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1 Basic probability theory

1.1 Probability spaces
If one aims at describing any effects of chance, the first question is: What can happen in
a given situation? And which part of this is relevant. All possibilities that seem natural to
distinguish are collected into a set Ω.

Example 1.1 (Rolling a die) Rolling a die once we may take Ω = {1, . . . , 6}. Rolling a
die n-times, Ω = {1, . . . , 6}n, for ω = (ω1, . . . , ωn) ∈ Ω and 1 ≤ i ≤ n, ωi represents the
number showing at the i-th row. ♣

Example 1.2 (Coin tossing) Tossing a coin infinitely often we take Ω = {0, 1}N, where
ωi = 1 means toss shows ’head’. ♣

Notation 1.3 Ω is the set of outcomes or the sample space.

We are often only interested in the occurrence of an event consisting of a certain
selection of single outcomes, that is, we shall identify events with some system of subsets
of Ω. The next examples represents an event as a subset of Ω.

Example 1.4 (Coin tossing with k-times heads) The event ’In n coin flips, heads shows
at least k times’ corresponds to the subset

A = {ω ∈ Ω:
n∑
i=1

ωi ≥ k}

of the sample space Ω = {0, 1}n.
♣

We want to assign to each event A a probability P (A) ∈ [0, 1] for all A ∈ F where
F is some system of events (subsets of Ω). Why not simply taking F = P(Ω) with P(Ω)
being the power set of Ω. We shall check the following ’no-go theorem’.

Theorem 1.5 (Vitali, 1905) The power set is too large. Let Ω = {0, 1}N. Then there is
no mapping P : P(Ω)→ [0, 1] with the following properties:

(N) Normalisation: P (Ω) = 1.

(A) σ-Additivity: If A1, A2, . . . ⊂ Ω are pairwise disjoint, then

P
(⋃
i≥1

Ai

)
=
∑
i≥1

P (Ai) .

(I) Flip invariance: For all A ⊂ Ω, n ≥ 1, one has

P (Tn(A)) = P (A) ,

where
Tn(ω) = (ω1, . . . , ωn−1, 1− ωn, ωn+1, . . .) , ω ∈ Ω .
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Proof. Exercise.
2

Definition 1.6 (σ-algebra) Let Ω 6= ∅. A system F ⊂ P(Ω) of subsets satisfying

(a) Ω ∈ F ,

(b) A ∈ F ⇒ Ac := Ω \ A ∈ F ,

(c)
A1, A2, . . . ∈ F ⇒

⋃
i≥1

Ai ∈ F ,

is called a σ-algebra on Ω. The pair (Ω,F) is called event space or measurable space.

Note that due to ⋂
i∈I

=
(⋃
i∈I

Ac
i

)c
,

it follows that F is closed under countable intersections.

Remark 1.7 (Generating σ-algebras) If Ω 6= ∅ and G ⊂ P(Ω) is arbitrary, then there
is a unique σ-algebra F = σ(G) on Ω such that F ⊃ G. This F is called the σ-algebra
generated by G, and G is called a generator of F .

�

Example 1.8 (i) The power set. Suppose that Ω is countable and G = {{ω} : ω ∈ Ω}
the system containing the singleton sets of Ω. Then, σ(G) = P(Ω). Indeed, since
every A ∈ P(Ω) is countable, it follows that A =

⋃
ω∈A{ω} ∈ σ(G).

(ii) The Borel σ-algebra. Let Ω = Rn and

G =
{ n∏
i=1

[ai, bi] : ai < bi, a,bi ∈ Q
}
.

The system Bn := σ(G) is called the Borel σ-algebra on Rn. For n = 1 we simply
write B1 = B.

♣

Remark and Definition 1.9 (Product σ-algebra) Suppose Ω =
∏

i∈I for some index
set I 6= ∅; Ei a σ−algebra on Ei and

Xi : Ω→ Ei

the projection onto the ith coordinate.

G = {X−1
i Ai : i ∈ I, Ai ∈ Ei}
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is the collection of all sets in Ω specified by an event in a single coordinate. Then⊗
i∈I

Ei := σ(G)

is called the product σ-algebra of the Ei on Ω. If Ei = E and Ei = E for all i, we write
E⊗I instead of

⊗
i∈I Ei. �

1.2 Probability measures
The crucial step in building a stochastic model is to assign a probability P (A) ∈ [0, 1] for
each event A ∈ F in such a way that the following holds:

(N) Normalisation: P (Ω) = 1.

(A) σ-additivity: For pairwise disjoint A1, A2, . . . ∈ F (that is, Ai∩Aj = ∅ for i 6= j)
one has

P
(⋃
i≥1

Ai

)
=
∑
i≥1

P (Ai) .

Definition 1.10 Let (Ω,F) be a measurable space. A function P : F → [0, 1] satisfying
properties (N) and (A) is called a probability measure (or probability distribution). The
triple (Ω,F , P ) is called a probability space. The set of all probability measures on
(Ω,F) is denotedM1(Ω,F). We write sometimesM1(Ω) when the σ-algebra is clear
from the context.

Example and Definition 1.11 Let (Ω,F) be a measurable space and ξ ∈ Ω, then

δξ(A) =

{
1 if ξ ∈ A ,
0 otherwise

, A ∈ F ,

defines a probability measure δξ on (Ω,F). The measure δξ ∈ M1(Ω,F) is called the
Dirac distribution or the unit mass at the point ξ.

Theorem 1.12 Every probability measure P on a measurable space (Ω,F) has the fol-
lowing properties, for arbitrary events A,B,A1, B1, . . . ∈ F .

(a) P (∅) = 0.

(b) Finite additivity:

P (A ∪B) + P (A ∩B) = P (A) + P (B) ,

and so in particular P (A) + P (Ac) = 1.

(c) Monotonicity: If A ⊂ B, then P (A) ≤ P (B).
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(d) σ-Subadditivity:
P
(⋃
i∈I

Ai

)
≤
∑
i∈I

P (Ai)

for any countable index set I .

(e) σ-Continuity: If either An ↑ A or An ↓ A (that is, the An are either increasing with
union A, or decreasing with intersection A), then

P (An)→ P (A) as n→∞.

Proof. Exercise. 2

Example 1.13 (Lebesgue measure) The mapping

λn : Bn → [0,∞]

that assigns to each Borel set A ∈ Bn its n-dimensional volume

λn(A) :=

∫
1lA(x) dx

satisfies the σadditivity, the σ-continuity, and the monotonicity, and λn(∅) = 0. The
mapping λn is a ’measure’ on (Rn,Bn) and is called the n-dimensional Lebesgue measure.
For Ω ∈ Bn, the restriction λnΩ of λn to BΩ := {B ∩ Ω: B ∈ Bn} is called the Lebesgue
measure on Ω.

�

Theorem 1.14 (Construction of probability measures via densities) (a) Discrete case.
For countable sample spaces Ω, the relations

P (A) =
∑
ω∈A

%(ω) , A ∈ F , %(ω) = P ({ω}) for ω ∈ Ω

establish a one-to-one correspondence between all P ∈ M1(Ω,P(Ω)) and the set of
all sequences % = (%(ω))ω∈Ω in [0, 1] with

∑
ω∈Ω %(ω) = 1.

(b) Continuous case. Let Ω ∈ Bn be a Borel set. Then every function % : Ω → [0,∞)
satisfying

(i) {x ∈ Ω: %(x) ≤ c} ∈ Bn
Ω for all c > 0.

(ii)
∫

Ω
%(x) dx = 1

determines a probability measure P ∈M1(Ω,Bn
Ω) via

P (A) =

∫
A

%(x) dx A ∈ Bn
Ω .

Definition 1.15 A sequence or function % as in Theorem 1.14 is called a density for P
or a probability density function, often abbreviated as pdf.
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1.3 Random variables
In probability theory one often considers the transition from a measurable space (event
space) (Ω,F) to a coarser measurable (event) space (Ω′,F ′). In general such a mapping
should satisfy the requirement

A′ ∈ F ′ ⇒ X−1A′ := {ω ∈ Ω: X(ω) ∈ A′} ∈ F . (1.1)

Definition 1.16 Let (Ω,F) and (Ω′,F ′) be two measurable (event) spaces. The every
mapping X : Ω → Ω′ satisfying property (1.1) is called a random variable from (Ω,F)
to (Ω′,F ′), or a random element of Ω′. Alternatively (in the terminology of measure
theory), X is said to be measurable relative to F and F ′.

In probability theory it is common to write {X ∈ A′} := X−1A′.

Theorem 1.17 (Distribution of a random variable) If X is a random variable from a
probability space (Ω,F , P ) to a measurable space (Ω′,F ′), then the prescription

P ′(A′) := P (X−1A′) = P ({X ∈ A}) = P (X ∈ A) for A′ ∈ F ′

defines a probability measure P ′ on (Ω′,F ′).

Definition 1.18 (a) The probability measure P ′ in Theorem 1.17 is called the distribu-
tion of X under P ,or the image of P under X ,and is denoted by P ◦X−1. (In the
literature, one also finds the notations PX or L(X;P ). The letter L stands for the
more traditional term law, or loi in French.)

(b) Two random variables are said to be identically distributed if they have the same
distribution.

In the following when X is a random variable on some probability space we often write
P = P ◦X−1

Definition 1.19 Let X : Ω → R be a real-valued random variable on some probability
space (Ω,F , P ). The distribution of a real-valued random variable X is determined by
the cumulative distribution function (CDF) of X , defined as

FX(t) := P (X ≤ t) = P((−∞, t]), t ∈ R. (1.2)

It is often more convenient to work with the tails of random variables, namely with

P (X > t) = 1− FX(t). (1.3)

The moment generating function (MGF) is defined

MX(λ) := E[eλX ] , λ ∈ R. (1.4)
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Remark 1.20 WhenMX is finite for all λ in a neighbourhood of the origin, we can easily
compute all moments by taking derivatives (interchanging differentiation and expectation
(integration) in the usual way). �

The expectation of a real-valued random variable is defined in two stages. First we
define it for the case of random variables taking at most countably many different values.
The general case is then the usual limiting procedure.

Definition 1.21 Let (Ω,F , P ) be a probability space and X : → R a real-valued ran-
dom variable. X is called discrete if its range X(Ω) := {X(ω) : ω ∈ Ω} is at most
countable. A discrete random variable X has an expectation if∑

x∈X(Ω)

|x|P (X = x) <∞ .

Then the sum
E[X] :=

∑
x∈X(Ω)

xP (X = x)

is well-defined and is called the expectation of X , and one writes X ∈ L1(P ), or X ∈
L1. WE write sometimes EP [X] instead E[X] to highlight the underlying probability
measure.

Remark 1.22 If X is discrete and non-negative, then the sum
∑

x∈X(Ω) xP (X = x) is
always well-defined, but it might be infinite. Discrete random variables always have an
expectation, as long as we admit the value +∞. Clearly, X ∈ L1(P ) if and only if
E[|X|] <∞. �

Theorem 1.23 (Expectation rules) Let (Ω,F , P ) be given and letX, Y,Xn, Yn : Ω→ R
be discrete random variables in L1. Then the following holds.

(a) Monotonicity. If X ≤ Y , then E[X] ≤ E[Y ].

(b) Linearity. For every c ∈ R, we have E[cX] = cE[X], and X + Y ∈ L1 and
E[X + Y ] = E[X] + E[Y ].

