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Introduction

In this course we are going to investigate the properties of functions f : C → C that are
complex differentiable. Here and in the sequel we are always going to denote by C the
field of complex numbers. The theory covered in this course was mostly discovered by
Cauchy, Lagrange, Riemann, Weierstrass and many other authors in the first half of the
19th century. It is thus quite old. The connections that they discovered remain until today
among the most beautiful pieces of mathematics that I am aware of, full of small miracles
and statements that (at least for someone who is accustomed to the technical difficulties
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of real analysis) seem to be too good to be true: every differentiable function is smooth,
locally uniform limits of smooth functions are smooth etc.

Although this theory is relatively old there are many links to modern day research in
diverse areas of mathematics. Let me just give two examples:

Example 0.1 For any z ∈ C with R(z) > 1 the Riemann ζ-function can be defined
through the series

ζ(z) :=
∞∑
n=1

1

nz
.

We will see later in the course that there is a unique way to extend ζ to a complex dif-
ferentiable function on all of C \ {1}. It is relatively easy to show that ζ(−2n) = 0 for
any n ∈ N. In 1859 Riemann conjectured that all other zeros of ζ must lie on the line
{z : R(z) = 1

2
}. Until today it has remained one of the most famous unsolved problems

in mathematics to establish (or disprove) this Riemann hypothesis. It is one of the seven
Clay Math Millennium problems (see http://www.claymath.org/millennium) and whoever
solves it, will win a prize of $ 1 million.

This conjecture has close connections with the distribution of prime numbers. To-
wards the end of this course we will discuss this connection.

Example 0.2 Our second example concerns a recent development in statistical physics.
Many stochastic processes that appear naturally as limits of (two dimensional) models
in statistical physics are invariant under conformal transformations of the space. Here
a mapping f : R2 → R2 (or defined on some subset of R2) is called conformal if it
preserves all angles. More precisely, f is conformal, if for any two smooth curves γ1 and
γ2 that intersect at x at an angle α the image curves f (γ1) and f (γ2) intersect at f (x) with
the same angle α (and the same orientation). We will see below that if we identify R2

with C in the usual way, then f is conformal if and only if it is complex differentiable and
the derivatives do not vanish. Hence, the tools from Complex Analysis are naturally very
useful when investigating the properties of these processes.

The Riemann mapping theorem, which we will discuss in detail, is at the heart of
one of the most remarkable constructions in this field, the Schramm-Loewner-Evolution
(SLE). Two recent Fields Medals (Wendelin Werner 2006, Stanislav Smirnov 2010) have
been awarded for research in this area.

Conventions

We will assume that the reader is familiar with the field of complex numbers C and its
basic arithmetic and topology. For a complex number z ∈ C we will often write z = x+iy
where x = R(z) ∈ R and y = I(z) ∈ R denote the real and imaginary part of z. In this

way we will often identify C with R2 simply by identifying z with the vector
(x
y

)
. We

will denote by z̄ = x − iy the complex conjugate. Sometimes polar coordinates will be
useful and for z 6= 0 we will write z = |z| eiθ where |z| =

√
zz̄ =

√
x2 + y2 denotes

the absolute value of z and θ denotes the argument of z. Note that the argument is only
defined uniquely up to a multiple of 2π.

http://www.claymath.org/millennium/
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THE ALGEBRA OF THE COMPLEX PLANE - A REVIEW 1

1 The Algebra of the complex plane - a review

Definition 1.1 A complex number is an ordered pair (x, y) of real numbers x, y ∈ R.
Addition and multiplication are defined by

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2),

(x1, y1) · (x2, y2) := (x1x2 − y1y2, x1y2 + x2y1).

In the following, we drop the · symbol for multiplication. The set of complex numbers
is denoted C.
Theorem 1.2 The set of complex numbers, with the operations defined in Definition 1.1,
is a field. That is, the following axioms hold for any complex numbers zi = (xi, yi), i =
1, 2, 3 :

(a) Addition and multiplication are commutative:

z1 + z2 = z2 + z1

z1z2 = z2z1

(b) Addition and multiplication are associative:

(z1 + z2) + z3 = z1 + (z2 + z3)
(z1z2)z3 = z1(z2z3)

(c) There is an additive identity (0, 0):

z1 + (0, 0) = z1

(d) There is a multiplicative identity (1, 0):

z1(1, 0) = z1

(e) Each element has an additive inverse:

(x, y) + (−x,−y) = (0, 0)

(f) Each element other than (0, 0) has a multiplicative inverse:

(x, y)
( x

x2 + y2
,
−y

x2 + y2

)
= (1, 0)

(g) Multiplication distributes over addition:

z1(z2 + z3) = z1z2 + z1z3

Proof. All assertions (a)-(g) are direct consequences of the addition and multiplication
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defined in Definition 1.1 using only the field properties of the set R of real numbers. We
only give the proof of some of the assertions and leave the remaining ones as an exercise
for the reader. For example, (f) follows for each z = (x, y) 6= (0, 0) as z 6= (0, 0) implies
x2 + y2 6= 0 and by Definition 1.1,

(x, y)
( x

x2 + y2
,
−y

x2 + y2

)
= (

x2

x2 + y2
+

y2

x2 + y2
,
−xy
x2 + y2

+
yx

x2 + y2

)
= (1, 0).

For example, (g) holds because

z1(z2 + z3) = (x1, y1)(x2 + x3, y2, y3)
= (x1(x2 + x3)− y1(y2 + y3).x1(y2 + y3) + y1(x2 + x3))
= (x1x2 − y1y2 + x1x3 − y1y3, x1y2 + y1x2 + x1y3 + y1x3)

and

z1z2 + z1z3 = (x1x2 − y1y2 + x1x3 − y1y3, x1y2 + y1x2 + x1y3 + y1x3)

2

The symbol (x, y) is not commonly used for a complex number. Instead we write this
number as x + iy, a notation which goes back to Euler, who used i to denote

√
−1 in

1777. Note that the map (x, 0) 7→ x defines an isomorphism between the set of complex
numbers of the form (x, 0) and the field R of real numbers. We define i := (0, 1). Then,
using Definition 1.1,

x+ iy = (x, 0) + (0, 1)(y, 0) = (x, y)

and
i2 = (0, 1)(0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) = −1.

 
Y A

2 Xt iy CXy

i on µ

1 11,0 X

Figure 1:



THE ALGEBRA OF THE COMPLEX PLANE - A REVIEW 3

Since ordered pairs (x, y) provide coordinates in the plane, we can visualise C as a
plane, with the number x+ iy corresponding to the point (x, y) as in Figure 1. The identi-
fication of (x, 0) with x ∈ R then amounts to considering the real numbers as forming the
real axis, the x-axis, as in Figure 1. The y-axis, at right angles to this, is the imaginary
axis. For z = x + iy ∈ C we write R(z) = x for the real part and I(z) = y for the
imaginary part. Recall the modulus for a real number x ∈ R is given

|x| =

{
x , x ≥ 0,

−x , x < 0
.

For z = x+ iy ∈ C we define the as

|z| :=
√
x2 + y2. (1.1)

Theorem 1.3 The modulus defined in (1.1) has the following properties. For all z1, z2 ∈
C,

|z1 + z2| ≤ |z1|+ |z2|
|z1z2| = |z1||z2|

||z1| − |z2|| ≤ |z1 − z2|.

Proof. Exercise (see similar proof in real analysis). 2

Complex Conjugate: z = x+ iy, z1, z2 ∈ C,

z := x− iy
z1 + z2 = z1 + z2, z1z2 = z1z2

R(z) =
1

2
(z + z)

I(z) =
1

2i
(z − z)

|z|2 = zz

z ∈ R⇔ z = z

Polar coordinates: z = x+ iy, see Figure 2,

r :=
√
x2 + y2

θ = arg(z) ∈ [0, 2π) or (−π, π] principal value
x = r cos(θ)
y = r sin(θ)

The unique value of θ ∈ (−π, π] is known as the principal value of the argument arg.

z = x+ iy = r( cos(θ) + i sin(θ))
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Figure 2:

For z ∈ (−∞,∞) we have z = z and for z /∈ (−∞,∞) we have arg(z) = −arg(z).

The nth root of a complex number w = x+ iy: Write w = x+ iy = r(cos(θ)+ i sin(θ)).
The n-th root ofw is a complex number z = ξ+iη = %(cos(α)+i sin(α)) such that zn = w.
There are exactly n roots for w, denoted z0, . . . , zn−1, which are constructed as follows.
We need %n = r and nα − θ = 2kπ for k = 0, 1, . . . , n − 1. Hence, using the addition
rules for trigonometric functions 1, we get % = n

√
r and α = θ+2kπ

n
, k = 0, 1, . . . , n− 1.

zk = n
√
r
(

cos
(θ + 2kπ

n

)
+ i sin

(θ + 2kπ

n

))
, k = 0, 1, . . . , n− 1,

are the n roots which are corners of a regular polygon with n corners, see example in
Figure 3 for the 6-th root of −1 = cos(π) + i sin(π).

Euler:
eiy = cos(y) + i sin(y), y ∈ R. (1.2)

Euler derived formula (1.2) in 1748, and nowadays (1.2) is called Euler’s formula . Then,
for any z = x+ iy ∈ C,

ez = ex+iy := ex( cos(y) + i sin(y))

Every z ∈ C \ {0} can be written as

z = elog(r)+iθ = reiθ, θ = arg(z), r = |z| > 0.

1cos(x± y) = cosx cos y ∓ sinx sin y and sin(x± y) = sinx cos y ± cosx sin y
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What about the logarithm? The complex number ξ + iη is a logarithm of z = x+ iy =
r(cos(θ) + i sin(θ)) if

eξ+iη = x+ iy = elog(r)+iθ.

Therefore
ξ = log r and η = θ + 2nπ with n ∈ Z.

Thus the logarithm of the complex number z = x+ iy = reiθ is the set

log z := {log(r) + i(θ + 2nπ) : n ∈ Z}. (1.3)

Each element of the set on the right side of (1.3) is called element or branch of the loga-
rithm . For example, the set {i(π/2 + 2nπ) : n ∈ Z} = log i is the logarithm of i. Having
defined the logarithm, we can now define the complex power:

Suppose z0 = x0 + iy0 = reiθ 6= 0 and z1 = x1 + iy1 ∈ C. We say that ξ + iη is an
element of general power set zz10 if ξ + iη is an element of e(x1+iy1)log(z0), that is, if there
exists n ∈ Z such that

ξ + iη = ex1log(r)−y1(θ+2nπ)+i(y1log(r)+x1(θ+2nπ)),

where we used the branch/element with n ∈ Z of the logarithm log z0 = log(r) + i(θ +
2nπ). Therefore,

zz10 := {ex1log(r)−y1(θ+2nπ)+i(y1log(r)+x1(θ+2nπ)) : n ∈ Z}. (1.4)
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For example,
ii = {e−(π/2+2nπ) : n ∈ Z} ⊂ R

is the set of powers for ii which is actually a subset of real numbers. Recall that arg(z) ∈
(−π, π] is called the principal value of the argument of z ∈ C \ {0}. The function
arg : C\{0} → R is not continuous on the negative real axis {z = x+ iy : y = 0, x ≤ 0}.
Define the cut plane CΠ := C \ {z = x+ iy : y = 0, x ≤ 0}.

Proposition 1.4 The function arg is continuous in the cut plane CΠ.

Proof. Exercise and TA class. 2

This implies that the complex logarithm log is not continuous on the negative real axis
but log is continuous in the cut plane CΠ.

2 Some geometry of the complex plane: Stereographic projections
and Möbius transforms

2.1 The Riemann sphere
Sometimes it is useful to add an extra point to C which we denote by∞. This will be con-
venient, for example, because it allows us to define functions with poles unambiguously
on all of C. In this section, we discuss a construction that gives a natural interpretation to
this extended complex plane Ĉ := C ∪ {∞}. It also defines a natural metric on this set.
Why we need the extended complex plane? The mapping z 7→ 1

z
gives an inversion in the

unit circle. All z ∈ C with |z| > 1 are mapped into the unit disc ∆ := {z ∈ C : |z| < 1},
whereas all z ∈∆\{0} are mapped to ∆c. The problem is that no image point is presently
associated with z = 0, nor is 0 to be found among the image points. Note that as z moves
further and further away from the origin, 1/z moves closer and closer to 0. Thus as z
travels to ever greater distances (in any direction), it is a though it were approaching a
single point at infinity, written∞, whose image is 0. We define

1

∞
:= 0 and

1

0
:=∞.

With that convention we can show that the inversion

inv : Ĉ→ Ĉ, z 7→ 1

z

is a one-to-one mapping of the extended complex plane. Problem is that we are accus-
tomed to using the symbol∞ only in conjunction with a limiting process, not as a thing
in its own right. How can we construct the element∞ as a definite point that is infinitely
far away? Riemann’s idea was to interpret complex numbers as points on a sphere in the
three-dimensional Euclidean space. We identify the complex plane with R2 which we
imagine embedded into R3. Throughout the lecture, imagine the complex plane (i.e., R2)
positioned horizontally in the space R3. The “equator” of the sphere coincides with the
unit circle ∂∆ := {z ∈ C : |z| = 1}. We denote the unit sphere in R3 by

S2 := {(x1, x2, x3) ∈ R3 : |x1|2 + |x2|2 + |x3|2 = 1}
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with the the north pole N := (0, 0, 1) and the south pole S := (0, 0,−1). When we
look down on C (from the upper half sphere) from above, a positive (counterclockwise)
rotation of π/2 carries the point 1 = (1, 0) to i. If we think of S2 as the surface of the
Earth, then this is the ancient problem of how to draw a geographical map. Ptolemy (AD
125) was the first to construct such a map, which he used to plot the positions of heavenly
bodies on the “celestial sphere”. His method is stereographic projection: From the north
poleN of the sphere S2, draw the line through the point z ∈ C, the stereographic image of
z on the sphere S2 is the point ẑ where this line intersects S2. This gives us a one-to-one
correspondence between points in C and points on S2 \ {N}. Some immediate facts are
in order:

1. The unit disc ∆ is mapped to the lower/southern hemisphere of S2, and the origin
0 is mapped to the south pole S.

2. Each point on ∂∆ is mapped to itself, now viewed as lying on the equator.

3. The complement ∆c of ∆ is mapped to the upper/northern hemisphere, except
that the north pole N is not the image of any point (with bounded modulus) in the
complex plane. However, it is clear that as z moves further and further away from
the origin 0 in any direction, the image point ẑ on the sphere moves closer and
closer to N .

Definition 2.1 The stereographic projection π : S2 \ {N} → C is defined by

π : (x1, x2, x3) 7→ z = π(x1, x2, x3) =

(
x1

1− x3

)
+ i
(

x2

1− x3

)
. (2.1)

It is easy to see that π defines a bijection from S2 \ {N} to C. In particular, the map π
maps the south pole (0, 0,−1) to 0, the lower/southern hemisphere into the unit disc, and
the upper hemisphere outside of the unit disc. To see that

π({southern hemisphere}) = ∂∆ ∪∆ =: ∆ := {z ∈ C : |z| ≤ 1},

note that any point on the southern hemisphere of S2 satisfies x3 ≤ 0, and thus 1−x3 ≥ 1
implying that

|z|2 = |π(x1, x2, x3)|2 =
(x1)2

(1− x3)2
+

(x2)2

(1− x3)2
≤ 1.

We will start by showing the following remarkable geometric fact about the stereographic
projection.

Lemma 2.2 A circle C on the sphere is the intersection of S2 with a plane {(x1, x2, x3) ∈
R2 : ax1 + bx2 + cx3 = d} for suitable real coefficients a, b, c, d ∈ R. Then the image of
every (nonempty) circle on S2 is either a line or a circle in C.
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Proof. We begin by calculating the inverse to π. Assume we have z = π(x1, x2, x3). Then
the formula (2.1) yields the following identities

z + z̄ =
2x1

1− x3

, z − z̄ =
2ix2

1− x3

, and |z|2 =
1− x2

3

(1− x3)2
=

1 + x3

1− x3

.

Solving for x3 first and then for x1, x2 yields

x3 =
|z|2 − 1

1 + |z|2
, x1 =

z + z̄

1 + |z|2
, and x2 = i

z̄ − z
1 + |z|2

. (2.2)

Now consider a point z ∈ C with π−1(z) ∈ C. Plugging (2.2) into the equation for the
plane we get

a(z̄ + z)− ib(z − z̄) + c(|z|2 − 1) =d(1 + |z|2).

Writing z = x+ iy we get

(d− c)(x2 + y2) + (d+ c)− 2ax− 2by = 0. (2.3)

Case 1: If d = c the identity (2.3) reduces to (d + c) = 2ax + 2by which describes a line

in C. Note that this is the case if and only if C goes through the north pole.

Case 2: If d 6= c we can divide the (2.3) by d− c and complete the square to obtain(
x− a

d− c

)2

+
(
y − b

d− c

)2

=
a2 + b2 + c2 − d2

(d− c)2
.

This equation describes a circle with midpoint a
d−c + i b

d−c if and only if the right hand side
is non-negative (here we adopt the convention that a point is also a circle of radius 0). As
may be expected, this is the case if the plane intersects S2 (i.e. if C is non-empty). In that
case there exists at least one point (x1, x2, x3) ∈ S2 that satisfies ax1 + bx2 + cx3 = d.
This implies using the Cauchy-Schwarz inequality that

d2 = (ax1 + bx2 + cx3)2 ≤ (a2 + b2 + c2)(x2
1 + x2

2 + x2
3) = (a2 + b2 + c2).

2

Actually, the converse is also true. We leave it for the reader to check that the preimage
of any circle or line in C under the stereographic projection is a circle on S2.

We note that (2.2) (or our geometric intuition) shows that π−1(zn) converges to the
north pole N for any sequence (zn) with |zn| → ∞. This makes it natural to identify
Ĉ with all of S2 simply by setting π(N ) = ∞. In particular, Ĉ obtains a natural metric
simply by adopting the Euclidean metric from the sphere. More precisely, we set for
z, w ∈ Ĉ

d(z, w) := ‖π−1(z)− π−1(w)‖,
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where ‖ · ‖ denotes the usual Euclidean norm ‖(x1, x2, x3)‖ =
√
x2

1 + x2
2 + x2

3. It is an
exercise to check that in this way we obtain

d(z, w) =
2|z − w|√

1 + |z|2
√

1 + |w|2
, if z, w 6=∞ and d(z,∞) =

2√
1 + |z|2

.

(2.4)

Rules:
z +∞ =∞+ z, ∀z ∈ Ĉ

z · ∞ =∞ · z =∞, ∀z ∈ Ĉ \ {0}
z

∞
:= 0, ∀z ∈ C

z

0
:=∞, ∀z ∈ Ĉ \ {0}

2.2 Möbius transformations
In this section we are going to study a very interesting class of transformations of Ĉ, the
Möbius transformations . We start by defining mappings of the complex plane which we
extend to mappings of the extended complex plane in a second step.

Definition 2.3 A Möbius transformation is a mapping

f (z) =
az + b

cz + d
(2.5)

defined on C\
{
−d
c

}
for some complex coefficients a, b, c, d ∈ C that satisfy ad−bc 6= 0.

In Definition 2.3 we have excluded the case ad− bc = 0, because in that case

f (z) =
az + b

cz + d
=

a
c
(cz + d) + b− ad

c

cz + d
=
a

c
+
bc− ad

c

1

cz + d

maps all of C \ {−d
c
} to a

c
= b

d
, or is not defined if c = d = 0. However, we can extend f

to a function on the extended complex plane,

f̂ : Ĉ→ Ĉ, z 7→ f̂ (z) =


f (z) , z ∈ C \ {−d

c
},

∞ , z = −d
c
,

a
c

, z =∞.

The function f̂ defined in this way is continuous with respect to the metric defined in (2.4).
In the following, when we speak of a Möbius transformation, re refer to this extension and
will denote it f as well.

Note that if we replace a, b, c, d by λa, λb, λc, λd for some λ ∈ C \ {0}, the mapping
defined by (2.5) does not change. Therefore, it is always possible (but not always conve-
nient) to assume that ad − bc = 1. We will call a Möbius transform normalised if this is
satisfied.

We start by deriving the following simple properties.
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Lemma 2.4 The Möbius transformation

f (z) =
az + b

cz + d
(2.6)

is invertible from Ĉ to Ĉ. The inverse f−1 is again a Möbius transform and given by

f−1(z) =
dz − b
−cz + a

. (2.7)

Proof. It is sufficient to check that for every z ∈ Ĉ and for f and f−1 defined above,
we have z = f (f−1(z)) = f−1(f (z)). We will only show the first equality and leave the
second one to the reader. For z 6= a

c
,∞ we get

f (f−1(z)) =
a
(
dz−b
−cz+a

)
+ b

c
(
dz−b
−cz+a

)
+ d

=
adz − ab− bcz + ab

cdz − cb− dcz + ad
=

(ad− bc)z
ad− bc

= z.

For z = a
c

we have f−1(z) = ∞ which is mapped to a
c

by f , and for z = ∞ we get
f−1(z) = −d

c
which is mapped to∞ under f . 2

Note that this lemma, together with the observation that Möbius transformations are con-
tinuous from Ĉ to Ĉ, implies that every Möbius transformation defines a homeomorphism
from Ĉ to itself. As a next step, we consider the composition of Möbius transformations.

Lemma 2.5 Let f1 and f2 be two Möbius transformations given by

fi =
aiz + bi
ciz + di

i = 1, 2.

Then f1 ◦ f2 is again a Möbius transformation and given by

f1 ◦ f2(z) =
(a1a2 + b1c2)z + (a1b2 + b1d2)
(c1a2 + d1c2)z + (c1b2 + d1d2)

. (2.8)

Proof. It is an easy exercise, that we leave to the reader to establish (2.8). The only thing
one might worry about, is the question if the non-degeneracy condition ad − bc 6= 0 is
preserved under composition of Möbius transformations. To see that this is indeed the
case, one can simply argue that by Lemma 2.4 the Möbius transformations f1 and f2 are
homeomorphisms of Ĉ and hence so is their composition. As mappings that do not satisfy
the non-degeneracy condition, i.e., ad−bc 6= 0, they do map all of C\{−d

c
} onto a single

point, this case can be excluded. We will see a nicer argument in Remark 2.6 below. 2

Remark 2.6 In the previous two lemmas we have actually shown that the set of Möbius
transformations forms a group under composition, more precisely a subgroup of the group
of homeomorphisms of Ĉ. The formula (2.8) shows even more. Namely, if we associate

with the matrix A =

(
a b
c d

)
∈ C2×2 the Möbius transformation MA := az+b

cz+d
then

(2.8) shows that for any matrices A,B we have

MA ◦MB = MAB.
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Also in this picture the non-degenaracy condition ab− cd 6= 0 has a simple interpretation
as det(A) 6= 0, and the fact that MA ◦MB is non-degenerate follows immediately from
the fact that determinants multiply under matrix multiplication. If we furthermore restrict
ourselves to the normalised case with det(A) = 1, i.e, to matrices in SL(2,C) we see that
A 7→MA is a homomorphism from SL(2,C) to the group of Möbius transformations.

The simplest non-trivial example of a Möbius transformation is the (complex) in-
version. It is the map inv : z 7→ inv (z) = 1

z
. Its action is best understood in polar

coordinates. The point z = reiθ is mapped to 1
z

= 1
r
e−iθ.

Lemma 2.7 Let C ⊆ C be a circle or a line. Then the image of C under the inversion
inv is either a circle or a line.

Proof. It is obvious, that lines through the origin are mapped to lines through the origin.
Let us characterise the image of the set

C := {z ∈ C : |z − a|2 = r2},

for an a ∈ C and r > 0. Then a point w ∈ Ĉ lies in the image inv (C) if and only if it
satisfies

r2 =
1− aw − āw̄ + |a|2|w|2

|w|2
,

which is equivalent to
|w|2(r2 − |a|2) = 1− aw − āw̄. (2.9)

This follows using z = w−1 = w̄/|w|2. If r2 − |a|2 = 0 , this equation describes a line in
C. Note that this is the case, if and only if the original circle C touches the origin. In the
same way, one can see that the image of the line

` = {z ∈ C : 0 = az + āz̄ − 1}

is the circle with radius |a| around a, where, again one uses z = w−1 = w̄/|w|2 leading
to |w|2 = aw̄ + āw.

Finally, if r2 − |a|2 6= 0 equation (2.9) is equivalent to∣∣∣w +
a

r2 − |a|2
∣∣∣2 =

r2

(r2 − |a|2)2

which describes a circle. 2

Definition 2.8 We will call the following Möbius transformations elementary:

(i) Inversion Define the map inv : z 7→ inv (z) = 1
z
.

(ii) Translations: Define f : z 7→ f (z) = 1z+b
0z+1

= z + b. This map simply shifts any
point z by the complex number b.

(iii) Rotation: For a = eiθ ∈ C define the map f : z 7→ f (z) = az+0
0z+1

= az. This map
rotates every point around the origin by an angle θ.

(iv) Expansion/Contraction: For R 3 r > 0 define the map f : z 7→ f (z) = rz+0
0z+1

= rz.
This map acts as an expansion (if r > 1 ) or a contraction (if r < 1).
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Suppose z = reiα and a = eiθ. Then we identify z with the vector (R(z), I(z)) =
(r cos(α), r sin(α)), and f (z) = az with the vector(

r cos(α + θ)
r sin(α + θ)

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
r cos(α)
r sin(α)

)
using the addition theorems for sin and cos. The right hand side is written as a matrix ap-
plied (having determinant equal to one) to the vector (r cos(α), r sin(α)), this is a rotation
by the angle θ.

We show in the next lemma that every Möbius transformation is a composition of
elementary Möbius transformations.

Lemma 2.9 Every Möbius transformation can be written as a composition of elemen-
tary Möbius transformations.

Proof. For c 6= 0 we write az+b
cz+d

= a
c

+
b−ad

c

cz+d
. Then this map is obtained by

z 7→ cz 7→ cz + d 7→ 1

cz + d
7→

b− ad
c

cz + d
7→ a

c
+
b− ad

c

cz + d
. (2.10)

The case where c = 0 is even easier. 2

The following is a fundamental property of the Möbius transformations.

Theorem 2.10 The image of a circle or a line in Ĉ under a Möbius transform is a circle
or a line.

Remark 2.11 (a) The Möbius transformations are actually the only complex differen-
tiable mappings from Ĉ to Ĉ with this property (see below for the definition of com-
plex differentiability).

(b) Recall from Lemma 2.2 above that circles and lines correspond to circles on the Rie-
mann sphere. Recall furthermore that lines correspond precisely to those circles on S2

that touch the north pole. They can thus be interpreted as circles with infinite radius.
The content of Theorem 2.10 can thus be summarised in the more catchy phrase:

Möbius transformations map circles to circles.

�

Proof of Theorem 2.10. It is sufficient to show this property for elementary Möbius trans-
formations. For inversions it is the content of Lemma 2.7. It is very easy to see that lines
are mapped to lines and circles are mapped to circles for translations, rotations, and ex-
pansions/contractions. 2
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The following result concerns the flexibility of the Möbius transformations.

Theorem 2.12 Given three distinct points z1, z2, z3 ∈ Ĉ and three distinct points
w1, w2, w3 ∈ Ĉ, there exists a unique Möbius transformation f that satisfies f (zi) = wi
for i = 1, 2, 3.

This property makes precise our intuition that the group of Möbius transformations
has three complex degrees of freedom.

Proof. Existence: Suppose for the moment that zi 6= ∞ for i = 1, 2, 3. Then we define
the map

S(z) :=
(z − z2)(z1 − z3)
(z − z3)(z1 − z2)

.

This map has the property that

S(z1) = 1, S(z2) = 0, and S(z3) =∞. (2.11)

In the case where one of the zi is equal to∞ we just drop the corresponding terms, i.e.,
for example we set

S(z) =
z − z2

z − z3

if z1 =∞. In either case, (2.11) is still satisfied.
In the same way we define the mapping

T (z) :=
(z − w2)(w1 − w3)
(z − w3)(w1 − w2)

and thus T−1(z) =
−w3(w1 − w2)z + w2(w1 − w3)

(w2 − w1)z + w1 − w3

.

