.

In the above notation, we will call a ∈ R∗ the associated unit of A.

For n ≥ 1 we have short exact sequence of groups

1 → On,n → GOn,n → R∗ → 1 (3.14)

where the first arrow is given by the inclusion and the second arrow maps A ∈ GOn,n

to its associated unit. For instance, for a ∈ R∗, the matrix

Ba :=



1

a
. . .

1

a


is in GOn,n and has associated unit a which proves exactness at the right.

Definition 3.2.8 (Global action). The group homomorphism GOn,n(R) → R∗

makes Z[R∗] into a right GOn,n(R)-module and left R∗-module, and both actions

commute. In particular, for any bounded below complex of GOn,n-modules M·, the

groups

Tor
GOn,n
i (Z[R∗],M·) = Hi(Z[R∗] ⊗L

GOn,n M·)

are left Z[R∗]-modules functorial in M·, and the spectral sequence

E1
p,q = Tor

GOn,n
q (Z[R∗],Mp) ⇒ Tor

GOn,n
p+q (Z[R∗],M·) (3.15)

is a spectral sequence of left R∗-modules. This spectral sequence is the spectral

sequence of the exact couple (3.13) with E1
p,q = Tor

GOn,n
p+q (Z[R∗],M≤p/M≤p−1);

D1
p,q = Tor

GOn,n
p+q (Z[R∗],M≤p); Ap+q = Tor

GOn,n
p+q (Z[R∗],M·). For n ≥ 1, the in-

clusions Z ⊂ Z[R∗] : 1 7→ 1 and On,n ⊂ GOn,n yield isomorphisms

Z⊗L
On,n M·

∼−→ Z[R∗] ⊗L
GOn,n M·

by Shapiro’s lemma. For M· = C·(n), this identifies the spectral sequence (3.15)

with (3.12) and makes the latter into a spectral sequence of R∗-modules. We use

this structure to define the global action of R∗ on (3.12).
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Specifically, we now show that, under the isomorphism (3.4), the local actions

corresponding to conjugation with Da,k are induced by the global action correspond-

ing to multiplication with a−2 ∈ R∗. For this end, we will need to prove that the

appropriate diagrams commute. We will use the following two lemmas.

Lemma 3.2.9. Let G and K be groups. Let M and N be a G-module and a K-

module, respectively. Consider the diagram of morphisms

(G,M)
(f1,φ1)

⇒
(f2,φ2)

(K,N)

where f1, f2 are group homomorphisms and φ1, φ2 G-module homomorphisms, N is

considered a G-module via f1 and f2 respectively. Suppose there exists a κ ∈ K such

that for all g ∈ G and for all m ∈M ,

f2(g) = κf1(g)κ−1 and φ2(m) = κφ1(m).

Then

(f1, φ1)∗ = (f2, φ2)∗ : H∗(G,M) → H∗(K,N).

Proof. By assumption, we have the following commutative diagram:

H∗(G,M)

H∗(K,N) H∗(K,N),

(f1,φ1)∗
(f2,φ2)∗

(cκ,µκ)∗

where (cκ, µκ) : (K,N) → (K,N) is the map (k, n) 7→ (κkκ−1, κn). By [Bro94,

Chapter III.8], the bottom horizontal map equals the identity.

We will also need to recall functoriality of Tor. This is given by the following

lemma.

Lemma 3.2.10. Let G and K be groups; let M and P be a right G-module and

right K-module respectively; and let N and Q be a left G-module and left K-module

respectively.

Consider the diagram of morphisms

(M,G,N)
(f1,φ1,g1)

⇒
(f2,φ2,g2)

(P,K,Q)

where φ1, φ2 are group homomorphisms; f1, f2 right G-module homomorphisms where

56



P is considered a right G-module via φ1 and φ2 respectively and g1, g2 left G-module

homomorphisms where Q is considered a left G-module via φ1 and φ2 respectively.

Suppose there exists a κ ∈ K such that for all g ∈ G; for all m ∈M and for

all n ∈ N ,

f2(m) = f1(m)κ−1 , φ2(g) = κφ1(g)κ−1 and g2(m) = κg1(n).

Then

(f1, φ1, g1)∗ = (f2, φ2, g2)∗ : TorG∗ (M,N) → TorK∗ (P,Q).

Proof. By assumption, the following diagram commutes:

H∗(M ⊗L
G N)

H∗(P ⊗L
K Q) H∗(P ⊗L

K Q),

(f1,φ1,g1)∗
(f2,φ2,g2)∗

(λκ−1 ,cκ,µκ)∗

where

λκ−1 : P → P, p 7→ pκ−1, cκ : K → K, k 7→ κkκ−1, µκ : Q→ Q, q 7→ κq.

Therefore, the bottom horizontal map is induced by the map

P ⊗G Q→ P ⊗G Q

p⊗ q 7→ pκ−1 ⊗ κq = p⊗ q

which is the identity.

By definition the R∗-action on Tor
GOn,n
q (Z[R∗], Ck(n)) corresponding to left

multiplication with a ∈ R∗ is induced by the map

(Z[R∗], GOn,n, Ck(n))
(a,id,id)−−−−−→ (Z[R∗], GOn,n, Ck(n))

where a : Z[R∗] → Z[R∗] is the map corresponding to left multiplication with a.

With this, we have the following proposition, which gives us a model of this action

in terms of the groups Tor
On,n
q (Z, Ck(n)) ∼= Hq(On,n, Ck(n)).

Proposition 3.2.11. Let k, q ≥ 0 and n ≥ 1. Then, for all a ∈ R∗, the following
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diagram commutes:

Tor
GOn,n
q (Z[R∗], Ck(n)) Tor

GOn,n
q (Z[R∗], Ck(n))

Tor
On,n
q (Z, Ck(n)) Tor

On,n
q (Z, Ck(n)),

(a,id,id)∗

(i,i,id)∗ ∼=

(id,CBa ,Ba)∗

(i,i,id)∗∼=

where the vertical maps are the isomorphisms given by Shapiro’s lemma; Ba denotes

left multiplication by Ba ∈ GOn,n and CBa denotes the map induced by conjugation

with the element Ba on On,n.

Proof. We use lemma 3.2.10. Specifically, consider the diagram

(Z, On,n, Ck(n))
(f1,φ1,g1)

⇒
(f2,φ2,g2)

(Z[R∗], GOn,n, Ck(n))

where (f1, φ1, g1) := (µa, i, 1) and (f2, φ2, g2) := (i, CBa , µBa). Here, µa is defined

via µa(1) := a and µBa is defined via left multiplication on basis elements by Ba.

Let κ := Ba ∈ GOn,n. Note that from short exact sequence 3.14, we deduce Ba

acts on R∗ by multiplication with a. Thus, i(1) = 1 = µa(1)κ−1. Furthermore,

CBa = κiκ−1 and for every (v1, . . . , vk) ∈ IUk(R2n), µBa(v1, . . . , vk) = κ(v1, . . . , vk)

(the case k = 0 being trivial). Thus, by lemma 3.2.10, the diagram commutes.

Next, note that the action on Tor
On,n
q (Z, Ck(n)) induced by

(Z, On,n, Ck(n))
(id,CBa ,Ba)−−−−−−−→ (Z, On,n, Ck(n))

is equivalent to the action on Hq(On,n, Ck(n)) induced by

(On,n, Ck(n))
(CBa ,Ba)−−−−−−→ (On,n, Ck(n)).

To make the connection with the action induced by conjugation with Da,k, we prove

the following intermediate proposition.

Proposition 3.2.12. Let k, q ≥ 0 and n ≥ 1. Then, for all a ∈ R∗, the following

diagram commutes:

Hq(On,n, Ck(n)) Hq(On,n, Ck(n))

Hq(On,n, Ck(n)) Hq(On,n, Ck(n)),

(CB
a−2

,Ba−2 )∗

id

(id,ϕa)∗

id
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where for a ∈ R∗, the map

(id, ϕa) : (On,n, Ck(n)) → (On,n, Ck(n))

is defined to be the identity on On,n and on basis elements of Ck(n) as

ϕa : (v1, . . . , vk) 7→ (a−1v1, . . . , a
−1vk).

Proof. We use lemma 3.2.9. Specifically, consider the diagram

(On,n, Ck(n))
(f1,φ1)

⇒
(f2,φ2)

(On,n, Ck(n))

where (f1, φ1) := (id, ϕa) and (f2, φ2) := (CBa−2 , Ba−2). Define

κ := Da,n =



a

a−1

. . .

a

a−1


.

Denoting for a ∈ R∗,

a :=



a

a
. . .

a

a


,

note that Ba−2 = κa−1, so that CBa−2 = CκCa−1 . But, Ca−1 = id, so that CBa−2 =

Cκ. Furthermore, note that for every (v1, . . . , vk) ∈ IUk(R2n), Ba−2(v1, . . . , vk) =

κϕa(v1, . . . , vk), since Ba−2 = κa−1. Thus, by lemma 3.2.9, the diagram commutes.

Finally, we show that (id, ϕa) induces the desired local actions.

Proposition 3.2.13. Let k, q ≥ 0. Then, for all a ∈ R∗, the following diagram

commutes:

Hq(On,n, Ck(n)) Hq(On,n, Ck(n))

Hq(Tk,Z) Hq(Tk,Z),

(id,ϕa)∗

(i,(e1,...,ek))∗ ∼=

CDa,k

(i,(e1,...,ek))∗∼=
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where the vertical arrows are the isomorphisms given by Shapiro’s lemma and the

map CDa,k denotes the map induced by conjugation with the element Da,k on the

stabiliser Tk.

Proof. We use lemma 3.2.9. Specifically, we have to consider the diagram

(Tk,Z)
(f1,φ1)

⇒
(f2,φ2)

(On,n, Ck(n))

where (f1, φ1) := (i, (a−1e1, . . . , a
−1ek)) and (f2, φ2) := (iCDa,k , (e1, . . . , ek)), and

i : Tk → On,n is the natural inclusion of groups. Let κ = Da,k ∈ On,n. Then, for

every A ∈ Tk,

f2(A) = iCDa,k(A) = Da,kAD
−1
a,k = Da,ki(A)D−1

a,k = κf1(A)κ−1

and

(e1. . . . , ek) = Da,k(a−1e1, . . . , a
−1ek) = κ(a−1e1, . . . , a

−1ek).