(c) σ-additivity and monotone convergence. If every Xn ≥ 0 and X =
∑

n≥1Xn, then
E[X] =

∑
n≥1 E[Xn]. If Yn ↑ Y for n→∞, it follows that E[Y ] = limn→∞ E[Yn].

Proof. Exercise. 2

For the general case of real-valued random variables X : Ω→ R on some probability
space (Ω,F , P ) we shall consider the 1/n discretisation

X(n) :=
bnXc
n

of X . Thus
X(n)(ω) =

k

n
if
k

n
≤ X(ω) <

k + 1

n
.

We can easily show the following properties.
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Lemma 1.24 (a) For all n ∈ N, the inequalities X(n) ≤ X < X(n) + 1
n

are valid.

(b) If X(n) ∈ L1 for some n ∈ N, then X(n) ∈ L1 for every n ∈ N, and (E[X(n)])n∈N is a
Cauchy sequence.

Definition 1.25 Let X : Ω → R be a real-valued random variable on some probability
space (Ω,F , P ). Then X has an expectation if X(n) ∈ L1(P ) for some n ∈ N. In this
case,

E[X] = lim
n→∞

E[X(n)]

is called the expectation of X , and one says that X belongs to L1 = L1(P ).

Proposition 1.26 (Expectation Rules) The calculation rules (a)-(c) in Theorem 1.23 carry
over from discrete to general real-valued random variables.

Lemma 1.27 (Integral Identity) Let X be a real-valued non-negative random variable
on some probability space (Ω,F , P ). Then

E[X] =

∫ ∞
0

P (X > t) dt .

Proof. We can write any non-negative real number x via the following identity using
indicator function 1:

x =

∫ x

0

1 dt =

∫ ∞
0

1l{t<x}(t) dt .

Substitute now the random variable X for x and take expectation (with respect to X) on
both sides. This gives

E[X] = E
[ ∫ ∞

0

1l{t<X}(t) dt
]

=

∫ ∞
0

E[1l{t<X}] dt =

∫ ∞
0

P (t < X) dt .

To change the order of expectation and integration in the second inequality, we used the
Fubini-Tonelli theorem. 2

Exercise 1.28 (Integral identity) Prove the extension of Lemma 1.27 to any real-valued
random variable (not necessarily positive):

E[X] =

∫ ∞
0

P (X > t) dt−
∫ 0

−∞
P (X < t) dt .

K

11lA denotes the indicator function of the set A, that is, 1lA(t) = 1 if t ∈ A and 1lA(t) = 0 if t /∈ A.
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Remark 1.29 (Expectation depends solely on distribution) Note that for any real-valued
random variable X : Ω→ R on some probability space (Ω,F , P ) that

X ∈ L1(P )⇔ idR ∈ L1(P ◦X−1) ,

where idR is the identity map of the real line R. Then

EP [X] = EP◦X−1[idR] ,

and thus the expectation of a random variable depends only on its distribution.
�

Let (Ω,F , P ) be a probability space and X : Ω → R a real-valued random variable.
If Xr ∈ L1(P ) for some r ∈ N, the expectation E[Xr] is called the r-th moment of X ,
and one writes X ∈ Lr = Lr(P ). Note that Ls ⊂ Lr for r < s, since |X|r ≤ 1 + |X|s.

Definition 1.30 (Variance and Covariance) Let X, Y ∈ L2 be real-valued random
variables defined on some probability space (Ω,F , P ).

(a) The variance of X is defined as

Var(X) := E[(X − E[X])
2
] = E[X2]− E[X]

2
.

The square root
√

Var(X) is called the standard deviation of X with respect to P .

(b) The covariance of X and Y relative to P is defined as

Cov(X, Y ) := E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ] .

It exits since |XY | ≤ X2 + Y 2.

(c) X and Y are uncorrelated with respect to P if Cov(X, Y ) = 0.

Theorem 1.31 (Rules) Let X, Y,X1, X2, . . . ∈ L2 be real-valued random variables de-
fined on some probability space (Ω,F , P ) and a, b, c, d ∈ R.

(a)
Cov(aX + b, cY + d) = acCov(X, Y ) ,

and thus
Var(aX + b) = a2Var(X) .

(b)
Cov(X, Y )2 ≤ Var(X)Var(Y ) .

(c)
∑n

i=1Xi ∈ L2 and

Var(
n∑
i=1

Xi) =
n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj) .
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If X1, . . . , Xn are pairwise uncorrelated, then

Var(
n∑
i=1

Xi) =
n∑
i=1

Var(Xi) .

1.4 Conditional Probability and Independence

Proposition 1.32 Let (Ω,F , P ) be a probability space and A ∈ F with P (A) > 0. Then
there is a unique probability PA ∈M1(Ω,F) satisfying

(i) PA(A) = 1.

(ii) There exists cA > 0 such that for all B ∈ F , B ⊂ A, PA(B) = cAP (B).

which is defined by

PA(B) :=
P (A ∩B)
P (A)

for B ∈ F .

Proof. Clearly the defined probability measure PA satisfies properties (i) and (ii). Now
suppose that PA satisfies (i) and (ii). We shall show that then PA necessarily is given by
the above formula. For every B ∈ F we have

PA(B) = PA(A ∩B) + PA(B \ A) = cAP (A ∩B),

where we used (ii) and the fact that PA(B \ A) = 0 by (i). For B = A it simply follow
that 1 = PA(A) = cAP (A). Hence cA = 1/P (A) and PA has the required form. 2

Definition 1.33 In the setting of Proposition 1.32, for every B ∈ F , the expression

P (B|A) :=
P (A ∩B)
P (A)

is called the conditional probability of B given A with respect to P .

Theorem 1.34 (Case-distinction and Bayes’ formula) Let (Ω,F) be measurable space
with a countable partition of Ω =

⋃
i∈I into pairwise disjoint events (Bi)i∈I . The the

following holds.

(a) For all A ∈ F ,
P (A) =

∑
i∈I

P (Bi)P (A|Bi) .

(b) Bayes’ formula (1763). For all A ∈ F with P (A) > 0 and every k ∈ I ,

P (Bk|A) =
P (Bk)P (A|Bk)∑
i∈I P (Bi)P (A|Bi)

.
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Proof. Exercise. 2

From our intuition the independence of two events A and B is given when the prob-
ability one assigns to A is not influenced by the information that B has occurred. and
likewise the occurrence of A doe snot lead to any re-weighting of the probability of B. In
mathematical language this means that

P (A|B) = P (A) and P (B|A) = P (B) whenever P (A), P (B) > 0 .

Definition 1.35 Let (Ω,F , P ) be a probability space. Two events A,B ∈ F are called
(stochastically) independent with respect to P if P (A ∩B) = P (A)P (B).

Example 1.36 (Independence despite causality) Rolling two distinguishable dice, we
set Ω = {1, . . . , 6}2, F = P(Ω) and P the uniform distribution P ({ω}) = 1

36
, ω ∈ Ω.

Let A = {(k, `) ∈ Ω: k + ` = 7} and B = {(k, `) ∈ Ω: k = 6}. Then |A| = |B| = 6
(|A| = ]A number of elements in A) and |A ∩B| = 1. Thus

P (A ∩B) =
1

62
= P (A)P (B) .

♣

Remark 1.37 The last example shows that ’ independence means a proportional overlap
of probabilities and does not necessarily involve any causality’. Furthermore note that
A ∈ F is independent of itself if P (A) ∈ {0, 1}.

�

Definition 1.38 Let (Ω,F , P ) be a probability space and ∅ 6= I be an index set. The
family (Ai)i∈I of events Ai ∈ F is called independent with respect to P if, for every
finite subset ∅ 6= J ⊂ I , we have

P
(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai) .

The next example shows that there can be dependence despite pairwise independence.

Example 1.39 We are tossing a fair coin twice, i.e., Ω = {0, 1}2,F = P(Ω) and P
uniform measure P ({ω}) = 1/4 , ω ∈ Ω. Define

A = {1} × {0, 1} = {first toss ’heads’}
B = {0, 1} × {1} = {second toss ’heads’}
B = {(0, 0), (1, 1)} = {both tosses give same result} .
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Then
P (A ∩B) =

1

4
= P (A)P (B)

P (A ∩ C) =
1

4
= P (A)P (C)

P (B ∩ C) =
1

4
= P (B)P (C) ,

and thus A,B,C are pairwise independent. However,

P (A ∩B ∩ C) =
1

4
6= 1

8
= P (A)P (B)P (C) ,

and thus the triple A,B,C is not independent. Note that C = (A ∩B) ∪ (Ac ∩Bc). ♣

We shall add the independence definition for families of random variables.

Definition 1.40 Let (Ω,F , P ) be a probability space and ∅ 6= I be an index set. For all
i ∈ I let Yi : Ω → Ωi be a random variable for some measurable space (Ωi,Fi). The
family (Yi)i∈I of random variables Yi is independent with respect to P if, for an arbitrary
choice of events Bi ∈ Fi, the family of events ({Yi ∈ Bi})i∈I is independent, i.e.,

P
(⋂
i∈J

{Yi ∈ Bi}
)

=
∏
i∈J

P (Yi ∈ Bi)

holds for any finite ∅ 6= J ⊂ I .
If X, Y are random variables defined on (Ω,F , P ) are independent we sometimes write
X ⊥ Y .

Corollary 1.41 (Independence of finitely many random variables) Let (Yi)1≤i≤n be a
finite family of random variables defined on some probability space (Ω,F , P ).

(a) If each Yi is Ωi-valued with Ωi at most countable. Then

(Yi)1≤i≤n independent ⇔ P (Y1 = ω1, . . . , Yn = ωn) =
n∏
i=1

P (Yi = ωi) , ωi ∈ Ωi.

(b) Suppose each Yi is R-valued. Then

(Yi)1≤i≤n independent ⇔ P (Y1 = c1, . . . , Yn ≤ cn) =
n∏
i=1

P (Yi ≤ ci) , ci ∈ R .

Note that independent random variables are uncorrelated and that the converse statement
is not true in general.

Corollary 1.42 If X, Y are random variables defined on (Ω,F , P ) are independent, i.e.,
X ⊥ Y , then X and Y are uncorrelated.
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Example 1.43 (Uncorrelated but not independent) Suppose Ω = {1, 2, 3} with P be-
ing the uniform distribution. Define two random variables X and Y by X = (1, 0,−1)
and Y = (0, 1, 0), respectively. Then XY = 0 and E[X] = 0, and thus Cov(X, Y ) = 0.
However,

P (X = 1, Y = 1) = 0 6= 1

9
= P (X = 1P (Y = 1)

showing that X and Y are not independent. ♣

1.5 Classical inequalities
In this section fundamental classical inequalities are presented. Here, classical refers to
typical estimates for analysing stochastic limits.

Proposition 1.44 (Jensen’s inequality) Suppose that Φ: I → R, where I ⊂ R is an
interval, is a convex function. Let X be a real-valued random variable. Then

Φ(E[X]) ≤ E[Φ(X)].

Proof. See [Dur19] or [Geo12] using either the existence of sub-derivatives for convex
functions or the definition of convexity with the epi-graph of a function. The epi-graph of
a function f : I → R, I ⊂ some interval, is the set

epi(f ) := {(x, f (x)) ∈ R2 : x ∈ I}.

A function f : I → R is convex if, and only if epi(f ) is a convex set in R2. 2

A consequence of Jensen’s inequality is that ‖X‖Lp is an increasing function in the
parameter p, i.e.,

‖X‖Lp ≤ ‖X‖Lq 0 ≤ p ≤ q ≤ ∞.