Then we simply set f = T−1S. This is a Möbius transformation according to Lemma 2.4
and Lemma 2.5, and it has the desired property by construction. For example,

f (z1) = T−1(S(z1)) = T−1(1) =
w1(w2 − w3)
w2 − w3

= w1.

Uniqueness: It is sufficient to consider the case w1 = 1, w2 = 0, and w3 = ∞. Actually,
suppose we have established uniqueness in this case. Then from two distinct transforma-
tions f1 and f2 map z1, z2, z3 to arbitrary distinct w1, w2, w3 we could always manufacture
two different transformations that map z1, z2, z3 to 1, 0,∞ by composing with a map from
the existence argument.

Hence, let us assume that f1 and f2 are two Möbius transformations that map z1, z2, z3

to 1, 0,∞. We need to show that g := f1 ◦ f−1
2 is the identity. Note that

g(z) =
az + b

cz + d

maps 0 to 0, 1 to 1 and∞ to∞. The fact that g(∞) = ∞ implies c = 0. As we always
have one parameter to choose freely, we will set d = 1. Then g(0) = 0 implies that b = 0
and finally g(1) = 1 implies a = 1. Hence, g is the identity and the claim is proved. 2
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Definition 2.13 The cross-ratio of pairwise distinct complex numbers z1, z2, z3, z4, is
the continuous mapping CR : C4 \Diag(C4), (z1, . . . , z4) 7→ CR(z1, . . . , z4) given as

CR(z1, z2, z3, z4) :=
(z3 − z1)
(z3 − z2)

/
(z4 − z1)
(z4 − z2)

=
(z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

.

Diag(C4) = {(z1, z2, z3, z4) ∈ C4 : ∃i, j ∈ {1, . . . , 4}, i 6= j, with zi = zj}.

Proposition 2.14 The cross ration CR is invariant under Möbius transformations.

Proof. Exercise (use the earlier proofs for linear mappings and inversions). 2

Example 2.15 We are looking for a Möbius transformation f that maps the half space
HR := {z ∈ C : R(z) > 0} to the unit disc ∆ := {z ∈ C : |z| < 1}. Certainly the
imaginary axis I := {z ∈ C : R(z) = 0} should be mapped to S1 := {z ∈ C : |z| = 1} =
∂∆ under f . According to Theorem 2.12 there exists a unique Möbius transformation
f with f (0) = −1, f (i) = i, and f (−i) = −i and this seems to be a good candidate.
Plugging this in

f (z) =
az + b

cz + d

gives b
d

= −1, ai+b
ci+d = i, and −ai+b

−ci+d = −i which implies

f (z) =
z − 1

z + 1
.

This map does indeed map the imaginary axis onto the S1: By Theorem 2.10 the image
of the imaginary axis has to be line or a circle. But, as the points −1, i, and −i lie in this
image, it can only be S1. As f is a homeomorphism of Ĉ, the image of HR must be either
∆ or Ĉ \∆, where ∆ = ∆ ∪ ∂∆ = {z ∈ C : |z| ≤ 1} denotes the closure of ∆. But as
f (1) = 0 it can only be ∆.

In a similar way one can see that f maps the real axis to itself and all parallel lines
to circles that intersect with the unit disc in 1. All lines that are parallel to the imaginary
axis are mapped onto circles that touch S1 in 1 and that are otherwise contained in ∆.

This Möbius transformation is used in electrical engineering to visualise complex
resistors in Smith diagrams. ♣

Example 2.16 Let us try to find the image of the unit disc ∆ = {z ∈ C : |z| < 1} under
the Möbius transformation

f (z) =
iz + 3

iz − 1
= 1 +

4

iz − 1
.

The function f can be written a f = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1, where

f1(z) = iz , f2(z) = z − 1 , f3(z) =
1

z
, f4(z) = 4z , f5(z) = z + 1 .
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The mapping f1 maps the unit disc onto itself, f2 shifts it to “the left” by one. This shifted
disc is mapped onto the half space {z ∈ C : R(z) < −1

2
} under the inversion. Indeed the

shifted boundary circle contains the origin and hence the inversion maps it to a line. This
line has to contain−1

2
as the image of−2 under the inversion. Finally, it is readily seen to

be invariant under reflection at the imaginary axis. This implies that the boundary curve
is mapped onto the line {z ∈ CR(z) = −1

2
}. As −1 is invariant under the inversion the

image of the disc f2(∆) has to be the half space claimed above.
The image of this half space under f5 ◦ f4 and hence the image of ∆ under f is the

half space {z ∈ C : R(z) < −1}.

Example 2.17 Let us try to find the unique Möbius transformation

f (z) =
az + b

cz + d

with f (±1) = ±1 and f (0) = 1
2
. Actually, f (0) = 1

2
implies that b

d
= 1

2
. As we can

always choose one of the parameters freely, we can set b = 1 and d = 2. The other two
conditions yield

a+ 1 = c+ 2 and − a+ 1 = (−1)(−c+ 2),

which implies that a = 2 and c = 1. Summarising, the function f is given by

f (z) =
2z + 1

z + 2
.

Note that it was convenient, not to give f in the normalised form. We also observe that
all the coefficients in this Möbius transformation can be chosen as real numbers which
implies immediately that f maps all real numbers onto real numbers (or∞). Finally we
calculate that

f (i) =
1 + 2i

2 + i
=

(1 + 2i)(2− i)
(2 + i)(2− i)

=
4 + 3i

5
,

which lies again on the unit circle S1 = {z ∈ C : |z| = 1}. We argue that this already
implies that f maps every point in S1 to S1. To see, recall that Theorem 2.10 implies that
the image of S1 under f is some circle or line. But as the points 1,−1, and 4+3i

5
lie in

f (S1) it must be S1.

Example 2.18 In this example we argue that all Möbius transformations of the form

f (z) =
a− z
1− āz

for a ∈ C |a| < 1, (2.12)

are bijections from the unit disc ∆ := {z ∈ C : |z| < 1} into itself (and hence by
continuity they are also bijections from S1 to itself). Before we show that, note that
f (a) = 0 and hence the condition |a| < 1 is clearly necessary for this to be true. Also
note that the transformation discussed in Example 2.17 above is “almost” of this form.
Actually, we can write

2z + 1

z + 2
=

z + 1
2

1 + 1
2
z

= −
(−1

2
)− z

1− (−1
2
)z
,
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which is a mapping of the form (2.12) (for a = ā = −1
2
) composed with a rotation around

the origin by the angle −π.
In the general case (2.12), for any z we can calculate

|f (z)|2 =
aā+ zz̄ − 2R(az̄)
1 + |āz|2 − 2R(az̄)

.

It is easy to see (exercise !) that this expression is = 1 if |z| = 1 and < 1 if |z| < 1.
Transformations of the form (2.12) are almost the most general Möbius transforma-

tions that are bijections of the unit disc. The most general transformation is of the form

f (z) = eiθ a− z
1− āz

for |a| < 1 and θ ∈ [−π, π). (2.13)

We will see below in Corollary 5.27 the remarkable fact that this already includes all
complex diffeomorphisms of the unit disc. If a complex function f maps ∆ bijectively
and in a (complex) differentiable way into itself, it must be a Möbius transform!

The following statement is a fundamental property of continuous functions (recalling ba-
sic training in analysis):

Theorem 2.19 If f is a continuous mapping of a metric space (X, dX) into a metric
space (Y, dY ), andE ⊂ X is a connected subset ofX , then the image f (E) is connected.
Here, a set D is connected if it cannot be expressed as the union of non-empty open sets
D1 and D2 with D1 ∩D2 = ∅ (compare with Definition 4.16 below).

Lemma 2.20 Every Möbius transformation f 6= idĈ has at most two fixed points 2.

Proof. First note that

f = idĈ ⇔ c = b = 0 and
a

d
= 1.

Thus

f (z) =
az + b

cz + d
= z ⇔ (az + b)(c̄z̄ + d̄) = |cz + d|2z

⇔ 0 = cz2 + (d− a)z − b .

Now the quadratic equation has at most two solutions, and we conclude with our state-
ment.

2

We continue with some very useful properties of Möbius transformations.

2A fixed point of a function f is an element z0 with f (z0) = z0.
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Remark 2.21 (Möbius transformations) (a) Lemma 2.20 provides an easy proof idea
of the uniqueness in Theorem 2.12 above. That theorems states that, given two triples
z1, z2, z3, and w1, w2, w3, of pairwise distinct complex numbers in Ĉ, there exists a
unique Möbius transformation f with f (zi) = wi, i = 1, 2, 3. Suppose now that there
exist another Möbius transformation g, g 6= f , with g(zi) = wi, i = 1, 2, 3. Then the
composition (g−1 ◦ f) is a Möbius transformation and has three distinct fixed points,
and thus, according to Lemma 2.20, (g−1 ◦ f) = idĈ and therefore f = g.

(b) H+ := {z ∈ C : I(z) > 0}; H− := {z ∈ C : I(z) < 0}. If a Möbius transformation f
maps R ∪ {∞} onto R ∪ {∞}, then, due to Theorem 2.19, either f (H+) = H+ and
f (H−) = H−, or f (H+) = H− and f (H−) = H+.

(c) Recall that a Möbius transformation f maps a line ` or a circle C onto a line `1 or a
circle C1. Lines and circles split the complex plane into two open disjoint components,
that is Ĉ\{`} and Ĉ\{C} both have two components, calledD′, D′′ withD′∩D′′ = ∅.
Likewise, the image planes Ĉ \ {`1} and Ĉ \ {C1} are disjoint unions of open sets D′1
and D′′1 respectively. Furthermore, because f is a homeomorphism,

f (D′) ∩ `1 = ∅ = f (D′) ∩ C1

f (D′′) ∩ `1 = ∅ = f (D′′) ∩ C1,

and f (D′) (respectively, f (D′′)) is open and connected in Ĉ \ {`1} or Ĉ \ {C1}. From

f (D′) = (f (D′) ∩D′1) ∪ (f (D′) ∩D′′1))

it follows that either f (D′)∩D′1 = ∅ or f (D′)∩D′′1 = ∅. Without loss of generality,
let f (D′)∩D′1 = ∅, that is, f (D′) ⊂ D′′1 . Our reasoning below applies in an analogous
way to the remaining component D′′ with the cases f (D′′) ⊂ D′1 or f (D′′) ⊂ D′′1 , we
leave these cases as an exercise for the reader. Back to our case f (D′) ⊂ D′′1 . The
Möbius transformation is surjective and thus f (D′′) ⊂ D′1 as otherwise we would
have D′1 ∩ f (Ĉ) = ∅ because of our assumption D′1 ∩ f (D′) = ∅. As f is bijective,
we get

f (D′) = D′′1 and f (D′′) = D′1,

and all remaining cases follow similarly.

(d) Suppose a Möbius transformation f maps the boundary of a disc onto the boundary of
that disc, i.e. f (∂BR(0)) = ∂BR(0), R > 0. Recall that ∂BR(0) = {z ∈ C : |z| = R}
and BR(0) = {z ∈ C : |z| < R}. Then either f (BR(0)) = BR(0)), or f (BR(0)) =
BR(0)c ∪ {∞}, where the complement of the disc is BR(0)c = {z ∈ C : |z| > R}.

(e) Consider the following example for a Möbius transformation (compare with Example
sheet 1):

h(z) = −i
z − 1

z + 1
.

Recall ∆ = {z ∈ C : |z| < 1} and ∂∆ = {z ∈ C : |z| = 1}. Then h(∂∆) =
R ∪ {∞}, because

h(z) =
−i(z − 1)(z̄ + 1)

(x+ 1)2 + y2
=

2y

(x+ 1)2 + y2
, where we used x2 + y2 = 1 on ∂∆.
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Furthermore, we have h(1) = 0 and h(−1) = ∞, and, as h(0) = i, we get that
h(∆) = H+. The inverse of h is given by h−1(w) = −w+i

w+i . Note that h−1(H+) = ∆.
Suppose now that g is another Möbius transformation with g(∆) = ∆, then

h ◦ g ◦ h−1(H+) = H+.

Conversely, each Möbius transformation f with f (H+) = H+ leads to the Möbius
transformation h−1 ◦ f ◦ h with h−1 ◦ f ◦ h(∆) = ∆.

�

3 Complex differentiation

In the following we let D ⊂ C be an open set until specified otherwise.

3.1 Definitions and elementary properties
Definition 3.1 A function f : D → C,D ⊂ C open, is complex-differentiable at z0 ∈ D
if the limit

lim
z→z0

f (z)− f (z0)
z − z0

=: f ′(z0) (3.1)

exists. Equivalently, f is complex-differentiable at z0 ∈ D if there exists a function
f1 : D → C which is continuous at z0 such that

lim
h→0

f (z0 + h)− f (z0)
h

= f1(z0). (3.2)

The complex number f1(z0) ∈ C is called the derivative of f at z0, and we write

df
dz

(z0) = f ′(z0) = f1(z0) = df (z0).

Remark 3.2 Equations (3.1) and (3.4) can be restated as: For every ε > 0 there exists a
δ > 0 such that for |z − z0| < δ we have

|f (z)− f (z0)− f ′(z0)(z − z0)| ≤ ε|z − z0|. (3.3)

Thus the complex-differentiable function looks locally (at z0) like a complex affine func-
tion. �

Proposition 3.3 If f : D → C is differentiable at z0 ∈ D, then f is continuous at z0.

Proof. We easily get that

lim
z→z0

f (z)− f (z0) = lim
z→z0

f (z)− f (z0)
z − z0

· (z − z0) = f ′(z0) · 0 = 0

which shows continuity of f at z0. 2

In the next proposition we summarise elementary proporties of complex-differentiable
functions.
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Proposition 3.4 If the functions f, g : D → C are complex-differentiable at z0, the so are
the functions (f + g), f (f − g), f · g, and f/g (provided that g(z0) 6= 0). The derivatives
are

(i) (f + g)
′(z0) = f ′(z0) + g′(z0)

(ii) (f − g)
′(z0) = f ′(z0)− g′(z0)

(iii) (f · g)
′(z0) = f ′(z0)g(z0) + f (z0)g′(z0)

(iv)

(f/g)
′(z0) =

(f ′(z0)g(z0)− f (z0)g′(z0))
(g(z0))2 .

Proof. Exercise. 2

The definition of the derivative (3.1) looks absolutely identical to the definition in the
real case and on the first glance one might think that there is not much difference. As we
will see, this first impression is misleading.

Example 3.5 Let us consider the function f : C→ C given by f (z) = z2. We know that
f maps z = reiθ to r2ei2θ, i.e., the absolute value is squared and the argument is doubled.
To see that f “locally looks like a complex affine function” at a point z0 we write

z2 − z2
0 = (z + z0)(z − z0) = 2z0(z − z0) + (z − z0)2.

In particular, setting f ′(z0) = 2z0 we get

|f (z)− f (z0)− f ′(z0)(z − z0)| = |z − z0|2,

which shows that (3.3) is satisfied for the choice δ = ε. ♣

Example 3.6 Consider the mapping f : C → C given by f (z) = z̄. We argue that this
function f is not complex differentiable at any point z0 ∈ C. Actually, condition (3.1)
implies, in particular, that for every sequence zn that converges to z0 the limits

lim
n→∞

f (zn)− f (z0)
zn − z0

(3.4)

must exist and they must all be the same. To see that this is not the case for f (z) = z̄, we
take the sequences zn = z0 + 1

n
and ẑn = z0 + i

n
. Both sequences converge to z0 and we

have

f (zn)− f (z)
zn − z0

=
z̄0 + 1

n
− z̄0

1
n

= 1
f (ẑn)− f (z)
ẑn − z0

=
z̄0 − i

n
− z̄0

i
n

= −1.

In particular, the limits do not coincide. Hence f is not complex differentiable. ♣

Similarly, the functions R(z), I(z), and |z| are nowhere complex-differentiable in C.
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3.2 The Cauchy-Riemann equations
In order to understand the concept of complex differentiability better, we identify C with

R2 by setting z = x + iy ∼=
(x
y

)
in the usual way, and comparing it to the concept of

differentiability of functions from R2 to R2. We start with the following observations:

• For any complex number λ = λ1 + iλ2 consider the C-linear mapping C 3 z 7→ λz.
In the “R2-picture” this mapping is given by(

x
y

)
7→
(
λ1 −λ2

λ2 λ1

)(
x
y

)
. (3.5)

In particular, this mapping is (real) linear from R2 to R2.

• Conversely, the R-real linear map(
x
y

)
7→
(
a11 a12

a21 a22

)(
x
y

)
,

can be written as complex multiplication z 7→ az for an a ∈ C if and only if
a11 = a22 and a12 = −a21. In this case we have a11 = R(a) and a21 = I(a).

• If we write λ = reiθ we can rewrite the matrix in (3.5) as(
λ1 −λ2

λ2 λ1

)
= r

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

which confirms once more our intuition that multiplication by the complex number
reiθ consists of an amplification by r and a rotation around the origin by the angle
θ. In particular, complex multiplication preserves angles and orientation.

Finally, recall that a mapping f : D → R2,
(x
y

)
7→
(u(x, y)
v(x, y)

)
is differentiable in

(x0

y0

)
if there exists a matrix Df

(x0

y0

)
such that for every ε > 0 there exists a δ > 0 such that

for
∣∣∣(x
y

)
−
(x0

y0

)∣∣∣ < δ we have∣∣∣∣f(xy
)
− f

(
x0

y0

)
− Df

(
x0

y0

)[(
x
y

)
−
(
x0

y0

)]∣∣∣∣ ≤ ε

∣∣∣∣(xy
)
−
(
x0

y0

)∣∣∣∣. (3.6)

Furthermore, Df : D → R2×2, (x0, y0) 7→ Df (x0, y0) is given by the Jacobi-matrix

Df =

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

Now we observe, comparing the definition of real differentiability in (3.6) with the def-
inition of complex differentiability in (3.3), that they coincide up to the fact that for real
differentiability the function f locally has to look like a real linear function, whereas for
complex differentiability it locally has to look like a complex linear function. Then includ-
ing the observations above the following important theorem reduces to a mere tautology.
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Theorem 3.7 (Cauchy-Riemann equations) Let D ⊂ C be open and f : D → C, x +
iy 7→ u(x, y) + iv(x, y) be a function. If f is complex-differentiable at z0 = x0 + iy0 ∈ D,
then the partial derivatives of the real functions u and v, ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y,
all exist at (x0, y0) and the partial derivatives satisfy the Cauchy-Riemann equations

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (3.7)

Proof. We shall calculate f ′(z0) in two different ways to show (3.7) (the existence of the
partial derivatives follows immediately from our definitions). Let h ∈ R and consider
first z0 + h = (x0 + h) + iy0 to obtain

f ′(z0) = lim
h→0

f (z0 + h)− f (z0)
h

=
∂u

∂x
(x0, y0) + i

∂v

∂x
.

If we take z0 + h = x0 + i(y0 + h), then

f ′(z0) = lim
h→0

f (z0 + h)− f (z0)
ih

=
∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0).

2

R-linear mappings C → C are given by real (2 × 2)-matrices, e.g., the identity

id : C → C by
(

1 0
0 1

)
and the complex conjugation f : C → C, z 7→ f (z) = z by(

1 0
0 −1

)
and the multiplication with a complex number a = reiθ, f (z) = az by the

matrix (
r cos(θ) −r sin(θ)
r sin(θ) r cos(θ)

)
∈ SO(2).

Recall the following definition of real-differentiability of a mapping R2 → R2.

Definition 3.8 (Real-differentiability) Let U ⊂ R2 be open. The function f : U → R2

is real-differentiable at p0 = (x0, y0) ∈ U if and only if there exists a R-linear mapping
A : R2 → R2 such that

f (p0 + v) = f (p0) + Av + |v|R(v), v = (v1, v2) ∈ R2, |v| =
√
v2

1 + v2
2,

with
lim
v→0

R(v) = 0.

The mapping (matrix) A = f ′(p0) = df (p0) is the derivative (differential) of f at p0 (the
best linear approximation of the function f at p0). Note that we identify here the mapping
A with its matrix.

How can we characterise complex-differentiable functions? We know that f : D → C
complex-differentiable at z0 implies that

lim
h→0

f (z0 + h)− f (z0)− f ′(z0)h
h

= 0
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which implies in turn that f is real-differentiable (considered as a mapping in R2 as
discussed above) having C-linear differentials. This C-linearity is significant for the
complex-differentiability, and is the deeper reason why the Cauchy-Riemann equations
(3.7) hold.

Theorem 3.9 (Complex-differentiability) The following statements about a function
f : D → C, D ⊂ C open, and z0 = x0 + iy0 ∈ D, are equivalent.

(i) f is complex-differentiable at z0 ∈ D

(ii) f is real-differentiable at (x0, y0) and the differential df (z0) : C → C is complex-
linear (df (z0) = f ′(z0))

(iii) f is real-differentiable at (x0, y0) and the Cauchy-Riemann equations (3.7)

ux(x0, y0) = vy(x0, y0), uy(x0, y0) = −vx(x0, y0)

hold.

Proof. (i)⇔ (ii) follows from our discussion above. For (ii)⇔ (iii) we denote the differ-
ential matrix

M := df (z0) =

(
ux(x0, y0) uy(x0, y0)
vx(x0, y0) vy(x0, y0)

)
.

Clearly, the differential is R-linear and we are left to show that M is C-linear if and only
if the Cauchy-Riemann equations are satisfied at z0. We shall apply M to some complex
z = x + iy ∈ D, and we employ the matrix notation (note that we drop the arguments
from the partial derivatives at the point (x0, y0)),

M (iz) = M

(
−y
x

)
=

(
−uxy uyx
−vxy vyx

)
= (− uxy + uyx) + i(− vxy + vyx)

= iM (z) = −(vxx+ vyy) + i(uxx+ uyy)

⇔ ux = vy and uy = −vx.
2

Recall that a function f : U → R2, U ⊂ R2, is real-differentiable at some point if all
partial derivatives exist at that point and are continuous at that point. Thus we obtain a
sufficient criterion for complex-differentiability :

Let U ⊂ R2 be the set isomorphic to D ⊂ C. If u, v : U → R are continuously
differentiable real-valued functions in U , then the complex function f : D → C, z 7→
f (z) = u(x, y) + iv(x, y) is real-differentiable. If furthermore the Cauchy-Riemann
equations (3.7) hold (ux = vy;uy = −vx), then f is complex-differentiable.

We shall introduce some notations.

Definition 3.10 Let D ⊂ C be open. A function f : D → C that is complex-
differentiable at every point of D is called holomorphic or analytic on D. The set of
holomorphic function on D is denoted H(D). If f : C → C is complex-differentiable
everywhere on C it is called entire.
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Example 3.11 Recall that it is not sufficient for a function f : R2 → R2 to be differ-
entiable in a point, to have partial derivatives. In the same way it is not sufficient for a
function to be complex-differentiable at a point to have partial derivatives that satisfy the
Cauchy-Riemann equations. Set for example,

f (z) = exp (− z−4)

for z 6= 0 and f (0) = 0. If we restrict f to the real axis, it is perfectly continuous and we
have

lim
R3h→0

f (h)− f (0)
h

= lim
R3h→0

1

h
exp (− h−4) = 0.

Similarly, if we restrict f to the purely imaginary axis we get

lim
iR3h→0

f (h)− f (0)
h

= lim
R3h→0

1

ih
exp

(
− 1

(ih)4

)
= lim

R3h→0

1

ih
exp

(
− 1

(h)4

)
= 0.

In particular, the Cauchy-Riemann equations are satisfied in 0 and it looks as if f were
complex-differentiable at 0. But in fact f is not even continuous at 0. For example, setting
hn = 1

n
e

iπ
4 , we have (hn)4 = − 1

n4 and hence limn→∞ f (hn) =∞.
This is not a contradiction to Theorem 3.7, because f is also not differentiable viewed

as a function from R2 → R2. ♣

Let f be a holomorphic (analytic) function on D with real and imaginary part u and
v. For the moment let us also make the additional assumption that f is C2 (i.e. twice
continuously differentiable). Later we will see that this is automatically the case. One
immediate consequence of the Cauchy-Riemann equations is the following

∂2u(x, y)
∂x2

=
∂2v(x, y)
∂y∂x

= −∂
2u(x, y)
∂y2

.

In particular we get

∆u(x, y) :=
∂2u(x, y)
∂x2

+
∂2u(x, y)
∂y2

= 0.

A similar calculation shows that ∆v(x, y) = 0. We then say that both u and v satisfy
Laplace’s equation.

The real and imaginary parts of holomorphic functions are harmonic.

Suppose we have a solution ϕ : U → R, U ⊂ R2 open, of the Laplace equation, i.e.,
∆ϕ(x, y) = 0 for all (x, y) ∈ U , and suppose that the function ϕ is given as a real part
R(f ) of some holomorphic function f ∈ H(D) where D is isomorphic to U . Then I(f )
also satisfies the Laplace equation. This leads to the following notation.

Definition 3.12 LetU ⊂ R2 be open and identify it withD ⊂ C. Supposeϕ is harmonic
on U . The harmonic conjugate ψ od ϕ is a harmonic function (over U ) which is given
as the imaginary part I(f ) of some f ∈ H(D) such that ϕ = R(f ).



24 COMPLEX DIFFERENTIATION

Clearly, by the Cauchy-Riemann equations the imaginary part v = R(f ) is determined
uniquely up to a constant. Such a v can often be found – the Poincaré lemma implies, in
particular, that this is always the case locally. Still the following (important) example
shows that the answer is not always positive.

Example 3.13 (Complex Logarithm) The so called Newton potential

u(x, y) = log
(√

x2 + y2
)

for
(x
y

)
6= 0,

is an important example of a two-dimensional harmonic function, so it is a natural ques-
tion to ask if it is the real part of an holomorphic function f on all of C \ {0}. Given the
behaviour of the complex exponential function, it is natural to suspect that the imaginary
part of f should be related to argument arg : C→ (−π, π), z = reiθ 7→ arg(z) = θ. Recall
that the argument of θ is only defined uniquely up to adding integer multiples of 2π. To de-
fine arg as a (single-valued) function we restrict ourselves to C\R− := C\{r ∈ R : r ≤ 0}
and we fix the argument by imposing arg(z) ∈ (−π, π). In order to check the Cauchy-
Riemann equations we write

arg(x+ iy) =


arctan

(
y
x

)
if x > 0,

arccos
(

x√
x2+y2

)
if y > 0,

− arccos
(

x√
x2+y2

)
if y < 0.

Then we check that

∂arg
∂x

=
−y

x2 + y2
=
−∂u
∂y

and
∂arg
∂y

=
x

x2 + y2
=
∂u

∂x
.

Hence the Cauchy-Riemann equations are satisfied and

log(x+ iy) := log (
√
x2 + y2) + i arg(x, y) (3.8)

is indeed holomorphic on C \ R−.
But the arg function cannot be extended continuously to a continuous function on all

of C \ {0}. For example, the sequences (e−i(π− 1
n

))n and (ei(π− 1
n

))n both converge to −1
but the arg function as defined above converges to π and −π along these sequences. Of
course, we could have chosen a different convention for the argument but this problem
would always occur. Hence there is no holomorphic function on all of C \ {0} that has
the Newton potential as its real part. ♣

3.3 Power series criterion
We will now prove that elementary properties of real power series carry over to the com-
plex case.

Theorem 3.14 For a sequence of complex numbers (ak) consider the power series
∞∑
k=0

akz
k. (3.9)
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(a) There exists a r ∈ [0,∞], called the radius of convergence, such that for any z ∈ C
with |z| < r the series (3.9) converges absolutely (and locally uniformly) and for
every r′ > r there exists z ∈ C with |z| = r′ such that (3.9) does not converge
absolutely.

(b) The series that one obtains by formally differentiating (3.9), i.e.,

∞∑
k=0

kakz
k−1 (3.10)

has the same radius of convergence.

(c) The function f (z) =
∑∞

k=0 akz
k is holomorphic on

Br(0) := {z ∈ C : |z| < r},

where r denotes the radius of convergence, and the derivative is given by (3.10).

Here and below we use the convention to set 00 = 1. In particular, the power series
(3.9) evaluated at 0 yields a0. Note that this theorem does not say anything about the
convergence on the circle {z ∈ C : |z| = r}.