By lemma 3.2.9, the diagram commutes.

Thus, we have shown that there exists an R∗-action on the spectral sequence

E1
p,q(n) = Hq(On,n, Cp(n)) ⇒ Hp+q(On,n, C∗(n))

which induces the desired local actions considered previously. Using corollary 3.2.6,

we obtain the following.

Corollary 3.2.14. For every m ≥ 1, the localised spectral sequence

mE
1
p,q(n) = s−1

m E1
p,q(n) ⇒ s−1

m Hp+q(On,n, C∗(n)) (3.16)

has mE
1
p,q terms

mE
1
p,q = s−1

m Hq(On,n, Cp(n)) ∼= Hq(On−p,n−p)

for all q < m/2 and for all p ≤ n.

Under these identifications, the differentials d1 : mE
1
p,q → mE

1
p−1,q take the

form

d1 : Hq(On−p,n−p) → Hq(On−p+1,n−p+1)

whenever q < m/2 and p ≤ n. Our next task is to compute these differentials.
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3.2.3 Computation of the localised d1 differentials, and proof of

homological stability

Proposition 3.2.15. For all q < m/2 and p ≤ n, the homomorphism d1p,q :

Hq(On−p,n−p) → Hq(On−p+1,n−p+1) is

d1p,q =

0, p even

i∗, p odd,

where i : On−p,n−p ↪→ On−p+1,n−p+1 denotes the inclusion.

Proof. For all p ≤ n, we want to show that the following diagram commutes:

Hq(On−p,n−p) Hq(On,n, Cp(n))

Hq(On−p+1,n−p+1) Hq(On,n, Cp−1(n)),

i∗

(ε,(e1,...,ep))∗

(di)∗

(ε,(e1,...,ep−1))∗

(3.17)

where ε : On−p,n−p ↪→ On,n denotes the inclusion map; (e1, . . . , ep) : 1 7→ (e1, . . . , ep)

and recall that di(v1, . . . , vp) = (v1, . . . , v̂i. . . . , vp). Again, we will prove this diagram

commutes using lemma 3.2.9. Specifically, consider the diagram

(On−p,n−p,Z)
(ε,(e1,...,êi,...,ep))

⇒
(ε◦i,(e1,...,ep−1))

(On,n, Cp−1(n)).

Define A ∈ On,n by sending a hyperbolic basis to a hyperbolic basis as follows:

(e1, . . . , êi, . . . , ep) 7→ (e1, . . . , ep−1)

(f1, . . . , f̂i, . . . , fp) 7→ (f1, . . . , fp−1)

ei 7→ ep

fi 7→ fp

ej 7→ ej and fj 7→ fj for all p+ 1 ≤ j ≤ n.

Then, by construction, (e1, . . . , ep−1) = A(e1, . . . , êi, . . . ep). Note the matrix of A

has the form

A =

(
σ 0

0 12(n−p)

)
for some permutation matrix σ. Therefore, we deduce that for every B ∈ On−p,n−p,

ε ◦ i(B) = Aε(B)A−1.

61



By lemma 3.2.9, the diagram commutes. The proposition then follows from the fact

that the differential d1 : Hq(On,n, Cp(n)) → Hq(On,n, Cp−1(n)) is induced by the

differential d =
∑p

i=1(−1)i+1di : Cp(n) → Cp−1(n) and the above remains true after

localisation, with the horizontal arrows becoming the identification isomorphisms.

We immediately deduce the following corollary:

Corollary 3.2.16. For all q < m/2 and for all p ≤ n,

mE
2
p,q =

ker
(
Hq(On−p,n−p)

i∗−→ Hq(On−p+1,n−p+1))
)
, p odd

coker
(
Hq(On−p−1,n−p−1)

i∗−→ Hq(On−p,n−p))
)
, p even.

To prove homological stability, we will need to prove the following.

Proposition 3.2.17. The differentials drp,q in spectral sequence (3.16) are zero for

r ≥ 2 and q < m/2, p ≤ n. Hence, for all q < m/2 and p ≤ n, mE
2
p,q

∼= mE
∞
p,q.

Proof. Similar to [NS89] and [Sch17], we argue by induction on n. For n = 0, 1, the

spectral sequence under consideration is located in columns 0 and 1. Therefore, the

differentials dr for r ≥ 2 are zero by dimension arguments.

Assume n ≥ 2. We seek to define a homomorphism of complexes of On−2,n−2-

modules

τ : C∗(n− 2)[−2] → C∗(n).

For (v1, . . . , vp−2) ∈ Cp(n− 2)[−2], define

τ0(v1, . . . , vp−2) := (e1, e2, v̄1, . . . , v̄p−2)

τ1(v1, . . . , vp−2) := (e1, e2 − e1, v̄1, . . . , v̄p−2)

τ2(v1, . . . , vp−2) := (e2, e2 − e1, v̄1, . . . , v̄p−2),

where

v̄i :=


0

0

0

0

vi

 ∈ R2n.

Define τ := τ0−τ1+τ2. Note that τ commutes with differentials and commutes with

On−2,n−2 multiplication from the left, so that it indeed defines a homomorphism of
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chain complexes of On−2,n−2-modules. We need to check that τ is equivariant for the

global R∗-actions on the spectral sequences so that τ induces a map on the localised

spectral sequences. By Proposition 3.2.11, the global action is induced by the map

(CBa , Ba) on the spectral sequence (3.12). Therefore, R∗-equivariance follows from

the fact that for every a ∈ R∗ and for all j = 0, 1, 2, the diagrams

(On−2,n−2, Cp−2(n− 2)) (On,n, Cp(n))

(On−2,n−2, Cp−2(n− 2)) (On,n, Cp(n)),

(i,τj)

(CBa ,Ba)

(i,τj)

(CBa ,Ba)

commute, where i : On−2,n−2 ↪→ On,n denotes the inclusion. The point is that

Ba(ei) = ei. Therefore, τ induces a map of spectral sequences of R∗-modules

τ∗ : Ẽ → E

where Ẽ := E(n− 2)[−2, 0] and E := E(n).

Recall from Propositions 3.2.12 and 3.2.13 that the local actions are globally

induced by multiplication with a−2 for a ∈ R∗. Localising with respect to the last

action, we obtain a map on the localised spectral sequences

mτ∗ : mẼ → mE.

Note that for all q < m/2 and 2 ≤ p ≤ n,

mẼ
1
p,q = mE

1
p,q(n− 2)[−2, 0] = mE

1
p−2,q(n− 2) ∼= Hq(On−p,n−p)

The claim will then follow by induction on r using the following lemma.

Lemma 3.2.18. The map mτ∗ : mẼ
1
p,q → mE

1
p,q is the identity for all q < m/2 and

2 ≤ p ≤ n.

Proof. If we can show that for j = 0, 1, 2, the diagrams

Hq(On−p,n−p) Hq(On−2,n−2, Cp−2(n− 2))

Hq(On−p,n−p) Hq(On,n, Cp(n)),

=

(ε,(e1,...,ep−2))∗

(ε,τj)∗

(ε,(e1,...,ep))∗

(3.18)

commute, where the ε’s denote inclusions, we will be done, as τ = τ0 − τ1 + τ2.
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Again, we will prove these diagrams commute using lemma 3.2.9. Specifically,

consider diagram

(On−p,n−p,Z)
(ε,τj(e1,...,ep−2))

⇒
(ε,(e1,...,ep))

(On,n, Cp(n))

Note that τ0(e1, . . . , ep−2) = (e1, e2, e3, . . . , ep), so that diagram (3.18) commutes

in the case for j = 0 by functoriality of group homology. For j = 1, 2, we have

τ1(e1, . . . , ep−2) = (e1, e2−e1, e3, . . . , ep) and τ2(e1, . . . , ep−2) = (e2, e2−e1, e3, . . . , ep).
Define a matrix A ∈ On,n(R) by

e1 7→ e1

e2 7→ e2 − e1

f1 7→ f1 + f2

f2 7→ f2

ej 7→ ej for all 3 ≤ j ≤ n

fj 7→ fj for all 3 ≤ j ≤ n.

Similarly, define B ∈ On,n by

e1 7→ e2

e2 7→ e2 − e1

f1 7→ f1 + f2

f2 7→ −f1
ej 7→ ej for all 3 ≤ j ≤ n

fj 7→ fj for all 3 ≤ j ≤ n.

Then, A(e1, . . . ep) = τ1(e1, . . . , ep−2), B(e1, . . . ep) = τ2(e1, . . . , ep−2) and for every

M ∈ On−p,n−p, ε(M) = Aε(M)A−1 = Bε(M)B−1. Thus, by lemma 3.2.9, diagram

(3.18) commutes for every j = 0, 1, 2. These diagrams still commute after localisa-

tion, but now the horizontal maps become the identification isomorphisms.

This proves the lemma, and thus proposition 3.2.17.

Theorem 3.2.19. Let R be a commutative local ring with infinite residue field such

that 2 ∈ R∗. Then, the natural homomorphism

Hk(On,n(R)) −→ Hk(On+1,n+1(R))

64



is an isomorphism for k ≤ n− 1 and surjective for k ≤ n.

Remark 24. This improves Mirzaii’s result [Mir04] by 1 and matches the analogous

result for fields obtained by Sprehn-Wahl [SW20].

Proof. Choose m > 0 sufficiently large so that we may apply corollary 3.2.16 when

q ≤ n− 1.

Recall from theorem 3.1.9 that Hq(C∗(n)) = 0 for all q ≤ n− 1. Thus, from

the spectral sequences (3.2) and (3.16), corollary 3.2.16 and proposition 3.2.17, we

deduce

coker
(
Hq(On−1,n−1)

i∗−→ Hq(On,n))
)

= mE
2
0,q

∼= mE
∞
0,q

= 0

for all q ≤ n− 1, and

ker
(
Hq(On−1,n−1)

i∗−→ Hq(On,n))
)

= mE
2
1,q

∼= mE
∞
1,q

= 0

for all q ≤ n− 2.