This follows form the convexity of Φ(x) = x
q
p when q ≥ p.

Proposition 1.45 (Minkowski’s inequality) For p ∈ [1,∞], let X, Y ∈ Lp, then

‖X + Y ‖Lp ≤ ‖X‖Lp + ‖Y ‖Lp .

Proposition 1.46 (Cauchy-Schwarz inequality) For X, Y ∈ L2,

|E[XY ]| ≤ ‖X‖L2‖Y ‖L2 .

Proposition 1.47 (Hölder’s inequality) For p, q ∈ (1,∞) with 1/p+1/q = 1 letX ∈ Lp
and Y ∈ Lq. Then

E[XY ] ≤ E[|XY |] ≤ ‖X‖Lp‖Y ‖Lq .

Lemma 1.48 (Linear Markov’s inequality) For non-negative random variables X on
some probability space (Ω,F , P ) and t > 0 the tail is bounded as

P (X > t) ≤ E[X]
t

.
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Proof. Pick t > 0. Any positive number x can be written as

x = x1l{x≥t} + x1l{x<t}].

As X is non-negative, we insert X into the above expression and take the expectation
(integral) to obtain

E[X] = E[X1l{X≥t}] + E[X1l{X<t}] ≥ E[t1l{X≥t}] = tP (X ≥ t).

2

This is one version of the Markov inequality which provides linear decay in t. In the
following proposition we obtain the general version .

Proposition 1.49 (Markov’s inequality) Let Y be a real-valued random variable on some
probability space (Ω,F , P ) and f : [0,∞)→ [0,∞) be an increasing function. Then, for
all ε > 0 with f (ε) > 0,

P (|Y | ≥ ε) ≤ E[f ◦ |Y |]
f (ε)

.

Proof. Clearly, the composition f ◦ |Y | is a positive random variable such that

f (ε)1l{|Y |≥ε} ≤ f ◦ |Y |.

Taking the expectation on both sides of that inequality gives

f (ε)P (|Y | ≥ ε) = E[f (ε)1l{|Y |≥ε}] ≤ E[f ◦ |Y |].

2

The following version of the Markov inequality is often called Chebyshev’s inequality.

Corollary 1.50 (Chebyshev’s inequality, 1867) For all Y ∈ L2 with E[Y ] ∈ (−∞,∞)
and ε > 0,

P
(
|Y − E[Y ]| ≥ ε

)
≤ Var(Y )

ε2
.

2 Limit Theorems

2.1 Weak Law of Large Numbers (WLLN)
If we briefly consider again tossing a fair coin we are inclined to try to prove that the
empirical average converges to 1/2. Suppose P (Xi = 1) = 1

2
= P (Xi = 0), then

E[Xi] = 1
2

for all i ∈ N. Using Stirling’s formula we can find a constant C > 0 such that

P
( 1

2n

2n∑
i=1

Xi =
1

2

)
=

(
2n

n

)
2−2n ≤ C√

πn
→ 0 as n→∞ .

We thus see that we need another convergence criterium. We first consider conver-
gence in probability.
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Definition 2.1 (Convergence in probability) Suppose (Yn)n∈N and Y are real-valued
random variables defined on some probability space (Ω,F , P ). We say that the sequence
(Yn)n∈N converges to Y in probability, written as Yn

P−→
n→∞

Y , if

P
(
|Yn − Y | ≤ ε

)
→ 1 as n→∞ for all ε > 0 .

Theorem 2.2 (Weak Law of Large Numbers (WLLN) - L2 - version) Let (Xi)i∈N be pair-
wise uncorrelated random variables in L2 for some probability space (Ω,F , P ) with uni-
formly bounded variance, v := supi∈N Var(Xi) <∞. Then

Yn :=
1

n

n∑
i=1

(Xi − E[Xi])
P−→

n→∞
0 .

Proof. From our assumptions we have that Yn ∈ L2 and E[Yn] = 0. Furthermore,

Var(Yn) =
1

n2

n∑
i=1

Var(Xi) ≤
v

n
.

We thus conclude with Chebyshev’s inequality 1.50. 2

2.2 Kolmogorov’s zero-one law and Borel-Cantelli Lemma
In the following we are dealing with sequences of random variables.

Theorem 2.3 Let (Xi)i∈N be a sequence of real-valued random variables on some prob-
ability space (Ω,F , P ). Then

inf
i∈N

Xi ; sup
i∈N

Xi ; lim sup
n→∞

Xn and lim inf
n→∞

Xn

are also random variables.

Proof. The infimum of a sequence is < a if and only if some entry of that sequence is
< a. Thus

{ inf
i∈N

Xi < a} =
⋃
i∈N

{Xi < a} ∈ F .

Similarly,
{ sup

i∈
> a} =

⋃
i∈N

{Xi > a} ∈ F .

Furthermore,
lim inf
n→∞

Xn = sup
n∈N
{ inf
m≥n

Xm}

lim sup
n→∞

Xn = inf
n∈N
{ sup
m≥n

Xm} .

Note also that Yn := infm≥nXm is a random variable. 2
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When analysing limits of random variables we often encounter the following events
which lead naturally to another convergence criterion. In the setting of Theorem 2.3 the
set

Ω0 := {ω ∈ Ω: lim
n→∞

Xn exists} = {ω ∈ Ω: lim sup
n→∞

Xn = lim inf
n→∞

Xn} (2.1)

is a measurable set.

Definition 2.4 (Almost sure convergence) If P (Ω0) = 1 for the set (2.1), we say that
the sequence (Xn)n∈N of random variables defined on (Ω,F , P ) converges almost surely
(almost everywhere) to the random variable X∞ := lim supn→∞ (X∞ may take the
value∞).

The following tail events will be important when studying stochastic limits.

Definition 2.5 (Tail events) Let (Ω,F , P ) and (Ωk,Fk), k ∈ N, be given. Suppose that
(Yk)k∈N is a sequence of Ωk valued random variables Yk defined on (Ω,F , P ). An event
A ∈ F is called an asymptotic or tail event if, for every n ∈ N0, A depends only on
(Yk)k>n, in that there exists an event Bn ∈

⊗
k>nFk such that

A = {(Yk)k>n ∈ Bn} .

We denote T (Yk : k ∈ N) the collection of all such tail events.

Example 2.6 (Existence of long-term averages) Let (Ωk,Fk) = (R,B) for all k ∈ N
and a < b. Then

A =
{

lim
N→∞

1

N

N∑
k=1

Yk exists and ∈ [a, b]
}

is a tail event for the sequence (Yk)k∈N.
Proof. Denote Xi :

∏
k>nR→ R the ith projection and define

Bn :=
{

lim
N→∞

1

N

N∑
k=1

Xn+k exists and ∈ [a, b]
}
.

Then A{(Yk)k>n ∈ Bn} for every n ∈ N, and thus A is a tail-event..
♣

Theorem 2.7 (Kolmogorov’s zero-one law) Let (Yk)k∈N be an independent sequence of
random variables Yk defined on some probability space (Ω,F , P ) and taking values in
(Ωk,Fk). Then, for every A ∈ T (Yk : k ∈ N), either P (A) = 0 or P (A) = 1.

Proof. Elementary result from measure theory [BB01, Coh13] and undergraduate prob-
ability theory ([Kal02, Str93, Geo12, Bil12, Dur19].

2
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Theorem 2.8 (Borel-Cantelli Lemma; 1909,1917) Let (Ak)k∈N be a sequence of events
in (Ω,F , P ) and consider

A = {ω ∈ Ω: ω ∈ Ak for infinitely many k} = lim sup
k→∞

Ak .

Then the following statements hold.

(a) If
∑

k∈N P (Ak) <∞, then P (A) = 0.

(b) If
∑

k∈N P (Ak) =∞ and (Ak)k∈N independent, then P (A) = 1.

Proof. (a) We have that
A ⊂

⋃
k≥m

Ak

and thus
P (A) ≤

∑
k≥m

P (Ak) for all m.

The sum on the right hand side is the tail of a convergent series, and thus tends to 0 as
m→∞.

(b)
Ac =

⋃
m∈N

⋂
k≥m

Ac
k .

Thus, using that the independence of the Ak’s implies the independence of the Ac
k’s and

1− x ≤ e−x,

P (Ac) ≤
∑
m∈N

P
( ⋂
k≥m

Ac
k

)
=
∑
m∈N

lim
n→∞

P
( n⋂
k=m

Ac
k

)
=
∑
m∈N

lim
n→∞

n∏
k=m

(1− P (Ak))

≤
∑
m∈N

lim
n→∞

exp
(
−

n∑
k=m

P (Ak)
)

= 0 .

2

2.3 Strong Law of Large Numbers (SLLN)
The weak law of large numbers (WLLN) in Theorem 2.2 alone doe snot quite fulfil our
expectations. For example, if we flip a fair coin 100 times, then with some small proba-
bility it may happen that the relative frequency differs strongly from 1

2
, but this deviation

should vanish gradually, provided we continue flipping the coin for long enough. This
intuition is based on the notion of almost sure convergence. Recall from Definition 2.4
that a sequence (Yn)n∈N of R-valued random variables converges to the random variable
Y , all defined on some probability space (Ω,F , P ), P -almost surely if

P ({ω ∈ Ω: Yn(ω)→ Y ) = 1 .

Exercise 2.9 Show that almost sure convergence implies convergence in probability but
the converse is not true.

KK
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Theorem 2.10 (Strong Law of Large Numbers (SLLN) - L2 - version) If (Xi)i∈N is a
sequence of pairwise uncorrelated R-valued L2 random variables on some probability
space (Ω,F , P ) with v := supi∈N Var(Xi) <∞, then

1

n

n∑
i=1

(Xi − E[Xi])→ 0P − almost surely if n→∞ .

Remark 2.11 For an L1-version of the SLLN see [Dur19]. �

Proof. Without loss of generality we may assume that E[Xi] = 0 for all i ∈ N. Write
Yn := 1/n

∑n
i=1Xi.

Step 1: Show that Yn2 → 0 almost surely as n→∞. For any ε > 0, Theorem 2.2 implies
that

P (|Yn2 | > ε) ≤ v/n2ε2

and thus ∑
n∈N

P (|Yn2| > ε) <∞ .

Now Borel-Cantelli Lemma, Theorem 2.8, implies that

P ( lim sup
n→∞

|Yn2 | > ε) ≤ P (|Yn2| > ε for infinitely many n) = 0 .

Thus we conclude with P ( lim supn→∞|Yn2| 6→ 0) = 0.
Step 2: Form ∈ N let n := n(m) ∈ N be such that n2 ≤ m < (n+1)2. We shall compare
Ym and Yn2 . We write Sk := kYk =

∑k
i=1Xi. Chebychev’s inequality 1.50 implies

P (|Sm − Sn2| > εn2) ≤ ε−2n−4Var
( ∑
n2<i≤m

Xi

)
≤ v

(n−m)
ε2n4

and

∑
m∈N

P (|Sm − Sn2| > εn2
)
≤ v

ε2

∑
n∈N

(n+1)2−1∑
m=n2

(m− n2

n4

)
=

v

ε2

∑
n∈N

2n∑
k=1

k

n4

=
v

ε2

∑
n∈N

2n(2n+ 1)
2n4

<∞ ,

and so once again with Theorem 2.8, one obtains

P
(∣∣∣ Sm
n(m)2

− Yn(m)2

∣∣∣ −→
m→∞

0
)

= 1 ,

and with Step 1 above we conclude that P (Sn/n
2 −→
m→∞

0) = 1. Since |Ym| ≤ |Sm|n(m)2,

it follows that P (Ym →
m→∞

0) = 1. 2
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2.4 The Central Limit Theorem (CLT)
Let (Xi)i∈N be a Bernoulli sequence with parameter p ∈ (0, 1). Sn =

∑n
i=1 Xi represents

the number of successes in n experiments. How much do the Sn fluctuate around their
expectation np, i.e., what is the order of magnitude of the deviations Sn − np in the limit
n→∞?