Proof. (a) We can assume that there exists a z0 6= 0 for which (3.9) converges (otherwise
r = 0). This implies that the sequence anzn0 converges to 0 and in particular |anzn0 | is
bounded, say by a constant C > 0. We conclude that for every z with |z| < |z0| we have

∞∑
k=0

|akzk| ≤
∞∑
k=0

|akzk0 |
|z|k

|z0|k
≤ C

|z0|
|z0| − |z|

,

which shows the absolute convergence. The same bound actually shows that the conver-
gence is uniform in B|z|(0).

This already finishes the argument, because if we define

r := sup{r ≥ 0: there exists a z with |z| = r such that (3.10) converges},

then the calculation above shows that (3.9) converges whenever |z| < r and by definition
it cannot converge when |z| > r.

(b) Denote by r the radius of convergence of (3.9). We can assume that r 6= 0. We start
by showing that the radius of convergence of (3.10) is at least r, i.e we need to show that
(3.10) converges absolutely if |z| < r.

To this end let us introduce an auxiliary r̂ that satisfies |z| < r̂ < r. Then we get

∞∑
k=1

|kakzk−1| ≤ 1

r̂

∞∑
k=1

k
|z|k−1

r̂k−1
|akr̂k|.

On the one hand, by assumption the series
∑∞

k=1 |akr̂k| converges. On the other hand the
series k |z|

k

r̂k
converges to 0, and hence it is bounded. This shows the convergence.
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To show that (3.10) cannot converge absolutely if (3.9) does not converge absolutely,
it suffices to write

∞∑
k=1

|kakzk−1| ≥ 1

|z|

∞∑
k=1

|akzk|.

(c) To show the differentiability of f at some point z ∈ Br(0) we start by observing that
for hwith |h| < r−|z|

2
, the point z+h is still contained inBr(0). Furthermore, by applying

(b) once more, we see that the formal second derivative

∞∑
k=2

k(k − 1)akzk

has the same radius of convergence r. Then, we estimate∣∣∣∣∑∞k=0 ak(z + h)k −
∑∞

k=0 akz
k

h
−
∞∑
k=1

kakz
k−1

∣∣∣∣ ≤ ∞∑
k=2

∣∣∣ak
h

(
(z + h)k − zk − kzk−1h

)∣∣∣.
(3.11)

Using the binomial theorem, we can write

∣∣∣(z + h)k − zk − kzk−1h
∣∣∣ =

∣∣∣h2

k−2∑
j=0

(
k

j + 2

)
zk−2−jhj

∣∣∣ ≤ |h|2k(k − 1)(|z|+ |h|)k−2.

Using this we can bound the right hand side of (3.11) by

|h|
∞∑
k=2

k(k − 1)|ak|(|z|+ |h|)k−2 ≤ |h|
∞∑
k=2

k(k − 1)|ak|
(
|z|+ r − |z|

2

)k−2

.

The last sum is finite and hence we can conclude that the whole expression converges to
0 as h goes to 0. 2

Corollary 3.15 The function f (z) =
∑∞

k=0 ak(z−z0)k is infinitely often complex - differ-
entiable on the ballBr(z0), where r denotes the radius of convergence. The n-th derivative
is given by

f (n)(z0) = n! an. (3.12)

In particular, the power series development of f is unique.

Proof. Differentiating a power series yields another power series, which can again be
differentiated. This shows recursively, that f can be differentiated arbitrarily often. To
see (3.12) we write

f (n)(z) =
∞∑
k=n

k(k − 1) . . . (k − n+ 1) ak(z − z0)k−n.

If we evaluate the expression for z = z0, all terms except for the first one drop. 2
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4 Complex Integration

In this section we discuss the complex line integral and give a direct proof of Cauchy’s
theorem without making use of the theorems of Gauss and Stokes from Vector Analysis.

4.1 The complex integral

We start by introducing some vocabulary and let D ⊂ C be an open set until otherwise
specified.

Definition 4.1 A curve in D is a continuous function γ : [t0, t1] → D, t0 < t1, and we
denote the image Γ = γ([t0, t1]) also a curve in D, and often the mapping γ is called a
path . We will call the curve C1 (or Ck) if γ is (k times) continuously differentiable (in the
real sense). We call a curve simple if γ(t) 6= γ(t̂) for t 6= t̂, and closed if γ(t0) = γ(t1).

It is clear from Definition 4.1 that a curve is the image Γ(γ) of some path γ : [t0, t1]→
C. For instance, a given curve will have different paths. A path γ : [t0, t1] → C is called
a parametrisation of the curve Γ = γ([t0, t1]),

Definition 4.2 (Complex line integral) Let γ be a C1 curve in D, i.e.,

Γ = γ([t0, t1]) ⊂ D ,

and let f : D → C be continuous. Then the complex line integral is defined as∫
Γ

f (z) dz =

∫
γ

f (z) dz =

∫ t1

t0

f (γ(t)) γ̇(t) dt. (4.1)

Remark 4.3 (i) This definition extends to piecewise C1 curves in the obvious way.

(ii) Here we use the convention to write a “time derivative” with a “dot”, i.e. γ̇(t) =
dγ
dt (t).

(iii) If f (x+ iy) = u(x, y) + iv(x, y) and γ(t) = x(t) + iy(t), we can write the complex
integral in real coordinates as∫

γ

f (z) dz =

∫ t1

t0

(
u(x(t), y(t)) ẋ(t) − v(x(t), y(t)) ẏ(t)

)
dt

+ i
∫ t1

t0

(
u(x(t), y(t)) ẏ(t) + v(x(t), y(t)) ẋ(t)

)
dt

=

∫
γ

udx− vdy + i
∫
γ

vdx+ udy.

Note in particular, the formal calculation

(u+ iv)(dx+ idy) = (u dx− v dy) + i(v dx+ u dy).
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(iv) For N ∈ N and for 0 ≤ k ≤ N we define tNk := (1 − k
N

)t0 + k
N
t1. Then it is easy

to check that the following “Riemann sums”

N−1∑
k=0

f(γ(tNk ))
(
γ(tNk+1)− γ(tNk )

)
converge to

∫
γ
f (z) dz as N →∞.

(v) If γ(t) = t (i.e. if the curve is an interval on the real line), then the complex line
integral

∫
γ
f (z) dz coincides with the “usual, real” integral

∫ t1
t0
f (t) dt.

�

Lemma 4.4 The line integral is invariant under reparametrisations.

Proof. To check this, let ϕ : [t̂0, t̂1] → [t0, t1] be strictly increasing and C1. Then if we
set γ̂ := γ ◦ ϕ and we get∫

γ̂

f (z) dz =

∫ t̂1

t̂0

f(γ(ϕ(t̂))) ∂t̂γ(ϕ(t̂)) dt̂ =

∫ t1

t0

f (γ(t)) γ̇(t) dt.

But the orientation of γ matters. If we reverse it, i.e. if we set γ−(t) = γ(t0 + t1− t), then
we get ∫

γ−

f (z) dz = −
∫
γ

f (z) dz.

In the sequel we will freely use this fact to assume that curves are parametrised in a
convenient way, e.g. on the interval [0, 1]. 2

Proposition 4.5 If f is bounded on the image Γ of γ by a constant C, then∣∣∣ ∫
γ

f (z) dz
∣∣∣ ≤ CL(γ),

where the length L(γ) is defined as

L(γ) :=

∫ t1

t0

|γ̇(t)| dt.

Proof. Probably, the most direct proof of this fact is to show it for the approximations
defined in Remark 4.3 and to pass to the limit. But one can also use the following trick:
Denote J =

∫
γ
f (z) dz 6= 0 (if the intergal is zero there is nothing left to show) and write

1 =

∫
γ
f (z) dz

J
= R

(∫
γ
f (z) dz

J

)
= R

(∫ t1

t0

f (γ(t)) γ̇(t)
J

dt
)

=

∫ t1

t0

R

(
f (γ(t)) γ̇(t)

J

)
dt ≤

∫ t1

t0

C |γ̇(t)|
|J |

dt =
CL(γ)
|J |

.

2
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Definition 4.6 Two C1 curves/paths γ : [a, b] → C and λ : [c, d] → C with the same
image Γ = γ([a, b]) = λ([c, d]) are smoothly equivalent parametrisations of Γ if there is
a smooth bijective function % : [a, b]→ [c, d] (i.e. % ∈ C1) with %′(t) > 0 for all t ∈ [a, b]
and %(a) = c, %(b) = d, and γ = λ ◦ %. This establishes an equivalence relation as the
inverse function theorem implies that %−1 exists with %−1 ∈ C1 and positive derivative.

Proposition 4.7 If two C1 curves/paths γ : [a, b] → C and λ : [c, d] → C are smoothly
equivalent parametrisations of the same curve Γ, then L(γ) = L(λ).

Proof. We have that γ = λ ◦ % for % : [a, b] → [c, d] with positive derivative, i.e. %′(t) =
|%′(t)|. We change the integration variable according to s = %(t), and obtain ds = %′(t)dt:

L(γ) =

∫ b

a

|γ′(t)| dt =

∫ b

a

|(λ ◦ %)′(t)| dt =

∫ b

a

|λ′(%(t))||%′(t)| dt

=

∫ b

a

|λ′(%(t))|%′(t) dt =

∫ d

c

|λ′(s)| ds.

2

Example 4.8 For two points w1 6= w2 let γ be the straight line from w1 to w2. Of course,
there are different ways to parametrise this line, but according to Lemma 4.4 the integral
along γ does not depend on this choice. Thus we can choose

γ(t) = (1− t)w1 + tw2 for t ∈ [0, 1].

Then the integral of a function f along γ is given by∫
γ

f (z) dz =

∫ 1

0

f((1− t)w1 + tw2) (w2 − w1) dt.

In the particular case where f (z) = zn for n ∈ N this yields∫
γ

zn dz =

∫ 1

0

((1− t)w1 + tw2)
n

(w2 − w1) dt =
wn+1

2 − wn+1
1

n+ 1
.

♣

The previous example already suggests that a chain rule should hold for complex line
integrals. This is indeed the case.

Lemma 4.9 Suppose that f : D → C is holomorphic on D and a C1 curve γ lies in D,
i.e., Γ = γ([a, b]) ⊂ D. Then∫

γ

f ′(z) dz =

∫ b

a

f ′(γ(t)) γ̇(t) dt =

∫ b

a

d
dt
f (γ(t)) dt = f (b)− f (a).

In particular, if γ is a closed curve, we get that
∫
γ
f ′(z) dz = 0.
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Example 4.10 (Arc intergals) We will now calculate integrals along the arc γ : [0, θ̂]→
C, γ(θ) = r eiθ for some r > 0. According to the Definition 4.2 of the complex line
integral, we get for every continuous function f that∫

γ

f (z) dz =

∫ θ̂

0

f(reiθ) (ir) eiθ dθ.

Let us evaluate this in the special case f (z) = zn for n ∈ Z. If n 6= −1 we get∫
γ

zn dz =

∫ θ̂

0

rneinθ (ir) eiθ dθ = i rn+1

∫ θ̂

0

ei(n+1)θ dθ =
rn+1

n+ 1
(ei(n+1)θ̂ − 1),

which is of course consistent with the chain rule from the previous example. In the special
case n = −1 we get ∫

γ

1

z
dz =

∫ θ̂

0

i dθ = iθ̂.

In particular, if θ̂ = 2π, i.e. if we integrate over the whole circle, we get∫
γ

1

z
dz = 2πi. (4.2)

This observation is closely related to the complex logarithm that we had defined above in
Example 3.13. Actually, it can be checked like in the real case that the complex logarithm
log : C \ R− → C defined in (3.8) has derivative 1

z
. Then, if we consider for ε > 0 the

curves γε : [−π + ε, π − ε], θ 7→ eiθ and use the chain rule, we get∫
γε

1

z
dz = log (ei(π−ε))− log (e−i(π−ε)).

We see that the value 2πi from (4.2) exactly corresponds to the discontinuity of the arg
function on the half-line R−. ♣

Proposition 4.11 (Fundamental theorem of calculus) Suppose that γ : [a, b] → C is a
C1 curve (path) with Γ = γ([a, b]) ⊂ D for some open D ⊂ C and that a function
F : D → C is complex-differentiable on D with F ′ continuous at each point of Γ. Then∫

γ

F ′(z) dz = F (γ(b))− F (γ(a)).

Proof. F ◦ γ is differentiable on [a, b] with derivative

(F ◦ γ)
′(t) = F ′(γ(t))γ̇(t)

by the chain rule. Then (applying the real Fundamental theorem of calculus for the real
and imaginary parts respectively)∫

γ

F (z) dz =

∫ b

a

F ′(γ(t))γ̇(t) dt =

∫ b

a

(F ◦ γ)
′(t) dt

=

∫ b

a

(R(F ◦ γ)
′(t) + iI(F ◦ γ)

′(t)) dt

= F (γ(b))− F (γ(a)).
2
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4.2 Cauchy’s theorem
Cauchy’s theorem is the centrepiece of complex analysis. It states that

∫
γ
f (z) dz = 0

under appropriate conditions on the function f ∈ H(D), D ⊂ C, the closed curve (path)
γ and the set D. We start with a simple version of Cauchy’s theorem, and then gradually
improve the statements in the course of the lecture. The following simple version is
appealing as its proof is robust and easy to remember.

Theorem 4.12 (Goursat’s theorem - Cauchy’s theorem) Let D ⊂ C be an open set
and Q ⊂ D be a rectangle such that Q ∪ ∂Q ⊂ D where ∂Q denotes the boundary line
of the rectangle, and let γ be a piecewise C1 parametrisation of ∂Q, i.e. ∂Q = γ([a, b]),
which surrounds the rectangle Q in mathematical positive direction (counterclockwise),
see Figure 4. Then, for every f ∈ H(D) we have∫

γ

f (z) dz = 0.

 

v
<
a

%

r,

amm
• • • • r r o,

Figure 4:

Proof. Strategy: we first prove the statement for two special cases of the function f ; then
in a third step we use the fact that f is holomorphic on D to obtain the statement for every
f ∈ H(D).

Step 1: Let f (z) = 1 for all z ∈ D. Then for any C1 curve γ : [a, b]→ D,∫
γ

dz =

∫ b

a

γ̇(t) dt = γ(b)− γ(a).

Suppose now that γ : [a, b] → D is a parametrisation of the boundary of the rectangle,
that is, γ([a, b]) = ∂Q, and denote the four corners of the rectangleQ in counterclockwise
direction by z1, . . . , z4, respectively. Then γ is actually a joint of four straight lines γi
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connecting the corners, e.g., γ1(t) = (1 − t)z1 − tz2, t ∈ [0, 1], connecting z1 to z2 with
γ̇1(t) = z2 − z1.∫

γ

dz =
4∑
i=1

∫
γi

dz = z2 − z1 + z3 − z2 + z4 − z3 + z1 − z4 = 0,

see Figure 5.
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Figure 5:

Step 2: Let f (z) = z for all z ∈ D. For any C1 curve γ : [a, b]→ D,∫ b

a

γ(t)γ̇(t) dt =
1

2

∫ b

a

d
dt

(γ(t))2 dt =
1

2
[γ(b)2 − γ(a)2],

and thus we obtain ∫
γ

f (z) dz = 0.

We have thus shown the statement in Theorem 4.12 for all linear functions f ∈ H(D) of
the form f (z) = c0 + c1z, z ∈ D, c0, c1 ∈ C.

Step 3: Let f ∈ H(D). Divide the rectangle Q into four equal size rectangles Q1, . . . , Q4

(see Figure 6), and denote Q1 the one of the four rectangles for which the integral∫
∂Qi

f (z) dz

takes its maximum value. Let γ1 the C1 curve with ∂Q1 = γ1([a1, b1]). Then

|
∫
γ

f (z) dz| ≤ 4|
∫
γ1

f (z) dz|.

Continue splitting the rectangle which maximises the integral, e.g., split the chosen Q1

into another batch of four equal size rectangles and choose the one among these four
which maximises the integral, and denote the chosen one Q2, etc. We thus obtain a
sequence of nested rectangles (e.g., see Figure 7 for the one in the fourth generation)

Q ⊃ Q1 ⊃ Q2 ⊃ Q3 · · ·
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each boundary curve ∂Qi with a C1 parameterisation γi. We obtain the following estimate
for our sequence of rectangles:

|
∫
γ

f (z) dz| ≤ 4n|
∫
γn

f (z) dz|,

and
{z0} =

⋂
n∈N

Qn, z0 ∈ D.

We now use the assumption that f is holomorphic on D. Namely, for all ε > 0 there
exists δ > 0 such that

|f (z)− f (z0)− (z − z0)f ′(z0)| ≤ ε|z − z0|

for all |z − z0| < δ. Suppose now that % is the diameter of the rectangle Q and that ` is
the circumference of the rectangle Q. Then 2−n% is the diameter of Qn and 2−n` is the
circumference of Qn. For every z ∈ Qn ∪ ∂Qn we have the estimate |z − z0| ≤ ε2−n%
and thus

|f (z)− f (z0)− f ′(z0)(z − z0)| ≤ ε2−n%.

Now we use Step 1 and Step 2 above to see that∫
γn

(− f (z0)− f ′(z0)(z − z0)) dz = 0.

Henceforth we obtain the estimate∣∣∣∫
γ

f (z) dz
∣∣∣ ≤ 4n

∣∣∣∫
γn

f (z) dz
∣∣∣ =

∣∣∣∫
γn

(f (z)− f (z0)− f ′(z0)(z − z0)) dz
∣∣∣

≤ 4n2−n2−nε%` = ε%`.

As ε > 0 is arbitrary, we finally obtain
∫
γ
f (z) dz = 0.

2
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I t
Figure 7:

Corollary 4.13 (Cauchy’s theorem for images of rectangles) Let D ⊂ C be open, f ∈
H(D), and Q be a rectangle with Q := Q ∪ ∂Q ⊂ D and a C1 mapping ϕ : Q → D
(image ϕ(Q) ⊂ D), see Figure 8. Let γ be a piecewise C1 curve which surrounds Q
exactly once. Then ∫

ϕ◦γ
f (z) dz = 0.
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Proof. This is a straightforward generalisation of our proof of Theorem 4.12 above. As
ϕ is C1 and Q is a compact set, we know that ϕ̇(Q) is also compact and that there exists a
constant C > 0 such that |ϕ̇(Q)| ≤ C. Therefore we only get a different estimate for the
diameter (and circumference) of ϕ(Qn) which is bounded by %C2−n as in Step 3 of the
proof above. The remaining part is left as an exercise for the reader. 2

Example 4.14 Suppose that α, β : [a, b] → D are two C1 curves (paths) with distinct
initial and terminal point (i.e. α(a) 6= β(a) and α(b) 6= β(b)) such that all straight lines
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connecting any two points on α([a, b]) and β([a, b]) are contained in D, i.e.

{(1− τ )α(t) + τβ(t) : τ ∈ [0, 1], t ∈ [a, b]} ⊂ D.

We define two straight lines, ha, hb connecting the initial and terminal points, i.e.,

ha : [0, 1]→ D, τ 7→ ha(τ ) = (1− τ )α(a) + τβ(a)

and
hb : [0, 1]→ D, τ 7→ hb(τ ) = (1− τ )α(b) + τβ(b).

Then ∫
ha

f (z) dz +

∫
β

f (z) dz −
∫
hb

f (z) dz −
∫
α

f (z) dz = 0.

This follows with Corollary 4.13 and the mapping

ϕ : [a, b]× [0, 1]→ D,ϕ(t, τ ) = (1− τ )α(t) + τβ(t).

♣

 

ha

g

Figure 9:

We discuss a few more examples.

Example 4.15 (i) Let τ ⊂ D be a triangle wholly contained in D. Suppose that γ is a
C1 parametrisation of ∂τ which surrounds the triangle once, see Figure 10. Then∫

τ

f (z) dz = 0.
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(ii) Suppose that α, β : [a, b] → D are two C1 curves (paths) with α(a) = α(b) and
β(a) = β)b), see Figure 11. Denote h : [0, 1]→ D the straight line connecting α(a)
and β(a). Then∫

α

f (z) dz +

∫
h

f (z) dz −
∫
β

f (z) dz −
∫
h

f (z) dz = 0.

 

_

A

Figure 11:

(iii) Suppose that f : D → C is holomorphic on

D ⊃ {z ∈ C : r ≤ |z − z0| ≤ R}, 0 < r < R .

Then ∫
∂Br(z0)

f (z) dz =

∫
∂BR(z0)

f (z) dz,
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where Br(z0) := {z ∈ C : |z − z0| < r} and ∂Br(z0) = {z ∈ C : |z − z0| = r}. For
r = 0 we obtain Cauchy’s theorem for discs.

(iv) Let α, β : [a, b] → D be two C1 curves (paths) with α(a) = β(a) and α(b) = β(b)
with α(t) 6= β(t) for all t ∈ (a, b). Then∫

α

f (z) dz =

∫
β

f (z) dz.

♣

As a next step we want to allow for more general curves γ. We start by the following
definitions.

Definition 4.16 (i) Let D ⊂ C. We say that D is convex if for any pair of points
a, b ∈ D the straight line [a, b] := γa,b([0, 1]) ⊂ D connecting a and b is wholly
contained in D. Here, γa,b : [0, 1] → C, t 7→ γa,b(t) = (1 − t)a + tb is the C1

parametrisation of the straight line connecting a and b.

(ii) D ⊂ C is polygonally connected if, given any two points a, b ∈ D, there is a
polygonal path (curve) from a to b lying wholly in D. A polygonal path connecting
a and b means that there exists n ∈ N and zi ∈ D, i = 0, 1, . . . , n, such that
z0 = a, zn = b and the polygonal path is the union of the straight lines [zi, zi+1], i =
0, 1, . . . n− 1 with [zi, zi+1] ⊂ D for i = 0, 1, . . . , n− 1.

(iii) D ⊂ C is connected if it cannot be expressed as the union of non-empty open sets
D1 and D2 with D1 ∩D2 = ∅. A region is a non-empty open connected subset of
C.

(iv) A setD ⊂ C is star shaped if there exists a z? ∈ D such that for all z ∈ D the whole
line connecting z? and z is fully contained in D. More precisely, (1− t)z+ tz? ∈ D
for all t ∈ [0, 1]. Every z? ∈ D with this property is called a midpoint of D.

Remark 4.17 Every z? ∈ D with this property is called a midpoint of D. Of course, the
midpoint needs not be unique. If D is convex, then it is star shaped and every z ∈ D is a
midpoint. Every star shaped set is trivially polygonally connected. �

Theorem 4.18 Let D be a non-empty open subset of C. Then D is a region if and only if
D is polygonally connected. In particular, any non-empty open convex set is a region.

Proof. Support class in week 4. A detailed proof is in [Pri03], page 38-39. 2

Theorem 4.19 (Cauchy’s theorem for star shaped domains) Let D ⊂ C be open and
star shaped and let f : D → C be holomorphic on D. Then, for every closed piecewise
C1 curve γ : [a, b]→ D, we have ∫

γ

f (z) dz = 0.
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Proof. We will prove that f has an antiderivative F . This suffices by the chain rule.
Let z? be a midpoint of D and for any z ∈ D let αz be the the line that connects z? to

z, i.e. we define
αz : [0, 1]→ D αz(t) = tz + (1− t)z?.

By assumption the image of αz is fully contained in D. We set F (z) :=
∫
αz
f (ξ) dξ. We

claim that F is complex-differentiable and that for every z0 in D we have F ′(z0) = f (z0).
In order to see that, fix some point z0 ∈ D. As D is open, there exists an r > 0 such

that the open ball Br(z0) := {z ∈ C : |z − z0| < r} with its boundary is contained in D.
Then for z 6= z0 in Br(z0) we can define the curve βz(t) = (1 − t)z0 + tz for t ∈ [0, 1].
By assumption the image of the line βz is fully contained in D. It is then easy to check,
that the fact that D is star shaped implies that the whole triangle with corners z0, z?, and
z is contained in D.

We get

F (z)− F (z0)
z − z0

=
1

z − z0

(∫
αz

f (ξ) dξ −
∫
αz0

f (ξ)dξ
)

=
1

z − z0

∫
βz

f (ξ) dξ.

In the second equality we have made use of Goursat’s theorem, Theorem 4.12. Plugging
into the definition of the complex line integral, we get

1

z − z0

∫
βz

f (ξ) dξ =
1

z − z0

∫ 1

0

f((1− t)z0 + tz) (z − z0) dt =

∫ 1

0

f((1− t)z0 + tz) dt.

Using the continuity we can conclude that this expression converges to f (z0) as z → z0

which proves the claim. 2

Definition 4.20 (i) A circline curve (path) is a finite join of straight lines (line seg-
ments) and circular arcs. A circular arc is the image of some γ : [θ1, θ1]→ C, γ(t) =
a+ reit, a ∈ C, r > 0, [θ1, θ2] ⊂ [0, 2π].

(ii) A contour is a simple closed circline path, i.e. there is a parametrisation γ : [a, b]→
C with γ(a) = γ(b) and γ(t) 6= γ(s) for all s, t ∈ (a, b], t 6= s such that Γ = γ([a, b])
consists of finitely many line segments and circular arcs and does not cross itself.

(iii) A contour γ is positively oriented if, as t increases, γ(t) moves anticlockwise round
any point inside it (a more formal definition in terms of index, is given in Section 7).

Theorem 4.21 (Jordan curve theorem for contours) Let γ be a contour. Then the com-
plement of the image Γ = γ([a, b]) is of the form

I(γ) ∪O(γ),

where I(γ) and O(γ) are disjoint connected open sets, I(γ) (the inside of γ) is bounded
(i.e. there existsR > 0 such that I(γ) ⊂ BR(0)) and O(γ) (the outside of γ) is unbounded.

Proof. A detailed proof of this theorem goes beyond the remit of the module and we refer
the interested reader to [Pri03], page 53, and references therein. 2
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Remark 4.22 The Jordan curve theorem implies immediately the following contour ver-
sion of Cauchy’s theorem: Suppose that f is holomorphic inside and on a contour γ. Then∫
γ
f (z) dz = 0. �

Theorem 4.23 (Deformation theorem) (a) Suppose that γ : [a, b] → C is a positively
oriented contour and that Br(z0) ⊂ I(γ), z0 ∈ C, r > 0. Let f be holomorphic inside
and on Γ = γ([a, b]), i.e. f ∈ H(Γ ∪ I(γ)). Then∫

γ

f (z) dz =

∫
∂Br(z0)

f (z) dz.

(b) Suppose that γ : [a, b] → C and γ̃ : [ã, b̃] → C are positively oriented contours such
that γ̃ lies inside γ, that is, Γ̃ ∪ I(γ̃) ⊂ I(γ), Γ̃ = γ̃([ã, b̃]). Let f ∈ H(I(γ) ∪ Γ),Γ =
γ([a, b]). Then ∫

γ

f (z) dz =

∫
γ̃

f (z) dz.

(c) Suppose that γi : [ai, bi] → C, i = 1, 2, are circline paths with γ1(a1) = γ2(a2) and
γ1(b1) = γ2(b2) (common initial and terminal point). Let γ = γ1 ∪ (−γ2) be the joint
of γ1 and the inverse of γ2, and suppose that γ is a closed simple curve. Let f be
holomorphic inside and on γ, i.e. f ∈ H(I(γ) ∪ Γ). Then∫

γ1

f (z) dz =

∫
γ2

f (z) dz.

Proof. (a) Denote c := γ(a) the initial point. For some δ > 0 we have Bδ(c) ∩ I(γ) 6= ∅.
Pick some d ∈ I(γ) ∩ Bδ(c). The interior I(γ) is by Theorem 4.21 open and connected,
and thus by Theorem 4.18 polygonally connected, and thus there is a polygonal path
γ1 : [a1, b1]→ C joining the point d with the centre point a of the disc Br(a), we assume
without loss of generality that γ1 is simple. There is a point b := γ1(T ) ∈ γ1([a1, b1])
such that |γ1(t) − a| > r for all t ∈ [a1, T ), see Figure 12. We denote γ̃1 the polygonal
path connecting d with b and define γ2 := [d, c] ∪ γ̃1 the joint of the straight line segment
connecting c and d with γ̃1. Furthermore, denote γ−r the clockwise parametrisation of the
circline ∂Br(a) with γ−r (0) = b. Then the joint

γ̂ := γ ∪ γ2 ∪ γ−r ∪ (−γ2)

is a contour, and thus∫
γ̂

f (z) dz = 0 =

∫
γ

f (z) dz −
∫
∂Br(a)

f (z) dz.