The theorem follows.
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Chapter 4

Homological Stability for SOn,n

Recall we have two hyperhomology spectral sequences

E2
p,q(n) = Hp(SOn,n, Hq(C∗(n))) ⇒ Hp+q(SOn,n, C∗(n)) (4.1)

E1
p,q(n) = Hq(SOn,n, Cp(n)) ⇒ Hp+q(SOn,n, C∗(n)). (4.2)

Moreover, recall that in Theorem 3.1.9, we proved Hq(C∗(n)) = 0 for every q ≤ n−1.

As we expect the homological stability range for SOn,n to be the same as for On,n,

a reasonable proof strategy is to localise spectral sequence (4.2) in the same manner

as we did for the On,n and analyse the localised spectral sequences. The analysis will

turn out to be very similar to the On,n case, except for the situation when p = n,

corresponding to the fact that the action of SOn,n on IUp(R
2n) is transitive only

for p < n, see lemma 4.1.2. But in the end, this will not prove to be too significant.

Note that for all n > 0, we have short exact sequences

1 → SOn,n → On,n → Z2 → 1,

where the right arrow given is by the determinant map. Moreover, if we define

STk ≤ Tk to be the subgroup of matrices in Tk having determinant 1, the projection

map ρ : Tk → On−k,n−k restricts to a map ρ : STk → SOn−k,n−k. Note that

ker(ρ : Tk → On−k,n−k) = ker(ρ : STk → SOn−k,n−k),

since, by inspection on the matrices in Tk, we deduce that detA = det ρ(A) for every

A ∈ Tk, and that both kernels consist precisely of those matrices that map to the

identity matrix. This observation will turn out to be significant in the forthcoming

analysis. Furthermore, note that STn = Tn. We use the conventions that SO0,0 = 1
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and ST0 = SOn,n.

We obtain short exact sequences for every 0 ≤ k ≤ n.

1 → Lk → STk → SOn−k,n−k → 1. (4.3)

4.1 Local R∗-actions and transitivity

Define a local R∗-action on short exact sequence (4.3) in exactly the same was as

we did in section 3.2.2.2, namely we conjugate matrices in STk with the matrix

Da,k ∈ SOn,n. As ker(ρ : Tk → On−k,n−k) = ker(ρ : STk → SOn−k,n−k), the exact

same reasoning as in section 3.2.2.2 can be used to conclude that, after localistaion,

the homology of STk and SOn−k,n−k coincide:

Corollary 4.1.1. The inclusion SOn−k,n−k ↪→ Tk induces isomorphisms

Ht(SOn−k,n−k)
∼=−→ s−1

m Ht(STk)

for all t < m/2.

Next, we study the transitivity of the SOn,n action on IUp(R
2n).

Lemma 4.1.2. The action of SOn,n on IUp(R
2n) is transitive for all p < n.

Proof. Let (u1, . . . , up), (v1, . . . , vp) ∈ IUp(R
2n). By lemma 3.2.1, we deduce there

exists an u#1 , . . . , u
#
p such that (u1, u

#
1 , . . . , up, u

#
p ) has Gram matrix ψ2p, and which

may be extended to hyperbolic basis (u1, u
#
1 , . . . , up, u

#
p , x1, x

#
1 , . . . , xn−p, x

#
n−p).

Similarly, there exists an v#1 , . . . , v
#
p such that (v1, v

#
1 , . . . , vp, v

#
p ) has Gram matrix

ψ2p, and which may be extended to hyperbolic basis (v1, v
#
1 , . . . , vp, v

#
p , y1, y

#
1 , . . . , yn−p, y

#
n−p).

Let B ∈ On,n be the matrix

B := (u1 u#1 · · · up u#p x1 x#1 · · · xn−p x#n−p),

and let C ∈ On,n be the matrix

C := (v1 v#1 · · · vp v#p y1 y#1 · · · yn−p y#n−p).

If detB = detC, then CB−1 ∈ SOn,n and maps (u1, . . . , up) to (v1, . . . , vp). If

detB ̸= detC, then define Ĉ := CT , where T is the matrix that swaps yn−p and

y#n−p in the columns of C. Then, as detT = −1, it follows detB = det Ĉ, and we

are in the previous case.
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Recall that Shapiro’s lemma gives an isomorphism⊕
[x]∈S/G

(ix, x)∗ :
⊕

[x]∈S/G

H∗(Gx,Z)
∼=−→ H∗(G,Z[S])

of homology groups, where the direct sum is over a set of representatives x ∈ S of

equivalence classes [x] ∈ S/G; the group Gx is the stabiliser of G at x ∈ S; the

homomorphism ix : Gx ⊆ G is the inclusion; and x also denotes the homomorphism

of abelian groups Z → Z[S] : 1 7→ x.

We apply Shapiro’s lemma in the case G = SOn,n(R) and S = IUp(R
2n).

Thus, by lemma 4.1.2 we have identification isomorphisms given by Shapiro’s

lemma for every, 0 ≤ p < n and q ≥ 0

Hq(STp)
∼=−→ Hq(SOn,n, Cp(n)). (4.4)

For p = n, we claim that the action of SOn,n on IUn(R2n) has two orbits:

Proposition 4.1.3. For n ≥ 1, the action of SOn,n on IUn(R2n) has orbits corre-

sponding to Z2.

Proof. We know by lemma 3.2.1 that the action of On,n on IUn(R2n) is transitive,

so that we have an isomorphism of On,n−sets

On,n/Tn ∼= IUn(R2n).

Furthermore, note that Tn = STn ≤ SOn,n ≤ On,n, so that we have a canonical

surjection On,n/Tn → On,n/SOn,n with fibre SOn,n/Tn. Therefore, we have an

isomorphism of On,n-sets IUn(R2n)/SOn,n
∼= On,n/SOn,n. This gives us

∣∣IUn(R2n)/SOn,n

∣∣ = |On,n/SOn,n| = |Z2| ,

where the last equality follows from the short exact sequence

1 → SOn,n → On,n → Z2 → 1.

Therefore, Shapiro’s lemma gives us an isomorphism

Hq(St(e1, . . . , en)) ⊕Hq(St(e1, . . . , en−1, fn))
∼=−→ Hq(SOn,n, Cn, (n)). (4.5)
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where St(e1, . . . , en−1, fn) denotes the stabiliser of (e1, . . . , en−1, fn) in SOn,n, and

the identification map is given by Shapiro’s lemma. To ease notation, we define

Tn := St(e1, . . . , en−1, fn).

We will compute Tn and show that, after localisation, all non-zero homology

groups of Tn vanish.

4.1.1 Computation of T n and a local R∗ action

We first compute Tn.

Proposition 4.1.4. Matrices A ∈ Tn are of the form

A =



1 c11 0 c12 · · · 0 c1n−1 c1n 0

0 1 0 0 · · · 0 0 0 0

0 c21 1 c22 · · · 0 c2n−1 c2n 0

0 0 0 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 cn−1
1 0 cn−1

2 · · · 1 cn−1
n−1 cn−1

n 0

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 cn1 0 cn2 · · · 0 cnn−1 0 1


where cij ∈ R, subject to the conditions

cij + cji = 0. (4.6)

Proof. Let A ∈ Tn. Then, Ae1 = e1, . . . , Aen−1 = en−1 and Afn = fn. This gives

the 1st, 3rd, ...., (2n− 3)rd and 2n-th column of A. Moreover, for a fixed 1 ≤ i < n

and for any 1 ≤ j < n, we have

⟨ei, Afj⟩ = ⟨Aei, Afj⟩ = ⟨ei, fj⟩ = δij

and

⟨ei, Aen⟩ = ⟨Aei, Aen⟩ = ⟨ei, en⟩ = 0.

This gives the 2nd, 4th, . . . , (2n− 2)nd rows of A.

Furthermore, note that for 1 ≤ j < n,

⟨fn, Afj⟩ = ⟨Afn, Afj⟩ = ⟨fn, fj⟩ = 0,

⟨fn, Aej⟩ = ⟨Afn, Aej⟩ = ⟨fn, ej⟩ = 0
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and

⟨fn, Aen⟩ = ⟨Afn, Aen⟩ = ⟨fn, en⟩ = 1.

This gives the (2n− 1)th row of A. Filling in the remaining entries by constants to

be determined, we have that

A =



1 c11 0 c12 · · · 0 c1n−1 c1n 0

0 1 0 0 · · · 0 0 0 0

0 c21 1 c22 · · · 0 c2n−1 c2n 0

0 0 0 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 cn−1
1 0 cn−1

2 · · · 1 cn−1
n−1 cn−1

n 0

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 cn1 0 cn2 · · · 0 cnn−1 ∆ 1


where cij ,∆ ∈ R.

We use the equation tAψ2nA = ψ2n to determine the conditions on these
variables. Specifically, we have that

tAψA =



1 0 0 0 · · · 0 0 0 0

c11 1 c21 0 · · · cn−1
1 0 0 cn1

0 0 1 0 · · · 0 0 0 0

c12 0 c22 1 · · · cn−1
2 0 0 cn2

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · 1 0 0 0

c1n−1 0 c2n−1 0 · · · cn−1
n−1 1 0 cnn−1

c1n 0 c2n 0 · · · cn−1
n 0 1 ∆

0 0 0 0 · · · 0 0 0 1



ψ



1 c11 0 c12 · · · 0 c1n−1 c1n 0

0 1 0 0 · · · 0 0 0 0

0 c21 1 c22 · · · 0 c2n−1 c2n 0

0 0 0 1 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

0 cn−1
1 0 cn−1

2 · · · 1 cn−1
n−1 cn−1

n 0

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 cn1 0 cn2 · · · 0 cnn−1 ∆ 1



=



0 1 0 0 · · · 0 0 0 0

1 c11 + c11 0 c12 + c21 · · · 0 c1n−1 + cn−1
1 c1n + cn1 0

0 0 0 1 · · · 0 0 0 0

0 c12 + c21 1 c22 + c22 · · · 0 c2n−1 + cn−1
2 c2n + cn2 0

.

.

.

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · 0 1 0 0

0 c1n−1 + cn−1
1 0 c2n−1 + cn−1

2 · · · 1 cn−1
n−1 + cn−1

n−1 cn−1
n + cnn−1 0

0 c1n + cn1 0 c2n + cn2 · · · 0 cn−1
n + cnn−1 2∆ 1

0 0 0 0 · · · 0 0 1 0


= ψ.

Thus, we conclude ∆ = 0 necessarily and we derive the required equations.