Exercise 2.12 Suppose that (an)n∈N is a sequence in R+. Using Stirling’s formula and
Chebychev’s inequality, show that

P
(∣∣∣Sn − np∣∣∣ ≤ an

)
−→
n→∞

{
1 if an/

√
n→∞ as n→∞ ,

0 if an/
√
n→ 0 as n→∞ .

KK

Definition 2.13 (Convergence in distribution) Let (Yn)n∈N be a sequence of R-valued
random variables defined on some probability space (Ω,F , P ). Yn converges in distri-
bution to a real-valued random variable Y if FYn(c) −→

n→∞
FY (c) for all points c ∈ R at

which FY is continuous. We write Yn
d−→

n→∞
Y .

Proposition 2.14 Under the above assumptions, the following statements are equivalent.

(a) Yn
d−→

n→∞
Y .

(b) E[f (Yn)]→ E[f (Y )] as n→∞ for all f ∈ Cb(R;R).

If FY is continuous, then the following is also equivalent:

(c) FYn converges uniformly to FY , i.e., ‖FYn − FY ‖ → 0.

Proof. Exercise. 2

Exercise 2.15 (Fatou’s lemma) Prove the following statement. Suppose g : R → R+ is
continuous. If Yn

d−→
n→∞

Y , then

lim inf
n→∞

E[g(Yn)] ≥ E[g(Y )] .

K

Theorem 2.16 Let Y, Y1, Y2, . . . be R-valued random variables defined on some proba-
bility space (Ω,F , P ). Then the following statements are equivalent.

(a) Yn
d−→

n→∞
Y .

(b) For all open sets G ⊂ R: lim infn→∞ P (Yn ∈ G) ≥ P (Y ∈ G).
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(c) For all closed sets K ⊂ R: lim supn→∞ P (Yn ∈ K) ≤ P (Y ∈ K).

(d) For all A ∈ B with P (Y ∈ A) = 0,

lim
n→∞

P (Yn ∈ A) = P (Y ∈ A) .

The proof of Theorem 2.16 relies on the following theorem which we only cite here
(this is standard result in measure theory). A sequence (Fn)n∈N of probability distribution
functions converges weakly to a limit F (written Fn

w⇒
n→∞

F or Fn
w⇒ F ) if Fn(y)→ f (y)

as n → ∞ for all y that are continuity points of F . Notice that this convergence is
equivalent to the convergence in distribution for the corresponding random variables.

Theorem 2.17 If Fn
w⇒ F , then there are random variables Y, Yn, n ∈ N, with distribu-

tion function Fn so that Yn → Y almost surely as n→∞.

Proof. See book by Durrett [Dur19], or Billlingsley [Bil99] or Bauer [BB01]. 2

Proof of Theorem 2.16. (a)⇒ (b): Let Xn have the same distribution as Yn and Xn →
X almost surely as n→∞. Since G is open,

lim inf
n→∞

1lG(Xn) ≥ 1G(X) ,

so Fatou’s Lemma implies

lim inf
n→∞

P (Xn ∈ G) ≥ P (X ∈ G) .

(b)⇔ (c): This follows from: A is open⇔ Ac is closed and P (A) + P (Ac) = 1.
(b) & (c)⇒ (d): Let K = A and G = int(A) be the closure and interior of A respectively.
The boundary ∂A = A \ int(A) and P (Y ∈ ∂A) = 0 so

P (Y ∈ K) = P (Y ∈ A) = P (Y ∈ G) .

Using (b) & (c),

lim sup
n→∞

P (Yn ∈ A) ≤ lim sup
n→∞

P (Yn ∈ K) ≤ P (Y ∈ K) = P (Y ∈ A)

lim inf
n→∞

P (Yn ∈ A) ≥ lim inf
n→∞

P (Yn ∈ G) ≥ P (Y ∈ G) = P (Y ∈ A) .

(d)⇒ (a): Let x be such that P (Y = x) = 0 and consider A = (−∞, x]. 2

Theorem 2.18 (Continuous mapping theorem) Let g : R → R be measurable and de-
fine Dg := {x ∈ R : g is discontinuous at x} and let Y, Y1, Y2, . . . be R-valued random
variables defined on some probability space (Ω,F , P ). If Yn

d−→
n→∞

Y and P (Y ∈ Dg)− 0

then
g(Yn) d−→

n→∞
g(Y ) .

If in addition g is bounded, then

lim
n→∞

E[g(Yn)] = E[g(Y )] .
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Proof. Let Xn
d
= Yn (i.e., Xn has same distribution as Yn) with Xn → X almost surely

as n → ∞.If f is continuous and bounded then Df◦g ⊂ Dg so P (X ∈ Df◦g) = 0 and it
follows that f (g(Xn)) → f (g(X)) almost surely as n → ∞. Since f ◦ g is bounded the
bounded convergence theorem implies

lim
n→∞

E[f (g(Xn))] = E[f (g(X))] .

As this holds for all f ∈ Cb(R;R), we conclude with the statement. The second one
is proved by taking f (x) = x and consider cutoff parameter like, i.e., repeat the above
arguments for fM = f ∧ f , M > 0, followed by the limit M →∞.

2

Definition 2.19 (a) m ∈ R, v > 0. The probability measure N(m, v) ∈M1(R,B) with
density function

ϕm,v(x) =
1√
2πv

e−(x−m)2/2v , , x ∈ R .

is called the normal distribution or the Gauss distribution with meanm and variance
v We write ϕ ≡ ϕ0,1.

(b) For c ∈ R denote

Φ(c) =

∫ c

−∞
ϕ(x) dx = N(0, 1)((−∞, c])

the cummulative distribution function of N(0, 1) .

Theorem 2.20 (The Central Limit Theorem (CLT)) Let (Xi)i∈N be a sequence of in-
dependent, identically distributed R-valued random variables in L2 on some probability
space (Ω,F , P ) with E[Xi] = m,Var(Xi) = v > 0. Then,

S∗n :=
1√
n

n∑
i=1

Xi −m√
v

d−→
n→∞

Z ∼ N(0, 1) ,

where Z ∼ N (0, 1) means the random variable Z is normally distributed with N(0, 1),
meaning that ‖FS∗n − Φ‖ → 0 as n→∞.
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Definition 2.21 (Convolution) Let Q1, Q2 ∈ M1(R) probability measures with densi-
ties (Radon-Nikodym density with respect to the Lebesgue measure) %1 and %2, respec-
tively, then the convolution Q1 ∗ Q2 ∈ M1(R) has the density (with respect to the
Lebesgue measure)

%1 ∗ %2(x) =

∫
%1(y)%2(x− y) dy , x ∈ R .

The convolution Q1 ∗ Q2 is defined as the image measure under the addition mapping
A : R2 → R, (x1, x2) 7→ A(x1, x2) = x1 + x2.

Q1 ∗Q2 = (Q1 ⊗Q2) ◦ A−1

is called the convolution of Q1 and Q2.

Exercise 2.22 Show that

N(m1, v1) ∗ N(m2, v2) = N(m1 +m2, v1 + v2) .

KK

Proof of Theorem 2.20. Without loss of generality let m = 0, v = 1. We shall show
that

E[f ◦ S∗n]→ EN(0,1)[f ] as n→∞ for all f ∈ Cb(R;R) .

For this endeavour we can assume that f ∈ C2(R;R) with bounded and uniformly con-
tinuous derivatives f ′ and f ′′ as in the proof of the convergence in distribution one can
approximate the indicator function 1l(−∞,c] by such functions f . For our proof pick another
random sequence, that is, let (Yi)i∈N be an independent identically distributed sequence
of standard normal random variables Yi ∼ N(0, 1), and assume that this sequence is inde-
pendent of (Xi)i∈N. Then it is easy to see that

T ∗n :=
1√
n

n∑
i=1

Yi ∼ N(0, 1) ,

so we shall show that
lim
n→∞

|E[f ◦ S∗n − f ◦ T ∗n ]| = 0 .

For this we write the difference f ◦ S∗n − f ◦ T ∗n as a telescoping sum with the following
notations: Xi,n := Xi/

√
n, Yi,n := Yi/

√
n and

Wi,n :=
i−1∑
j=1

Yj,n +
n∑

j=i+1

Xi,n .

Then

f ◦ S∗n − f ◦ T ∗n =
n∑
i=1

(
f (Wi,n +Xi,n)− f (Wi,n + Yi,n)

)
.
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Taylor approximation:

f (Wi,n +Xi,n) = f (Wi,n) + f ′(Wi,n)Xi,n +
1

2
f ′′(Wi,n)X2

i,n +RX,i,n

with remainder term

RX,i,n :=
1

2
X2
i,n

(
f ′′(Wi,n + θXi,n)− f ′′(Wi,n)

)
; for some θ ∈ [0, 1] .

To estimate the remainder term note first that

|RX,i,n| ≤ X2
i,n‖f

′′‖ .

As f ′′ is uniformly continuous, for every ε > 0 one can find δ > 0 such that |RX,i,n| ≤
X2
i,nε for |Xi.n| ≤ δ. This yields

|RX,i,n| ≤ X2
i,n(ε1l{|Xi,n|≤δ} + ‖f ′′‖1l{|Xi,n|>δ}) .

A similar Taylor approximation holds for all f (Wi,n +Yi,n). We insert our Taylor approx-
imations and take the expectation, and using that

E[Xi,n] = E[Yi,n] = 0;E[X2
i,n] =

1

n
= E[Y 2

i,n]

E[f
′′
(Wi,n)(X2

i,n − Y 2
i,n)] = E[f

′′
(Wi,n)]E[X2

i,n − Y 2
i,n] = 0 ,

we obtain

|E[f ◦ S∗n = f ◦ T ∗n ]| ≤
n∑
i=1

E[|RX,in|+ |RY,i,n|]

≤
n∑
i=1

(
εE[X2

i,n + Y 2
i,n] + ‖f ′′‖E[X2

i,n1l{|Xi,n|>δ} + Y 2
i,n1l{|Yi,n|>δ}

)
= 2ε+ ‖f ′′‖E[X2

1 1l{|X1|>δ
√
n} + Y 2

1 1l{|Y1|>δ
√
n}] .

Note that

E[X2
1 1l{|X1|>δ

√
n}] = 1− E[X2

1 1l{|X1|≤δ
√
n}] → 0 as n→∞ ,

and similarly,
E[Y 2

1 1l{|X1|>δ
√
n}]→ 0 as n→∞ .

Hence
lim sup
n→∞

|E[f ◦ S∗n = f ◦ T ∗n ]| ≤ 2ε .

2

We now introduce characteristic function and Fourier transform for probability mea-
sures. At the end of this we shall come up with an alternative proof of the CLT.

Definition 2.23 (Characteristic function) Let X be a R-valued random variable de-
fined on some probability space (Ω,F , P ).

ϕX(t) := E[eitX ] t ∈ R ,

is called the characteristic function of X .
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Proposition 2.24 (Properties) Let X be a R-valued random variable defined on some
probability space (Ω,F , P ). Then the following properties hold.