(b) Simply apply statement (a) for Br(a) ⊂ I(γ̃).

(c) Combine Theorem 4.19 and Remark 4.22. 2

The next lemma is straightforward from our discussion above.
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Lemma 4.24 Let γ be a positively oriented contour and a /∈ Γ = γ([a, b]). Then for
n ∈ Z, ∫

γ

(z − a)n dz =


0 if a ∈ O(γ), n ∈ Z ,
0 if a ∈ I(γ), n 6= −1 ,

2πi if a ∈ I(γ), n = −1 .

The following important theorem now follows easily:

Theorem 4.25 (Cauchy’s integral formula) LetD ⊂ C be open and connected and let
f : D → C be holomorphic on D. Suppose that for some r > 0 and a ∈ C the closed
ball Br(a) = {z ∈ C : |z − a| ≤ r} is contained in D. Then, for every z0 ∈ Br(a), we
have

f (z0) =
1

2πi

∫
∂Br(a)

f (ξ)
ξ − z0

dξ. (4.3)

Remark 4.26 Again, this is not the most general assumption on the contour of the inte-
gration. We will see a much more general statement below. For the moment, the reader
can check easily that nothing in the proof changes if the ball around z0 ∈ Br(a) is re-
placed, for example, by a suitable square.

Proof. Fix any z0 ∈ Br(a). For any δ > 0 that is small enough to ensure that

Bδ(z0) ⊆ Br(a) ,
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the function , defined as

g(ξ) := ξ 7→ f (ξ)
ξ − z0

,

is holomorphic on Br(a) \Bδ(z0). We claim that the following holds:∫
∂Br(a)

f (ξ)
ξ − z0

dξ =

∫
∂Bδ(z0)

f (ξ)
ξ − z0

dξ. (4.4)

Indeed, we can write∫
∂Br(a)

f (ξ)
ξ − z0

dξ −
∫
∂Bδ(z0)

f (ξ)
ξ − z0

dξ =

∫
γ1

f (ξ)
ξ − z0

dξ +

∫
γ2

f (ξ)
ξ − z0

dξ , (4.5)
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where the paths γi are constructed as follows: the outer circle ∂Br(a) is connected
to the inner circle by any line through z0. Pick such an auxiliary line through z0 (line
from A to B in Figure 13), and denote the two intersections of it with the outer circle line
∂Br(z0) by A and B. Then the curve γ1 starts in A and follows the outer circle ∂Br(a)
(in counterclockwise orientation) between the two intersections of this auxiliary line and
the circle until it reaches the point B. Then it follows the chosen auxiliary line to the
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“inner circle” ∂Bδ(z0), in this case up to point B′ (see Figure 13, which it then follows
in clockwise orientation until it hits again the line at the point A′. It then follows this
line back to the point A on ∂Br(a). The curve γ2 is constructed in the same way for the
other halves of the circles ∂Br(a) and ∂Bδ(z0). Equation (4.5) then follows, because the
curves γi “patched together” cover once the outer circle with counterclockwise orientation
and once the inner circle with clockwise orientation. The auxiliary lines in between these
circles are covered once with both orientations, so they do not contribute to the total value.

Equation (4.4) then follows from (4.5) and Theorem 4.19. Indeed, the function

ξ 7→ f (ξ)
ξ − z0

is holomorphic on D \ {z0}. It is easy to find open star shaped subsets D1 and D2 of
D \ {z0} that contain the curves γ1 and γ2 which shows that the integrals over γ1 and γ2

vanish.
We now finish the proof of the theorem, based on equation (4.4). According to the

differentiability of f in z0, for every ε > 0 there exists a δ such that for |ξ − z0| < δ we
have

f (ξ)− f (z0) = f ′(z0)(ξ − z0) +R(z0, ξ),

with |R(z0, ξ)| ≤ ε|ξ − z0|. Hence we get for such a δ∫
∂Bδ(z0)

f (ξ)
ξ − z0

dξ =

∫
∂Bδ(z0)

f (z0)
ξ − z0

dξ +

∫
∂Bδ(z0)

f ′(z0) dξ +

∫
∂Bδ(z0)

R(z0, ξ)
ξ − z0

dξ.

For the first integral we get ∫
∂Bδ(z0)

f (z0)
ξ − z0

dξ = 2πif (z0).

The second integral is 0, and for the third integral we get∣∣∣∣ ∫
∂Bδ(z0)

R(z0, ξ)
ξ − z0

dξ
∣∣∣∣ ≤ 2πδε.

As ε can be chosen arbitrarily small, and as we can always assume that δ ≤ 1, the desired
conclusion follows. 2

5 Applications of Cauchy’s theorem

5.1 Immediate consequences
In this section we summarise a large number of properties of holomorphic functions. We
start by showing that any holomorphic function can be expanded in a Taylor series. In
particular, every holomorphic function is automatically C∞.

Theorem 5.1 (Taylor’s theorem) Let D ⊂ C be open and connected and let f : D → C
be holomorphic on D. Suppose z0 ∈ D and R > 0 such that BR(z0) ⊂ D. Then for all
z ∈ BR(z0) we can write

f (z) =
∞∑
k=0

ak(z − z0)k,
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with
ak =

1

2πi

∫
∂BR(z0)

f (ξ)
(ξ − z0)k+1

dξ. (5.1)

Proof. According to Cauchy’s integral formula we have for all z ∈ BR(z0)

f (z) =
1

2πi

∫
∂BR(z0)

f (ξ)
(ξ − z)

dξ. (5.2)

We write

1

ξ − z
=

1

ξ − z0

ξ − z0

ξ − z
=

1

ξ − z0

1
ξ−z
ξ−z0

=
1

ξ − z0

1(
1−

(
z−z0
ξ−z0

)) . (5.3)

Now according to our assumption, we have |z − z0| < |ξ − z0| = R. Hence, the last
expression on the right hand side of (5.3) can be written as a geometric series

1

1− z−z0
ξ−z0

=
∞∑
k=0

(
z − z0

ξ − z0

)k
.

Plugging this back into (5.2) we get

f (z) =
1

2πi

∫
∂BR(z0)

f (ξ)
(ξ − z0)

∞∑
k=0

(
z − z0

ξ − z0

)k
dξ

=
1

2πi

∞∑
k=0

(∫
∂BR(z0)

f (ξ)
(ξ − z0)k+1

dξ
)

(z − z0)k.

The interchange of the summation and the integration is justified because the sum con-
verges uniformly in the integration variable ξ. 2

Remark 5.2 (a) Of course, the value of the integrals in (5.1) is independent of the choice
of the radius R, as long as the ball of radius R around z0 along with its boundary is
contained in D.

(b) Radius of convergence: Theorem 5.1 has another non-trivial consequence, namely
the fact that the radius of convergence of a Taylor series must be at least as large
as the distance from the nearest point where f ceases to be holomorphic . This is
particularly interesting, as it gives a natural explanation for radii of convergence,
which cannot be seen if one restricts oneself to the real case. For example, the real
function f : x 7→ 1

1+x2
can be developed in a Taylor series around 0: For |x| < 1 we

get
1

1 + x2
=
∞∑
k=0

(−1)kx2k.

This series fails to converge for |x| > 1 although f is defined and smooth on all of
R. This observation can be explained easily, if one considers f as a function of a
complex variable z and observes that f has a singularity at ±i.

�
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Corollary 5.3 Every holomorphic function is C∞.

Corollary 5.4 Let D ⊂ C be open and connected and f : D → C. Then the following
statements are equivalent:

• f is holomorphic in D.

• f is real-differentiable in every point, and satisfies the Cauchy-Riemann equations
.

• f can be expanded in a Taylor series around every point in D.

Remark 5.5 (a) Calculating the radius of convergence for a series
∑

n∈N0
an, an ∈ C:

(i) d’Alembert’s Ratio test

Assume the sequence (an)n∈N0 is such that

` := lim
n→∞

∣∣∣an+1

an

∣∣∣
exists. If ` < 1, then

∑
n∈N0
|an| converges (series converges absolutely). If

` > 1, then
∑

n∈N0
|an| diverges. If ` = 1 then the test gives no information.

(ii) Cauchy’s n-th root test

Assume the sequence (an)n∈N0 is such that

` := lim
n→∞

n
√
|an|

exists. If ` < 1, then
∑

n∈N0
|an| converges (series converges absolutely). If

` > 1, then
∑

n∈N0
|an| diverges. If ` = 1 then the test gives no information.

(b) The series ∑
n∈N0

zn

n!

converges absolutely (and hence converges) for all z ∈ C as∣∣∣zn+1/(n+ 1)!
zn/n!

∣∣∣ =
|z|
n+ 1

→ 0 as n→∞.

(c) The last example (b) shows that we can define

ez :=
∑
n∈N0

zn

n!
, z ∈ C.

The function ez is holomorphic on C and one can easily show the following properties
(Exercise!)

d
dz

ez = ez

e0 = 1

ez+w = ezew, z, w ∈ C
ez 6= 0 for all z ∈ C
|ez| = ex when z = z + iy
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(d) Trigonometric and hyperbolic functions and their radius of convergence R

cos(z) :=
∑
n∈N0

(−1)n
z2n

(2n)!
, R =∞,

sin(z) :=
∑
n∈N0

(−1)n
z2n+1

(2n+ 1)!
. R =∞,

cosh(z) :=
∑
n∈N0

z2n

(2n)!
, R =∞,

sinh(z) :=
∑
n∈N0

z2n+1

(2n+ 1)!
, R =∞,

sin(z) =
1

2i
(eiz − e−iz),

cos(z) =
1

2
(eiz + e−iz),

cosh(z) =
1

2
(ez + e−z),

sin(z) =
1

2
(ez − e−z).

�

Corollary 5.6 Suppose that f (z) =
∑∞

k=0 akz
k is holomorphic on BR(0) for some R > 0

and that for all z ∈ BR(0) we have |f (z)| ≤ M < ∞. Then for all k the following
estimate holds

|ak| ≤
M

Rk
.

Proof. According to (5.1) we have for any r < R

|ak| ≤
1

2π

∣∣∣∣ ∫
∂Br(0)

f (ξ)
ξk+1

dξ
∣∣∣∣ ≤ 1

2π
2πr

M

rk+1
.

Then let r → R. 2

Proposition 5.7 Let D ⊂ C be open and polygonally connected, and let f ∈ H(D). If
f ′(z) = 0 for all z ∈ D, or if either one of the functions u = R(f ), v = I(f ), or |f | is
constant on D, then f is constant on D.

Proof. The connectedness is crucial as a function can have different constant values on
disjoint components of the set D. (1.) Suppose that f ′(z) = 0 for all z ∈ D. Then

f ′(z) =
∂u

∂x
(x, y) + i

∂v

∂x
(x, y) =

∂v

∂y
(x, y)− i

∂u

∂y
(x, y) = 0, z = x+ iy ∈ D

implying
∂u

∂x
=
∂u

∂y
= 0 =

∂v

∂x
=
∂v

∂y
,
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on D, and thus (real analysis) the real functions u and v are constant on D and so is f .

(2.) Suppose that u is constant on D (both partial derivatives vanish on D), then the
Cauchy-Riemann equations (3.7) imply that

∂v

∂x
(x, y) =

∂v

∂y
(x, y) = 0, z = x+ iy ∈ D,

and thus v is constant on D. (analogous proof when v is constant). If u and v are constant
in D so is the function f .

(3.) Suppose that |f (z)| = c for all z ∈ D. Then u2 + v2 = C2 on D, and differentiating
we obtain

2u
∂u

∂x
+ 2v

∂v

∂x
= 0 = 2u

∂u

∂y
+ 2v

∂v

∂y
. (5.4)

(5.4) is a linear equation in u and v with coefficient being the partial derivatives. If at least
one of the functions u and v is not identical to zero, then the determinant of the system of
equations (5.4) has to vanish:

∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
= 0,

we plug in the Cauchy-Riemanm equations (3.7) and obtain

(
∂u

∂x
)
2

+ (
∂u

∂y
)
2

= 0 = (
∂v

∂x
)
2

+ (
∂v

∂y
)
2
,

and thus u and v are constant on D so is the function f . 2

Corollary 5.8 (Liouville’s theorem) Any bounded entire function is constant.

Proof. Pick any z0 ∈ C and M > 0 such that |f (z)| ≤ M for all z ∈ C. For any R > 0
and m(f,R, z0) := maxz∈∂BR(z0)|f (z)| we have (using (4.3) and Taylor’s theorem 5.1)

|f (n)(z0)| ≤ n!

Rn
m(f,R, z0) ≤ n!

Rn
,

and in particular,

|f ′z0| ≤
M

R
.

As R > 0 is arbitrary, we get that f ′(z0) = 0, and thus (z0 was an arbitrary choice)
f ′(z) = 0 for all z ∈ C, and according to Proposition 5.7 we get that f is constant as C is
polygonally connected. 2

Proof. Suppose that

f (z) =
∞∑
k=0

akz
k

is entire and bounded by M on all of C. Then according to Corollary 5.6 we have for any
R and any k ≥ 1 that

|ak| ≤
M

Rk
,

and hence ak = 0. 2
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Example 5.9 Note that sin(z) = 1
2i(eiz − e−iz) is not bounded on C. For example, if

zn = in then

| sin(zn)| = 1

2

∣∣∣(e−n − en)
∣∣∣→∞ as n→∞.

♣

Remark 5.10 The statement of Liouville’s theorem is not valid for unbounded subsets
of C. For example, the Möbius transform z 7→ f (z) = z−i

z+i maps the upper half plane
H+ := {z ∈ C : I(z) > 0} onto the unit disc ∆ = {z ∈ C : |z| < 1} and in particular
it is certainly bounded on H+. Compare with Exercise 2(a) on Example Sheet 2 where
f = h−1 with h(w) = −i (w−1)

(w+i) and h(∆) = H+ and h(H+) = ∆. Furthermore, h(∂∆) =

R ∪ {∞} as h(1) = 0, h(i) = 1, and h(−1) =∞. �

Corollary 5.11 (Fundamental theorem of Algebra) Every non-constant polynomial has
at least one zero in C.

Proof Version 2019 - lecture. Step 1: Let P (z) = anz
n + an−1z

n−1 + · · · a1z + a0 with
an 6= 0. Then, for all ε > 0 there exists R = R(ε) > 0, such that

(1− ε)|an||z|n ≤ |P (z)| ≤ (1 + ε)|an||z|n for all |z| > R.

For z 6= 0 we have
P (z)
anzn

= 1 +
an−1

an

1

z
+ · · ·+ a0

an

1

zn
,

and thus

1−
n∑
k=1

∣∣∣an−k
an

∣∣∣ 1

|z|k
≤
∣∣∣P (z)
anzn

∣∣∣ ≤ 1 +
n∑
k=1

∣∣∣an−k
an

∣∣∣ 1

|z|k
.

Now, as limx→∞
1
xk

= 0 for all k ∈ N, there exists R > 0 such that

n∑
k=1

∣∣∣an−k
an

∣∣∣ 1

Rk
< ε.

Step 2: Suppose the polynomial P (z) has no zero in C. Then (P (z))−1 is complex-
differentiable (holomorphic) on C. According to Step 1, there exists R > 0 such that

1

2
|an||z|n ≤ |P (z)| for |z| > R,

and thus ∣∣∣ 1

P (z)

∣∣∣ ≤ 2

|an||z|n
≤ 2

|an|Rn
for |z| > R.

Furthermore, the image P ({z ∈ C : |z| ≤ R}) is bounded as the closed disc BR(0) =
{z ∈ C : |z| ≤ R} is compact and the polynomial P is continuous. Henceforth the
mapping

z 7→
∣∣∣ 1

P (z)

∣∣∣
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is bounded. Thus 1/P is bounded on the whole of C (follows from the estimate for
|z| > R and follows from the boundedness of the image for |z| ≤ R). Therefore 1/P is
constant and thus P is constant, and we obtain a contradiction, that is, P has at least one
zero. 2

Proof Version from notes 2018. Suppose that p =
∑n

k=0 akz
k with an 6= 0 and n ≥ 1

does not have a zero in C. Then 1
p

is an entire function.
For any z ∈ C we can write∣∣∣∣p(z)

zn
− an

∣∣∣∣ ≤ n−1∑
k=0

|ak||zk−n|.

The right hand side of this expression goes to 0 as |z| → ∞ and in particular there exists
an R > 0 such that for |z| ≥ R it can be bounded by |an|

2
. This implies that for |z| ≥ R

the right-hand side can be bounded by |an|
2

. Thus,∣∣∣∣ 1

p(z)

∣∣∣∣ ≤ 2

|an||z|n
,

and in particular 1
p

is bounded outside of BR(0). On the other hand 1
p

is continuous and
the closed ball BR(0) is compact. Hence 1

p
is also bounded on BR(0) and by Liouville’s

theorem, Corollary 5.8, it is constant. This is a contradiction. 2

The following is an inverse to Goursat’s theorem.

Theorem 5.12 (Morera’s theorem) Let D ⊂ C be open and connected, and f : D → C
be a continuous function. Assume that for all triangles τ ⊂ D with boundary curve
γ = ∂τ we have ∫

γ

f (z) dz = 0. (5.5)

Then f is holomorphic on D.

This condition can be interpreted as an integral versions of the Cauchy-Riemann equa-
tions. The reader may have encountered similar integral versions of different PDEs such
as the integral version of the Maxwell equations.

Proof. Complex differentiability is a local property and hence, by making D smaller we
can restrict ourselves without loss of generality to the case of a ball D = {z ∈ C : |z| <
r}. On this ball we can construct an antiderivative F of f in the same way as in the proof
of Theorem 4.19.

But then the argument is finished, because if F is holomorphic , then so are all of its
derivatives, and in particular f . 2

The following statement is a nice application of Morera’s theorem.
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Theorem 5.13 (Schwarz reflection principle) Let D ⊂ C be open and connected and
assume that D is invariant under complex conjugation (i.e. z ∈ D ⇔ z̄ ∈ D). Assume
that f : D → C is a continuous function, with the following properties:

• f is holomorphic on D ∩ {z : I(z) > 0}.

• f only attains real values on D ∩ R.

• For any z ∈ D we have f (z) = f (z̄).

Then f is holomorphic on D.

Proof. The function f is holomorphic on D ∩ {z : I(z) > 0} by assumption. For any z ∈
D ∩ {z : I(z) < 0} the function f is differentiable in the sense of real analysis. In order
to check that the Cauchy-Riemann equations hold we write f (x+ iy) = u(x, y)+ iv(x, y).
Then we get for z = x+ iy with y < 0

∂u

∂x
(x, y) =

∂u

∂x
(x,−y) =

∂v

∂y
(x,−y) = − ∂

∂y
(v(x,−y)) =

∂

∂y
(v(x, y)),

where we have used that the Cauchy-Riemann equations are satisfied in the upper half
plane. In the same way we get

∂u

∂y
(x, y) = −∂u

∂y
(x,−y) =

∂v

∂x
(x,−y) = −∂v

∂x
(x, y).

Hence, f is also holomorphic in D ∩ {z : I(z) < 0}.
It remains to show that f is holomorphic in a neighbourhood of the real line. To

this end let z ∈ D ∩ R and let R > 0 be small enough to ensure that BR(z) ⊆ D. It
is sufficient to show that f is holomorphic on BR(z). To see this let ∆ be an arbitrary
triangle in BR(z). We need to show that∫

∂∆

f (z) dz = 0.

If ∆ is fully contained in the upper half plane, or the lower half plane this follows imme-
diately from Goursat’s theorem for the images of squares, because we know already that
f is holomorphic in these regions. Else, for any ε > 0 define the sets ∆±ε as

∆+
ε = ∆ ∩ {z : I(z) > ε} and ∆−ε = ∆ ∩ {z : I(z) < −ε}.

Then on the one hand we have for any ε > 0∫
∂∆±ε

f (z) dz = 0

as f holomorphic and on the other hand

lim
ε→0

∫
∂∆+

ε

f (z) dz +

∫
∂∆−ε

f (z) dz =

∫
∂∆

f (z) dz.

This finishes the argument. 2
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5.2 Zeros of holomorphic functions

Definition 5.14 Let D be open and connected and let f : D → C be a holomorphic
function on D. If for z0 ∈ D we have f (z0) = 0, then the order of the zero of f at z0 is
defined as

ord(f, z0) := inf{k ∈ N : f (k)(z0) 6= 0}.

Example 5.15 If f (z) = (z − 3)2 exp(z), then f has a zero of order 2 at z0 = 3. ♣

Let us make a couple of observations.

Remark 5.16 (a) The set O = {z ∈ C : f has zero of order ∞} is open. To see this,
note that if f has a zero of infinite order at z0, then all the Taylor coefficients at z0

vanish and f is identically to 0 on a whole neighbourhood of z0.

(b) If f has a zero of order n <∞ at z0 we can write for all z in a neighbourhood of z0

f (z) =
∞∑
k=n

f (k)(z0)
k!

(z − z0)k = (z − z0)n
∞∑
k=0

bk (z − z0)k =: (z − z0)ng(z).

where bk = f (k+n)(z0)
(k+n)! . Observe that g has no zeros in a neighbourhood of z0. This

implies that f does not have any further zeros in a whole neighbourhood of z0. In
other words: All zeros of finite order are isolated.

(c) If f has a zero of infinite order at one point z0, then this implies already that f
vanishes on all of D (here one uses the connectedness of D): To see that let O be
as above. We have already seen that O is open and it is non-empty by assumption.
But O is also relatively closed in D: Suppose that zn ∈ O converge to z ∈ D. Then
f (z) must be zero by continuity. But z cannot be zero of finite order because then it
would have to be isolated. Hence z is also in O. Therefore, by the connectedness of
D, we have O = D.

�

These observation have a very important consequence below, see Identity Theorem 5.21.

Definition 5.17 Let D ⊂ C be open.

(a) f : D → C is called a conformal mapping if f is holomorphic on D with f ′(z) 6= 0
for all z ∈ D.

(b) f : D → C is called bi-holomorphic if f is a bijective conformal mapping such that
the inverse f−1 is also a conformal mapping.

We will later see that every bijective holomorphic function is bi-holomorphic.
Let us make some more observations concerning the behaviour of an holomorphic

function near its zeros.



APPLICATIONS OF CAUCHY’S THEOREM 51

If for any z0 we have f ′(z0) 6= 0 (we do not assume that f (z0) = 0 here), then it
is locally bi-holomorphic. More precisely, there exists a neighbourhood V1 of z0 and a
neighbourhood V2 of f (z0) such that f is a bijection to V2 when restricted to V1, and such
that f−1 is also holomorphic on V2. In fact, the inverse function theorem from real analysis
implies that f is locally bijective, and that its inverse is real differentiable. We also have
for every z ∈ V1 that

Df−1(f (z)) = Df (z)−1,

where Df denotes the Jacobi Matrix. As Df satisfies the Cauchy-Riemann equations
(i.e it acts as multiplication by a complex number f ′(z)), so does Df (z)−1 (it acts as
multiplication by 1

f ′(z) ).
The prototypical example of a zero of higher order is the mapping f (z) = zk for some

k ≥ 1. Recall the geometric interpretation of this function which can be explained easiest
in polar coordinates: The point z = reiθ is mapped to rkeikθ, i.e. the function acts on the
absolute value as a monomial and the argument is multiplied by k. In particular, for every
w = |w|eiϕ there exist exactly k distinct complex numbers, namely z1 = k

√
|w|eiϕ

k , z2 =
k
√
|w|ei 2π+ϕ

k , . . . , zn = k
√
|w|ei 2(n−1)π+ϕ

k , i.e. the function is k to 1.
The following theorem states that every holomorphic function locally behaves in the

same way near a zero of order k.

Theorem 5.18 Let D be an open set and f : D → C be holomorphic on D. Assume that
f has a zero of order k ≥ 1 at z0 ∈ D. Then there exists a neighbourhood V1 of z0 and
a neighbourhood V2 of 0 and a bi-holomorphic function h : V1 → V2 such that for every
z ∈ V1 we have

f (z) = (h(z))k.

In particular, f is locally k to one near z0, that is, f takes every w exactly k times near
z0.

Remark 5.19 If f has a zero of order k ∈ N at z0, then

f (z) =
∞∑
n=k

f (n)(z0)
n!

(z − z0)n = (z − z0)k
∞∑
n=0

bn(z − z0)n

=: (z − z0)kg(z),

where

bn :=
f (k+n)(z0)
(k + n)!

.

The holomorphic function g has no zeros in a neighbourhood of z0. Thus the function f
doe snot have any further zeros in a whole neighbourhood of z0.

All zeros of finite order are isolated

�
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Remark 5.20 If f : D → C is holomorphic and bijective on D, then f ′(z0) 6= 0 for all
z0 ∈ D as otherwise the function g(z) := f (z) − f (z0) would have a zero of order k
for some k > 1. Theorem 5.18 then implies that the function g cannot be injective and
therefore f cannot be injective. Henceforth, when f is bijective and holomorphic then it
is bi-holomorphic (inverse function theorem). �

Theorem 5.21 (Identity theorem) Let D be open and connected and let f1, f2 : D → C
be holomorphic on D. Assume that the set {z ∈ C : f1(z) = f2(z)} has at least one point
of accumulation in D. Then f1 = f2 on all of D.

Proof. Let g = f1−f2. Let z be a point of accumulation ofO. Then g is holomorphic and
it has a zero in z which is not isolated. Hence the zero is of infinite order and g vanishes
everywhere. 2

Remark 5.22 (a) Recall that z ∈ D is called a point of accumulation if there exists a
sequence zn ∈ D \ {z} with zn → z.

(b) This implies in particular, that any function f : R → C has at most one holomorphic
extension to a neighbourhood of the real line in the complex plane.

(c) Of course, the mapping h in Theorem 5.18 cannot be unique, because if h satisfies
the desired properties, then so does hei 2π

k .
�

Proof of Theorem 5.18. We have seen above that we can write

f (z) = (z − z0)kg(z),

where g is holomorphic on D and g does not attain the value 0 on a whole neighbour-
hood of z0. We want to locally define a holomorphic k-th root r in a neighbourhood of
g(z0). Note, that in general we cannot expect to be able to find a holomorphic k-th root
everywhere. But locally, there is no problem: We start by choosing r at a single value
g(z0) =: w0 6= 0. If w0 = |w0|eiθ we set r(w0) = k

√
|w0)|ei θ

k = r0. Then rk0 = w0.
Furthermore, then the derivative of the function p(z) = zk in r0 does not vanish and hence
it locally has a bi-holomorphic inverse, which is our desired function r. Finally, we set
h(z) = (z − z0)r(g(z)). This function satisfies all the desired properties. 2

The following consequence of our discussion above is very important:

Theorem 5.23 (Open mapping theorem) LetD be open and connected and assume that
f : D → C is holomorphic on D and not constant. Then the image f (D) of D under f is
also open and connected.

Before we embark on the proof of this pivotal statement, note that the pre-image
of every continuous function on any topological space is open (that is the definition of
continuity). But the statement for forward images is specific to the case of holomorphic
functions. To see that this property does not hold, for example in the case of smooth
functions from R to R, it is sufficient to consider the function f (z) = z2 near 0.
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Proof. The image of every connected set under a continuous mapping is connected.
In order to see that f (D) is open, let us fix an z0 in D with f (z0) = w0. We need to

show that f (D) contains a whole neighbourhood of w0.
The function z 7→ f (z) − w0 has a zero at z0. As f is not constant and as D is con-

nected, it must be a zero of finite order, say k. But then, by Theorem 5.18, locally we have
that f (z) = w0 + (h(z))k, where h maps any neighbourhood of z0 onto a whole neigh-
bourhood of 0. Also z 7→ zk maps any neighbourhood of 0 onto a whole neighbourhood
of 0. Hence f maps any neighbourhood of z0 onto a neighbourhood of w0. 2

Corollary 5.24 (Maximum modulus principle) Let D be open and connected and let
f : D → C be holomorphic on D and not constant. Then |f | does not have any local
maxima.