We now define a local R∗ action on Tn. This will be slightly different from

the local actions on Tk. We will show that, after localisation, the non-zero homol-

ogy groups of Tn vanish. Eventually, we will show the global action considered in

subsection 3.2.2.3 induces this local action on Tn.
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Definition 4.1.5 (Local action). Let a ∈ R∗. Define a 2n× 2n matrix Da,n by

Da,n :=



a

a−1

. . .

a

a−1

a−1

a


=

(
n−1⊕
1

(
a 0

0 a−1

))⊕(
a−1 0

0 a

)
.

Note that Da,n ∈ SOn,n(R). The local action of R∗ on Tn is the conjugation action

of Da,n on Tn.

The local action preserves Tn because

Da,n



1 c11 0 c12 · · · 0 c1n−1 c1n 0

0 1 0 0 · · · 0 0 0 0

0 c21 1 c22 · · · 0 c2n−1 c2n 0

0 0 0 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 cn−1
1 0 cn−1

2 · · · 1 cn−1
n−1 cn−1

n 0

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 cn1 0 cn2 · · · 0 cnn−1 0 1



D
−1
a,n

=



1 a2c11 0 a2c12 · · · 0 a2c1n−1 a2c1n 0

0 1 0 0 · · · 0 0 0 0

0 a2c21 1 a2c22 · · · 0 a2c2n−1 a2c2n 0

0 0 0 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 a2cn−1
1 0 a2cn−1

2 · · · 1 a2cn−1
n−1 a2cn−1

n 0

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 a2cn1 0 a2cn2 · · · 0 a2cnn−1 0 1



∈ Tn.

We show that localising with respect to the elements sm kills the non-zero

homology groups of Tn when m is taken to infinity. This is used to make the

identifications in corollary 4.2.3.
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Lemma 4.1.6. We have s−1
m H0(Tn) = Z and for all 1 ≤ 2q < m, s−1

m Hq(Tn) = 0.

Proof. We claim there is a short exact sequence of groups

1 → (R(n2),+) → Tn → 1 → 1. (4.7)

The first arrow maps

(c1, . . . ) 7→ A(c1,... )

where A(c1,... ) ∈ Tn is defined by conditions (4.6) (with some ordering specified

beforehand). The second maps A ∈ Tn to its bottom right identity matrix. One

may check that Tn is abelian, and these arrows define a short exact sequence of

abelian groups.

Furthermore, this short exact sequence of abelian groups is R∗-equivariant

where b ∈ R∗ acts on (R(n2),+) via pointwise multiplication by b2, the element

b ∈ R∗ acts on Tn via conjugation by Db,n and the action of b on 1 is taken to be

trivial.

By Proposition 3.2.4, s−1
m Hq(Tn) = 0 for all 1 ≤ 2q < m. The equality

s−1
m H0(Tn) = Z follows from fact that R∗ acts trivially on H0(Tn).

4.2 A global action on the SOn,n spectral sequence

As before, we want to realise these ‘local actions’ as a ‘global action’ on the spectral

sequence

E1
p,q(n) = Hq(SOn,n, Cp(n)) ⇒ Hp+q(SOn,n, C∗(n)). (4.8)

Again, we do this by defining an action on the associated exact couple with abut-

ment. Specifically, the spectral sequence

E1
p,q = Hq(SOn,n, Cp(n)) ⇒ Hp+q(SOn,n, C∗(n))

may be obtained from the exact couple with abutment

⊕
p,q E

1
p,q

⊕
p,qD

1
p,q

⊕
p+q Ap+q

⊕
p,qD

1
p,q

k

i

σ

j

σ (4.9)
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with E1
p,q = Hp+q(SOn,n, C≤p(n)/C≤p−1(n)); D1

p,q = Hp+q(SOn,n, C≤p(n)); Ap+q =

Hp+q(SOn,n, C∗(n)); the maps i, j, k being the maps of the long exact sequence of

homology groups associated to the short exact sequence of complexes

0 → C≤p−1(n) → C≤p(n) → C≤p(n)/C≤p−1(n) → 0,

and σ is induced by the inclusion.

For a ∈ R∗, we define the global action on spectral sequence (4.8) to be

the action induced by the map (CBa−2 , Ba−2) on exact couple (4.9), where CBa−2

denotes conjugation by the matrix Ba−2 of section 3.2.2.3, and Ba−2 also refers to

multiplication by this matrix.

As Da,k ∈ SOn,n for every 0 ≤ k ≤ n, the proof of proposition 3.2.12 may be

used to prove following proposition continues to hold for SOn,n.

Proposition 4.2.1. Let k, q ≥ 0 and n ≥ 1. Then, for all a ∈ R∗, the following

diagram commutes:

Hq(SOn,n, Ck(n)) Hq(SOn,n, Ck(n))

Hq(SOn,n, Ck(n)) Hq(SOn,n, Ck(n)),

(CB
a−2

,Ba−2 )∗

id

(id,ϕa)∗

id

where for a ∈ R∗, the map

(id, ϕa) : (SOn,n, Ck(n)) → (SOn,n, Ck(n))

is defined to be the identity on SOn,n and on basis elements of Ck(n) as

ϕa : (v1, . . . , vk) 7→ (a−1v1, . . . , a
−1vk).

For the next proposition, we need to treat the case k = n separately:

Proposition 4.2.2. Let q ≥ 0 and 0 ≤ k < n. Then, for all a ∈ R∗, the following

diagram commutes:

Hq(SOn,n, Ck(n)) Hq(SOn,n, Ck(n))

Hq(STk,Z) Hq(STk,Z),

(id,ϕa)∗

(i,(e1,...,ek))∗ ∼=

CDa,k

(i,(e1,...,ek))∗∼=

where the vertical arrows are the isomorphisms given by Shapiro’s lemma and the
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map CDa,k denotes the map induced by conjugation with the element Da,k on the

stabiliser STk.

Moreover, for q ≥ 0 and k = n, the following diagram commutes for all

a ∈ R∗:

Hq(SOn,n, Cn(n)) Hq(SOn,n, Cn(n))

Hq(Tn,Z) ⊕Hq(Tn,Z) Hq(Tn,Z) ⊕Hq(Tn,Z),

(id,ϕa)∗

(i,(e1,...,en))∗⊕(i,(e1,...,fn))∗ ∼=

CDa,n⊕CDa,n

(i,(e1,...,en))∗⊕(i,(e1,...,fn))∗∼=

where the vertical arrows are the isomorphisms given by Shapiro’s lemma and the

map CDa,n ⊕ CDa,n
denotes the map induced by conjugation with the element Da,n

on the stabiliser Tn sum with the map induced by conjugation with the element Da,n

on the stabiliser Tn .

Proof. The proof of the first half of the proposition is exactly the same as the On,n

case, since Da,k ∈ SOn,n. See proposition 3.2.13. The proof that the first component

commutes is exactly the same as the On,n case, since Da,n ∈ SOn,n. For the second

component, consider diagram

(Tn,Z)
(f1,φ1)

⇒
(f2,φ2)

(SOn,n, Cn(n))

where (f1, φ1) := (i, (a−1e1, . . . , a
−1fn)) and (f2, φ2) := (iCDa,n

, (e1, . . . , fn)), and

i : Tn → SOn,n is the natural inclusion of groups. Let κ = Da,n ∈ SOn,n. Then, for

every A ∈ Tn,

f2(A) = iCDa,n
(A) = Da,nAD

−1
a,n = Da,ni(A)D

−1
a,n = κf1(A)κ−1

and

(e1. . . . , fn) = Da,n(a−1e1, . . . , a
−1fn) = κ(a−1e1, . . . , a

−1fn).

By lemma 3.2.9, the diagram commutes.

Thus, we have shown that there exists an R∗-action on the spectral sequence

E1
p,q(n) = Hq(SOn,n, Cp(n)) ⇒ Hp+q(SOn,n, C∗(n))

which induces the desired local actions considered previously. Putting everything

together, we obtain the following.
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Corollary 4.2.3. For every m ≥ 1 and every q < m/2, the localised spectral se-

quence

mE
1
p,q(n) = s−1

m E1
p,q(n) ⇒ s−1

m Hp+q(SOn,n, C∗(n)) (4.10)

has mE
1
p,q terms

mE
1
p,q(n) = s−1

m Hq(SOn,n, Cp(n)) ∼=


Hq(SOn−p,n−p) 0 ≤ p < n

Z[Z2] p = n, q = 0

0 p = n, q > 0.

Our next task is to compute the localised d1 differentials d1 : mE
1
p,q →

mE
1
p−1,q.

4.3 Computation of the localised d1 differentials, and

proof of homological stability

Proposition 4.3.1. For all q < m/2 and 0 ≤ p < n, the homomorphism d1p,q is

d1p,q =

0, p even

i∗, p odd,

where i : SOn−p,n−p ↪→ SOn−p+1,n−p+1 denotes the inclusion. For p = n, the

homomorphism d1n,q is 0 if q > 0 or if n is even; and for q = 0 and n odd, d1n,0 is

the augmentation map ε : Z[Z2] → Z.

Proof. For all p < n, we want to show that the following diagram commutes:

Hq(SOn−p,n−p) Hq(SOn,n, Cp(n))

Hq(SOn−p+1,n−p+1) Hq(SOn,n, Cp−1(n)),

i∗

(i,(e1,...,ep))∗

(di)∗

(i,(e1,...,ep−1))∗

(4.11)

where i : SOn−p,n−p ↪→ SOn,n denotes the inclusion map; (e1, . . . , ep) : 1 7→
(e1, . . . , ep) and recall that di(v1, . . . , vp) = (v1, . . . , v̂i. . . . , vp).

The same proof as in proposition 3.2.15 will work, so long as we can show σ
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has determinant 1. Note that permutation matrix σ will be of the form

σ = (e1 f1 · · · ei−1 fi−1 ep fp ei fi · · · ep−1 fp−1).

From this, we may write id = σ · T1 · T2 · · ·T2(p−i), where the matrices Ti are the

elementary matrices needed to swap columns in σ to transform it into the identity

matrix. Note that each of these matrices has determinant −1, and there are an even

number of such matrices.

Thus, we deduce 1 = det(id) = det(σ·T1 ·T2 · · ·T2(p−i)) = (−1)2(p−i) det(σ) =

det(σ).