(a) ϕX(0) = 1.

(b) ϕX(−t) = ϕX(t).

(c) |ϕX(t)| ≤ 1.

(d)
E[eit(aX+b)] = eitbϕX(at) , a, b ∈ R .

(e) ϕ−X = ϕX .

(f) Suppose and Y are independent R-valued random variables. Then

ϕX+Y = ϕXϕY .

Proof. These elementary properties are straightforward to prove and are left as an ex-
ercise. See e.g. [Dur19, Bil12]. 2

Lemma 2.25 (µn)n∈N, µn ∈ M1(Rd,Bd). Assume that there is a µ ∈ M1(Rd,Bd) such
that the µn’s converge in the sense that

lim
n→∞

∫
Rd

f dµn =

∫
Rd

f dµ for all f ∈ C∞c (Rd;C) .

Then the following holds.

(a) For any f ∈ C(Rd; [0,∞)) one has∫
Rd

f (y)µ(dy) ≤ lim inf
n→∞

∫
Rd

f (y)µn(dy) . (2.2)

(b) If f ∈ C(Rd;C) satisfies

lim
R→∞

sup
n∈N

∫
Rd
|f (y)|1l{|f |≥R}(y)µn(dy) = 0 , (2.3)

then f is µ - integrable and

lim
n→∞

∫
Rd

f dµn =

∫
Rd

f dµ . (2.4)

(c) (2.4) holds for any f ∈ C(Rd;C) satisfying

sup
n∈N

∫
Rd
|f |1+α dµn <∞ for some α ∈ (0,∞) .
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Proof. We first show (2.4) for every f ∈ Cb(Rd;C). To this end, we choose % ∈
C∞c (B(0, 1); [0,∞)) so that

∫
Rd %(y) dy = 1. Here, B(0, 1) ⊂ Rd is the open ball around

0 with radius 1. Define

fk(x) := k

∫
|y|≤k

%(k(x− y))f (y) dy for k ∈ N .

Clearly, fk ∈ C∞c (Rd;C) and ‖fk‖∞ ≤ ‖f‖∞. Thus

lim sup
n→∞

∣∣∣ ∫ f dµn −
∫

f dµ
∣∣∣ ≤ lim sup

k→∞
lim sup
n→∞

∫
|f − fk| dµn

≤ 2‖f‖∞ lim sup
n→∞

µn(B(0, R)c)

for every R ∈ (0,∞). For any such R ∈ (0,∞) we can choose a function gR ∈
C∞c (B(0, R); [0, 1]) so that gR = 1 on the ball B(0, R/2), and therefore,

lim sup
n→∞

µn(B(0, R)c) ≤ 1− lim inf
n→∞

∫
gR dµn ≤ µ(B(0, R/2)c)→ 0 as R→∞ .

We have now proved (2.4) for every f ∈ Cb(Rd;C).
We now show (2.2): We simply set fR = f ∧R,R ∈ (0,∞), for any nonnegative contin-
uous function f on Rd. Then by the Monotone Convergence Theorem,∫

f dµ = lim
R↑∞

∫
fR dµ = lim

R↑∞
lim
n→∞

∫
fR dµn ≤ lim inf

n→∞

∫
f dµn .

To prove (2.4) for f ∈ C(Rd;C) satisfying (2.3), it suffices to handle the case when the
function f is nonnegative. For nonnegative f satisfying (2.3) we know from (2.2) that
f is µ-integrable. Hence, we any ε > 0, we can choose an R ∈ (0,∞) so that for the
continuous and bounded function fR := f ∧R we get

sup
n∈N

∫
|f (y)− fR(y)|µn(dy) ∨

∫
|f (y)− fR(y)|µ(dy) < ε .

Thus∣∣∣ ∫ f dµn −
∫

f dµ
∣∣∣ =

∣∣∣ ∫ (f − fR) dµn −
∫

(f − fR) dµ−
∫

(fR − fR) dµn
∣∣∣

≤ 2ε+
∣∣∣ ∫ (fR dµn −

∫
fR dµ

∣∣∣ ,
and (2.4) for the fR’s simply implies (2.4) for the given f . 2

As Lemma 2.25 makes explicit, to test whether (2.4) holds for all f ∈ Cb(Rd;C)
requires only that we test it for all f ∈ C∞c (Rd;C). In conjunction with elementary Fourier
analysis, this means that we need only test it for f ’s which are imaginary exponential
functions.
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Definition 2.26 Let µ ∈ M1(Rd,Bd). The characteristic function µ̂ of µ is its Fourier
transform given by

µ̂(k) :=

∫
Rd

exp (i〈k, x〉)µ(dx) , k ∈ Rd .

For f ∈ L1(Rd;C) we use

f̂ (k) :=

∫
Rd

exp (i〈, x〉)f (x) dx , k ∈ Rd .

to denote its Fourier transform.

Remark 2.27 Clearly, the Fourier transform µ̂ of µ ∈ M1(Rd,Bd) is a continuous func-
tion which is bounded by one. Furthermore, for f ∈ C∞c (Rd;C), f̂ ∈ C∞(Rd;C) and f̂ as
well as all its derivatives are rapidly decreasing. �

Lemma 2.28 Let µ ∈M1(Rd,Bd). Then the following holds.

(a) For every f ∈ Cb(Rd;C) ∩ L1(Rd;C) with f̂ ∈ L1(Rd;C),∫
Rd

f dµ =
1

(2π)d

∫
Rd

f̂ (k)µ̂(−k) dk . (2.5)

(b) Let (µn)n∈N, µn ∈ M1(Rd,Bd), be given. Then (2.4) holds for every f ∈ C(Rd;C)
satisfying (2.3) if and only if

µ̂n(k)→ µ̂(k) as n→∞ for every k ∈ Rd .

Proof. (a) We shall use a mollifier as follows. Pick an even function % ∈ C∞c (Rd; [0,∞))
with

∫
Rd %(x) dx = 1, and set %ε(x) := ε−d%(ε−1x) for ε ∈ (0,∞). We now define the

convolution of our measure µ with the chosen mollifier,

ψε(x) :=

∫
Rd

%ε(x− y)µ(dy) , x ∈ Rd .

Then it is easy to see that ψε ∈ Cb(Rd,R) and ‖ψε‖L1(Rd) = 1 for every ε ∈ (0,∞).
By Fubini’s Theorem (see [Dur19, BB01, Coh13]) we immediately see that ψ̂ε(k) =
%̂(εk)µ̂(k). For any f ∈ Cb(Rd;C) ∩ L1(Rd;C) write fε := %ε ∗ f for the convolution of
%ε with f . Thus, Fubini’s Theorem followed by the Classical Parseval Identity yields∫

Rd
fε dµ =

∫
Rd

f (x)ψε(x) dx =
1

(2π)d

∫
Rd

%̂(εk)f̂ (k)µ̂(−k) dk .

Since, as ε → 0, fε → f while %̂(εk) → 1 boundedly and pointwise, (2.5) now follows
from Lebesgue’s Dominated Convergence Theorem.
(b) By Lemma 2.25, we need only check (2.4) when f ∈ C∞c (Rd;C). For such f , F̂
is smooth and rapidly decreasing, and therefore the result follows immediately from (a)
together with Lebesgue’s Dominated Convergence Theorem. 2
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Remark 2.29 (Alternative proof of the CLT) Suppose m = 0 and v = 1 in our setting
of Theorem 2.20 and denote the distribution of S∗N by µN . Then,

µ̂N (k) =
(
µ̂
( k√

N

))N
=
(

1− k2

2N
+ o(1/N)

)N
→ e−

k2

2 as N →∞ , k ∈ R .

Then simply observe that ϕX(k) = e−k2/2 when X ∼ N(0, 1).
�

2.5 Convergence of Probability Measures
We shall develop convergence theory on the set of probability measures over some mea-
surable space (E, E). We first start with a standard approach to convergence, namely via
bounded measurable functions. We then come up with a notion which reflects better the
topology over the underlying space E. In the following let B(E;R) ≡ B((E, E);R) be
the space of bounded, R-valued, E-measurable functions on E, useM1(E) ≡M1(E, E)
to denote the space of all probability measures on (E, E). The duality between B(E;R)
andM1(E) is given by

〈f, µ〉 :=

∫
E

f dµ , µ ∈M1(E), f ∈ B(E;R) .

In the following, letB1(E) := {f ∈ B(E;R) : ‖f‖∞ ≤ 1} the ball of bounded measurable
functions with supremum norm less equal to 1, where ‖f‖∞ := supx∈E{|f (x)|}. For
every µ ∈M1(E) a neighbourhood basis of µ is given by the sets

U (µ, δ) =
{
ν ∈M1(E) : sup

f∈B1(E)
|〈f, ν〉 − 〈f, µ〉| < δ

}
,

where δ ∈ (0,∞). The topology defined by these sets is called the uniform topology on
M1(E). The next lemma shows that this definition is leading to a metric.

Lemma 2.30 Define

‖µ− ν‖var := sup
{
|〈f, µ〉 − 〈f, ν| : f ∈ B1

}
.

Then (µ, ν) ∈M1(E)2 7→ ‖µ− ν‖var is a metric onM1(E) which is compatible with the
uniform topology.

Proof. The interested reader may check [BB01, Bil99]. 2

Remark 2.31 Suppose E is uncountable, {x} ∈ E , then the point masses δx, x ∈ E,
form an uncountable subset ofM1(E). Furthermore,

‖δx − δy‖var = 2 for x 6= y .

Hence, in this case M1(E) cannot be covered by a countable collection of open ‖·‖var-
balls of radius 1. In addition, we shall find a topology for which the point masses are
close when the corresponding point are close in the underlying space. �
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In a first step one can eliminate the uniformity in the definition of the uniform topol-
ogy. For µM1(E, E) a neighbourhood basis is given by the sets

S(µ, δ; f1, . . . , fn) :=
{
ν ∈M1(E) : max

1≤k≤n
|〈fk, ν〉 − 〈fk, µ〉| < δ

}
, (2.6)

δ > 0, n ∈ N, f1, . . . , fn ∈ |Bcal)E;R). The topology define d by these neighbourhoods
is called the strong topology or the τ -topology . Here, a net {µα : α ∈ A} converges to µ
if and only if

lim
α
〈f, µα〉 = 〈f, µ〉 .

Again, this topology cannot distinguish point masses δx and δy when x and y are very
close. The next idea is for metric spaces (E, d) (net convergence can then be replaced by
convergence) is consider (2.6) for test functions f ∈ Cb(E;R).

Definition 2.32 (a) Let (E, d) be a metric space and E the Borel-σ-algebra, (µn)n∈N a
sequence of probability measures µ ∈ M1(E). The (µn)n∈N converges weakly to
µ ∈M1(E) as n→∞, in symbols , µn

w⇒
n→∞

µ or µn ⇒
n→∞

µ , if

〈f, µn〉 → 〈f, µ〉 as n→∞ for all f ∈ Crmb(E;R) .

(b) Let (Xn)n∈N andX be R-valued random variables defined on some probability space
(Ω,F , P ). Xn converges in distribution to X as n→∞, in symbols Xn

d⇒
n→∞

X , if

E[f (Xn)]→ E[f (X)] as n→∞ for all f ∈ Cb(R;R) .