 

Bee

Figure 14:

Proof. Suppose that |f | attains a local maximum in z0. Then the image of any neighbour-
hood of z0 is a full neighbourhood of f (z0), and in particular, it contains points with larger
absolute value, see Figure 14. Hence, we have a contradiction. 2

Remark 5.25 There is an alternative way to see the maximum modulus principle, directly
based on Cauchy’s integral formula. Actually, if f is holomorphic on a ball Br(z0) we
have

f (z0) =
1

2πi

∫
∂Br(z0)

f (z)
z − z0

dz =
1

2πi

∫ 2π

0

f (z0 + reiθ)ieiθ

eiθ dθ

=
1

2π

∫ 2π

0

f (z0 + reiθ) dθ,
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i.e. f (z0) is the average value of the f (z) evaluated on a circle around z0. This prop-
erty, called the Mean value property, is well known from real analysis. It characterises
harmonic functions in arbitrary dimensions.

This property implies that f cannot attain a strict local maximum. To see this, assume
that |f (z0)| ≥ |f (z)| for all z ∈ BR(z0) for some R > 0. But the mean value property
implies that

|f (z0)| ≤ 1

2π

∫ 2π

0

|f (z0 + reiθ)| dθ,

for any radius r < R, which is impossible if we have the strict inequality |f (z0)| > |f (z)|
for only one such z (and hence, by continuity on a small ball around that z). Hence, we
can conclude that |f (z0)| ≥ |f (z)| for all z in a ball around z0, then in fact |f (z0)| = |f (z)|
for all such z.

If at this point we use the open mapping theorem again, we can conclude that f is
actually constant on the whole ball, because the image of the whole ball is contained in a
circle and it cannot be open.

A similar maximum principle holds for solutions to many scalar second order partial
differential equations. It is extremely useful, to prove uniqueness of solutions and to
derive qualitative properties in many situations. �

5.3 Schwarz lemma and its consequences
In this section, we are going to discuss properties of mappings from the unit disc into
itself. We are always going to use the notation ∆ = {z : |z| < 1}.

Theorem 5.26 (Schwarz lemma) Let f : ∆ → ∆ be holomorphic on ∆ with f (0) = 0.
Then

(i) |f ′(0)| ≤ 1 and (ii) |f (z)| ≤ |z| for all z ∈∆.

Furthermore, if equality holds in (i), or in (ii) for only a single non-zero value of z, then
f is a rotation, i.e. there exists an α ∈ C with |α| = 1, such that for all z ∈ ∆ we have
f (z) = αz.

Proof. As f (0) = 0, there exists a holomorphic function g : ∆ → C such that for all
z ∈∆ we have f (z) = zg(z). We have f ′(0) = g(0).

Let r < 1. Then by assumption, for all z with |z| = r

1 > |f (z)| = |z| |g(z)|,

and hence |g(z)| < 1
r
. By the maximum modulus principle, |g| must attain its maximum

on the ball B̄r(0) on the boundary and we have |g(z)| < 1
r

for all |z| ≤ r. Then letting r
tend to 1 we obtain |g(z)| ≤ 1. This implies the estimates (i) and (ii).

Now, if |g(z0)| = 1 for any z0 ∈ ∆, then in particular, |g| attains a local maximum in
z0. Using the maximum modulus principle again, we see that g must be constant. This
implies the second statement. 2

The following application was already referred to before in Example 2.18. Indeed, in
(2.13) it was shown that every Möbius transformation of the form

f (z) = eiθ a− z
1− āz

for |a| < 1 and θ ∈ [−π, π), (5.6)
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is a bi-holomorphic bijection from the unit disc into itself. We see now, that these map-
pings are not only the only Möbius transformations that map ∆ onto itself - there are the
only bi-holomorphic mappings with this property.

Corollary 5.27 (Classification of bi-holomorphic mappings of the disc) Let f : ∆ →
∆ be bi-holomorphic. Then f is a Möbius transformation as in (5.6).

Proof. Suppose, at first that f : ∆ → ∆ is bi-holomorphic with f (0) = 0. Then by
Schwarz lemma |f (z)| ≤ |z| for all z ∈ ∆. On the other hand, by applying Schwarz
lemma to f−1 we get |z| = |f−1(f (z))| ≤ |f (z)|. Therefore, f is a rotation.

In the general case, set a = f−1(0). Then setting ϕ(z) = a−z
1−āz , by the first part we

know that f ◦ ϕ is a rotation and hence f = f ◦ ϕ ◦ ϕ−1 is of the form (5.6). 2

In the following statement, we are going to remove the assumption that f maps 0 to
0. We have not discussed this in class and the remainder of this chapter will not be part of
the exam.

Theorem 5.28 (Schwarz-Pick lemma) Let f : ∆ → ∆ be holomorphic. Then for all
z ∈∆

|f ′(z)|
1− |f (z)|2

≤ 1

1− |z|2
. (5.7)

If equality holds for only one z ∈∆, then f is a Möbius transform of the type

f (z) = eiθ z − a
1− āz

for |a| < 1, θ ∈ R.

Remark 5.29 If f (0) = 0, then for z = 0 (5.7) reduces to |f ′(0)| ≤ 1, the first statement
of the Schwarz lemma.

Proof. Step 1. Let us fix a z0 ∈ ∆. We will show that (5.7) holds for this point z0.
In order to reduce the estimate (5.7) to the Schwarz lemma, we compose f with two
mappings ϕ1, ϕ2 such that

0
ϕ1−→ z0

f−→ f (z0)
ϕ2−→ 0.

For the ϕ1, ϕ2 we choose the Möbius transformations

ϕ1(z) =
z + z0

1 + z0z
and ϕ2(z) =

z − f (z0)
1− f (z0)z

.

Then F (z) = ϕ2 ◦ f ◦ ϕ1 maps ∆ to ∆ and F (0) = 0. The Schwarz lemma then implies
that

|F ′(0)| = |ϕ′1(0)| |f ′(z0)| |ϕ′2(f (z))| ≤ 1. (5.8)

Step 2. We claim that for any a with |a| < 1 (and in particular, for a = −z0 or for
a = f (z0)) the Möbius transform

ϕ(z) =
z − a
1− āz
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satisfies for all |z| < 1 that

|ϕ′(z)| = 1− |ϕ(z)|2

1− |z|2
. (5.9)

To see (5.9) we start calculating for the left hand side:

ϕ′(z) =
(1− āz) + (z − a) ā

(1 + āz)2
=

1− |a|2

(1− āz)2
. (5.10)

For the right hand side we get

1− |ϕ(z)|2

1− |z|2
=

1−
(
z−a
1−āz

z̄−ā
1−az̄

)
1− |z|2

=
1− āz − az̄ + |a|2 |z|2 − (|z|2 − āz − az̄ + |a|2)

(1− |z|2) |1− az|2

=
1− |z|2 − |a|2 + |a|2 |z|2

(1− |z|2) |1− az|2
=

1− |a|2

|1− az|2
.

(5.11)

The absolute value of the right hand side of (5.10) and (5.11) are the same, which estab-
lishes (5.9).

Step 3. Now we are ready to conclude: Plugging (5.9) into (5.8) we obtain

1 ≥ (1− |z0|2)|f ′(z0)|
∣∣∣∣ 1

1− |f (z0)|2

∣∣∣∣.
Dividing by (1−|z|2) the desired estimate (5.7) follows. If we have equality in (5.7), then
also in (5.9). Hence, the Schwarz lemma implies that F is a rotation, and in particular
a Möbius transformation. But as f = ϕ−1

1 ◦ F ◦ ϕ−1
2 , this implies that f is a Möbius

transformation as well. 2

The estimate (5.7) has a very nice interpretation in the Hyperbolic space. To explain
this, we need to introduce some extra facts: As discussed above, the length of a curve in
R2 or more generally in Rn is usually defined as

L(γ) =

∫ t1

t0

|γ′(t)| dt.

But sometimes one wants to take into account that moving in certain regions of space may
be more costly than in others. This can be captured by a function % : Rn → R+. Then the
%-weighted length of a curve can be defined as

L%(γ) :=

∫ t1

t0

%(γ(t))|γ′(t)| dt.

Actually, in Riemannian geometry one usually considers the even more general situation,
where one has a mapping g that takes values in the positive definite matrices and one sets

L%(γ) :=

∫ t1

t0

√
〈g(γ(t))γ′(t), γ′(t)〉 dt.
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Once one has defined the lengths of curves, it is natural to define the distance between
two points x0 and x1 as

d(x0, x1) = inf
γ
L%(γ),

where the inf is taken over all curves γ that connect x0 and x1.
The Schwarz-Pick lemma gets a very nice form, for a particular choice of %, defined

on ∆ namely for

%(z) =
1

1− |z|2
.

If one, endows ∆ with d% for this choice of % it is called Poincaré plane or Hyperbolic
space. This space has many interesting properties: it is a space of constant negative
curvature and it is one of the model spaces for non-Euclidian geometry. One gets the
following:

Theorem 5.30 (Schwarz-Pick in the Poincaré plane) Every holomorphic function
f : ∆→∆ is a contraction on the Poincaré plane. The Möbius transformations that map
∆ into ∆ are isometries.

Remark 5.31 Actually, these Möbius transformations are the only isometries of the Poincaré
plane.

Proof. Let f : ∆→∆ be holomorphic. It is sufficient to show that for any (piecewise C1

curve) we have
L%(f ◦ γ) ≤ L%(γ).

To see this, note that for any t ∈ [t0, t1] we get, using (5.7)

%(f(γ(t))) |∂tf(γ(t))| = 1

1− |f(γ(t))|2
|f ′(γ(t))| |∂tγ(t)| ≤ |∂tγ(t)|

1− |γ(t)|2
= %(γ(t)) |∂tγ(t)|.

(5.12)
Integrating this inequality over t, we see that f decreases the lengths of curves and there-
fore also distances between points. For Möbius transformations we have an equality in
(5.12). 2

6 Singularities

6.1 Some definitions

Definition 6.1 Suppose that D is open and connected, and that f : D → C is holomor-
phic on D.

(i) The function f has an isolated singularity in a point z0 ∈ C \D if for some ε > 0
it is defined for all z ∈ Bε(z0) \ {z0}.

(ii) We say z0 ∈ D is a regular point if f is complex-differentiable at z0.

(iii) At point z0 ∈ D is a singularity if z0 is a limit of regular points (i.e. zn regular and
zn → z0 as n→∞) and is itself not regular.

(iv) A singularity at z0 is an isolated singularity if f is holomorphic on Bε(z0) \ {z0}.
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Example 6.2 (a) (Trival case:) LetD = ∆\{0} and f (z) = z. Then f has a singularity
in the sense of the definition at 0. Of course, this singularity is completely artificial
and only stems from the strange choice of domain for f .

(b) (More serious:) Let D = ∆ \ {0} and f (z) = 1
z
. Then f has an isolated singularity

at 0. For |z| → 0 we have |f (z)| → ∞ and hence f can be extended to a continuous
function taking values in the extended complex plane Ĉ.

(c) (Even more serious:) Let D = ∆ \ {0} and set f (z) = exp (1
z
). Then |f (zn)| con-

verges to ∞ along the sequence zn = 1
n

, but it converges to 0 along the sequence
zn = − 1

n
. Hence f cannot be extended to a continuous function, even if we allow for

values in Ĉ.
♣

In this section we will see that these three cases capture all the possible behaviours of
holomorphic functions near singularities. Before we do that let us extend the notion of
order of an holomorphic function to negative values.

Definition 6.3 Assume that f has an isolated singularity at z0. Then we define the order

ord(f, z0) = − inf{n ∈ Z : lim
z→z0

(z − z0)nf (z) exists and is finite}.

We say that f has a

• removable singularity if ord(f, z0) ≥ 0, i.e. if f is bounded in a neighbourhood of
z0,

• pole of order n at z0 if ord(f, z0) = −n ∈ (−∞,−1],

• essential singularity at z0 if ord(f, z0) = −∞.

Remark 6.4 Note that the definition of ord(f, z0) extends Definition 5.14. For n ≥ 1 the
function

f (z) =(z − z0)n has a zero of order n, and we have ord(f, z0) = n > 0 and
f (z) =(z − z0)−n has a pole of order n, and we have ord(f, z0) = −n < 0.

Definition 6.5 Let D ⊂ C be open and connected and let S ⊂ C be a discrete
set (i.e. every point in S is isolated). A holomorphic function f : D \ S → C is
called meromorphic on D if none of the isolated singularities in z ∈ S are essential.
Equivalently, a meromorphic function f : D → C is holomorphic on D \ P where
P := {z ∈ D : z pole of finite order}.
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Remark 6.6 (a) Let f : D → C be holomorphic on D = and f (z0) 6= 0, z0 ∈ D. Then,
for some m ∈ N,

g(z) :=
f (z)

(z − z0)m

has a pole of order m at z0, i.e. ord(g; z0) = −m. Conversely, suppose that g : D \
{z0} → C has a pole of order m ∈ N at z0, then there exists a holomorphic function
(on D) f : D → C with f (z0) 6= 0 and

g(z) =
f (z)

(z − z0)m
,

because our assumptions imply that (z − z0)mg(z) can be extended to a holomorphic
function on D (from D \ {z0}). Furthermore, if f (z0) = 0, then the function h(z) :=
(z − z0)m−1g(z) = f (z)

z−z0 can be extended to z0. This contradicts our assumption that
the pole is of order m.

(b) Suppose that g, h : D → C are holomorphic onD,D ⊂ C open and connected, h 6≡ 0
on D. Then

f (z) =
g(z)
h(z)

is a meromorphic function after removing all removable singularities. Note that f is
a priori only defined on D \ {z ∈ D : h(z) = 0}.

Proof. Pick z0 ∈ D. If h(z0) 6= 0, then f is holomorphic in z0. Suppose now that
h(z0) = 0. Then there exists m ∈ N such that

h(z) = (z − z0)m h̃(z) with h̃(z0) 6= 0,

(note that h cannot have a zero of infinite order), to see that recall Remark 5.19:

h(z) = (z − z0)m
∞∑
n=0

bn(z − z0)n

with

bn =
h(m+n)(z0)
(m+ n)!

,

and thus h̃(z0) 6= 0. Likewise, there exists k ∈ N such that g(z) = (z − z0)k g̃(z) with
g̃(z0) 6= 0. Therefore, for 0 < |z − z0| < ε,

f (z) = (z − z0)k−m
g̃(z)

h̃(z)
,

and z0 is either a pole if (k−m) < 0, or f can be extended to z0 for (k−m) ≥ 0. 2

�
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Definition 6.7 Let D ⊂ C be open and connected and f : D → C meromorphic on D.
The set of zeros and the set of poles are denoted by

Zf := {z ∈ D : f (z) = 0},
Pf := {z ∈ D : z pole of f at z}.

Proposition 6.8 Let D ⊂ C be open and connected. Suppose that f : D → C is mero-
morphic on D and f 6≡ 0 on D. Then both, Zf and Pf , do not have an accumulation
point in D.

Proof. A pole of f is an isolated singularity, and hence it cannot be an accumulation
point of poles. Likewise, any point at which f is holomorphic cannot be an accumulation
point of poles. Thus Pf has no accumulation point in D. Suppose now that Zf has an
accumulation point z0 ∈ D, then z0 cannot be a pole as otherwise

f (z) =
g(z)

(z − z0)m
, m ∈ N, g(z0) 6= 0,

and thus f (z) 6= 0 for all 0 < |z − z0| < ε for ε > 0 small enough. However, this
would contradict our assumption that z0 is an accumulation point of Zf . We are left to
show that D \ Pf is open and connected, because then the Identity Theorem 5.21 shows
that Zf cannot have an accumulation point in D \Pf . This follows immediately with the
following Lemma 6.9. 2

Lemma 6.9 Let D ⊂ C be open and connected and M ⊂ D a subset with no accumula-
tion point in D. Then D \M is open and connected.

Proof. Suppose z0 ∈ D \M has no neighbourhood in D \M . Then z0 is an accumulation
point of M in D. Therefore D \ M is open. We now show that D \ M is connected.
Pick p, q ∈ D \M , and choose a continuous path α : [0, 1] → D connecting p and q,
i.e. α(0) = p and α(1) = q. The image α([0, 1]) is a compact set in D, and hence it is
bounded and can contain only finitely many elements of M , say m+ 1 (the set M has no
accumulation point in D and thus the elements of M are separated by disjoint bounded
neighbourhoods). We construct a path α̃ joining p and q containing only m points of M .
Suppose z0 ∈ α([0, 1]) ∩M . Choose ε > 0 such that {z ∈ C : |z − z0| ≤ ε} ⊂ D and
such that Bε(z0) ∩M = {z0}. Define

t0 := inf{t ∈ [0, 1] : |α(t)− z0| ≤ ε},
t1 := sup{t ∈ [0, 1] : |α(t)− z0| ≤ ε}.

To obtain α̃, replace α|[t0,t1] by an arc of ∂Bε(z0) to surround the point z0. Repeat this
construction until you get a path joining p and q avoiding M . 2

Example 6.10 The function f (z) = 1
(z−3) (z−i)2 exp(z) is meromorphic on C, the function

f (z) = z exp (1
z
) is not. ♣
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6.2 Laurent series
The description of an holomorphic function in a Taylor series is not always suitable, when
one is close to a singularity.

Example 6.11 Consider the function f (z) = exp(z) + 1
z2

on the annulus

A := {z ∈ C : 0 < |z| < R}, R > 0.

By Taylor’s theorem, Theorem 5.1, the function f can be developed locally in a Taylor
series around every point inA. But such a Taylor series will never describe f on the whole
annulus - in fact by Remark 5.2 we see that the radius of convergence for the Taylor series
around z is |z|. On the other hand, it is quite natural to write

f (z) = z−2 +
∞∑
k=0

zk

k!
,

which is valid for all z ∈ A. ♣

Definition 6.12 (Laurent series) A Laurent series is a series of the form∑
k∈Z

ak(z − z0)k. (6.1)

Of course, what we mean when we write a series like (6.1) is the sum of two series
∞∑
k=0

ak(z − z0)k and
∞∑
k=1

a−k
1

(z − z0)k
. (6.2)

We say that the series (6.1) converges if both of the series in (6.2) converge. Also writing
the sum as in (6.2) it follows immediately, that many of the nice properties of Taylor series
observed in Section 3.3 also hold for Laurent series. In fact, the first sum in (6.2) is a usual
Taylor series. Hence it converges locally uniformly on a ball {z ∈ C : |z − z0| < R} for
some R > 0. Inside of that ball it is an holomorphic function and it can be differentiated
under the sum.

But the second sum in (6.2) is nothing but the usual Taylor series
∑∞

k=1 a−kξ
k eval-

uated at ξ = (z − z0)−1. Hence it has the same nice properties as the first sum on the
set {|ξ| < R̄} for some R̄ > 0. But ξ < R̄ if and only if |z − z0| > 1

R̄
. Hence we can

conclude:
Laurent series converge locally uniformly on an annulus of convergence, i.e., a set of the
form

A = {z ∈ C : R1 < |z| < R2}.

Laurent series describe a holomorphic function on that annulus and they can be differ-
entiated under the sum.

Of course, as in the case of Taylor series, we cannot make a general statement about
the convergence at a given point on the boundary of the annulus.

The aim of this section is to show that any holomorphic function on an annulus can be
developed in a Laurent series. The essential ingredient is the following generalisation of
Cauchy’s integral formula.
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Theorem 6.13 (Cauchy for annuli) Let D ⊂ C be open and let f : D → C be holomor-
phic on D. Suppose that for some a ∈ C and radii 0 < R1 < R2 <∞, the annulus

A = {z ∈ C : R1 < |z − a| < R2}

and its boundary ∂A are contained in D, i.e., A ∪ ∂A ⊂ D, where

∂A = {z ∈ C : R1 ≤ |z − a| ≤ R2} .

Then for any z ∈ A we have

f (z) =
1

2πi

∫
∂BR2

(a)

f (ξ)
(ξ − z)

dξ − 1

2πi

∫
∂BR1

(a)

f (ξ)
(ξ − z)

dξ. (6.3)

Remark 6.14 If f is holomorphic on the ball BR2(a), then the second integral in (6.3)
vanishes and the formula reduces to (4.3). �

Proof. We can assume without loss of generality that a = 0. Pick a z0 ∈ A and let
ε > 0 be small enough to guarantee that Bε(z0) ⊂ A. Then Cauchy’s integral formula 4.3
implies that

f (z0) =
1

2πi

∫
∂Bε(z0)

f (ξ)
(ξ − z0)

dξ.

Hence, we are done as soon as we have established that∫
∂BR2

(a)

f (ξ)
(ξ − z0)

dξ −
∫
∂BR1

(a)

f (ξ)
(ξ − z0)

dξ =

∫
∂Bε(z0)

f (ξ)
(ξ − z0)

dξ.

The proof of this fact is very similar to the construction that was used in the proof of
Cauchy’s integral formula, Theorem 4.25. Indeed, the inner circle is again connected to
the outer ring, this time in “thinner slices” (rather than halves) which are all contained in
star shaped domains on which the function ξ 7→ f (ξ)

(ξ−z0) is holomorphic. The details are left
to the reader: This follows from Goursat’s Theorem for the images of squares. Actually,
let ϕ : [0, 2π] × [R1, R2] → A be a continuous mapping with ϕ(θ, R1) = R1

z0
|z0|e

iθ and
ϕ(θ, R2) = R2

z0
|z0|e

iθ that interpolates between these two curves but “cuts out” the ball
Bε(z0) around z0. Then the integral over the image of the boundary curve of [0, 2π] ×
[R1, R2] is zero. But this boundary curve consists exactly of the curves BR2(0), and
the two curves ∂BR1(0) and ∂Bε(z0) with opposite orientation. In fact, there are some
“connecting bits” that cancel because they appear twice with opposite orientation. 2

With this preliminary result in hand, we are now ready to prove the main result of this
section, namely the fact that every holomorphic function defined on an annulus can be
developed in a Laurent series. Before we proceed, note that (6.2) should really be inter-
preted as a decomposition of the series into a part that is holomorphic at a and another
part that is holomorphic at∞. Note that the right hand side of (6.3) also has that structure.
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Theorem 6.15 (Laurent’s theorem) Let f be holomorphic on a neighbourhood of the
annulus

A = {z ∈ C : R1 < |z − a| < R2} , 0 < R1 < R2 <∞, a ∈ C .

Then, for every z ∈ A, we have

f (z) =
∑
k∈Z

ak(z − a)k.

For every % ∈ [R1, R2] the coefficients ak are given by

ak =
1

2πi

∫
∂B%(a)

f (ξ)
(ξ − a)k+1

dξ , k ∈ Z . (6.4)

Proof. The argument is very similar to the proof of Taylor’s theorem, Theorem 5.1. We
can assume without loss of generality that a = 0.

We fix an arbitrary z0 ∈ A. Then Cauchy’s integral formula for annuli implies that

f (z0) =
1

2πi

∫
∂BR2

(0)

f (ξ)
(ξ − z0)

dξ − 1

2πi

∫
∂BR1

(0)

f (ξ)
(ξ − z0)

dξ.

The first term on the right hand side can be treated exactly as in the proof of Taylor’s
theorem. We obtain that

1

2πi

∫
∂BR2

(0)

f (ξ)
ξ − z0

dξ =
∞∑
k=0

( 1

2πi

∫
∂BR2

(0)

f (ξ)
ξk+1

dξ
)
zk0 .

To treat the second term on the right hand side we write for any ξ ∈ BR1(0) that

1

ξ − z0

=
−1

z0

(
1

1− ξ
z0

)
=
−1

z0

∞∑
k=0

(
ξ

z0

)k
,

and observe that as z0 ∈ A we have |z0| > R1 and thus | ξ
z0
| < 1. Hence we get

− 1

2πi

∫
∂BR1

(0)

f (ξ)
(ξ − z0)

dξ =
1

2πi

∫
∂BR1

(0)

∞∑
k=0

f (ξ)
zk+1

0

ξk dξ

=
−1∑

k=−∞

( 1

2πi

∫
∂BR1

(0)

f (ξ)
ξk+1

dξ
)
zk0 .

(6.5)

As before, interchanging the summation and the integration is justified, because the geo-
metric series converges uniformly in the integration variable ξ.

Finally, it remains to remark that the value of the integral in (6.4) is independent of
the radius % ∈ [R1, R2]. 2



64 SINGULARITIES

Remark 6.16 (a) The proof shows that the series∑
k≥0

ak(z − a)k

converges for all z ∈ BR2(a), whereas the series∑
k<0

ak(z − a)k

converges for all z ∈ C \ B̄R1(a).

(b) The proof also shows the uniqueness of the Laurent decomposition. Actually, this can
also be seen directly: Assume that f (z) =

∑
k∈Z ak(z − a)k converges in the annulus

A. Then for a fixed value of n ∈ Z define

gn(z) := (z − a)nf (z) =
∑
k∈Z

ak(z − a)k+n.

When we integrate g around any circle of radius % all the summands with k+n 6= −1
vanish (because they have an antiderivative) and we obtain∫

∂B%(a)
gn(ξ) dξ = 2πi a−n−1,

so that we recover (6.4).
�

Example 6.17 The function f (z) = 1
1−z is holomorphic on the annuli A1 = {z ∈

C : |z| < 1} and on A2 = {z ∈ C : 1 < |z| < ∞}. On A1 the Laurent series is ac-
tually a usual Taylor series and is given by the geometric series

f (z) =
∞∑
k=0

zk.

For |z| > 1 this expansion is not valid. We obtain the Laurent decomposition

f (z) = −1

z

( 1

1− 1
z

)
= −1

z

∞∑
k=0

z−k =
−1∑

k=−∞

(−1) zk.

♣

As above in Corolllary 5.6, the boundedness of f implies bounds on all of the Laurent
coefficients:

Corollary 6.18 Let f be as in the statement of Theorem 6.15. Suppose that for some
% ∈ [R1, R2] we have |f (ξ)| ≤ M on {z ∈ C : |z − a| = %}. Then, for every k ∈ Z, we
have

|ak| ≤
M

%k
.
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6.3 Classification of singularities
With Laurent’s theorem in hand we can now proceed to show that indeed the three situ-
ations explained above in Example 6.2 are the only possible isolated singularities. The
following theorem is an immediate consequence of Corollary 6.18.

Theorem 6.19 (Riemann’s removable singularity theorem) Let D ⊂ C be an open set
and assume that f : D → C is holomorphic on D and that f has an isolated singularity
in z0 ∈ C \D. Furthermore, assume that |f | is bounded in a neighbourhood of z0. Then
there exists an holomorphic function f̃ that extends f to D ∪ {z0}. In particular, the
isolated singularity in z0 is removable.

Proof. We can expand f in a Laurent series in a neighbourhood of z0. That is, we have
for z close enough to z0 the expansion

f (z) =
∑
k∈Z

ak(z − z0)k .

By assumption, |f | is bounded on a neighbourhood of z0, e.g., by a constant M . Then we
have for all k < 0 and for all % > 0 (which are sufficiently small) that

|ak| ≤
M

%k
.

Letting % tend to zero we can conclude that all the coefficients of negative order vanish
and hence f is actually given locally by a usual Taylor series, which can be extended to
z0 by the value a0. 2

Corollary 6.20 Let f : D → C be holomorphic on D with an isolated singularity in z0.
Then the following statements are equivalent:

(i) z0 is a pole.

(ii) at least one of the coefficients of negative order in the Laurent series around z0 is
non-zero, but at most finitely many.

(iii) limz→z0 |f (z)| =∞.

Proof. (i)⇒ (ii). If f has a pole at z0 then clearly at least one of the Laurent coefficients
of negative order must be non-zero, because else the singularity would be removable. On
the other hand by definition there is an n <∞ such that g(z) = (z − z0)nf (z) is bounded
near z0, and hence it can be extended to an holomorphic function to z0. Let us write

g(z) =
∞∑
k=0

bk(z − z0)k,

for the Taylor series of g around z0. But then we have f (z) =
∑∞

k=0 bk(z− z0)k−n for any
z 6= z0.
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(ii)⇒ (iii). Assume that f (z) =
∑∞

k=−n ak(z − z0)k in a neighbourhood of z0. Then
f (z) = g(z)

(z−z0)n for an holomorphic function g. This function is unbounded in a neigh-
bourhood of z0 and hence the claim follows.

(iii)⇒ (i). Follows from the next theorem. 2

Theorem 6.21 (Casorati-Weierstrass theorem) Assume that an holomorphic function
f has an essential singularity in z0. Then for any ε > 0 the image of the set Bε(z0) \ {z0}
under f is dense in C.