For p = n, it suffices to show that the following diagram commutes:

Z[Z2] Cn(n)SOn,n

Z Cn−1(n)SOn,n .

ε

17→(e1,...,en),σ 7→(e1,...,fn)

di

17→(e1,...,en−1)

For i = n, it is easy to see by inspection that the diagram commutes.

For 1 ≤ i < n, commutativity follows from the fact that SOn,n acts transi-

tively on IUn−1(R
2n).

These diagrams still commutes after localisation, but now the horizontal

arrows become the identification isomorphisms.

We need to prove the following:

Proposition 4.3.2. The differentials drp,q in spectral sequence (4.10) are zero for

r ≥ 2 and q < m/2, p ≤ n. Hence, for all q < m/2 and p ≤ n, mE
2
p,q

∼= mE
∞
p,q.

Proof. For n = 0, 1, the spectral sequence under consideration is located in columns

0 and 1. Therefore, the differentials dr for r ≥ 2 are zero by dimension arguments.

For n ≥ 2, consider the homomorphism of complexes of SOn−2,n−2-modules

τ : C∗(n− 2)[−2] → C∗(n).

as defined in proposition 3.2.17. Note that the diagram

(SOn−2,n−2, Cp−2(n− 2)) (SOn,n, Cp(n))

(SOn−2,n−2, Cp−2(n− 2)) (SOn,n, Cp(n)),

(i,τj)

(CBa ,Ba)

(i,τj)

(CBa ,Ba)
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still commutes, so that we have an induced map on localised spectral sequences

mτ∗ : mẼ → mE.

The claim would then follow by induction on r using the following lemma:

Lemma 4.3.3. The map mτ∗ : mẼ
1
p,q → mE

1
p,q is the identity for all q < m/2 and

2 ≤ p ≤ n.

Proof. For 2 ≤ p < n, the same proof as in lemma 3.2.18 works, as the matrices A

and B in lemma 3.2.18 have determinant 1. Thus, we only need to consider the case

p = n.

It suffices to show that for j = 0, 1, 2, the following diagram commutes:

Z[Z2] Cn−2(n− 2)SOn−2,n−2

Z[Z2] Cn(n)SOn,n .

=

1 7→(e1,...,en−2),σ 7→(e1,...,fn−2)

τj

17→(e1,...,en),σ 7→(e1,...,fn)

For j = 0, the diagram is easily seen to commute by inspection.

For j = 1, we have that

A(e1, . . . , en) = (e1, e2 − e1, e3, . . . , en)

A(e1, . . . , fn) = (e1, e2 − e1, e3, . . . , fn),

where A ∈ SOn,n is the matrix A in the proof of lemma 3.2.18.

Similarly, for j = 2, we have that

B(e1, . . . , en) = (e2, e2 − e1, e3, . . . , en)

B(e1, . . . , fn) = (e2, e2 − e1, e3, . . . , fn),

where B ∈ SOn,n is the matrix B in the proof of lemma 3.2.18.

Thus, the diagrams commute. These diagrams still commute after localisa-

tion, but now the horizontal maps become the identification isomorphisms.

This proves the lemma, and thus proposition 4.3.2.

Theorem 4.3.4. Let R be a commutative local ring with infinite residue field such

that 2 ∈ R∗. Then, the natural homomorphism

Hk(SOn,n(R)) −→ Hk(SOn+1,n+1(R))

77



is an isomorphism for k ≤ n− 1 and surjective for k ≤ n.

Remark 25. This is the first known homological stability result for SOn,n over a

local ring and generalises the result obtained by Essert [Ess13] for infinite fields.

Proof. Choose m > 0 sufficiently large. We have a spectral sequence (4.10) with E1-

terms given by corollary 4.2.3 and d1p,q was computed for all q < m/2 in proposition

4.3.1. From theorem 3.1.9, spectral sequences (4.1) and (4.10) and proposition 4.3.2,

we deduce mE
2
p,q = mE

∞
p,q for all p+q ≤ n−1 and q < m/2. The theorem follows.
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Chapter 5

Homological Stability for EOn,n

and Spinn,n

We define EOn,n as follows.

Definition 5.0.1. Define EOn,n to be the image of the map

EOn,n := Im(π : Spinn,n −→ SOn,n),

where π : Spinn,n −→ SOn,n is the canonical map from the Spin group into the

special orthogonal group.

From this definition, we see that EOn,n sits inside short exact sequence

1 → Z2 → Spinn,n
π−→ EOn,n → 1.

We will study the homological stability of EOn,n and will later apply the rela-

tive Hochschild-Serre spectral sequence to deduce a homological stability result for

Spinn,n.

Remark 26. Our definition agrees with the usual definition of the elementary or-

thogonal group EOn,n by [HO89, Theorem 9.2.8].

Remark 27. Note that [HO89, Theorem 9.2.8] as stated is true for n ≥ 2. For

n = 1, we use the convention that EO1,1(R) = R∗2, so that the above short exact

sequence is still true.

To prove homological stability of EOn,n, we will study the hyperhomology
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spectral sequences

E2
p,q(n) = Hp(EOn,n, Hq(C∗(n))) ⇒ Hp+q(EOn,n, C∗(n)) (5.1)

E1
p,q(n) = Hq(EOn,n, Cp(n)) ⇒ Hp+q(EOn,n, C∗(n)). (5.2)

As the action of EOn,n on IUp(R
2n) is transitive only for p < n, see lemma 5.1.1,

it is reasonable to expect that the analysis for the EOn,n case should be similar to

the SOn,n case. This is indeed what happens.

By Theorem 2.4.21, EOn,n also sits inside the short exact sequence

1 → EOn,n → SOn,n
θ−→ R∗/R∗2 → 1,

where the first arrow is the inclusion and the second arrow θ is the spinor norm (this

short exact sequence is also true for n = 1, given our convention EO1,1(R) = R∗2).

We refer the reader to the preliminaries for more details about the spinor norm. See

also [Sch12] and [HO89] as additional references. From this short exact sequence,

note that we have inclusion [SOn,n, SOn,n] ⊆ EOn,n, where [SOn,n, SOn,n] denotes

the commutator subgroup of SOn,n. Therefore, to prove a matrix is in EOn,n, it

will be sufficient to prove it is in [SOn,n, SOn,n]. This will be very convenient for us.

5.1 Transitivity and local R∗-actions

We want to prove that the canonical action of EOn,n on IUp(R
2n) is transitive for

all p < n.

Lemma 5.1.1. The action of EOn,n on IUp(R
2n) is transitive for all p < n.

Proof. Let (v1, . . . , vp) ∈ IUp(R
2n). It suffices to show that there exists an A ∈

EOn,n such that A(e1, . . . , ep) = (v1, . . . , vp).

We know by lemma 4.1.2 that the action of SOn,n is transitive for all p < n.

Therefore, there exists a B ∈ SOn,n such that B(e1, . . . , ep) = (v1, . . . , vp).

Furthermore, note that we have surjections STp = StabSOn,n(e1, . . . , ep) ↠

SOn−p,n−p and SOn−p,n−p ↠ R∗/R∗2.

Therefore, we deduce that there exists a C ∈ STp ≤ SOn,n such that

θ(BC) = θ(B)θ(C) = 1 and BC(e1, . . . , ep) = B(e1, . . . , ep) = (v1, . . . , vp).

As θ(BC) = 1, we have that BC ∈ ker(θ) = EOn,n. We may thus set

A := BC.

Define ETk := StabEOn,n(e1, . . . , ek). Note that ETk is precisely ker(STk
θ−→
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R∗/R∗2). This gives us the following diagram with exact rows:

1 ETk STk R∗/R∗2 1

1 EOn−k,n−k SOn−k,n−k R∗/R∗2 1

ρ

θ

=

θ

,

where the existence of the dashed arrow for all n ≥ 2 will follow if we can show that

the right square commutes (the map trivially exists for n = 1). Let us prove this.

Proposition 5.1.2. For every n ≥ 2, the square

STk R∗/R∗2

SOn−k,n−k R∗/R∗2

θ

=

θ

commutes.

Proof. Let n ≥ 2. Recall that [SOn,n, SOn,n] ⊆ EOn,n. Let A ∈ STk such that

ρ(A) = B. Want to show θ(A) = θ

((
12k

B

))
. Equivalently, want to show

θ

((
12k

B−1

)
A

)
= 1. Therefore, we want to show that

(
12k

B−1

)
A ∈

[SOn,n, SOn,n] ⊆ EOn,n.

Note that

(
12k

B−1

)
A ∈ Lk, therefore it suffices to prove that Lk ⊆

[SOn,n, SOn,n].

The inclusion Lk ↪→ SOn,n induces a map on homologyHq(Lk) → Hq(SOn,n).

We claim this is the zero map for every q ≥ 1.

Recall from lemma 3.2.5 that s−1
m Hq(Lk) = 0 for every 1 ≤ 2q < m and

note that s−1
m Hq(SOn,n) = Hq(SOn,n), as the R∗-action defining this localization is

trivial on Hq(SOn,n).

Taking m sufficiently large, we obtain for every q ≥ 1 commutative diagrams

Hq(Lk) Hq(SOn,n)

s−1
m Hq(Lk) = 0 s−1

m Hq(SOn,n) = Hq(SOn,n)

= .

We therefore deduce that Hq(Lk) → Hq(SOn,n) is the zero map for every q ≥ 1. In
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particular, as H1 corresponds to taking abelianization, we have that the diagram

Lk SOn,n

Lk/[Lk, Lk] SOn,n/[SOn,n, SOn,n]0

commutes. Therefore, we conclude that the inclusion Lk ↪→ SOn,n factors through

[SOn,n, SOn,n].

Thus, the projection map ρ : STk ↠ SOn−k,n−k induces a map ρ : ETk ↠

EOn−k,n−k. Moreover, the above proof shows that ETn = STn = Tn and Lk =

ker (ρ : ETk ↠ EOn−k,n−k), so that we have short exact sequence

1 → Lk → ETk → EOn−k,n−k → 1.

The associated Hochschild-Serre spectral sequence is

E2
p,q = Hp(EOn−k,n−k;Hq(Lk)) ⇒ Hp+q(ETk).