Exercise 2.33 Show that δy
w⇒ δx if and only if y → x in (E, d). KK

Definition 2.34 [Tight set] Let (E, d) be a separable metric space. A subset M ⊂
M1(E) is tight if, for every ε > 0, there exists a compact set K ⊂ E so that

µ(K) ≥ 1− ε for every µ ∈M .

Definition 2.35 (Tight family) A family (Xt)t∈T of Rd-valued random variables de-
fined on some probability space (Ω,F , P ) is tight if

lim
r→∞

sup
t∈T

P (|Xt| > r) = 0 .

A sequence (Xn)n∈N of Rd-valued random variables is tight if

lim
r→∞

lim sup
n→∞

P (|Xn| > r) = 0 .
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Lemma 2.36 Suppose (Xn)n∈N and X are Rd-valued random variables on some proba-
bility space (Ω,F , P ) and that Xn

d⇒
n→∞

X . Then (Xn)n∈N is tight.

Proof. Fix r > 0, and define the continuous and bounded function
f (x) := (1− (r− |x|)+)+ , x ∈ R. Then, using the definition of f and taking expectation,
we get

lim sup
n→∞

P (|Xn| > r) ≤ lim
n→∞

E[f (Xn)] = E[f (X)] ≤ P (|X| > r − 1) .

Now letting r →∞ to conclude with the statement.
2

Lemma 2.37 Let (Xn)n∈N be Rd-valued random variables on some probability space
(Ω,F , P ). Then

(Xn)n∈N is tight ⇔ cnXn
P−→

n→∞
0

for any sequence (cn)n∈N with cn ≥ 0 and cn → 0 as n→∞.
Proof. Suppose that (Xn)n∈N is tight and fix r, ε > 0. Then there is n0 ∈ N such that
cnr ≤ ε for all n ≥ n0. Thus

lim supn→∞P (|cnXn| > ε) ≤ lim sup
n→∞

P (|Xn| > r)

and P (|cnXn| > ε) → 0 as r → ∞. Conversely, if (Xn)n∈N is not tight, we may choose
(nk)k∈N so that infk∈N P (|Xnk | > k) > 0. Rhen cn := sup{k−1 : nk ≥ n} defines a zero
sequence but P (|cnXnk | > 1) 6→ 0 as n→∞. 2

The following theorem provides useful conditions equivalent to the weak convergence
of probability measures.

Definition 2.38 Suppose (E, d) is a metric space with Borel σ-algebra E and let µ ∈
M1(E). A set A ∈ E whose boundary ∂A satisfies µ(∂A) = 0 is called µ-continuity set.

Proposition 2.39 (Weak convergence - The Portmanteau Theorem, 1956) Let (E, d) be
a separable metric space and B(E) the Borel-σ-algebra. Let (µn)n∈N be a sequence of
probability measures µn ∈M1(E), µ ∈M1(E).Then the following statements are equiv-
alent.

(a) µn ⇒ µ as n→∞.

(b) For all F ⊂ E closed, lim supn→∞ µn(F ) ≤ µ(F ).

(c) For all G ⊂ E open, lim infn→∞ µn(G) ≥ µ(G).

(d) For every upper semicontinuous function f : E → R which is bounded above,

lim sup
n→∞

〈f, µn〉 ≤ 〈f, µ〉 .
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(e) For every lower semicontinuous function f : E → R which is bounded below,

lim inf
n→∞

〈f, µn〉 ≥ 〈f, µ〉 .

(f) For every f ∈ B(E;R) which is continuous at µ-almost every x ∈ E, 〈f, µn〉 →
〈f, µ〉 as n→∞.

(g) µn(A)→ µ(A) as n→∞ for all µ-continuity sets A ∈ B(E).

Remark 2.40 (a) If (E, d) is metric space, then convergence is net convergence when
the space is not separable.

(b) Suppose that xn → x0 in E as n → ∞, so that δxn ⇒ δx0 as n → ∞. Furthermore,
suppose all xn are all distinct from x0 (e.g., x0 = 0, xn = 1/n). Then the inequality
in (b) is strict if F = {x0}, and the inequality in (c) is strict if g = {x0}c. If A =
{x0}, then convergence does not hold in (g); but this does not contradict the theorem,
because the limit measure of ∂{x0} = {x0} is 1, not 0.

�

Proof of Proposition 2.39. (a)⇒ (b): Let F ⊂ E be closed and define

ψk(x) = 1−
( d(x, F )

1 + d(x, F )

) 1
k
, k ∈ N, x ∈ E .

Then ψk is uniformly continuous and bounded and

1 ≥ ψk(x)↘ 1F (x) as k →∞ for each x ∈ E .

Thus, countable additivity followed by (a) imply that

µ(F ) = lim
k→∞
〈ψk, µ〉 = lim

k→∞
lim
n→∞
〈ψk, µn〉 ≥ lim sup

n→∞
µn(F ) .

(b)⇔ (c) and (d)⇔ (e) and (f)⇒ (a) are all trivial and left as an exercise.

(c) ⇒ (e) (then (b) ⇒ (d) follows similarly): With loss of generality assume that f is a
nonnegative, lower semicontinuous function. For k ∈ N, define

fk =
∞∑
`=0

` ∧ 4k

2k
1lI`,k ◦ f =

1

2k

4k∑
`=0

1lJ`,k ◦ f ,

where
I`,k +

( `
2k
,
`+ 1

2k

]
and J`,k =

( `
2k
,∞
)
.

Clearly, 0 ≤ fk ↗ f and therefore 〈fk, µ〉 → 〈f, µ〉 as k →∞. We thus apply (c) to the
open sets {f ∈ J`,k} and use lower semicontinuity to get

〈fk, µ〉 ≤ lim inf
n→∞

〈fk, µn〉 ≤ lim inf
n→∞

〈f, µn〉
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for each k ∈ N; and so, after letting k →∞, we have shown (c)⇒ (e).

(d) & (e)⇒ (f): Suppose f ∈ B(E;R) is continuous at µ-almost every x ∈ E, and define

f (x) = lim inf
y→x

f (y) and f (x) = lim sup
y→x

f (y) for x ∈ E .

Then f ≤ f ≤ f everywhere and equality holds µ almost surely. Furthermore, f is lower
semicontinuous, f is upper semicontinuous, and both are bounded. Hence, by (d) and (e),

lim sup
n→∞

〈f, µn〉 ≤ lim sup
n→∞

〈f, µn〉 ≤ 〈f, µ〉 = 〈f, µ〉 = 〈f, µ〉

≤ lim inf
n→∞

〈f, µn〉 ≤ lim inf
n→∞

〈f, µn〉 .

(c) & (c)⇒ (g): For A ∈ E denote int(A) the interior of A and A the closure of A. The,
(b) and (c) together imply

µ(A) ≥ lim sup
n→∞

µn(A) ≥ lim sup
n→∞

µn(A) ≥ lim inf
n→∞

µn(A)

≥ lim inf
n→∞

µn(int(A)) ≥ µ(int(A)) .

If A is a µ-continuity set, we conclude with (g).

(g)⇒ (a): With loss of generality we may assume that f ∈ Cb(E;R) satisfies 0 < f < 1.
Then

〈f, µ〉 =

∫ ∞
0

µ(f > t) dt =

∫ 1

0

µ(f > t) dt ,

and similarly for µn. As f is continuous, ∂{f > t} ⊂ {f = t}and hence {f > t} is a
µ-continuity set except for countably many t. Thus by (g) and bounded convergence,

〈f, µn〉 =

∫ 1

0

µn(f > t) dt→
∫ 1

0

µ(f > t) dt = 〈f, µ〉 as n→∞ .

2

Theorem 2.41 Let (E, d) be a Polish space and µ ∈M1(E). Then for every ε > 0, there
exists a compact set K ⊂ E such that µ(K) ≥ 1− ε.

Proof. Let {pk}k∈N be a countable dense subset of E. Given µ ∈ M!(E) and ε > 0,
we can choose, for each n ∈ N, an `n ∈ N so that

µ
( `n⋃
k=1

BE(pk, 1/n)
)
≥ 1− ε

2n
.

Set

Cn :=
`n⋃
k=1

BE(pk, 1/n) and K :=
∞⋂
n=1

Cn .
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By construction, we see that K is closed, and furthermore

K ⊂
`n⋃
k=1

BE(pk, 2/n) for all n ∈ N .

Thus K is totally bounded, and therefore K is compact. 2

As Theorem 2.41 makes clear, probability measures on a Polish space like to be nearly
concentrated on a compact set. The following fundamental theorem demonstrates the
connection between tightness and relative compactness. We are not proving this theorem
as the proof is relatively long and technical, the interested reader can find a proof in
[Kal02, Bil99].

Theorem 2.42 Let (E, d) be a separable metric space and M ⊂ M1(E). Then M is
compact if M is tight. Conversely, when E is Polish, M is tight if M is compact.

We have now learned thatM1(E) inherits properties from E. We want to show that
M1(E) is Polish if E is a Polish space. For that we need the following lemma which is
of considerable importance in its own right.

Lemma 2.43 Let (E, d) be a Polish space, (µn)n∈N sequence of probability measures
µn, µ ∈ M1(E), and Φ ⊂ Cb(E;R) bounded subset which is equicontinuous at each
x ∈ E. If µn ⇒ µ as n→∞, then

lim
n→∞

sup
f∈Φ

∣∣∣〈f, µn〉 − 〈f, µ〉∣∣∣ = 0 .

Definition 2.44 (Lévy’s metric) Let (E, d) be a Polish space. The mapping
L : M1(E)×M1(E)→ R+ defined by

L(µ, ν) := inf
{
δ > 0: µ(F ) ≤ ν(F (δ)) + δ and ν(F ) ≤ µ(F (δ)) + δ ,∀ closed F ⊂ E

}
,

is called Lévy’s metric. Here, F (δ) denotes the set of x ∈ E which lie at distance less
than δ from F .

Theorem 2.45 Let (E, d) be a Polish space. Then L defined in Definition 2.44 is a com-
plete metric, and therefore (M1(E), L) is Polish and the metric is compatible with the
weak convergence of probability measures.

Proof. It is easy to realise that L(µ, ν) = 0 if and only if µ = ν, that L is symmetric
and that L satisfies the triangle inequality. To show that the metric L is compatible with
the weak convergence of probability measures we are left to show that

L(µn, µ)→ 0 as n→∞ ⇔ µn ⇒
n→∞

µ .

Suppose L(µn, µ)→ 0 as n→∞. Then, for every closed F ,

µ(F (δ)) + δ ≥ lim sup
n→∞

µn(F ) ,
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for all δ > 0; and therefore, µ(F ) ≥ lim supn→∞ µn(F ). Hence, by Proposition 2.39,
µn ⇒

n→∞
µ.

Now suppose µn ⇒
n→∞

µ and let δ > 0 be given as as a closed F ⊂ E. Define the function

ψF (x) :=
d(x, (F (δ))c)

d(x, (F (δ))c) + d(x, F )
, x ∈ E .

Then we can easily see that

1lF ≤ ψF ≤ 1lF (δ) and |ψF (x)− ψF (y)| ≤ d(x, y)
δ

.

By Lemma 2.43, we can choose m ∈ N so that

sup
n≥m

sup
{
|〈ψF , µn〉 − 〈ψF , µ〉| : F closed in E

}
< δ ,

which implies that for all n ≥ m,

µ(F ) ≤ µn(f (δ)) + δ and µn(F ) ≤ µ(F (δ)) + δ .