Proof. Assume the opposite, i.e., suppose that there exists an ε > 0 and a point w ∈ C
and some δ > 0 such that

|f (z)− w| ≥ δ for all z ∈ Bε(z0) \ {z0}.

Then consider the function
g(z) =

1

f (z)− w
.

By assumption g is bounded in a neighbourhood of z0 and hence it can be extended to an
holomorphic function onto all of Bε(z0). But this is not possible, because then

f (z) =
1

g(z)
+ w,

cannot have an essential singularity at z0. 2

Example 6.22 (Injective entire functions) The Casorati-Weierstrass theorem implies that
the only injective entire functions f are the linear functions

f (z) = αz + β

for α 6= 0 and β ∈ C. To see this, let f be an injective entire function and denote by

f (z) =
∞∑
k=0

akz
k

its Taylor decomposition around 0. For z 6= 0 define

g(z) = f(z−1) =
∞∑
k=0

akz
−k.

As the composition of two injective functions, g must also be injective on C\{0}. Hence,
by the Casorati-Weierstrass theorem and the open mapping theorem, g cannot have an es-
sential singularity in 0, which implies that only finitely many ak are non-zero. Therefore,
f is a polynomial. But by the Fundamental theorem of Algebra, Corollary 5.11, the only
injective polynomials are linear. �

Remark 6.23 Actually, there is even a much stronger theorem about the behaviour of
holomorphic functions near isolated singularities: Picard’s theorem states that an holo-
morphic function f attains any value in C with at most one exception in any neigh-
bourhood of an essential singularity. For example, it is easy to see that the function
f (z) = exp(z−1) attains any value in C \ {0} on Bε(0) \ {0}. The proof of this result
requires more effort and will be omitted.
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7 Winding numbers and the Residue theorem

7.1 The winding number
We want to address the following question. Suppose f : D → C is holomorphic on D
(D ⊂ C open and connected). Let γ1, . . . , γn, be closed piece-wise C1 curves (paths) in
D and denote

γ := α1γ1 ⊕ · · · ⊕ αnγn , zi ∈ Z, i = 1, . . . , n,

to be a cycle which is a formal linear combination (joint of all curves taking their direction
into account) of closed (piece-wise) C1 curves (paths). We then write∫

γ

f (z) dz := α1

∫
γ1

f (z) dz + · · ·+ αn

∫
γn

f (z) dz.

Question: Let D ⊂ C be open and connected. For which cycles γ in D we have∫
γ

f (z) dz = 0 for all f ∈ H(D)?

Let z0, z1 ∈ C \ {0} with z0/|z0| 6= −z1/|z1|. Then there exists a unique θ ∈ (−π, π)
such that

z0

|z0|
eiθ =

z0

|z1|
.

see Figure 15.
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We write ]z1
z0

= θ.

Definition 7.1 (a) The (piece-wise) C1 curve (path) γ : [t0, t1] → C is a half-plane
curve half-plane curve if γ([t0, t1]) is wholly contained in a half-plane whose bound-
ary line goes through the origin 0, see Figure 16.

Define
]γ := ]

γt1
γ(t0).

(b) Let γ : [t0, t1]→ C \ {0} be a (piece-wise) C1 curve (path). Suppose that t0 = τ0 ≤
τ1 ≤ · · · ≤ τn = t1, n ∈ N, is a partition of the interval [t0, t1] such that

γ|[τi−1,τi]
half-plane curve for all i = 1, . . . , n.

Then define

]γ :=
n∑
i=1

]γ|[τi−1,τi]. (7.1)

 

a

Figure 16:

Note that Definition 7.1 is independent of the choice of the partition of the interval
[t0, t1] (Exercise!).

Lemma 7.2 Suppose γ : [t0, t1]→ C\{0} is a closed (piece-wise) C1 curve (path). Then
there exists Ind(γ, 0) ∈ Z such that

]γ =: 2π Ind(γ, 0).

Proof. Define
θi := ]γ(τi)

γ(τi−1) , i = 1, . . . , n,
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for some partition τ0 ≤ τ1 ≤ · · · ≤ τn = t1 of the interval [t0, t1] such that each

γ|[τi−1,τi]

is a half-plane curve. Then

γ(t0)
|γ(t0)|

ei(θ1+···+θn) =
γ(t1)
|γ(t1)|

.

Now, as γ is closed, we have that θ :=
∑n

i=1 θi = 2πk for some k ∈ Z, and we set
Ind(γ, 0) = k. 2

Remark 7.3 For any a ∈ C, let γ̃ be the curve (path) γ̃ = γ − a, γ̃(t) = γ(t) − a for all
t ∈ [t0, t1], where γ : [t0, t1]→ C \ {a} is a closed (piece-wise) C1 curve (path). Then

Ind(γ, a) := Ind(γ̃, 0). (7.2)

�

Definition 7.4 Let a ∈ C and let γ : [t0, t1] → C be a closed, piecewise C1 curve with
a /∈ γ([t0, t1]). Then the index of γ with respect to a is defined as the number Ind(γ, a)
given in Lemma 7.2. The index ind(γ, a) is also called winding number of γ about a.

Proposition 7.5 Let a ∈ C and let γ : [t0, t1] → C be a closed, piecewise C1 curve with
a /∈ γ([t0, t1]). Then

Ind(γ, a) :=
1

2πi

∫
γ

1

z − a
dz. (7.3)

Proof of Proposition 7.5. We give a direct proof. A second alternative way to prove the
statement is using the complex logarithm. With loos of generality we assume that a = 0.
Consider the partition of [0, 1] as in Definition 7.1 above. Namely, a 6∈ γ([0, 1]),

0 = t0 = τ + 0 ≤ τ1 ≤ · · · ≤ τn = t1 = 1 .

Denote αi the straight line connecting γ(τi) and γ(τi)/|γ(τi)|, see Figure 17. Denote βi the
shorter arc (of the unit circle around the origin 0) from γ(τi−1)/|γ(τi−1)| to γ(τi)/|γ(τi)|.
Then ∫

γ|
[τi−1,τi]

dz
z

=

∫
αi−1

dz
z

+

∫
βi

dz
z
−
∫
αi

dz
z

for i = 1, . . . , n. Therefore, ∫
γ

dz
z

=
n∑
i=1

∫
γ|

[τi−1,τi]

dz
z
.

Note that α0 = αn because γ(t0) = γ(τ0) = γ(t1) = γ(τn). Finally we get
n∑
i=1

∫
βi

dz
z

= 2πi
n∑
i=1

θi .

2
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Remark 7.6 (a) Proposition 7.5 holds for any cycle γ, that is,

γ = ⊕ni=1αiγi, αi ∈ Z,

is a formal linear combination, by noting that

Ind(γ, a) =
n∑
i=1

αi Ind(γi, a).

(b) A cycle winds around a if Ind(γ, a) 6= 0.

(c) We leave the following as an Exercise for the reader. For any closed piecewise C1

curve γ the set {z ∈ C : Ind(γ, z) 6= 0} is bounded.
�

Example 7.7 Consider the curve γ : [0, 1]→ C given by γ(t) = e2πint. Then we have

Ind(γ, 0) =
1

2πi

∫ 1

0

1

e2πint (2πin)e2πint dt = n.

The index counts the number of times γ winds around the origin (which justifies the term
winding number). Note that the index can be negative: If we consider instead the curve
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γ̃(t) = e−2πint then we have
Ind(γ̃, 0) = −n.

♣

Definition 7.8 (a) Let D ⊂ C be open. A pice-wise C1 curve in D is homologous to 0 in
D if for any a ∈ C \D we have

Ind(γ, a) = 0.

(b) A (piece-wise) C1 cycle is homologous to zero in D if Ind(γ, a) for every a ∈ C \D.

Remark 7.9 The point of this definition is that a cycle can be homologous to zero in D
even if the individual curves γi are not. For example, in the proof of Cauchy’s integral
formula (Theorem 4.25) we wanted to argue that an integral over the boundary γ1 of a
large circle is the same as the integral over a smaller circle γ2. Both of these circles
have index 1 with respect to a point z0 in the middle, and are not homologous to zero in
C \ {z0}. But the cycle γ1 ⊕ (−1)γ2 is homologous to zero in D \ {z0}. �

Lemma 7.10 The mapping a 7→ Ind(γ, a) is locally constant in C \ γ([t0, t1]). More
precisely, if z0 ∈ C \ γ([t0, t1]), then there exists a δ > 0 such that Ind(γ, a) is constant
for a ∈ Bδ(z0).

Proof. As C \ γ([t0, t1]) is open, there exists a δ > 0 such that B2δ(z0) is also contained
in C \ γ([t0, t1]). Then on Bδ(z0) the mapping a 7→ Ind(γ, a) is continuous.

To see that, suppose that an ∈ Bδ(z0) converge to a ∈ Bδ(z0). We have

Ind(γ, an) =
1

2πi

∫
γ

1

ξ − an
dξ.

The function 1
ξ−an converges uniformly in ξ ∈ Bc

2δ(z0) to 1
ξ−a and hence we can pass to

the limit in the integrals.
Since the index only attains integer values we can conclude that it has to be constant.

2

We are now ready to give the most general version of Cauchy’s theorem.

Theorem 7.11 (Cauchy’s theorem – homology version) Let D ⊂ C be open and con-
nected. Let γ be a piecewise C1 cycle that is homologous to 0 in D. Then for any holo-
morphic function f : D → C we have∫

γ

f (z) dz = 0.

Proof. We start by reducing the theorem to the case of a single closed curve γ ∈ D.
Indeed, assume the cycle γ is given by

γ = α1γ1 ⊕ . . .⊕ αNγN . (7.4)
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Furthermore, assume that each of the curves γi is parametrised over [0, 1]. For i =
1, . . . , n − 1 let βi be a C1 curve in U that connects γi(0) to γi+1(0). Finally, let γ̂ be
the closed curve that is obtained by following around γ1 α1 times, then following β1 to
γ2(0). In the same way, one follows through all of the γi αi times. Finally, the curve traces
back along all of the βi to its starting point γ1(0). The curve is closed and piecewise C1.
Furthermore, we have

∫
γ
f (z) dz =

∫
γ̂
f (z) dz for every continuous function f because

the auxiliary curves βi are passed exactly once in each orientation, and hence they don’t
contribute. In particular, γ̂ is homologous to zero in D.

For now on we are thus going to assume that γ is a single closed curve. We use the
notation γ([t0, t1]) = Γ.

We can assume without loss of generality thatD is bounded. Indeed if it is not replace
D by D ∩ BR(0) for some R large enough to ensure that Γ is contained in BR(0). By
compactness of Γ the distance of Γ to C \D is strictly positive - let us denote it by 2δ.

We put a grid of width δ on C, i.e. we consider the open squares whose corners are
given by the four points in ((k+{0, 1})δ, (m+{0, 1})δ). We denote by (Qi)Ki=1 the finitely
many open squares that are fully contained in D. By the assumption on the distance to
the boundary the set Γ is fully contained in ∪Ki=1Q̄i.

We observe that any integral over ∂ ∪Ki=1 Q̄i can be written as sum over integrals over
the ∂Qi because all the interior edges are crossed twice with opposite direction. Also
the winding number of γ about any point in a ∈ C \ ∪Ki=1Q̄i and even any point in the
boundary is zero as follows easily from Lemma 7.10.

Now let z0 be an arbitrary point in some square Qi0 . Then we have that

f (z0) =
1

2πi

∫
∂Qi0

f (ξ)
ξ − z0

dξ.

(In fact, we have not stated Cauchy’s integral formula for squares above, but the proof is
identical to the argument for Theorem 4.25). For any other square Qi for i 6= i0 we have

1

2πi

∫
∂Qi

f (ξ)
ξ − z0

dξ = 0.

Hence summing over all boxes we get

f (z0) =
1

2πi

K∑
i=1

∫
∂Qi

f (ξ)
ξ − z0

dξ =
1

2πi

∫
∂∪Ki=1Q̄i

f (ξ)
ξ − z0

dξ.

By continuity it is easy to see that this formula holds for any point in the interior of ∪iQ̄i

(i.e. also on the interior boundaries of squares).
Now we integrate this identity over γ and obtain∫

γ

f (z) dz =

∫
γ

1

2πi

(∫
∂∪Ki=1Q̄i

f (ξ)
ξ − z

dξ
)

dz =

∫
∂∪Ki=1Q̄i

f (ξ)
(

1

2πi

∫
γ

1

ξ − z
dz
)

dξ.

Here the interchange of integrals is justified by Fubini’s theorem, because all the inte-
grands involved are bounded. Now we see that for any ξ the inner integral is minus the
index of γ with respect to the point ξ on the boundary of ∪iQ̄i. We had seen above that
this is 0. 2
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Corollary 7.12 (Cauchy’s integral formula –general version) Let D ⊂ C be open and
connected and let γ be a closed piecewise C1 curve in D that is homologous to 0 in D.
Then for any holomorphic function f : D → C and for any z ∈ D we have

1

2πi

∫
γ

f (ξ)
ξ − z

dξ = f (z) Ind(γ, z).

Proof. The function

g(ξ) =
f (ξ)− f (z)
ξ − z

is holomorphic on D \ {z} with a removable singularity at z. Hence it can be extended to
an holomorphic function onto z. Then Theorem 7.11 implies that∫

γ

g(ξ) dξ = 0.

Then we can write that

1

2πi

∫
γ

f (ξ)
ξ − z

dξ =
1

2πi

∫
γ

g(ξ) dξ +
f (z)
2πi

∫
γ

1

ξ − z
dξ = f (z) Ind(γ, z)

as claimed. 2

7.2 The Residue theorem
The residue theorem is a consequence of the general Cauchy theorem and it concerns
integrals over functions that have singularities. Its derivation is not difficult at this stage.
Still it is remarkably useful as we will see below.

We start with a definition.

Definition 7.13 Let f be a holomorphic with an isolated singularity at z0. The residue of
f at z0 is defined as

res(f, z0) :=
1

2πi

∫
∂Bε(z0)

f (ξ) dξ, (7.5)

for ε > 0 small enough (such that f is holomorphic on a ball Bδ(z0) \ {z0} for some
δ > ε).

Remark 7.14 (a) Note that the integral in (7.5) is independent of the choice of ε as long
as f is holomorphic on Bε(z) \ {z}.

(b) The expression (6.4) in Laurent’s theorem shows that res(f, z0) is the coefficient of
order−1 in the Laurent expansion of f around z0. In practice, this gives a much more
direct way to calculating residues than the evaluation of (7.5). Actually, suppose that
f has a pole of order n in z0 and that f (z) =

∑∞
k=−n ak(z − z0)k is the Laurent series

of f around z0. Then the function g(z) = (z − z0)nf (z) =
∑∞

k=0 ak−n(z − z0)k is
holomorphic in z0. Differentiating (n− 1) times we obtain

res(f, z0) = a−1 =
g(n−1)(z0)
(n− 1)!

= lim
z→z0

1

(n− 1)!
dn−1

dzn−1

(
(z − z0)nf (z)

)
.
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In the case where f (z) = h1(z)
h2(z) and h2 has a simple zero in z0, this expression becomes

res(f, z0) = lim
z→z0

h1(z)
(z − z0)−1h2(z)

=
h1(z0)
h′2(z0)

.

�

Example 7.15 (a) The function

f (z) =
1

(z2 + 1)(z − 4)3

has a simple pole at ±i and a pole of order 3 in 4. In a neighbourhood of i we write

f (z) =
1

z − i︸ ︷︷ ︸
simple pole

1

(z + i)(z − 4)3︸ ︷︷ ︸
holomorphic near i

,

which yields res(f, i) = 1
2i(i−4)3 . In the same way, one obtains that res(f,−i) =

1
−2i(−i−4)3 . Near 4 we can write

g(z) := (z − 4)3f (z) =
1

z2 + 1
.

Hence

res(f, 4) =
1

2
g′′(4) =

1

2

6z2 − 2

(z2 + 1)3

∣∣∣∣
z=4

=
47

4913
.

(b) The function f (z) = zn exp
(

1
z

)
has an essential singularity at 0 and hence the strat-

egy using derivatives outlined in Remark 7.14 does not apply directly. Still it is easy
to see that

zn exp
(

1

z

)
=
∞∑
k=0

1

k!
zn−k.

Hence we can read off that res(f, 0) = 1
(n+1)! .

♣

The residue is important because of the following theorem.

Theorem 7.16 (Residue theorem) Let D be an open and connected set. Assume that f
is holomorphic onD except for a discrete set S of isolated singularities. Let γ be a closed
piecewise C1 curve in D that is homologous to 0 in D and that does not go through any
of the singularities in S.

Then γ winds around at most a finite number of singularities in S and we have∫
γ

f (z) dz = 2πi
∑
a∈S

Ind(γ, a) res(f, a). (7.6)



WINDING NUMBERS AND THE RESIDUE THEOREM 75

Proof. We start by showing that γ winds around at most finitely many of the isolated
singularities. In fact, by Remark 7.6 (c), we see that the set

A := {a ∈ S : ind(γ, a) 6= 0}

is bounded. Hence, if we assume that there exists a sequence (an) of pairwise distinct
points inA, there must be a subsequence of the an that converges to a point a. This point a
is either in the image of γ, or Ind(γ, a) 6= 0 because the index is locally constant. In either
case a ∈ D. But this is a contradiction, because by assumption either f is holomorphic in
a and hence in a whole neighbourhood, or there is a singularity at a which is isolated.

To show the residue formula (7.6), let a1, . . . , aN be the isolated singularities that γ
winds about. Denote by ni = Ind(γ, ai). Furthermore, let ε > 0 be small enough to
ensure that the balls of radius ε around the ai do not touch the image of γ. Then for
i = 1, . . . , N let γi, be the curve

γi(t) = ai + εei2πt for t ∈ [0, 1],

We consider the cycle

λ = γ ⊕ (−n1)γ1 ⊕ (−n2)γ2 ⊕ . . .⊕ (−nN )γN .

By construction, the cycle λ does not wind about any point in S. Hence by the general
Cauchy theorem, Theorem 7.11 we have that

∫
λ
f (z) dz = 0.

Hence we can conclude that∫
γ

f (z) dz =
N∑
i=1

ni

∫
γi

f (z) dz.

By the definition of the γi and the definition of the residue in (7.5), we obtain the desired
expression (7.6). 2

Example 7.17 We give the calculation of real integrals as the first application of the
residue theorem. We treat the simplest case only and leave more tricky examples for
the exercises. Let p be a real polynomial of degree at least 2 without any zeros on R (in
particular p has even degree). The Residue Theorem gives a way to explicitly evaluate the
integral ∫ ∞

−∞

1

p(x)
dx.

Note that the conditions on p imply that 1
p

is indeed integrable. Furthermore, we have∫ ∞
−∞

1

p(x)
dx = lim

R→∞

∫ R

−R

1

p(x)
dx.

In order to apply the Residue Theorem we introduce the auxiliary curves (see Figure 18)

γR1 (t) = tR t ∈ [−1, 1] γR2 (t) = Reiπt t ∈ [0, 1]
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Figure 18:

and we denote by γR the concatenation of these two curves. Denote by z1, . . . , zn the
distinct zeros of p in the upper half plane. Then for R large enough the residue theorem
implies that ∫

γR

1

p(z)
dz = 2πi

n∑
j=1

res
(1

p
, zj

)
.

On the other hand, as p is of degree at least 2 there exists an R0 > 0 and a C such that if
|z| > R0, then |p(z)| ≥ C|z|2. Hence we obtain, for R > R0,∫

γR2

1

p(z)
dz ≤ Rπ

1

CR2
→ 0 as R→∞.

So finally we can conclude that∫ ∞
−∞

1

p(x)
dx = lim

R→∞

∫ R

−R

1

p(x)
dx = lim

R→∞

(∫
γR

1

p(z)
dz −

∫
γR2

1

p(z)
dz
)

= 2πi
n∑
j=1

res
(1

p
, zj

)
.

♣

Example 7.18 Show that ∫ ∞
0

sin(x)
x

dx =
π

2
.

f (z) :=
eiz

z
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has an isolated singularity at z = 0. Define the following curves (see Figure 19):

γ2(t) = Reitπ , t ∈ [0, 1],
γ1(t) = Rt , t ∈ [−1,−ε] ∪ [ε, 1],

γε(t) = εe−iπt , t ∈ [0, 1],
γ = concatenation of γ2, γε, and γ1.

As 0 /∈ I(γ), we have ∫
γ

f (z) dz = 0.

Using the Lemma 7.19 below, we conclude (details are left as an exercise). ♣

Lemma 7.19 Suppose that f : C→ C is holomorphic and

|f (z)| ≤ M

Rk
, for |z| = R,

for some R > 0,M > 0, k ∈ N. Then

lim
R→∞

∫
γR

eimz f (z) dz = 0 , m > 0,

where γR : [0, π]→ C, t 7→ γR(t) = Reit.

Proof. We are going to use sin(θ) ≥ 2θ/π for θ ∈ [0, π/2] in the following:∫
γR

eimz f (z) dz =

∫ π

0

eimReiθ
f (Reiθ)iReiθ dθ
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and thus∣∣∣∫
γR

eimz f (z) dz
∣∣∣ ≤ ∫ π

0

∣∣∣eimReiθ
∣∣∣ ∣∣∣f (Reiθ)

∣∣∣R dθ

=

∫ π

0

e−mR sin(θ) |f (Reiθ)|R dθ

≤ M

Rk−1

∫ π

0

e−mR sin(θ) dθ =
2M

Rk−1

∫ π/2

0

e−mR sin(θ) dθ

≤ 2M

Rk−1

∫ π/2

0

e−2mRθ/π dθ =
M

mRk
(1− e−mR).

2

Notation 7.20 Properties of a function at∞ are seen as properties of f (1
z
) at 0.

∞ isolated singularity of f ↔ 0 isolated singularity of f(
1

z
)

∞ pole of f ↔ o pole of f(
1

z
)

∞ zero of order k ↔ 0 zero of order k for f(
1

z
)

Example 7.21 Let 0 < α < 1 and R(z) a rational function with the following properties:

(i) |R(z)| ≤ C
|z|2 for |z| → ∞,

(ii) R holomorphic at 0, or R has a simple pole at z = 0,

(iii) R has no poles on R+.

Then ∫ ∞
0

xαR(x) dx =
2πi

1− e2πiα

∑
z0∈S∩C\R+

res(zαR(z), z0).

where S is the set of poles.
♣

Example 7.22 (Exercise) Consider the real integral∫ 2π

0

R(cos(θ), sin(θ)) dθ

with R being a rational function. Then∫ 2π

0

R(cos(θ), sin(θ)) dθ = 2πi
∑
|z|<1

res(Q, z)

when the function
Q(z) :=

1

z̄
R
(1

2
(z + 1/z),

1

2i
(z − 1/z)

)
has no poles on ∂∆. Hint: z + z̄ = 2 cos(θ) and z̄ = 1

z
on ∂∆. ♣
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A more theoretical application of the residue theorem concerns the location of zeros
of holomorphic functions.

Definition 7.23 Let f be a holomorphic function which is not 0 everywhere, defined on
an open and connected set D. Then the logarithmic derivative of f is the function f ′(z)

f (z) .

Remark 7.24 Locally around any point with f (z) 6= 0 it is always possible to define an
holomorphic branch of log(f ). Then it is indeed true that log(f )′ = f ′

f
. The point is

though that the logarithmic derivative always makes sense globally (except for possibly
some isolated singularities), the logarithm can in general only be defined locally.

Let us consider the behaviour of the logarithmic derivative near a pole or a zero of f at
z0. In either case we can write for z in a neighbourhood of z0

f (z) = (z − z0)ng(z),

for some holomorphic function g which does not vanish at z0. The exponent n 6= 0 is the
order of f in z0. It is positive in the case of a zero and negative in the case of a pole. For
z close to z0 the logarithmic derivative then yields

f ′(z)
f (z)

=
1

f (z)

(
n(z − z0)n−1g(z) + (z − z0)ng′(z)

)
=

n

z − z0

+
g′(z)
g(z)

.

As g(z0) 6= 0 we can conclude that f
′

f
has a simple pole with residue n at z0. The residue

theorem then immediately implies the following theorem.

Theorem 7.25 (Argument principle) Let D be an open and connected set and let f be
a meromorphic function on D. Let A ⊂ D be open. We assume that the boundary of A is
a closed piecewise C1 curve γ which is fully contained in D and that none of the zeros or
poles of f lie on γ.

Denote by ZA(f ) the number of zeros of f in A counting multiplicity and by PA(f ) the
number of poles counting multiplicity. Then we have

1

2πi

∫
γ

f ′(z)
f (z)

dz = ZA(f )− PA(f ).

Proof. This follows immediately from the discussion above. 2

The argument principle has a nice geometric interpretation. Indeed, as can be checked
easily using the chain rule, we have for any piecewise C1 curve γ that∫

γ

f ′(z)
f (z)

dz =

∫
f◦γ

1

z
dz.

Therefore, the argument principle states that ZA(f ) − PA(f ) is the winding number of
f ◦ γ about 0.
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Example 7.26 Consider f (z) = zn on the unit disc ∆ = {z ∈ C : |z| < 1}. The function
f has no poles and a zero of order n in 0, so that Z∆(f ) − P∆(f ) = n. The boundary of
∆ is given by the curve γ(t) = ei2πt, t ∈ [0, 1] and f ◦ γ(t) = ei2πnt. This curve winds
exactly n times around 0.

This interpretation has a remarkable consequence.

Theorem 7.27 (Rouché’s theorem) Let A ⊂ C be open and connected and let A ⊂ D
be open with boundary curve γ which is closed, piecewise C1, and fully contained in D.
Let f and g be two holomorphic functions on A. Then if for all z in the image of γ we
have |g(z)| < |f (z)|, then f and f + g have the same number of zeros in A.

Remark 7.28 Note that the assumption |g(z)| < |f (z)| implies that f and f+g both have
no zeros on the boundary curve γ.

Proof. Define the meromorphic function F (z) = f (z)+g(z)
f (z) = 1 + g(z)

f (z) . It is sufficient to
show that ZA(F )− PA(F ) = 0.

By the argument principle, ZA(F ) − PA(F ) is the winding number of F ◦ γ about 0.
But for all z in the image of γ we have by assumption that |F (z) − 1| < 1. Hence the
image of γ under F is contained in a ball of radius one around 1 and in particular the
winding number about 0 must be 0. 2

Example 7.29 Rouché’s theorem gives an easy way to calculate the number of zeros of
a given function in a given set without solving any complicated equations. For example,
assume we want to know how many zeros the function h(z) = 10z4 + exp(z)2 + (z2 + 1)
has in the unit disc. Solving the equation h(z) = 0 seems quite cumbersome. But if we
set f (z) = 10z4 and g(z) = exp(z)2 + (z2 + 1) , then we have for |z| = 1 that

10 = |f (z)| > e2 + 2 ≥ |g(z)|.

As f has 4 zeros in the unit disc (one zero of multiplicity 4), so does h = f + g. Of
course, this does not imply that h has a single zero of multiplicity four. The four zeros
will in general be at distinct points in the unit disc. ♣

Example 7.30 If we already know (for example by Rouché’s theorem) that a holomor-
phic function f has only a single zero in an open and connected set A (with boundary
curve γ as above), then the location of this zero can also be calculated using an integral.
If z0 denotes the location of the zero, then we have

z0 =
1

2πi

∫
γ

z
f ′(z)
f (z)

dz.

To see this, note that zf ′(z)
f (z) is holomorphic outside of z0 and at z0 it as a simple pole of

residue z0. Hence, the result follows from the residue theorem.
♣
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8 Sequences of holomorphic functions

8.1 Locally uniform convergence of holomorphic functions
In this section we treat convergence properties of holomorphic functions. Recall that in
real analysis one usually has to be very careful about which kind of convergence im-
plies which kind of behaviour of the limit. For example, let fn be a sequence of smooth
functions (say real valued) on Rn, converging uniformly to a function f . Then f will be
continuous but in general not more regular than that. In a way the most extreme statement
in this direction is the Stone-Weierstrass theorem which states that any continuous real
valued function on a compact subset of Rn can be approximated uniformly by polynomi-
als.

This situation is very different in the case of holomorphic functions. Before we state
the next theorem, recall that a sequence of functions fn : D → C, defined on an open
set D converges locally uniformly to f if for every compact set K ⊆ D the sequence of
restricted functions fn|K converges uniformly to f |K .