Knowing that ETn = STn = Tn allows us to prove the following proposition:

Proposition 5.1.3. For n ≥ 1, the action of EOn,n on IUn(R2n) has orbits corre-

sponding to R∗/R∗2 × Z2.

Proof. We know by lemma 3.2.1 that the action of On,n on IUn(R2n) is transitive,

so that we have an isomorphism of On,n−sets

On,n/Tn ∼= IUn(R2n).

Furthermore, note that Tn = ETn ≤ EOn,n ≤ On,n, so that we have a canonical

surjection On,n/Tn → On,n/EOn,n with fibre EOn,n/Tn. Therefore, we have an

isomorphism of On,n-sets IUn(R2n)/EOn,n
∼= On,n/EOn,n. This gives us

∣∣IUn(R2n)/EOn,n

∣∣ = |On,n/EOn,n| =
∣∣R∗/R∗2 × Z2

∣∣ ,
where the last equality follows from the short exact sequence

1 → EOn,n → On,n → R∗/R∗2 × Z2 → 1, (5.3)

see theorem 2.4.21.
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5.1.1 The local R∗-action

Note that for every a ∈ R∗,

θ(Da2) = θ

((
a2 0

0 a−2

))
= 1,

so that

Da2,k :=


Da2

. . .

Da2

12n−2k

 ∈ EOn,n.

We will define the local action of R∗ on ETk to be the conjugation action of Da2,k

on ETk.

Replacing every unit by its square where necessary in the proof of lemma

3.2.5 shows that:

Corollary 5.1.4. The inclusion EOn−k,n−k ↪→ ETk induces isomorphisms

Ht(EOn−k,n−k)
∼=−→ s−1

m Ht(ETk)

for all t < m/2.

5.2 A global action on the EOn,n spectral sequence

As before, we want to realise these local actions as a global action on the spectral

sequence

E1
p,q(n) = Hq(EOn,n, Cp(n)) ⇒ Hp+q(EOn,n, C∗(n)). (5.4)

Again, we do this by defining an action on the associated exact couple with abut-

ment. Specifically, the spectral sequence

E1
p,q = Hq(EOn,n, Cp(n)) ⇒ Hp+q(EOn,n, C∗(n))
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may be obtained from the exact couple with abutment

⊕
p,q E

1
p,q

⊕
p,qD

1
p,q

⊕
p+q Ap+q

⊕
p,qD

1
p,q

k

i

σ

j

σ (5.5)

with E1
p,q = Hp+q(EOn,n, C≤p(n)/C≤p−1(n)); D1

p,q = Hp+q(EOn,n, C≤p(n)); Ap+q =

Hp+q(EOn,n, C∗(n)); the maps i, j, k being the maps of the long exact sequence of

homology groups associated to the short exact sequence of complexes

0 → C≤p−1(n) → C≤p(n) → C≤p(n)/C≤p−1(n) → 0,

and σ is induced by the inclusion.

For a ∈ R∗, we define the global action on spectral sequence (5.4) to be

the action induced by the map (CBa−4 , Ba−4) on exact couple (5.5), where CBa−4

denotes conjugation by the matrix Ba−4 of section 3.2.2.3, and Ba−4 also refers to

multiplication by this matrix.

Proposition 5.2.1. Let k, q ≥ 0 and n ≥ 1. Then, for all a ∈ R∗, the following

diagram commutes:

Hq(EOn,n, Ck(n)) Hq(EOn,n, Ck(n))

Hq(EOn,n, Ck(n)) Hq(EOn,n, Ck(n)),

(CB
a−4

,Ba−4 )∗

id

(id,ϕa2 )∗

id

where for a ∈ R∗, the map

(id, ϕa2) : (EOn,n, Ck(n)) → (EOn,n, Ck(n))

is defined to be the identity on EOn,n and on basis elements of Ck(n) as

ϕa2 : (v1, . . . , vk) 7→ (a−2v1, . . . , a
−2vk).

Proof. We use lemma 3.2.9. Specifically, consider the diagram

(EOn,n, Ck(n))
(f1,φ1)

⇒
(f2,φ2)

(EOn,n, Ck(n))
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where (f1, φ1) := (id, ϕa2) and (f2, φ2) := (CBa−4 , Ba−4). Define

κ := Da2,n =



a2

a−2

. . .

a2

a−2


.

Denoting for a ∈ R∗,

a :=



a

a
. . .

a

a


,

note that Ba−4 = κa−2, so that CBa−4 = CκCa−2 . But, Ca−2 = id, so that CBa−4 =

Cκ. Furthermore, note that for every (v1, . . . , vk) ∈ IUk(R2n), Ba−4(v1, . . . , vk) =

κϕa2(v1, . . . , vk), since Ba−4 = κa−2. Thus, by lemma 3.2.9, the diagram commutes.

Proposition 5.2.2. Let q ≥ 0 and 0 ≤ k < n. Then, for all a ∈ R∗, the following

diagram commutes:

Hq(EOn,n, Ck(n)) Hq(EOn,n, Ck(n))

Hq(ETk,Z) Hq(ETk,Z),

(id,ϕa2 )∗

(i,(e1,...,ek))∗ ∼=

CD
a2,k

(i,(e1,...,ek))∗∼=

where the vertical arrows are the isomorphisms given by Shapiro’s lemma and the

map CDa2,k
denotes the map induced by conjugation with the element Da2,k on the

stabiliser ETk.

Proof. We use lemma 3.2.9. Specifically, we have to consider the diagram

(ETk,Z)
(f1,φ1)

⇒
(f2,φ2)

(EOn,n, Ck(n))

where (f1, φ1) := (i, (a−2e1, . . . , a
−2ek)) and (f2, φ2) := (iCDa2,k

, (e1, . . . , ek)), and

i : ETk → EOn,n is the natural inclusion of groups. Let κ = Da2,k ∈ EOn,n. Then,
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for every A ∈ Tk,

f2(A) = iCDa2,k
(A) = Da2,kAD

−1
a2,k

= Da2,ki(A)D−1
a2,k

= κf1(A)κ−1

and

(e1. . . . , ek) = Da2,k(a−2e1, . . . , a
−2ek) = κ(a−2e1, . . . , a

−2ek).

By lemma 3.2.9, the diagram commutes.

Furthermore, we need to compute Hq(EOn,n, Cn(n)) and show that, after

localisation, they vanish for all q > 0.

Proposition 5.2.3. For every m ≥ 1 and q < m/2, we have

s−1
m Hq(EOn,n, Cn(n)) ∼=

Z[R∗/R∗2 × Z2] q = 0

0 q > 0.

Proof. We have isomorphisms

Hq(EOn,n,Z[IUn]) ∼= Tor
EOn,n
q (Z,Z[IUn])

∼= Tor
On,n
q (Z[R∗/R∗2 × Z2],Z[IUn])

∼= Hq(Z[R∗/R∗2 × Z2] ⊗L
On,n Z[IUn])

∼= Hq(Z[R∗/R∗2 × Z2] ⊗L
On,n Z[On,n/Tn])

∼= Hq(Z[R∗/R∗2 × Z2] ⊗L
Tn Z)

∼= Hq(Tn,Z[R∗/R∗2 × Z2])

∼= Z[R∗/R∗2 × Z2] ⊗Z Hq(Tn,Z),

where we have used short exact sequence (5.3), transitivity of the On,n-action and

the Universal Coefficient Theorem. We therefore want to show that the action kills

the Hq(Tn) terms for all q > 0, whilst leaving the Z[R∗/R∗2 × Z2] term invariant.

This will follow from the commutativity of the following two diagrams, which we

state as lemmas.

Lemma 5.2.4. The following diagram commutes:

Tor
EOn,n
q (Z,Z[IUn]) Tor

EOn,n
q (Z,Z[IUn])

Tor
On,n
q (Z[R∗/R∗2 × Z2],Z[IUn]) Tor

On,n
q (Z[R∗/R∗2 × Z2],Z[IUn]),

(i,i,id)∗ ∼=

(id,id,ϕa2 )∗

(i,i,id)∗∼=

(id,id,ϕa2 )∗
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where the vertical maps are the isomorphisms given by short exact sequence (5.3);

i : Z ↪→ Z[R∗/R∗2] and i : EOn,n ↪→ On,n denote the canonical inclusions and recall

that ϕa2 : Z[IUn] → Z[IUn] is the map defined on basis elements by (v1, . . . , vn) 7→
(a−2v1, . . . , a

−2vn).

Proof. Easily seen by inspection.

Lemma 5.2.5. The following diagram commutes:

Tor
On,n
q (Z[R∗/R∗2 × Z2],Z[IUn]) Tor

On,n
q (Z[R∗/R∗2 × Z2],Z[IUn])

TorTnq (Z[R∗/R∗2 × Z2],Z) TorTnq (Z[R∗/R∗2 × Z2],Z),

(id,id,ϕa2 )∗

(id,i,(e1,...,en))∗ ∼=

(D−1

a2,n
,CD

a2,n
,id)∗

(id,i,(e1,...,en))∗∼=

where the vertical maps are the isomorphisms given by the transitivity of the On,n-

action; D−1
a2,n

denotes the map induced right multiplication by D−1
a2,n

∈ On,n and

CDa2,n
denotes the map induced by conjugation with Da2,n.

Proof. We use lemma 3.2.10. Specifically, consider the diagram

(Z[R∗/R∗2 × Z2], Tn,Z)
(f1,φ1,g1)

⇒
(f2,φ2,g2)

(Z[R∗/R∗2 × Z2], On,n,Z[IUn])

where (f1, φ1, g1) := (id, i, (a−2e1, . . . , a
−2en)) and (f2, φ2, g2) := (D−1

a2,n
, iCDa2,n

, (e1, . . . , en)).

Let κ := Da2,n ∈ On,n. We have that φ2 = κφ1κ
−1; g2 = κg1 and f2 = f1κ

−1, so

that by lemma 3.2.10, the diagram commutes.

Note that in the previous lemma, Da2,n ∈ EOn,n, so that the action on

Z[R∗/R∗2 ×Z2] is trivial. It follows therefore that the action on Z[R∗/R∗2 ×Z2]⊗Z

Hq(Tn,Z) is trivial on Z[R∗/R∗2 × Z2] and is the action induced by conjugation by

Da2,n on Hq(Tn). By lemma 3.2.5 (using the fact that Tn = Ln), the proposition

follows.