Hence supn≥m L(µn, µ) ≤ δ, and we have shown L(µn, µ) → 0 as n → ∞. Finally, we
need to show that L is a complete metric, that is, we must show that if (µn)n∈N ⊂M1(E)
is L-Cauchy convergent, then it is a tight sequence. Pick ε > 0 and choose, for each
` ∈ N, an m` ∈ N and a compact K` ⊂ E so that

sup
n≥m`

L(µn, µ) ≤ ε

2`+1
and max

1≤n≤m`
µn(Kc

` ) ≤
ε

2`+1
.

Setting ε` = ε/2`, we get that

sup
n∈N

µn((K (ε`))
c
) ≤ ε` for each ` ∈ N .

In particular, if we define

K :=
∞⋂
`+1

K
(ε`)

` ,

then µn(K) ≥ 1 − ε for all n ∈ N.As each K` is compact, it is easy to see that K is
compact. 2

3 Random walks and their scaling limit

3.1 The simple random walk on Zd

Let (Xi)i∈N be a sequence of independent identically distributed Zd-valued random vari-
ables on some probability space (Ω,F , P ) so that

P (Xj = e) =

{
1
2d

if |e| = 1,

0 otherwise.
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Note that each x ∈ Zd has exactly 2d nearest neighbours x± ej, j = 1, . . . , d. The simple
random walk (SRW) on Zd with start at x ∈ Zd is the sequence of Zd-valued random
variables (Sn)n∈N0 with

Sn = x+X1 + · · ·+Xn .

We denote Px the probability that the random walk starts at x (and wrote Ex for its expec-
tation). The n-step transition probability is denoted

pn(x, y) := Px(Sn = y) x, y ∈ Zd, n ∈ N0 .

When the index x is missing in our expression we assume that S0 = 0 and we write
pn(x) = p(0, x).

Proposition 3.1 (Proporties) For all x, y ∈ Zd and n ∈ N0 the following properties
hold.

(a) pn(x, y) = pn(y, x).

(b) pn(x, y) = pn(y − x) = pn(0, y − x).

(c) pn(y) = pn(−y).

(d) p0(x, y) = δ(x, y).

(e) pn(x, y) = Px(Sn = y) = P (Sn+m = y|Sm = x) for all m ∈ N0.

Proof. The easy proofs are left as an exercise.
2

For m ∈ N, define

S̃n := Sn+m − Sm = Xm+1 + · · ·+Xm+n .

Then (S̃n)n∈N0 is a simple random walk starting at 0 and independent of {X1, . . . , Xm}.
Furthermore, it is easy to see that

P (Sn+1 = xn+1|S0 = x0, . . . , Sn = xn) = p1(xn, xn+1) =: p(xn, xn+1) . (3.1)

Equation (3.1) says that the probability to reach a site xn+1 in the next ’time step’ only
depends on the present state Sn = xn and not on the past of the random walk up to time
n. This is called the Markov property.

Proposition 3.2 For all m,n ∈ N0, and x, y ∈ Zd,

pm+n(x, y) =
∑
z∈Zd

pm(x, z)pn(z, y) .

Proof. Using the Markov property we get

pm+n(x, y) =
∑

yi∈Zd,i=0,...,m+n;y0=x,ym+n=y

p(x, y1)p(y1, y2) · · · p(ym+n−1, ym+n)

=
∑

ym∈Zd,ym+n=y

pm(x, ym)pn(ym, ym+n) .
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Note that the sum is non-zero only if the yi’s form a nearest neighbour path in that |yi+1−
yi| = 1, i = 0, . . . ,m+ n− 1. 2

Definition 3.3 (Markov Chain/Process) Let E 6= ∅ be at most countable. Π =
(Π(x, y))x,y∈E is called a stochastic matrix if Π(x, y) ∈ [0, 1], x, y ∈ E and if for all
x ∈ E,

∑
y∈E Π(x, y) = 1.

Let Π be a stochastic matrix. A sequence (Xi)i∈N0 of e-valued random variables defined
on some probability space (Ω,F , P ) is called a Markov chain or Markov process with
state space E and transitions matrix Π, if

P (Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = Π(xn, xn+1)

for every n ∈ N and every x0, . . . , xn+1 ∈ E with P (X0 = x0, . . . , xn = xn) > 0. The
distribution α = P ◦X−1

0 of X0 is called the initial distribution of the Markov chain.

The transition matrix of the simple random walk (SRW) on Zd is

P (x, y) =

{
1
2d

if |y − x| = 1,

0 otherwise .
for x, y ∈ Zd . (3.2)

3.2 The Local central Limit Theorem (LCLT)
We briefly discuss the asymptotic for pn(x) for large n. Let S0 ≡ 0 in the following. Note
that the position Sn of the SRW at time n is the sum of independent, identically distributed
random variables each with mean 0 and variance 1

d
1l, where 1l is the identity matrix in d

dimensions. The CLT, Theorem 2.20, says that Sn/
√
n converges in distribution to a

normal random variable in Rd with mean 0 and variance 1
d
1l, i.e., if A ⊂ Rd is an open

ball,

lim
n→∞

P
( Sn√

n
∈ A

)
=

∫
A

( d
2π

)
e−

d|x|2
2 dx1 · · · dxd .

Note that

• Sn takes value sin Zd.
• n even, then Sn has even parity (sum of its components is even), Sn has odd parity when
n odd.

• A ball A ⊂ Rd contains about nd/2|A| points in the lattice n−1/2Zd, where |A| is the
Lebesgue volume.

• About half of these points will have even parity.

Suppose now that n is even, then we expect that

P
( Sn√

n
=

x√
n

)
≈ 2

nd/2

( d
2π

)d/2
e−d|x|

2/2n . (3.3)

The Local Central Limit Theorem (LCLT) below makes this approximation statement
precise. Before we can state that theorem, we shall make a few notations and collect a
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couple of facts. Define

p0(x) = δ(x, 0) and pn(x) = p(n, x) = 2
( d

2πn

)d/2
e−

d|x|2
2n .

We write n ↔ x if n and x have the same parity (i.e., if n + x1 + · · · + xd is even).
Similarly we write x↔ y and n↔ m. The error is defined as

E(n, x) :=

{
p(n, x)− p(n, x) if n↔ x,

0 if n 6↔ x.
(3.4)

In the analysis for the LCLT we need to compare functions defined on the lattice Zd
with functions defined on Rd along with their derivatives. If f : Zd → R and y ∈ Zd,
define the discrete derivatives in direction y,

∇yf (x) := f (xy)− f (x) ,
∇2
yf (x) := f (x+ y) + f (x− y)− 2f (x) .

If f : Rd → R is C3, x, y ∈ Zd, y = |y|u, then Taylor’s theorem with remainder gives

|∇yf (x)− |y|Duf (x)| ≤ 1

2
|y|2 sup

0≤a≤1
{|Duuf (x+ ay)|}

|∇2
yf (x)− |y|2Duuf (x)| ≤ 1

3
|y|3 sup

0≤a≤1
{|Duuuf (x+ ay)|} .

Theorem 3.4 (Local Central Limit Theorem (LCLT)) For the SRW on Zd the follow-
ing estimates hold for the error defined in (3.4).

|E(n, x)| ≤ O(n−(d+2)/2) ,

|E(n, x)| ≤ |x|−2O(n−d/2) .

If y ↔ 0 there exists a cy ∈ (0,∞) such that

|∇yE(n, x)| ≤ cyO(n−(d+3)/2)

|∇yE(n, x)| ≤ cy|x|−2O(n−(d+1)/2)

|∇2
yE(n, x)| ≤ cyO(n−(d+4)/2)

|∇2
yE(n, x)| ≤ cy|x|−2O(n−(d+2)/2) .

Proof. A detailed proof can be found in [LL10] or [Law96]. We give some hints and
leave details for the interested reader. The key point is to use characteristic functions
(Fourier transformation) and the independence of the Xi’s in the definition of the SRW.
The latter fact leads to just considering the power of the single characteristic function.
The whole proof is rather technical as it requires expansion of characteristic function
and careful estimates of various integrals. All techniques and methods are standard in
analysis, and the patient reader can work out all separate steps.
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Characteristic function for lattice functions: If Y is any random variable taking value sin
Zd, the characteristic function ϕY ≡ ϕ, given by

ϕ(k) = E[ei〈Y,k〉] =
∑
x∈Zd

P (Y = x) ei〈x,k〉 , (3.5)

has period 2π in each component. We can therefore think of ϕ as a function on [−π, π]d

with periodic boundary conditions. The cube BZ := [−π, π]d is called the Brillouin zone.
The inversion formula for the characteristic function is

P (Y = y) =
1

(2π)d

∫
[−π,π]d

e−i〈y,k〉ϕ(k) dk .

It is easy to see that

ϕX1(k) ≡ ϕ(k) =
1

d

d∑
j=1

cos(kj) ,

and hence the characteristic function for the SRW at time n is

ϕSn ≡ ϕn(k) =
(1

d

d∑
j=1

cos(kj)
)
.

We may assume that n↔ x, then

pn(x) =
1

(2π)d

∫
BZ

e−i〈x,k〉 dk .

Since n↔ x, we can replace k by k + (π, . . . , π), and have

pn(x) = 2
1

(2π)d

∫
A

e−i〈x,k〉 dk .

with A = [−π/2, π/2] × [−π, π]d−1. Expansion of ϕ around the origin gives ϕ(k) =
1− 1

2
|k|2 +O(|k|4). We can find r ∈ (0, π/2) such that

ϕ(k) ≤ 1− 1

4d
|k|2 for |k| ≤ r ,

and there is thus a % < 1 depending on the r such that |ϕ(k)| ≤ % for |k| ≥ r, k ∈ A.
Hence p(n, x) = I(n, x) + J(n, x) with

I(n, x) = 2(2π)−d
∫
|k|≤r

e−i〈x,k〉 dk ,

and |J(n, x)| ≤ %n. The rest of the proof now concerns the integral I(n, x) which needs
to be further split in different parts, see details in [LL10]. 2

We will demonstrate the usefulness of the LCLT in Section 3.3. Before we suggest
the following insightful exercises.
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Exercise 3.5 Show the following. Suppose x↔ y. Then

lim
n→∞

∑
z∈Zd
|pn(x, z)− pn(y, z)| = 0 .

Hint: Use the central limit theorem for all |z| ≥ nγ with γ > 1
2
. Then use the LCLT for

|n| ≤ nγ for γ < 1
2

+ 1
d
. KKK

Exercise 3.6 Prove for every m↔ 0,

lim
n→∞

∑
z∈Zd
|pn(z)− pn+m(z)| = 0 .

KK

3.3 Strong Markov property and basic potential theory

A random time is a random variable τ : Ω → N0 ∪ {∞}. A stopping time for the SRW
is any random time τ which depends only on the past and present, i.e., for time n on
Fn = σ(X1, . . . , Xn). The future is the σalgebra Hn = σ(Xn+1, . . .) and is independent
of Fn, i.e., Fn ⊥ Hn. A sequence (Gn)n∈N0 of nested σ-sub-algebras G0 ⊂ G1 ⊂ · · · is a
filtration for the SRW if Fn ⊂ Gn and Gn ⊥ Hn. A random time τ is a stopping time with
respect to the filtration (Gn)n∈N0 if for each n ∈ N0, {τ = n} ∈ Gn.

Exercise 3.7 (a) Let A ⊂ Zd and k ∈ N. Show that τ = inf{n ≥ k : Sn ∈ A} is a
stopping time with respect to the filtration (Fn)n∈N0 .