Theorem 8.1 (Weierstrass convergence theorem) Let D ⊂ C be an open and con-
nected set, and let fn ∈ H(D) be holomorphic functions on D. If fn converges locally
uniformly to a function f , then f is holomorphic on D.

Proof. Fix z0 ∈ D and a δ > 0 such that B̄δ(z0) ⊂ D. As complex-differentiability is a
local property it is sufficient to prove that f is holomorphic on Bδ(z0).

Recall that according to Morera’s theorem, Theorem 5.12, it is sufficient to show that
for any closed, piecewise C1-curve γ in Bδ(z0) we have∫

γ

f (z) dz = 0.

Indeed, Morera’s theorem is stated for boundaries of triangles, but of course if this is true
for any closed curve, then in particular for boundaries of triangles.

We have by the assumptions that for any n∫
γ

f (z) dz =

∫
γ

fn(z) dz︸ ︷︷ ︸
=0 as fn ∈ H(D)

+

∫
γ

(f (z)− fn(z)) dz︸ ︷︷ ︸
→0 as n→∞

by uniform convergence on B̄δ

.

Hence, the claim is proved. 2

We get the following even stronger statement.

Theorem 8.2 Let D ⊂ C be an open and connected set, and let fn be holomorphic
functions on D. If fn converges locally uniformly to a function f , then for every k ≥ 1
the k-th derivatives f (k)

n converge locally uniformly to f (k).

Proof. Let z0 ∈ D and δ > 0 be such that B2δ(z0) ⊆ D. It is sufficient to prove the
uniform convergence on the smaller ball Bδ(z0) (Exercise!).
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For any z ∈ Bδ(z0) we have that

f (k)
n (z)− f (k)(z) =

k!

2πi

∫
∂B2δ(z0)

fn(ξ)− f (ξ)
(ξ − z)k+1

dξ.

Noting that for z ∈ Bδ(z0) and ξ ∈ ∂B2δ(z0) we have |z − ξ| ≥ δ, we can conclude that,
uniformly for z ∈ Bδ(z0), we have

|f (k)
n (z)− f (k)(z)| ≤ k!

2π
(4πδ) sup

ξ∈B̄2δ(z0)
|fn(ξ)− f (ξ)| 1

δk+1
=

2k!

δk
sup

ξ∈B̄2δ(z0)
|fn(ξ)− f (ξ)|.

The quantity on the right hand side goes to zero as n goes to∞ by assumption. 2

Another remarkable property of sequences of holomorphic functions is that in the limit
the number of zeros cannot increase.

Theorem 8.3 (Hurwitz’ theorem) Let D ⊂ C be open and connected and suppose that
fn : D → C are holomorphic on D and converge locally uniformly to f (which is nec-
essarily a holomorphic function on D by Theorem 8.1). Suppose that, for some k ∈ N0,
none of the fn has more than k zeros (counting multiplicity). Then either f is constant or
f has at most k zeros (counting multiplicity).

Remark 8.4 (a) In particular, if the fn have no zeros, then either f is constant or it does
not have any zeros either.

(b) The number of zeros can decrease in the limit. For example, if

D = ∆ = {z ∈ C : |z| < 1}

and fn(z) := (z − 1 + 1
n

), then for any n the function fn has a zero in ∆. But fn
converge locally uniformly to f (z) = z−1 which does not have a zero in ∆ (because
the zero has “wandered out of the domain”). In the same way it is easy to construct
examples in which the number of zeros drops by an arbitrary natural number in the
limit.

�

Proof. Suppose that f is not constant. Then all its zeros are isolated (note that here we use
the fact that D is connected). Suppose that f has zeros of multiplicity m1,m2, . . . ,mK ,
at distinct points z1, z2, . . . , zK .

Let us also fix a (small) δ > 0 such that there are no zeros in the sets Bδ(zi) \ {zi} for
all i = 1, . . . , K. Let

ε := inf
i=1,...,K

inf
ξ∈∂Bδ(zi)

|f (ξ)| > 0

Then for all n large enough (say larger than a n0) we know that

sup
i=1,...,K

sup
ξ∈∂Bδ(zi)

|fn(ξ)− f (ξ)| < ε

2
,

so Rouché’s theorem 7.27 implies that fn also have exactly mi zeros in the balls Bδ(zi).
This argument shows that the number of zeros cannot go up in the limit. 2
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Corollary 8.5 The locally uniform limit of injective holomorphic functions fn (defined
on an open connected set D ⊂ C) is either constant or injective.

Proof. Assume that fn converge locally uniformly to f and that f is not constant and
not injective. Then there exists at least one pair z1 6= z2 with f (z1) = f (z2) =: w. In
particular, the function f (z) − w has at least two zeros in D. But this implies that the
function fn −w also has at least two zeros for n large enough (at least in a subsequence),
so the fn cannot be injective. 2

8.2 Compactness
Recall that any bounded sequence in Rn has the property that one can select a converging
subsequence. This property is crucial in many situations, for example, when proving that
a certain function admits a minimiser. Recall that a subset of an arbitrary metric space
that has the property that every sequence has a convergent subsequence is called compact.

For sequences of functions statements of this type are also very important (e.g. in the
calculus of variations) but in general one has to be much more cautious as the following
example illustrates.

Example 8.6 Consider the following sequence of continuous real valued functions on
[0, 1]: Let

f1(x) =

{
2x if 0 ≤ x ≤ 1

2
,

2− 2x if 1
2
< x ≤ 1,

i.e. f1 goes up from 0 to 1 on [0, 1
2
] as a straight line and down from 1 to 0 on [1

2
, 1]. Then

we can define recursively the functions

fn(x) =

{
fn−1(2x) if 0 ≤ x ≤ 1

2
,

fn−1(2x− 1) if 1
2
< x ≤ 1.

The function fn “goes up and down” on any dyadic interval of the form

[k2−n+1, (k + 1)2−n+1].

Of course, we have for any x ∈ [0, 1] and any n ∈ N that |fn(x)| ≤ 1. The sequence (fn)
is bounded in uniform norm.

Still, we claim that there is no subsequence of the (fn) that converges (locally) uni-
formly. To see that assume the opposite, that some subsequence (fni)i converges uni-
formly to a function f which is necessarily continuous. Then there exists a δ > 0 such
that for x ∈ [1

2
−δ, 1

2
+δ] we have |f (x)−f (1

2
)| ≤ 1

4
. On the other hand for i large enough

we have uniformly for x ∈ [1
2
− δ, 1

2
+ δ] that |fni(x) − f (x)| ≤ 1

4
. But this is a contra-

diction, because for i large enough a whole interval of the type [k2−ni+1, (k + 1)2−ni+1]
is contained in [1

2
− δ, 1

2
+ δ], and hence fni attains all values in [0, 1].

Remark 8.7 The important Arzela-Ascoli theorem states that a closed set A in the space
of continuous functions over a compact metric space is compact if and only if A it is
bounded and equicontinuous. Recall that equicontinuous means that for every ε > 0
there exists a δ > 0 such that for all x, y with d(x, y) < δ and for all f ∈ A we have
|f (x) − f (y)| < ε. The point of this assumption is that one can chose the same δ that
works for all f . This is what fails in Example 8.6.
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We will now see that the behaviour illustrated in Example 8.6 cannot appear for holomor-
phic functions.

Lemma 8.8 Let D ⊂ C be open and connected and for any n ≥ 1 let fn : D → C be
holomorphic on D. Assume that:

• The sequence (fn) is locally bounded i.e. for every compact set K ⊆ D there is a
constant C > 0 such that for all n ≥ 1 and for all z ∈ K

|fn(z)| ≤ C.

• There exists a dense subset D ⊂ D such that for every z ∈ D the sequence fn(z)
converges.

Then the whole sequence converges locally uniformly to a holomorphic function f .

Proof. Fix z0 ∈ D and δ > 0 small enough such that B2δ(z0) ⊂ D. It is sufficient to
prove (Exercise!) that for every ε > 0 there exists an N > 0 such that for all n ≥ N and
all z ∈ Bδ(z0) we have

|fn(z)− fm(z)| ≤ ε. (8.1)

Let a be any point in D ∩Bδ(z0). Then, by triangle inequality, we have that

|fn(z)− fm(z)| ≤ |fn(z)− fn(a)|+ |fn(a)− fm(a)|+ |fm(z)− fm(a)|.

Our aim is to derive a uniform control on the modulus of continuity of the fn (compare
Remark 8.7) that allows to give a uniform in n bound on the terms |fn(z) − fn(a)| that
only depends on |z − a|.

Let z, z′ ∈ Bδ(z0). Then we obtain from Cauchy’s integral formula (4.3) that for any
n

fn(z)− fn(z′) =
1

2πi

∫
∂B2δ(z0)

fn(ξ)
(ξ − z)

dξ − 1

2πi

∫
∂B2δ(z0)

fn(ξ)
(ξ − z′)

dξ

=
z − z′

2πi

∫
∂B2δ(z0)

fn(ξ)
(ξ − z)(ξ − z′)

dξ.

According to the assumptions there exists a C > 0 such that for all n and all z ∈ B2δ(z0)
we have |fn(z)| ≤ C. This yields that bound

|fn(z)− fn(z′)| ≤ |z − z′| 1

2π
(4πδ)

C

δ2
= |z − z′|2C

δ
. (8.2)

With the bound (8.2) in hand it is now straightforward to conclude: For a fixed ε > 0
there exists finitely many a1, . . . , aK ∈ D such that the open balls of radius εδ

6C
cover all

of B̄δ(z0). Also there exists a N > 0 such that for all n,m ≥ N and for all i = 1, . . . , K
we have |fn(ai)− fm(ai)| ≤ ε

3
.

Then for any fixed z ∈ Bδ(z0) there exists a ai with |z − ai| ≤ εδ
6C

and we get for
n,m ≥ N that

|fn(z)− fm(z)| ≤ |fn(z)− fn(ai)|︸ ︷︷ ︸
≤|z−ai| 2Cδ ≤

ε
3

+ |fn(ai)− fm(ai)|︸ ︷︷ ︸
≤ ε

3
by assumption on N

+ |fm(z)− fm(ai)|︸ ︷︷ ︸
≤ ε

3

≤ ε.

2
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An immediate consequence of this lemma is the following theorem.

Theorem 8.9 (Montel’s theorem) Every locally bounded sequence of holomorphic func-
tions on an open, connected set has a locally uniformly convergent subsequence.

Proof. Let (ai) be a dense subsequence of D. Then the sequence fn(a1) of complex num-
bers is bounded by assumption, and hence there exists a convergent (in C) subsequence,
denoted by f 1

n(a1). Plugging a2 into the functions f 1
n we get a new bounded sequence of

complex numbers that will again admit a convergent subsequence, denoted by f 2
n(a2). By

iterating this procedure we obtain sequences fmn of holomorphic functions such that for
everym and any i ≤ m the sequences (fmn (ai))n converge. Then the diagonal sequence fnn
converges in all points ai. By Lemma 8.8 the diagonal sequence fnn then also converges
locally uniformly. 2

Remark 8.10 (a) Note that it is not possible to remove the “local” from the statement of
Montel’s theorem. Take for example the sequence fn(z) = zn defined on ∆ = {z ∈
C : |z| < 1}. This sequence is clearly globally bounded, and it converges locally
uniformly to 0. But it does not converge uniformly.

(b) It is interesting to briefly discuss the connection to the Stone-Weierstrass theorem,
already mentioned above, at the beginning of this chapter. Let f be a continuous
function on [0, 1]. Imagine a rather rough function (say the values of a stock price
over a day), i.e. let us say that f is continuous but not differentiable. Of course, f
cannot be extended to a holomorphic function onto any open neighbourhood of the
interval [0, 1] in the complex plane, because then it would have to be smooth.

Nonetheless, f can be approximated uniformly on [0, 1] by polynomials. Of course,
these polynomials can be viewed as holomorphic functions in a small neighbourhood
D of [0, 1] in the complex plane. But it is not possible for the polynomials to converge
locally uniformly on D, because otherwise the limit would have to be holomorphic
and to coincide with f on [0, 1] which is impossible. Actually, by the same argument
the polynomials cannot even have a locally uniformly convergent subsequence. By
Montel’s theorem, we can conclude that the polynomials must be unbounded in any
small neighbourhood of [0, 1].

�

9 Some special functions

9.1 The Gamma function

Definition 9.1 For R(z) > 0 we can define the gamma function as

Γ(z) =

∫ ∞
0

tz−1e−t dt. (9.1)

Recall that tz is defined as tz := exp(log(t)z). The variable t is real valued and log
should be interpreted as the usual real valued logarithm on R+.
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Theorem 9.2 The Γ- integral (9.1) defines an holomorphic function on HR := {z ∈
C : R(z) > 0}. The k-th derivative is given by

Γ(k)(z) =

∫ ∞
0

tz−1 (log(t))k e−t dt.

We note that for fixed t > 0 the function z 7→ tz−1e−t is differentiable on all of C and
the k-th derivative is given by tz−1(log(t))ke−t. Hence the proof consists of justifying
the differentiation under the integral. The following lemma from real analysis is a key
ingredient to this end.

Lemma 9.3 Let f (t, z) be a real valued function defined on [t0, t1] × (a, b) for some
t0 < t1 and a < b. Assume that f is continuous. Assume furthermore, that ∂zf exists and
is continuous on all of [t0, t1]× (a, b). Then the function

g(z) =

∫ t1

t0

f (t, z) dt

is continuously differentiable on (a, b) and the derivative is given by

∂zg(z) =

∫ t1

t0

∂zf (t, z) dt.

Proof of Lemma 9.3 . Let z0 ∈ (a, b) and for simplicity assume z > z0 (the argument for
z < z0 is the same). According to the mean value theorem for every t ∈ [t0, t1] there
exists a ξ(t) ∈ [z0, z] such that for f (t, z)− f (t, z0) = ∂zf (t, ξ(t))(z − z0). Hence we get∣∣∣∣g(z)− g(z0)

z − z0

− ∂zg(z)
∣∣∣∣ =

∣∣∣∣ ∫ t1

t0

f (t, z)− f (t, z0)− ∂zf (t, z)(z − z0)
z − z0

dt
∣∣∣∣

≤
∫ t1

t0

sup
ξ∈[z0,z]

|∂zf (t, ξ)− ∂zf (t, z)| dt. (9.2)

Now, by assumption the function ∂zf (t, z) is continuous and hence it is uniformly contin-
uous on the compact set [t0, t1]× [z0− δ0, z0 + δ0] for any δ0 > 0 (which is small enough
to ensure that [z0 − δ0, z0 + δ0] ⊆ (a, b)). Hence, for any ε > 0 we can find a δ > 0 such
that for |z − z0| < δ we have uniformly in t that

sup
ξ∈[z0,z]

|∂zf (t, ξ)− ∂zf (t, z)| < ε.

For such z the right hand side of (9.2) is bounded by ε(t1− t0) which proves the differen-
tiability of g. The continuity of ∂zg follows in the same way. 2

The following conclusion for complex valued functions follows easily.

Lemma 9.4 Let f (t, z) be a complex valued function defined on [t0, t1] × D for some
t0 < t1 and for an open set D ⊂ C. Assume furthermore that for fixed t the function
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z 7→ f (t, z) is complex differentiable in D and that f as well as the complex derivative
∂zf (t, z) are continuous on all of [t0, t1]×D. Then the function

g(z) =

∫ t1

t0

f (t, z) dt

is holomorphic on D and the derivative is given by

∂zg(z) =

∫ t1

t0

∂zf (t, z) dt.

Proof of Lemma 9.4. Write g(z) = u(z)+iv(z). Then according to the previous Lemma (9.3)
both u and v are continuously differentiable in the sense of real analysis (simply consider
the functions for fixed real and imaginary part separately). The Cauchy-Riemann equa-
tions hold for fixed t and are preserved under integration. 2

With Lemma 9.4 in hand we are now ready to finish the proof of Theorem 9.2.

Proof of Theorem 9.2. For any N > 0 set

ΓN (z) =

∫ N

1
N

tz−1e−t dt.

Lemma 9.4 applied to (t, z) 7→ tz−1e−t implies that for any N the function ΓN is entire
and the k-th derivative is given by

Γ(k)
N (z) =

∫ N

1
N

tz−1 (log(t))k e−t dt.

In order to apply the Weierstrass convergence theorem, Theorem 8.1, we need to show
that the ΓN converge locally uniformly on the half-space HR := {z ∈ C : R(z) > 0}. To
this end we fix 0 < R1 < R2. We claim that ΓN converges uniformly on

{z ∈ C : R1 < R(z) < R2} .

To see this, we write for R1 < R(z) < R2,

|ΓN (z)− Γ(z)| ≤
∫ 1

N

0

|tz−1e−t| dt+

∫ ∞
N

|tz−1e−t| dt

≤
∫ 1

N

0

|tR1−1| dt︸ ︷︷ ︸
≤ 1
R1
N−R1

+

∫ ∞
N

|tR2−1e−t| dt.

The second term on the right hand side does not depend on the specific choice of z and it
goes to zero as N →∞. This finishes the proof of Theorem 9.2. 2
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An integration by parts (which can be justified easily by considering real and imagi-
nary part separately) shows that the Gamma function satisfies the functional equation:

Γ(z + 1) = zΓ(z),
Γ(1) = 1.

(9.3)

which yields that for every n ∈ N we have Γ(n + 1) = n!. We can use the functional
equation (9.3) to extend the Gamma function to the whole half plane. Indeed for any
R(z) > 0 and for any n ∈ N we have

Γ(z) =
Γ(z + n)

z(z + 1)(z + 2) . . . (z + n− 1)
. (9.4)

The right hand side of this equation extends to an meromorphic function on {z ∈ C : R(z) >
−n} with poles at 0,−1,−2, . . . ,−(n− 1), of order 1.

Theorem 9.5 The Gamma function extends to a meromorphic function on all of C. It has
poles at 0,−1,−2,−3, . . . of order 1 and residue

Res (Γ,−n) =
(−1)n

n!
.

Proof. Let n ∈ N0. Then using (9.3) and (9.4), we extend Γ via the right hand side of
(9.4) as

Γ(z) =
Γ(z + n+ 1)

z(z + 1) · · · (z + n)
R(z) > −n.

Thus Γ extends to a meromorphic function on C. The function has a pole at z = −n, n ∈
N0, of order 1 because

lim
z→−n

(z − (−n))
Γ(z + n+ 1)

z(z + 1) · · · (z + n)
=

(−1)n

n!
.

2

In the next section we give an alternative representation of the Γ-function as an infinite
product.

9.2 Infinite products

In this section we discuss general properties of infinite products of the type

∞∏
n=1

bn , bn ∈ C.

Before we develop that further , we discuss the following example which is important for
your upcoming homework sheet 4 (Exercise 16).
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Example 9.6 We shall show the claim

sin(z) = z
∞∏
k=1

(
1− z2

π2k2

)
The following list are useful hints which can be worked out as an exercise and to solve
the homework.

(i)
cot(z) = log(sin(z))′

(ii)

f (z) := cot(πz) =
cos(πz)
sin(πz)

is a meromorphic function with Pf = Zsin(πz). For all n ∈ Z, the function πf has a
pole at z = n:

lim
z→n

(z − n)π
cos(πz)
sin(πz)

= π
cos(πn)
π cos(πn)

= Res (πf, n) = 1.

Thus
cot(πz) =

1

z − n
+ power series in (z − n).

(iii)

g(z) := cot(z)− 1

z
=
z cos(z)− sin(z)

z sin(z)
.

The function g has poles at z = πn, n ∈ Z \ {0}, and

Res (g, nπ) = lim z → nπ(z−nπ)
z cos(z)− sin(z)

z sin(z)
=
nπ cos(nπ)− sin(nπ)
sin(nπ) + nπ cos(nπ)

= 1 .

Furthermore, (L’Hospital rule)

lim
z→0

g(z) = 0,

and thus g has a removable singularity at z = 0, and we put g(0) := 0. The Residue
theorem implies that

cot(z)− 1

z
=

∑
n∈Z\{0}

( 1

z − nπ
+

1

nπ

)
.

(iv)
1

z
+ lim

N→∞

( −1∑
k=−N

( 1

z − kπ
+

1

kπ

)
+

N∑
k=1

( 1

z − kπ
+

1

kπ

))
=

1

z
+ lim

N→∞

{ 2z

z2 − π2
+ · · ·+ 2z

z2 −N2π2

}
Thus

cot(z) =
1

z
+
∞∑
k=1

2z

z2 − π2k2
.
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♣

Definition 9.7 (a) An infinite product
∏∞

n=1wn of complex numberswn ∈ C converges
if only finitely many of the wn = 0 and if the sequence of partial products converges
with a non-vanishing limit, that is,

∞∏
n=1

wn := lim
N→∞

N∏
n=1

wn 6= 0 .

(b) The product
∏∞

n=1wn converges absolutely if there exists n0 ∈ N such that

∞∑
k=n0

log(wk)

converges.

Remark 9.8 (a) If only finitely many of the wn vanish we are relabelling the sequence
as follows: suppose wn0 = 0 is the last member of the sequence (wn)n∈N, that is,
wn 6= 0 for all n > n0. Then we just relabel (n0 + 1 7→ 1, n0 + 2 7→ 2, . . .) and denote
that sequence (wn)n∈N.

(b) Suppose (wn)n∈N converges, then

wn =

∏n
k=1 wk∏n−1
k=1 wk

→ 1 as n→∞,

as numerator and denominator have the same limit 6= 0.

(c) Recall CΠ = C \ {z ∈ C : I(z) = 0,R(z) ≤ 0}, and

log
(
reiθ
)

= log r + iθ θ ∈ (−π, π).

�

Proposition 9.9 (a) The infinite product
∏∞

n=1 wn with wn ∈ CΠ, n ∈ N, converges⇔∑∞
n=1 logwn converges.

(b)
∏∞

k=1 (1 + ak), ak ∈ C, converges absolutely⇔
∑∞

k=1|ak| converges.

Proof. (a) Suppose the series converges. Then

e
∑m
k=1 logwk =

m∏
k=1

wk
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converges to e
∑∞
k=1 logwk 6= 0 for m → ∞, and thus the product converges. Conversely,

suppose that the product converges, that is,

P∞ := lim
N→∞

PN 6= 0 , PN :=
N∏
n=1

wn.

This time, there is no simple application of the logarithm as the partial products could be
not all in CΠ. Choose n0 ∈ N such that∣∣∣ Pn

Pm
− 1
∣∣∣ < 1

2
, for all m,n ≥ n0,

and thus

|Pn − Pm| <
1

4
|P∞| <

1

2
|Pm| , for all m,n ≥ n0.

Therefore

Pm =
m∏
k=1

wk ∈ K K := {z ∈ C : |z − 1| < 1

2
} ,

and thus ensuring the convergence of log
(∏m

k=1 wk

)
=
∑

k≤m log(wk) in the limit m→
∞.

(b) Exercise! 2

Remark 9.10 We note that an absolutely convergent product vanishes if and only if at
least one of its factors vanishes. The assumption of absolute convergence is essential for
the last statement to be true. Consider for example the limit

lim
N→∞

N∏
n=1

1

n
= lim

N→∞

1

N !
= 0.

This product is of course not absolutely convergent. �

After these preliminary considerations about infinite products, we now pass to the product
representation of the Γ function. We have seen above that Γ has simple poles at all the non-
positive integers. Hence it seems like a reasonable guess that there may be a connection
between 1

Γ
and the product (1 + z)(1 + z

2
)(1 + z

3
) · · · . Unfortunately, this product fails to

converge. But it does converge if one modifies it slightly.

Lemma 9.11 The infinite product

H(z) =
∞∏
n=1

(
1 +

z

n

)
e−

z
n

converges absolutely and locally uniformly on all of C. In particular, H is an entire
function.
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Proof. For any z we can write e−
z
n = 1 − z

n
+ E(z), with an error term that is bounded

locally uniformly in z by |E(z)| ≤ Cz2

n2 . Hence, we can write∣∣∣(1 +
z

n

)
e−

z
n − 1

∣∣∣ =
|z|2

n2
+
(

1 +
|z|
n

)
E(z).

This quantity is summable locally uniformly in z. 2

Corollary 9.12 The functions

GN (z) = ze−z logN
N∏
n=1

(
1 +

z

n

)
= ze−z(logN−∑N

n=1
1
n

)
N∏
n=1

(
1 +

z

n

)
e−

z
n

converge locally uniformly as N →∞ to an entire function G.

Proof. It only remains to observe that

lim
N→∞

N∑
n=1

1

n
− logN = γ,

where γ is the Euler-Mascheroni constant, whose approximate value is

γ ≈ 0, 577215664901532860606512 . . . .

2

We finally get the desired product form for the Γ function.

Theorem 9.13 For any z ∈ C \ {0,−1,−2,−3, . . .} we have

1

Γ(z)
= G(z) = lim

N→∞

N−z

N !
z (z + 1) (z + 2) . . . (z +N ) . (9.5)

In particular we get the following.

Corollary 9.14 The Γ function has no zeros.

We are not going to provide a full proof of Theorem 9.13 but we are only going to give a
sketch. For the details we refer the reader to [FBF05].

Proof of Theorem 9.13 (Sketch) . By induction over N it is easy to check that

• GN (1) = (1 + 1
N

),

• zGN (z + 1) = z+N+1
N

GN (z).

Hence, by passing to the limit N → ∞ we get 1
G(1) = 1 and 1

G(z+1) = z
G(z) . Furthermore,

one can check that | 1
G
| is bounded in the strip {z ∈ C : 1 ≤ R(z) ≤ 2}. Due to a theorem

of Wielandt (which was presented in an exercise) this already characterises the Γ function.
2
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There are many more nice identities for the Γ function. We are going to give one more of
these with a sketch of proof. Again, we refer the reader to [FBF05] for the details.

Theorem 9.15 For every z ∈ C \ Z we have

Γ(z) Γ(1− z) =
π

sin(πz)
. (9.6)

Proof (Sketch). As the Γ function has poles of order one at all the non-positive integers,
the product on the left hand side of (9.6) has simple poles at all integers. Furthermore, the
functional equation of the Γ function implies that this product is odd. To see this write

Γ(−z) Γ(1 + z) =
(Γ(1− z)
−z

)
zΓ(z).

A similar calculation shows that for n ∈ Z we have Γ(z + 2n) = Γ(1 − z − 2n). An
optimistic reader might start to believe at this point that (9.6) could be true.

In order to show this, consider the function

h(z) = Γ(z) Γ(1− z)− π

sin(πz)
.

All the singularities at integers are removable for h and therefore h can be extended to an
entire function. Furthermore, h inherits the 2Z periodicity from Γ(z) Γ(1− z) and π

sin(πz)
.

A calculation shows that |h| is bounded in {z ∈ C : 1 < R(z) < 3}. As h is periodic this
implies that h is bounded overall, and hence it is constant by Liouville’s theorem. As h is
also odd it has to be zero. 2

9.3 The ζ function

For any z ∈ C with R(z) > 1 we can define the Riemann zeta function as

ζ(z) =
∞∑
n=1

1

nz
. (9.7)

As above the power nz can simply be defined as nz := exp(log(n)z) and poses no problem
at all. This also shows that any partial sum of ζ is a holomorphic function and as the sum
converges locally uniformly, the zeta function is holomorphic on {z ∈ C : R(z) > 1}.
The zeta function is one of the central objects in analytic number theory, because of its
connection with prime numbers that will be illustrated in the following theorem.

Theorem 9.16 For any z with R(z) > 1 we have

1

ζ(z)
=
∏
p∈P

(
1− 1

pz

)
.

Here P = {2, 3, 5, 7, 11, . . .} denotes the set of prime numbers.
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Proof. We have the obvious bound∑
p∈P

1

|pz|
≤
∑
n∈N

1

nR(z) <∞

and hence the infinite product converges absolutely.
We recalling the definition of the ζ function in (9.7) we get(

1− 1

2z

)
ζ(z) =

(
1 +

1

2z
+

1

3z
+

1

4z
+

1

5z
+

1

6z
+ . . .

)
−
( 1

2z
+

1

4z
+

1

6z
+

1

8z
+

1

10z
+ . . .

)
=1 +

∞∑
n=3
n odd

1

nz
.