Thus, we have shown that there exists an R∗-action on the spectral sequence

E1
p,q(n) = Hq(EOn,n, Cp(n)) ⇒ Hp+q(EOn,n, C∗(n))

which induces the desired local actions considered previously. Using corollary 5.1.4

and proposition 5.2.3, we obtain the following.
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Corollary 5.2.6. For every m ≥ 1 and every q < m/2, the localised spectral se-

quence

mE
1
p,q(n) = s−1

m E1
p,q(n) ⇒ s−1

m Hp+q(EOn,n, C∗(n)) (5.6)

has mE
1
p,q terms

mE
1
p,q(n) = s−1

m Hq(EOn,n, Cp(n)) ∼=


Hq(EOn−p,n−p), 0 ≤ p < n

Z[R∗/R∗2 × Z2], p = n, q = 0

0 p = n, q > 0.

Our next task is to compute the localised d1 differentials d1 : mE
1
p,q →

mE
1
p−1,q.

5.3 Computation of the localised d1 differentials, and

proof of homological stability

Proposition 5.3.1. For all q < m/2 and 0 ≤ p < n, the homomorphism d1p,q is

d1p,q =

0, p even

i∗, p odd,

where i : EOn−p,n−p ↪→ EOn−p+1,n−p+1 denotes the inclusion. For p = n, the

homomorphism d1n,q is 0 if q > 0 or if n is even; and for q = 0 and n odd, d1n,0 is

the augmentation map ε : Z[R∗/R∗2 × Z2] → Z.

Proof. For all p < n, we want to show that the following diagram commutes:

Hq(EOn−p,n−p) Hq(EOn,n, Cp(n))

Hq(EOn−p+1,n−p+1) Hq(EOn,n, Cp−1(n)),

i∗

(i,(e1,...,ep))∗

(di)∗

(i,(e1,...,ep−1))∗

(5.7)

where i : EOn−p,n−p ↪→ EOn,n denotes the inclusion map; (e1, . . . , ep) : 1 7→
(e1, . . . , ep) and recall that di(v1, . . . , vp) = (v1, . . . , v̂i. . . . , vp). Suppose the ma-

trix A in the proof of proposition 3.2.15 has spinor norm θ(A) = a. Note that, as

A =

(
σ

12(n−p)

)
, it follows that θ(A) = θ(σ). If a = 1, we are done. Otherwise,
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define Â ∈ On,n by sending a hyperbolic basis to a hyperbolic basis as follows:

(e1, . . . , êi, . . . , ep) 7→ (e1, . . . , ep−1)

(f1, . . . , f̂i, . . . , fp) 7→ (f1, . . . , fp−1)

ei 7→ aep

fi 7→ a−1fp

ej 7→ ej and fj 7→ fj for all p+ 1 ≤ j ≤ n.

Write Â =

(
σ̂

12(n−p)

)
, so that θ(Â) = θ(σ̂). We prove that σ̂ ∈ EOp,p. Indeed,

this follows from the matrix equation

σ̂ =



1
. . .

1

a

a−1


σ.

Clearly, we still have (e1, . . . , ep−1) = Â(e1, . . . , êi, . . . ep) and for everyB ∈ EOn−p,n−p,

ε ◦ i(B) = Âε(B)Â−1,

so that by lemma 3.2.9, the diagram commutes.

For p = n, it suffices to show that the diagram commutes:

Z[R∗/R∗2 × Z2] Cn(n)EOn,n

Z Cn−1(n)EOn,n ,

ε di

1 7→(e1,...,en−1)

where the top horizontal arrow maps a given basis element x ∈ R∗/R∗2 × Z2 to

the element given by the isomorphism of On,n-sets R∗/R∗2 × Z2
∼= On,n/EOn,n

∼=
IUn(R2n)/EOn,n, see proposition 5.1.3. But this follows from the fact that EOn,n

acts transitively on IUn−1(R
2n).

In the proof of the next proposition, we will use the so called hyperbolic map.

Definition 5.3.2. Define the hyperbolic map as a group homomorphismH : GLn(R) →
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On,n(R) given by

H : GLn(R) −→ On,n(R)

A 7−→

(
A

t(A−1)

)
.

Remark 28. In the above definition, we have used the convention that R2n is

equipped with symmetric bilinear form given by

(
0 In

In 0

)
, and has ordered basis

e1, . . . , en, f1, . . . , fn, so that ⟨ei, ej⟩ = ⟨fi, fj⟩ = 0 and ⟨ei, fj⟩ = δij . We have done

this for the sake of notation. It is clear that this convention differs from our usual

convention up to matrix conjugation (by a suitable permutation matrix). We tacitly

assume this whenever using the hyperbolic map.

We need to prove the following proposition:

Proposition 5.3.3. The differentials drp,q in spectral sequence (5.6) are zero for

r ≥ 2 and q < m/2, p ≤ n. Hence, for all q < m/2 and p ≤ n, mE
2
p,q

∼= mE
∞
p,q.

Proof. For n = 0, 1, the spectral sequence under consideration is located in columns

0 and 1. Therefore, the differentials dr for r ≥ 2 are zero by dimension arguments.

For n ≥ 2, consider the homomorphism of complexes of EOn−2,n−2-modules

τ : C∗(n− 2)[−2] → C∗(n).

as defined in proposition 3.2.17. Note that the diagram

(EOn−2,n−2, Cp−2(n− 2)) (EOn,n, Cp(n))

(EOn−2,n−2, Cp−2(n− 2)) (EOn,n, Cp(n)),

(i,τj)

(CBa ,Ba)

(i,τj)

(CBa ,Ba)

still commutes, so that we have an induced map on localised spectral sequences

mτ∗ : mẼ → mE.

The claim would then follow by induction on r using the following lemma:

Lemma 5.3.4. The map mτ∗ : mẼ
1
p,q → mE

1
p,q is the identity for all q < m/2 and

2 ≤ p ≤ n.

90



Proof. For 2 ≤ p < n, the same proof as in lemma 3.2.18 will work, as long as the

matrices A and B of lemma 3.2.18 are in EOn,n. Recall that A ∈ On,n was defined

by

e1 7→ e1

e2 7→ e2 − e1

f1 7→ f1 + f2

f2 7→ f2

ej 7→ ej for all 3 ≤ j ≤ n

fj 7→ fj for all 3 ≤ j ≤ n,

and B ∈ On,n was defined by

e1 7→ e2

e2 7→ e2 − e1

f1 7→ f1 + f2

f2 7→ −f1
ej 7→ ej for all 3 ≤ j ≤ n

fj 7→ fj for all 3 ≤ j ≤ n.

It suffices to prove that

M :=


1 0 −1 0

0 1 0 0

0 0 1 0

0 1 0 1


and

N :=


0 0 −1 0

0 1 0 −1

1 0 1 0

0 1 0 0


are in EO2,2. Note that the hyperbolic map H : GL2(R) → O2,2(R) is a group

homomorphism. In addition, note that SL2(R) is perfect. For example, this fol-

lows from [HO89, Theorem 4.3.9.] and [Sch17, Lemma 3.8.]. Therefore, we de-

duce H(SL2(R)) ⊆ [SO2,2(R), SO2,2(R)] ⊆ EO2,2(R). We then note that M =

H

((
1 −1

0 1

))
and N = H

((
0 −1

1 1

))
.
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Finally, we need to consider the case p = n. It suffices to show that for

j = 0, 1, 2, the following diagram commutes:

Z[R∗/R∗2 × Z2] Cn−2(n− 2)EOn−2,n−2

Z[R∗/R∗2 × Z2] Cn(n)EOn,n ,

= τj

where the top and bottom horizontal arrows map a given basis element x ∈ R∗/R∗2×
Z2 to the element given by the isomorphism of On−2,n−2-sets R∗/R∗2 × Z2

∼=
On−2,n−2/EOn−2,n−2

∼= IUn−2(R
2(n−2))/EOn−2,n−2 and isomorphism of On,n-sets

R∗/R∗2 × Z2
∼= On,n/EOn,n

∼= IUn(R2n)/EOn,n respectively, see proposition 5.1.3.

Under the isomorphism R∗/R∗2 × Z2
∼= IUn−2(R

2(n−2))/EOn−2,n−2, an ele-

ment x ∈ R∗/R∗2×Z2 is sent to the element P (e1, . . . , en−2) for some P ∈ On−2,n−2,

and under the isomorphism R∗/R∗2 × Z2
∼= IUn(R2n)/EOn,n, the same element

x ∈ R∗/R∗2 × Z2 is sent to the element P̃ (e1, . . . , en), where P̃ :=

(
14

P

)
. Re-

calling that each τj is a map of On−2,n−2-modules, we have that

τj(P (e1, . . . , en−2)) = P̃ τj(e1, . . . , en−2) =


P̃ (e1, . . . , en), j = 0

P̃ (e1, e2 − e1, e3, . . . , en), j = 1

P̃ (e2, e2 − e1, e3, . . . , en), j = 2.

Thus, for j = 0, the diagram commutes by inspection. For j = 1, we note that

AP̃ (e1, e2, e3, . . . , en) = P̃A(e1, e2, e3, . . . , en) = P̃ (e1, e2 − e1, e3, . . . , en),

since

AP̃ =

(
M

1

)(
14

P

)
=

(
14

P

)(
M

1

)
= P̃A.

Similarly, for j = 2, we note that

BP̃ (e1, e2, e3, . . . , en) = P̃B(e1, e2, e3, . . . , en) = P̃ (e2, e2 − e1, e3, . . . , en),

where B and P̃ commute for similar reasons. Thus, the diagrams commute. These

diagrams still commute after localisation, but now the horizontal maps become the

identification isomorphisms.

This proves the lemma, and thus proposition 5.3.3.
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Theorem 5.3.5. Let R be a commutative local ring with infinite field such that

2 ∈ R∗. Then, the natural homomorphism

Hk(EOn,n(R)) −→ Hk(EOn+1,n+1(R))

is an isomorphism for k ≤ n− 1 and surjective for k ≤ n.

Remark 29. To our best knowledge, this is the first known homological stability

result for EOn,n.