Then adding the next factor we get(
1− 1

3z

)(
1− 1

2z

)
ζ(z) =

(
1 +

1

3z
+

1

5z
+

1

7z
+

1

9z
+ . . .

)
−
( 1

3z
+

1

9z
+

1

15z
+

1

21z
+ . . .

)
=1 +

∑ 1

nz
,

where the sum is over all odd n > 1 that are not divisible by 3. If we iterate this procedure
we obtain for the N -th prime number∣∣∣∣(1− 1

pzN

)
· · ·
(

1− 1

3z

)(
1− 1

2z

)
ζ(z)− 1

∣∣∣∣ ≤∑∣∣∣∣ 1

nz

∣∣∣∣,
where the sum on the right hand side goes over all natural numbers n > pN that are not
divisible by any of the prime numbers 2, 3, . . . , pN . This sum converges rapidly to 0 as
N →∞ which yields the result. 2

As in the case of the Γ function we get the following conclusion from the product repre-
sentation.

Corollary 9.17 The ζ-function does not have any zeros in {z ∈ C : R(z) > 1}.

Proof. None of the factors in the convergent product is zero. 2

As a (modest) number theoretic application of this we obtain the following result.

Theorem 9.18 We have ∑
p∈P

1

p
=∞.
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Remark 9.19 It is of course easy and well known since ancient times that there are in-
finitely many primes. This stronger statement is not as easy to prove by purely number
theoretical methods. The connection with the ζ function allows to obtain this result with-
out much effort.

Proof of Theorem 9.18. Assume the contrary, namely that
∑

p∈P
1
p
<∞. Hence the prod-

uct ∏
p∈P

(
1− 1

p

)
= exp

(∑
p∈P

log
(

1− 1

p

))
converges absolutely to a value x > 0. By monotonicity it is easy to see that for any z > 1
we have

x <
∏
p∈P

(
1− 1

pz

)
=

1

ζ(z)
.

But the expression on the right hand side converges to 0 as z ↓ 1 which yields a contra-
diction. 2

We will now discuss that the ζ function can be extended to a meromorphic function on all
of C. We start by the following lemma that establishes a connection between the ζ and
the Γ function.

Lemma 9.20 For all z with R(z) > 1 we have

ζ(z) =
1

Γ(z)

∫ ∞
0

tz−1e−t

1− e−t
dt. (9.8)

Proof. For R(z) > 1 the integral converges and describes a holomorphic function. The
proof of this fact follows in the same way as the calculation for the Γ integral in Theo-
rem 9.2 above. Note that the denominator of the integrand diverges like 1

t
near 0 so that

the stronger condition R(z) > 1 is necessary to ensure convergence.
For any n ∈ N and for R(z) > 0 we observe that∫ ∞

0

tz−1e−nt dt = n−z
∫ ∞

0

(nt)z−1e−nt n dt = n−z
∫ ∞

0

tz−1e−t dt = n−z Γ(z).

Summing over n we obtain for R(z) > 1

ζ(z) =
∞∑
n=1

1

nz
=

1

Γ(z)

∞∑
n=1

∫ ∞
0

tz−1e−nt dt.

It remains to interchange the infinite sum with the integral. To this end we write for finite
N

N∑
n=1

∫ ∞
0

tz−1e−nt dt =

∫ ∞
0

tz−1 e−t

1− e−t
(1− e−Nt) dt

=

∫ ∞
0

tz−1 e−t

1− e−t
dt−

∫ ∞
0

tz−1 e−t

1− e−t
e−Nt dt.

The first integral already has the desired form. The second integral goes to zero as N →
∞ (either by the dominated convergence theorem or by performing a simple estimate by
hand). 2
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At first glance the expression (9.8) does not seem to help us to extend the ζ function to
a larger domain. Indeed, the integral converges exactly for those values where the sum
(9.7) converges as well. The key observation is that for z with R(z) < 1 the integral in
(9.8) diverges because of a blowup of the integrand near zero. There is no integrability
problem at∞. The following definition elegantly circumvents this problem by replacing
the integral to zero by an integral over a contour that surrounds zero with a small but
strictly positive radius.

This contour is defined as follows: Fix 0 < δ < ε < 2π. Then the so called Hankel
contour Cε,δ is the following curve

Cε,δ(t) =


−t+ iδ if t ∈ (−∞,−ε̃],
εeiπα(t) if t ∈ (−ε̃, ε̃),
t− iδ if t ∈ [ε̃,∞).

Here, ε̃ is the real part of the point z at the intersection of the circle {z ∈ C : |z| = ε}
with the half-line {z ∈ C : I(z) = δ, R(z) > 0} and α(t) is the affine reparametrisation
of the interval (−ε̃, ε̃) that ensures that the curve surrounds the origin once in positive
orientation and is continuous at ±ε̃. The precise form of ε̃ and α does not matter for us.

For any fixed z ∈ C we define the function

u(w) =
(−w)z−1e−w

1− e−w
.

Note the resemblance of this function with the integrand in (9.8). Here the function
(−w)z−1 is defined as exp(log(−w)(z − 1)) where log denotes the principal branch of
the complex logarithm. Therefore, u is defined on C \ [0,∞) with a discontinuity near
the positive real axis. The function u has simple poles at all 2nπi for n ∈ Z \ {0}.

Finally, we define the Hankel function

Hε,δ(z) =

∫
Cε,δ

u(w) dw. (9.9)

As before, the integral over the contour with infinite length is to be interpreted as a limit
of suitable approximations. The integral converges for all z ∈ C and constitutes an entire
function. Indeed, the term e−w enforces rapid convergence to zero “at∞” and there is no
convergence problem near zero, as the Hankel contour stays away from the singularity of
u near 0.

The value of Hε,δ does not depend on the precise value of ε, δ indeed, by changing
them (as long as 0 < δ < ε < 2π) the contour does not cross any singularities and hence
the value of the integral does not change. Hence, we can and will drop the indices ε and
δ in what follows.

Proposition 9.21 For R(z) > 1 we have

ζ(z) =
−H(z)

2i sin(πz) Γ(z)
. (9.10)
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Proof. For R(z) > 1 and fixed ε, δ we can write

H(z) = lim
ε,δ→0

(∫ ∞
ε̃

exp ((z − 1) log(−t− iδ))e−(t+iδ)

1− e−(t+iδ) dt

+

∫ ∞
ε̃

exp ((z − 1) log(−t+ iδ))e−(t−iδ)

1− e−(t−iδ) dt+

∫ 2π−δ̃

δ̃

(−εeiθ)z−1

1− e−εeiθ iεe−εeiθ
dθ

)
=:I + II + III. (9.11)

Here in the third term III δ̃ is an appropriate angle (depending on ε, δ). The exact value
does not matter.

We have observed above that the value of the Hankel function does not depend on
the precise choice of ε, δ as long as ε < 2π. We can thus let ε and δ go to zero without
changing the value of H(z).

Using the assumption that R(z) > 1 we see that the term III goes to zero as ε goes
to zero (uniformly in δ). Indeed, we have

| III | ≤ C2π
εR(z)−1

ε
ε

for a suitable constant C. In this estimate we make use of the fact that e−εeiθ is bounded
for ε small enough and that for ε > 0 small enough |1−e−εeiθ | can be bounded from below
uniformly in θ by Ĉε for a suitable constant Ĉ. The fact that III disappears as we let ε
go to zero corresponds exactly to the convergence of the integral in (9.8) for R(z) > 1.

Let us now consider the terms I and II . At first glance, the integrands look the same as
δ goes to zero, and one might think that the integrals cancel in this case. This impression
is wrong because of the jump of the principal branch of the logarithm which was used to
interpret the term (−w)z−1. Indeed, for the log-term in I we get

log(−t− iδ) = log(
√
t2 + δ2) + i(−π + δ̂)

where δ̂ is a suitable angle (depending on t, δ) - again the precise value does not matter.
In the same way the log-term in II reads

log(−t+ iδ) = log(
√
t2 + δ2) + i(+π − δ̂).

Both expressions have the same real part, but there is a jump of 2π − 2δ̂ in the imaginary
part.

Letting ε, δ go to zero (we leave the justification of this to the reader) we obtain

H(z) = lim
ε,δ→0

I + II = (−e−π(z−1) + eiπ(z−1))
∫ ∞

0

tz−1e−t

1− e−t
dt.

Noting that (−e−π(z−1) + eiπ(z−1)) = −2i sin(πz) and recalling (9.8) we obtain the desired
conclusion. 2

Corollary 9.22 The ζ function can be extended to a holomorphic function on C \ {1}. At
1 it has a simple pole with residue 1.
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Proof. We already know that ζ is holomorphic for R(z) > 1. Then equation (9.10)
gives a way to extend ζ . Indeed, as observed above H(z) is an entire function and so
is sin. The only zeros of sin(πz) are the integers. The Γ function is holomorphic on
C\{0,−1,−2,−3, . . .} and does not have any zeros. Hence (9.10) defines a holomorphic
extension of ζ to C \ {1, 0,−1,−2,−3,−4, . . .}.

For the non-negative integers −n for n ∈ N0 we note that Γ has a pole of order one
and sin(πz) has a zero of order one. Hence, the product, has a nonzero extension to those
points. This implies that the singularities of ζ at these points are removable.

It remains to treat the singularity at 1. For z = 1 consider the description of the Hankel
function given in (9.11). If z = 1, the term (−w)z−1 in the definition of u is constant.
In particular, there is no discontinuity for u on the positive real axis. Then (using the
notation from (9.11)) it is easy to see that limε,δ→0 I + II = 0. But for z = 1 the term
III does not vanish as ε, δ go to zero. Indeed, for fixed ε and δ → 0 we get

III =

∫
∂Bδ(0)

e−w

1− e−w
= 2πi

by the Residue theorem.
Hence, we can conclude that

res(ζ, 1) = lim
z→1

(z − 1)
2i sin(πz)

−H(z)
Γ(z)

=
1

−2πi
−2πi

1
= 1.

2

We close the discussion of the ζ function by stating without proof that, like the Γ
function, it satisfies a functional equation. Indeed for any z ∈ C \ {0, 1}

ζ(1− z) = 2ζ(z) Γ(z) cos (
π

2
z)(2π)−z. (9.12)

The proof of this formula is a nice application of the residue theorem which the reader
should have seen on the exercise sheets. A complete proof can be found, for example, in
[Ahl78] or in [GK06]. It follows immediately from this formula that the only zeros of ζ
outside of the strip {z : 0 ≤ R(z) ≤ 1} are −2n for any n ∈ N. These are the so called
trivial zeros of the zeta function. Another consequence of (9.12) is that ζ(−1) = −1

12
.

Plugging this into the definition of the ζ- function (9.7) (which is of course not at all
justified) formally gives the nice (and of course not to be taken literally) identity

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + . . . =
−1

12
.

The question about different zeros leads is one of the most famous open problems in
all of mathematics.

Conjecture 9.23 (Riemann hypothesis) All nontrivial zeros z of the Riemann zeta func-
tion have R(z) = 1

2
.
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10 The Riemann mapping theorem

In this chapter we will study one of the deepest and important results in complex analysis,
the Riemann mapping theorem. This requires a more general version of connectedness
when we define simply-connected sets below. We first recall the following definition on
conformal mappings.

Definition 10.1 Let U and V be to open subsets of C. We say that U and V are confor-
mally equivalent if there exists a ϕ : U → V with the following properties:

• ϕ is holomorphic,

• ϕ is a bijection from U to V ,

• the inverse mapping ϕ−1 : V → U is holomorphic.

We call such a map ϕ conformal.

Actually, the third assumption follows from the first two. Indeed, if ϕ : U → V is
injective, then ϕ′ cannot vanish on U (see the discussion in Section 5.2). Then the inverse
function theorem implies that automatically ϕ−1 is holomorphic.

Remark 10.2 The reader has certainly already encountered similar concepts of equiva-
lence in geometry. In school, one learns that two subsets U and V (e.g. triangles) of
C = R2 are congruent if there exists a mapping of the type ϕ(z) = αz + β for α, β ∈ C
with |α| = 1 such that U = ϕ(V ). In topology there is a much less rigid concept: Two sets
U and V are homeomorphic if there exists a continuous bijective mapping with continu-
ous inverse from U to V . Conformal equivalence is in between these two concepts in the
sense that any two congruent sets are conformally equivalent, and any two conformally
equivalent sets are homeomorphic. �

Example 10.3 The unit disc ∆ = {z ∈ C : |z| < 1} and all of C are not conformally
equivalent. This follows from Liouville’s theorem, 5.8, because any holomorphic map-
ping from C→∆ is bounded and hence constant. ♣

Example 10.4 Liouville’s theorem does not imply that unbounded sets cannot be confor-
mally equivalent to bounded sets. Consider for example the sets D = {z ∈ C : I(z) > 0}
and V = ∆. The Möbius transform ϕ(z) = z−i

z+i
is a conformal map from D to ∆. ♣

Example 10.5 (The Koebe function) Consider the function

k(z) =
z

(1− z)2
.

We have

k(z) = z ∂z

(
1

1− z

)
= z∂z

∞∑
k=0

zk = z +
∞∑
k=2

kzk.
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On the other hand, we can write

k(z) =
1

4

(
1 + z

1− z

)2

− 1

4
. (10.1)

Equation (10.1) shows that k is a conformal mapping onto its image. Indeed, k is the
composition of the mappings f1 : z 7→ 1+z

1−z , f2 : z 7→ 1
4
z2, and f3 : z 7→ z − 1

4
, that is,

k(z) = f3(f2(f1(z))). The function f1 is a Möbius transformation and it maps the unit
disc conformally to the half space H = {z ∈ C : R(z) > 0}. The function f2 is of
course not injective on all of C but restricted to H it is, and it maps H to the “slit plane”
C− = C \ {λ ∈ R : λ ≤ 0}. Finally, f3 is a shift. This shows that k is injective on ∆, and
the image of the unit disc is the slit plane C \ {λ ∈ R : λ ≤ −1

4
}. ♣

Before we continue our discussion of conformal equivalence, let us recall a notion
from topology.

We start by observing that we can integrate holomorphic functions over arbitrary con-
tinuous curves without any further regularity assumption. We give a brief sketch this, in
order to avoid carrying unnecessary regularity assumptions through the topological dis-
cussion.

Indeed, let D ⊆ C be open and let γ : [t0, t1] → D be a continuous curve. Then
a simple compactness argument shows that we can always find a partition t0 = s0 <
. . . < sN = t1 and a radius r > 0 such that for each si the ball Br(γ(si)) is fully
contained in D and such that each ball Br(γ(si)) contains the full path γ([si, si+1]). Let
now f : D → C be a holomorphic function. Of course, we cannot in general assume that
f has an antiderivative on all of D. But the balls Br(γ(si)) are convex (and in particular
star shaped), so f does have an antiderivative Fi on each of these balls. Then we define

∫
γ

f (z) dz =
N−1∑
i=0

Fi(zi+1)− Fi(zi). (10.2)

Each of the Fi is only determined uniquely up to an additive constant, but the difference
that appears in (10.2) does not depend on the specific choice. According to the chain rule,
this definition coincides with the original definition if γ is piecewise C1. We leave it to
the reader check that the value of (10.2) does not depend on the specific choice of the si
and r > 0. Furthermore, the reader can convince himself that the Cauchy theorem and
the Residue theorem are still valid if one removes the C1 assumption on the curves.

Definition 10.6 (Homotopic) LetD be a subset of C and let γ1, γ2 : [t0, t1]→ D be two
continuous curves inD with the same endpoints, i.e. γ1(t0) = γ2(t0) and γ1(t1) = γ2(t1).
Then γ1 and γ2 are called homotopic if there exists a continuous mapping h : [0, 1] ×
[t0, t1]→ D such that for all t ∈ [t0, t1] and all s ∈ [0, 1]

h(0, t) = γ1(t), h(1, t) = γ2(t), h(s, t0) = γ1(t0), and h(s, t1) = γ1(t1).

Such a maping h is called a homotopy.
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Remark 10.7 The concept of homotopy is related to homology that we already encoun-
tered above. Indeed, we will see below that if γ1 and γ2 are homotopic in D, then the
concatenation of γ1 and the inverse of γ2 does not wind about any point in the comple-
ment of D. The inverse implication is not true. �

Theorem 10.8 Let γ1 and γ2 be homotopic in an open set D and let f : D → C be
holomorphic in D, i.e. f ∈ H(D). Then∫

γ1

f (z) dz =

∫
γ2

f (z) dz.

Proof. Let h : [0, 1] × [0, 1] → D be a homotopy of γ1 and γ2. Then for τ ∈ [0, 1] we
define a closed curve

στ (t) =

{
γ1(t) if t ∈ [0, 1],
h(τ, 2− t) if t ∈ [1, 2].

We want to show that
∫
σ1
f (z) dz = 0. It is obvious that

∫
σ0
f (z) dz = 0 - the curve σ1

follows along γ1 once and then again with opposite orientation.
We claim that the mapping τ 7→

∫
στ
f (z) dz is locally constant. More precisely, we

will establish that for every τ ∈ [0, 1] there exists an ε > 0 such that for τ̂ ∈ [0, 1] with
|τ − τ̂ | < ε we get ∫

στ

f (z) dz =

∫
στ̂

f (z) dz.

To see this we observe that for any subdivision 1 = s0 < s1 < . . . < sN = 2 we get∫
στ

f (z) dz −
∫
στ̂

f (z) dz =
N−1∑
n=0

∫
γn

f (z) dz,

where γn is the boundary of the image under h of the square with corner (τ, sn), (τ, sn+1),
(τ̂ , sn+1), and (τ̂ , sn). The continuity of h implies that for ε small enough the subdivision
can always be made fine enough to ensure that each of the γi is fully contained in a ball
that is fully contained in D. For such a choice the integrals over the γi are all equal to 0.

2

Definition 10.9 A connected subset D of C is called simply connected if any two con-
tinuous curves γ1 and γ2 with the same endpoints are homotopic.

Remark 10.10 (a) Intuitively speaking, D is simply connected if it has no holes.

(b) Convex sets and more generally star shaped sets are simply connected.

(c) There is an equivalent characterisation of simply connected sets in terms of closed
paths: A set D is simply connected if and only if every closed path is homotopic to a
constant path.
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(d) In particular, if D is simply connected and γ is a closed curve in D, then γ is homo-
topic to a constant curve. For any z0 ∈ C \D the function z 7→ 1

z−z0 is holomorphic
in D. Hence, the winding number about any point in the complement of D is 0. This
yields the following version of Cauchy’s theorem.

(e) If D is simply connected and V is homeomorphic to D, then V is also simply con-
nected. This follows immediately from the definition. One has to be a bit careful
though: It is in general not true that the continuous image of a simply connected set
is simply connected. Consider for example the set {z ∈ C : R(z) > 0}. This set is
convex and hence simply connected. But the image under the mapping, say z 7→ z3

is C \ {0} which is not simply connected.
�

Theorem 10.8 immediately allows to state the following version of Cauchy’s theorem.

Theorem 10.11 (Cauchy’s theorem for simply connected domains) LetD ⊂ C be open
and simply connected. Then for any closed curve γ in D and for any holomorphic
f : D → C we have ∫

γ

f (z) dz = 0.

Proof. It suffices to observe that every closed curve is homotopic to a constant curve. 2

In particular, D = C \ {0} is not simply connected. To see this, it suffices to observe that
the z 7→ 1

z
is holomorphic in D but∫

∂∆

1

z
dz = 2πi 6= 0 .

Lemma 10.12 Let D ⊂ C be open and simply connected and let f : D → C \ {0} be
holomorphic. Then there exists a holomorphic function g : D → C such that

f (z) = eg(z) for z ∈ D.

The function g is unique up to an additive constant 2πin for all n ∈ Z. We say that f has
a holomorphic logarithm.

Before we prove the lemma, let us collect some useful facts.

Remark 10.13 (a) Lemma 10.12 implies the existence of a holomorphic square root of
f . Indeed, set

h(z) = e
1
2
g(z) .

Then h(z)2 = f (z) on D.

(b) If 0 /∈ D the statement can in particular be applied to the holomorphic function
f (z) = z.

(c) Note that this property is not true for the not simply connected set C \ {0}.
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(d) It turns out that this seemingly harmless property already characterises simply con-
nected sets. Indeed, the existence of square roots is the only property of a simply
connected set that we use in the proof of the Riemann mapping theorem.

�

Proof. Fix an arbitrary z0 ∈ D. As f (z0) 6= 0 by assumption, it is always possible to find
a w0 ∈ C such that exp(w0) = f (z0). This w0 is uniquely determined up to a multiple
of 2πi. Let us fix such an w0 and set g(z0) = w0. Now for any other point z ∈ D, let γ
be a curve in D that connects z0 to z (such a curve always exists because D is open and
connected) and set

g(z) = w0 +

∫
f◦γ

1

z
dz = w0 +

∫
γ

f ′(z)
f (z)

dz.

Of course the choice of γ is by no means unique, but due to the simple connectedness of
D, any two different curves give the same value for g(z). The function g one obtains in
this way is holomorphic and its derivative is f ′(z)

f (z) .
It remains to establish that g satisfies exp(g(z)) = f (z). We calculate(

f (z)e−g(z)
)′

= f ′(z)e−g(z) − f (z)e−g(z)f
′(z)
f (z)

= 0.

Hence f (z)e−g(z) is constant on D. If we denote the value by α we get

α = f (z0)e−g(z0) = f (z0)e−w0 = 1.

In order to define the square root, it suffices to set r(z) = exp (1
2
l(z)). 2

The following surprising theorem is the main result of this chapter.

Theorem 10.14 (Riemann mapping theorem) Let D ⊂ C be open, simply connected
and D 6= C. Then D is conformally equivalent to the unit disc ∆ = {z ∈ C : |z| < 1}.

Remark 10.15 Already the topological implication of the Riemann mapping theorem is
not trivial. It implies that any simply connected D ⊂ C is homeomorphic to the unit disc.
Note that here D = C is allowed as can be checked easily. �

Proof. We split the proof into two main steps.

Step 1. Let D 6= C be open and simply connected. We start by establishing that there
exists an injective holomorphic mapping ϕ : D → ∆. Of course, such a mapping is
automatically a conformal transformation onto its image, so that this will imply that D is
conformally equivalent to a subset of ∆. This claim is trivial if D is fully contained in
BR(0) for any R – indeed in that situation ϕ(z) = z

R
does the job. It is also easy to find

such a ϕ, if there is only a single w0 ∈ C and a δ > 0 such that Bδ(w0) ∩D = ∅. In this
case one can simply set ϕ(z) = δ

z−w0
. Hence, by composing with this such a map it is

sufficient to show that there exists a ϕ such that there exists a ball Bδ(w0) such that ϕ(D)
does not intersect Bδ(w0).
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In order to establish this, we can assume without loss of generality that 0 /∈ D (this is
the only place, where we need that D 6= C). If this is not the case we can always translate
D. Then according to Lemma 10.12 we can find an holomorphic branch of the square
root r on D. We claim that r has the desired properties. First of all r is injective, because,
r(z1) = r(z2) implies z1 = r(z1)2 = r(z2)2 = z2. Also, if w = r(z) for some z ∈ D than
−w cannot be in the image of D. Actually, assume that −w = r(z′) for some z′. Then
z′ = (−w)2 = w2 = z which is a contradiction, because z cannot be mapped both to
w and −w. But then we are done: by the open mapping theorem, the image of D under
r must contain at least some ball Bδ(z0) which implies that the ball Bδ(−z0) is disjoint
from the image of D. (Exercise: Check that we could have taken the logarithm instead of
the square root.)

By Step 1 we can and will assume from now on that D ⊂ ∆ and that 0 ∈ D (if 0 is
not in D, we can always contract D by a small factor and then translate it). We consider
the following set of functions

F = {f : D →∆, f holomorphic and injective, f (0) = 0}.

It is clear that F is not empty, because the mapping f (z) = z always satisfies the required
assumptions. In Steps 2 and 3 we will establish that F contains at least one surjective
function.

Step 2. We will establish the following claim: Assume that f ∈ F is not surjective. Then
there exists another function F ∈ F with |f ′(0)| < |F ′(0)|.

To see this, assume that f ∈ F and that w0 /∈ f (U ). The Möbius transformation
ϕ0(z) = z−w0

1−w̄0z
is a bijection from ∆ to ∆ and w0 is the only point in ∆ that is mapped

to 0 under ϕ0. Hence, the function ϕ0 ◦ f : U → ∆ is injective and does not attain the
value 0. Also ϕ ◦ f is a conformal mapping onto its image which is in particular simply
connected. By Lemma 10.12 there exists an holomorphic branch of the square root on
ϕ ◦ f (U ) which we denote by r. It follows as in Step 1 that r is injective. Denote by
w1 = r(−w0) = r(ϕ0(f (0))) and define one more Möbius transform, ϕ1(z) = z−w1

1−w̄1z
.

Then the mapping F := ϕ1 ◦ r ◦ ϕ0 ◦ f is holomorphic and injective, it maps U to ∆
and F (0) = 0, i.e. F ∈ F . We claim that |F ′(0)| > |f ′(0|. Actually, to see this denote
by h(z) = ϕ−1

0 ((ϕ−1
1 (z))2). Note that h maps ∆ to ∆ with h(0) = 0. Also h cannot be

a rotation because it is not injective (the Möbius transforms are bijections and the map
z 7→ z2 is two to one). Hence by Schwarz’ lemma, Theorem 5.26, |h′(0)| < 1. Therefore,
we have |f ′(0)| = |h′(0)| |F ′(0)| < |F ′(0)|, which shows the claim.

Step 3. To finish the prove of the Riemann mapping theorem, it is left to show that there
exists an F ∈ F with maximal |F ′(0)|. More precisely, we will establish, that there exists
an F ∈ F such that

|F ′(0)| = sup{|f ′(0)| : f ∈ F}. (10.3)

Here we will be able to make use of several facts that we have discussed throughout the
course.

First we need to show that the set on the right hand side of (10.3) is indeed bounded.
To see this, let δ be small enough to ensure that B̄δ(0) ⊆ U . Then by Cauchy’s integral
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formula (or the explicit expression for the Taylor coefficients of f in (5.1)) we have

|f ′(0)| =
∣∣∣∣ 1

2πi

∫
∂Bδ(0)

f (z)
z2

dz

∣∣∣∣ ≤ 1

δ
.

Hence, the supremum in (10.3) is finite. Let us denote it by S.

Let fn be a sequence in F with |f ′n(0)| ↑ S. By Montel’s theorem, Theorem 8.9, there
exists a locally uniformly convergent subsequence. After relabelling we will still denote
it by fn and its limit by f . We claim that f ∈ F with |f ′(0)| = S.

First of all, f is holomorphic and f (0) = 0. By Theorem 8.2 f ′n converge locally
uniformly to f ′ which implies the |f ′(0)| = S. This shows that f cannot be constant and
hence, by Hurwitz’ theorem, Theorem 8.3 and Corollary 8.5, f is injective. Finally, as
the uniform limit of the fn we have |f (z)| ≤ 1 for all z ∈ ∆. But by the open mapping
theorem, Theorem 5.23, f (∆) ⊆ ∆. Hence, f ∈ F with maximal first derivative in
0. This finishes the proof of the claim, and hence the proof of the Riemann mapping
theorem. 2

Remark 10.16 We cannot expect the map ϕ in the Riemann mapping theorem to be
unique. But if we fix any z0 in D, there exists a unique conformal mapping ϕ : D → ∆
with ϕ(z0) = 0 such that ϕ′(z0) is real and positive. (Exercise!) �
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Open mapping theorem, 52
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Picard’s theorem, 66
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removable singularity, 58
residue, 73
Residue theorem, 74, 79
Riemann hypothesis, ii, 98
Riemann mapping theorem, 103
Riemann zeta function, ii, 93
Riemann’s removable singularity theorem,

65
Rouché’s theorem, 80

Schramm-Loewner-Evolution (SLE), ii
Schwarz lemma, 54
Schwarz reflection principle, 49
Schwarz-Pick lemma, 55, 57
simple, 27
simply connected, 101
Smith diagram, 14
star shaped, 37
stereographic projection, 7
Sufficient criterion for complex-differentiability,

22

Taylor series, 44
Taylor’s theorem, 42

unit disc, 6

Weierstrass convergence theorem, 81, 87
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