Proof. Choose m > 0 sufficiently large. We have a spectral sequence (5.6) with E1-

terms given by corollary 5.2.6 and d1p,q was computed for all q < m/2 in proposition

5.3.1. From theorem 3.1.9, spectral sequences (5.1) and (5.6) and proposition 5.3.3,

we deduce mE
2
p,q = mE

∞
p,q for all p+q ≤ n−1 and q < m/2. The theorem follows.

5.4 Homological Stability for Spinn,n

Homological stability for EOn,n immediately gives homological stability for Spinn,n:

Theorem 5.4.1. Let R be commutative local ring with infinite field such that 2 ∈ R∗.

Then, the natural homomorphism

Hk(Spinn,n(R)) −→ Hk(Spinn+1,n+1(R))

is an isomorphism for k ≤ n− 1 and surjective for k ≤ n.

Remark 30. This coincides with the H1-stability result for Spinn,n in [HO89, The-

orem 9.1.15.] and the H2-stability result for Spinn,n in [HO89, Theorem 9.1.17,

Theorem 9.1.19 and discussion thereafter]. To our best knowledge, this is the first

known homological stability result for Spinn,n that accounts for all homology groups.

Proof. Immediate from theorem 5.3.5 and the relative Hochschild-Serre spectral

sequence

E2
p,q = Hp(EOn,n, EOn−1,n−1;Hq(Z2)) ⇒ Hp+q(Spinn,n, Spinn−1,n−1).
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Chapter 6

Summary and future work

To summarise, the main achievement of this thesis has been proving the following

homological stability results:

Theorem 6.0.1. Let R be a commutative local ring with infinite residue field such

that 2 ∈ R∗. Then, the natural homomorphisms

Hk(On,n(R)) −→ Hk(On+1,n+1(R))

Hk(SOn,n(R)) −→ Hk(SOn+1,n+1(R))

Hk(EOn,n(R)) −→ Hk(EOn+1,n+1(R))

Hk(Spinn,n(R)) −→ Hk(Spinn+1,n+1(R))

are isomorphisms for k ≤ n− 1 and surjective for k ≤ n.

The following remain open problems and are suitable for future investigation:

• Prove our homological stability range is optimal.

• Compute the obstructions to further homological stability

Hn(On,n, On−1,n−1)

Hn(SOn,n, SOn−1,n−1)

Hn(EOn,n, EOn−1,n−1)

Hn(Spinn,n, Spinn−1,n−1).

• Prove homological stability without the assumption that 2 ∈ R∗.

We will end by giving a conjecture for what the obstructions to further homolog-

ical stability should be, and give some rough calculations as to why we think our
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conjecture is true.

Conjecture 6.0.2. Let R be a commutative local ring with infinite residue field

such that 2 ∈ R∗. Then, for all n ≥ 2, we have

Hn(On,n, On−1,n−1) ∼= KM
n /2 ⊕KM

n−1/2

Hn(SOn,n, SOn−1,n−1) ∼= KM
n ⊕KM

n−1

Hn(EOn,n, EOn−1,n−1) ∼= Hn(Spinn,n,Spinn−1,n−1)
∼= KMW

n ⊕KMW
n−1 .

For the case n = 2, we give a rough calculation that supports the validity of

this conjecture.

We have the exceptional isomorphisms

Spin2
∼= GL1

Spin3
∼= SL2

Spin4
∼= SL2 × SL2

Spin5
∼= Sp4

Spin6
∼= SL4,

where Spin2n is understood as Spinn,n and Spin2n+1 is understood as Spinn+1,n.

These exceptional isomorphisms are proven in [HO89, §7.3]. We want to use these

exceptional isomorphisms to compute H2(Spin2,2, Spin1,1).

Proposition 6.0.3. H2(Spin2,2,Spin1,1)
∼= H2(Spin4, Spin3) ⊕H2(Spin3, Spin2).

Proof. We want to show that the long exact sequence of the triple (SL2×SL2, SL2, GL1)

has the following sections as indicated:

· · · → H3(SL2 × SL2, GL1)
↶−→ H3(SL2 × SL2, SL2) → H2(SL2, GL1)

→ H2(SL2 × SL2, GL1)
↶−→ H2(SL2 × SL2, SL2) → · · · .

This will then prove the existence of a split short exact sequence

0 → H2(SL2, GL1) → H2(SL2 × SL2, GL1)
↶−→ H2(SL2 × SL2, SL2) → 0.

Note that SL2 is perfect, so that by Künneth’s theorem, Hk(SL2 × SL2) ∼=
Hk(SL2) ⊕Hk(SL2) for k = 2, 3.
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Therefore, for k = 2, 3, we obtain the following diagram:

Hk(SL2)

Hk(SL2) ⊕Hk(SL2)

Hk(SL2) ⊕Hk(SL2) Hk(SL2 × SL2, GL1) Hk(SL2 × SL2, SL2).

∆

βα

α β

Here, ∆ is the diagonal map; α comes from the long exact sequence of the pair

(SL2 × SL2, GL1) and β comes from the long exact sequence of the triple (SL2 ×
SL2, SL2, GL1). Furthermore, by functoriality of relative group homology, the sec-

ond vertical arrow is the composition βα.

We argue that

coker ∆ ∼= Hk(SL2 × SL2, SL2).

For k = 2, this follows from the fact that H1(SL2) = 0. For k = 3, note that

coker ∆ ∼= ker(H3(SL2 × SL2, SL2) → H2(SL2))

and

Im(H3(SL2 × SL2, SL2) → H2(SL2)) = ker(H2SL2
∆−→ H2(SL2) ⊕H2(SL2)) = 0.

The claim follows.

In general, note that for an abelian group A and the diagonal map ∆ : A→
A ⊕ A, we have an isomorphism coker ∆ ∼= A. This isomorphism is realised by

the map a 7→ (a, 0), with inverse (a, b) = (a − b, 0) 7→ a − b. Thus, we obtain an

isomorphism Hk(SL2 × SL2, SL2) ∼= Hk(SL2). We then use this isomorphism to

define a map

Hk(SL2×SL2, SL2) ∼= Hk(SL2)
(1,0)−−−→ Hk(SL2)⊕Hk(SL2)

α−→ Hk(SL2×SL2, GL1),

which one can check defines a section for β.
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Thus, we compute

H2(Spin2,2,Spin1,1)
∼= H2(SL2 × SL2, GL1)

∼= H2(SL2 × SL2, SL2) ⊕H2(SL2, GL1)

∼= H2(Spin4, Spin3) ⊕H2(Spin3, Spin2).

By personal communications with Marco Schlichting, we haveH2(Spin4,Spin3)
∼=

KMW
2 and H2(Spin3,Spin2)

∼= KMW
1 , so that

H2(Spin2,2, Spin1,1)
∼= KMW

2 ⊕KMW
1 .

Furthermore, this suggests that we have the following isomorphisms:

H2(SO2,2, SO1,1) ∼= KM
2 ⊕KM

1 and H2(O2,2, O1,1) ∼= KM
2 /2 ⊕KM

1 /2.

In more detail, consider the spectral sequences associated to the short exact se-

quences

1 → Z2 → Spinn,n(R)
π−→ EOn,n(R) → 1

1 → EOn,n(R) → SOn,n(R)
θ−→ R∗/R∗2 → 1

1 → SOn,n(R) → On,n(R)
det−−→ Z2 → 1.

The first short exact sequence gives us spectral sequence

E2
p,q = Hp(EO2,2, EO1,1;Hq(Z2)) ⇒ Hp+q(Spin2,2,Spin1,1).

By homological stability for EOn,n and the universal coefficient theorem, we com-

pute

H2(EO2,2, EO1,1) ∼= H2(Spin2,2,Spin1,1)
∼= KMW

2 ⊕KMW
1 .

From the second short exact sequence, we obtain spectral sequence

E2
p,q = Hp(R

∗/R∗2;Hq(EO2,2, EO1,1)) ⇒ Hp+q(SO2,2, SO1,1).
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One computes

H2(SO2,2, SO1,1) ∼= E∞
0,2 = E2

0,2 = H0(R
∗/R∗2;H2(EO2,2, EO1,1))

∼= (KMW
2 ⊕KMW

1 )R∗/R∗2 .

If we can show

(KMW
2 ⊕KMW

1 )R∗/R∗2 = (KMW
2 )R∗/R∗2 ⊕ (KMW

1 )R∗/R∗2

and the action is given by multiplication by the map

Q :R∗/R∗2 → KMW
0

r 7→ 1 + η[r] =: ⟨r⟩,

we would have proven H2(SO2,2, SO1,1) ∼= KM
2 ⊕KM

1 . Indeed, it suffices to see that

for n ≥ 1, (KMW
n )R∗/R∗2 ∼= KM

n .

Recall that for n ≥ 1, KMW
n is generated by the symbols [u1] · · · [un] subject

to the relation [u][1 − u] = 0 for all u, 1 − u ∈ R∗. We also have the relation

[ru] = [r] + ⟨r⟩[u], see for example [Sch17]. Therefore, in (KMW
n )R∗/R∗2 , we obtain

the addition relation [ru1] · · · [un] = [r][u2] · · · [un] + [u1] · · · [un], and similarly for

the other components. Thus, we deduce for all n ≥ 1, (KMW
n )R∗/R∗2 ∼= KM

n .

Finally, the third short exact sequence gives us spectral sequence

E2
p,q = Hp(Z2, Hq(SO2,2, SO1,1)) ⇒ Hp+q(O2,2, O1,1).

One computes

H2(O2,2, O1,1) ∼= E∞
0,2 = E2

0,2 = H0(Z2, H2(SO2,2, SO1,1))

∼= (KM
2 ⊕KM

1 )Z2 .

If one can show

(KM
2 ⊕KM

1 )Z2
∼= (KM

2 )Z2 ⊕ (KM
1 )Z2

and the action of Z2 on KM
n is given by g · u1 ⊗ · · · ⊗ un = u−1

1 ⊗ u2 · · · ⊗ un, then

we would have (KM
n )Z2

∼= KM
n /2 so that H2(O2,2, O1,1) ∼= KM

2 /2 ⊕KM
1 /2.

These above arguments would turn into a proof if one could prove the actions

trace through the isomorphisms as one expects. The author believes this seems

reasonable, although a proof will require some work!
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