(b) If τ1 and τ2 are stopping times then so are τ1 ∧ τ2 and τ2 ∨ τ2.

(c) Let (Yi)i∈N0 be sequence of independent rand identically distributed random vari-
ables with (Yi)i∈N0 ⊥ (Xi)i∈N0 and P (Yi = 1) = 1 − P (Yi = 0) = λ. Define
T = inf{j ∈ N0 : Yj = 1} and show that T is stopping with respect to the filtration
(Gn)n∈N0 where Gn(σ(X1, . . . , Xn, Y0, Y1, . . . , Yn). When Yi = 1 occurs, the random
walk will be stopped (killed). The so-called ’killing time’ of the random walk has
geometric distribution, i.e., P (T = j) = (1− λ)jλ.

KK

When τ is a stopping time with respect to the filtration (Gn)n∈N0 , then we write

Gτ := {A ∈ F : for each n ∈ N0 : A ⊂ {τ ≤ n} ∈ Gn} .

Theorem 3.8 (Strong Markov property) Let τ be a stopping time with respect to the
filtration (Gn)n∈N0 . Them on {τ <∞} the process (S̃n)n∈N0 , defined by

S̃n := Sn+τ − Sτ

is a SRW starting at the origin and independent of Gτ .
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Proof. Let x0, . . . , xn ∈ Zd;A ∈ Gτ .

P (S̃0 = x0, . . . , S̃n = xn ∩ A ∩ {τ <∞})

=
∞∑
j=0

P (S̃0 = x0, . . . , S̃n = xn ∩ A ∩ {τ = j})

=
∞∑
j=0

P (Sj − Sj = x0, . . . , Sj+n − Sj = xn) ∩ A ∩ {τ = j})

=
∞∑
j=0

P (S0 = x0, . . . , Sn = xn)P (A ∩ {τ = j})

= P (S0 = x0, . . . , Sn = xn)P (A ∩ {τ < τ}) .
2

We now come to the promised application of the LCLT and the strong Markov property.
Let Rn denote the number of visits of the SRW to the origin 0 up through time n,

Rn :=
∞∑
j=0

1l{Sj = 0} , R := R∞ .

By the LCLT, Theorem 3.4,

E[Rn] =
∞∑
j=0

pj(0) +
∑

j≤,j even

(
2
( d

2πj

)d/2
+O

(
j−(d+2)/2

))

∼


√

2/πn1/2 +O(1) if d = 1 ,
1
π

logn+O(1) if d = 2 ,

c+O(n(2−d)/2) of d ≥ 3 .

From this we get that E[R] =∞ for d = 1, 2. Define τ := inf{j ∈ N : Sj = 0} and note
that then R = 1 +

∑∞
j=τ 1l{Sj = 0}. Thus, by the strong Markov property, Theorem 3.8,

E[R] = 1 + P (τ <∞) , or P (τ =∞) =
1

E[R]

{
= 0 if d = 1, 2 ,

> 0 if d ≥ 3 .

Another application of Theorem 3.8 shows that if d ≥ 3,

P (R = j) = p(1− p)j−1 , with p = P (τ =∞) .

We summarise our findings in the following theorem where we define transience and
recurrence.

Theorem 3.9 If d = 1, 2, the simple random walk is recurrent , i.e.,

P (Sn = 0 infinitely often ) = 1 .

If d ≥ 3, the simple random walk is transient , i.e.,

P (Sn = 0 infinitely often ) = 0 .
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Let f : Zd → R, then the discrete Laplacian of f at x ∈ Zd is defined as

∆f (x) =
( 1

2d

∑
|e|=1

f (x+ e)
)
− f (x) =

1

2d

∑
|e|=1

∇ef (x)

=
1

2d

d∑
j=1

∇2
ejf (x) =

1

2d

d∑
j=1

(−∇∗ej∇ejf (x)) ,

where we define the adjoint discrete derivative in direction ej as

∇∗ejf (x) := f (x− ej)− f (x) .

The discrete Laplacian of a given function is also given in terms of the SRW on Zd,
namely note that

∆f (x) = Ex[f (S1)− f (S0)] .

Definition 3.10 (Martingale) A sequence (Mn)n∈N0 of random variables on some prob-
ability space (Ω,F , P ) with E[|Mi|] <∞ for all ∈∈ N0 is a martingale with respect to
the filtration (Fn)n∈N0 if each Mn is Fn measurable and

E[Mm|Fn] = Mn almost surely for all n ≤ m, (3.6)

i.e.,
E[Mn+1|Fn] = Mn . (3.7)

Taking expectation value in (3.7) yields E[Mn+1] = E[Mn] for all n ∈ N0 and thus

E[Mn] = E[M0] for all n ∈ N0 . (3.8)

In order to verify (3.6) it suffices to prove (3.7), since if this holds, we obtain

E[Mn+2|Fn] = E[E[Mn+2|Fn+1|Fn]] = E[Mn+1|Fn] = Mn ,

and so on.

Example 3.11 (a) Fair coin, P (ξi = 1) = P (ξi = −1) = 1
2

and Mn := ξ1 + · · · + ξn.
Let Fn = σ(ξ1, . . . , ξn), X0 = 0, F0 = {∅,Ω}. Then (Xn)n∈N0 is a martingale

(b) SupposeX ∈ L1 and let (Fn)n∈N0 be a filtration. Then by the chain rule of conditional
expectations we obtain that Mn := E[Mm|Fn] is a martingale.

(c) Suppose (Xi)i∈N0 is a sequence of independent, identically distributed random vari-
ables with E[Xi] = µ for all i ∈ N) and define Sn := S0 + X1 + · · · + Xn. Then
Mn := Sn − nµ is martingale with respect to (Fn)n∈N, Fn = σ(X0, X1, . . . , Xn). To
see this note that Mn+1 −Mn = Xn+1 − µ ⊥ X0, . . . , Xn and thus

E[Mn+1 −Mn|Fn] = E[Xn+1 − µ] = 0 .

♣
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The optional sampling (or optional stopping) theorem states that (under certain con-
ditions) if (Mn)n∈N0 is a martingale and τ be a stopping time then

E[Mτ ] = E[M0] . (3.9)

so (3.9) is just the generalisation of (3.8) to random stopping times.

Proposition 3.12 Suppose that (Mn)n∈N0 is a martingale with respect to (Fn)n∈N0 and
suppose that τ is a stopping time and that τ is bounded, τ ≤ K <∞. Then

E[Mτ |F0] = M0 .

in particular, E[Mτ ] = E[M0].

Proof. First note that the event {τ > n} is measurable with respect toFn. Furthermore,

Mτ =
K∑
j=0

Mj1l{τ = j} .

We now take the conditional expectation with respect to FK−1,

E[Mτ |FK−1] = E[Mk1l{τ = K}|FK−1] +
K−1∑
j=0

E[Mj1l{τ = j}|FK−1] .

For j ≤ K − 1,Mj1l{τ = j} is FK−1-measurable; hence

E[Mj1l{τ = j}|FK−1] = Mj{τ = j} .

The event {τ = K} is the same as the event {τ > K − 1}. Hence,

E[MK1l{τ = K}|FK−1] = 1l{τ > K − 1}E[MK |FK−1] = 1l{τ > K − 1}MK−1 .

Therefore,

E[Mτ |FK−1] = 1l{τ > K − 1}MK−1 +
K−1∑
j=0

Mj1l{τ = j}

= 1l{τ > K − 2}MK−2 +
K−2∑
j=0

Mj1l{τ = j} .

Repeating our argument again, this time conditioning with respect to FK−2, we get

E[Mτ |FK−2] = 1l{τ > K − 3}MK−2 +
K−3∑
j=0

Mj1l{τ = j} .

We continue this process until we get E[Mτ |F0] = M0. 2
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Many examples of interest have stopping times which are not necessarily bounded.
Suppose τ is a stopping time with P (τ < ∞) = 1. Can we then conclude that E[Mτ ] =
E[M0]? To answer this question we consider the following stopping times

τn = min{τ, n} = n ∧ τ .

Then
Mτ = Mτn +Mτ1l{τ > n} −Mn1l{τ > n} . (3.10)

Since Tn is a bounded stopping time, it follows that E[Mτn] = E[M0]. we would like
to show that the other two terms on the right hand side of (3.10) do not contribute as
n → ∞. The second term is actually not much of a problem as the probability of the
event {τ > n}goes to 0 as n → ∞, one can show (exercise) that if E[|Mτ |] < ∞ then
E|Mτ |1l{τ > n}] → as n → ∞. The third term is more troublesome. Here, we need to
add the additional assumption that E[|Mn|1l{τ > n}]→ 0 as n→∞.

Theorem 3.13 (Optional Sampling Theorem) Suppose (Mn)n∈N0 is a martingale with
respect to (Fn)n∈N0 and τ is a stopping time satisfying P (τ < ∞) = 1, E[|Mτ |] < ∞,
and

lim
n→∞

E[|Mn|1l{τ > n}] = 0 . (3.11)

Then, E[Mτ ] = E[M0].

Condition (3.11) is often hard to verify. Suppose X is a random variable E[X] <∞ and
assume in addition that X has a Radon-Nokodym density with respect to the Lebesgue
measure, i.e., FX(t) =

∫ t
−∞ f (x) dx. Then it follows that

lim
M→∞

E[|X|1l{|X| > M}] = lim
M→∞

∫ ∞
M

xf (x) dx = 0 .

Now suppose that we have a sequence (Xn)n∈N0 of random variables. The sequence
(Xn)n∈N0 is uniformly integrable if for every ε > 0 there exists a M > 0 such that for
each n,

E[|Xn|1l{|Xn| > M}] < ε . (3.12)

Lemma 3.14 Let (Xn)n∈N0 be uniformly integrable. Then, for every ε > 0, there is a
δ > 0 such that if P (A) < δ, then

E[|Xn|1lA] < ε , for each n . (3.13)

Proof. Pick ε > 0 and chooseM > 0 sufficiently large so that E[|Xn|1l{|Xn| > M}] <
ε/2 for all n. For δ = ε/(2M ) we get for every A with P (A) < δ,

E[|Xn|1lA] ≤ E[|Xn|1lA; |Xn| ≤M ] + E[|Xn|; |Xn| > M ] < MP (A) + ε/2 < ε .

2

Now suppose that (Mn)n∈N0 is a uniformly integrable martingale with respect to (Fn)n∈N0

and T is a stopping time with P (T <∞) = 1. Then

lim
n→∞

P (T > n) = 0 ,
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and hence by uniformly integrability,

lim
n→∞

E[|Mn|1l{T > n}] = 0 ,

that is, condition (3.11) holds. With this we have proven the following version of the
optional sampling theorem.

Theorem 3.15 (Optional Sampling Theorem - 2nd version) Suppose that (Mn)n∈N0 is
a uniformly integrable martingale with respect to (Fn)n∈N0 and τ is a stopping time sat-
isfying P (τ <∞) = 1 and E[|Mτ |] <∞. Then, E[Mτ ] = E[M0].

Example 3.16 Consider the SRW on {0, 1, . . . , N}, N ∈ N, with absorbing boundaries
(SRW stops when it reaches either 0 or N ). Set S0 = x ∈ {0, 1, . . . , N} and T = inf{j ∈
N0 : Sj = 0, N}. Then

Px(T <∞) = P (
⋃
n∈N

{T < n}) = 1− lim sup
n→∞

Px(T ≥ n) = 1 .

according to Lemma 3.17 below. Furthermore, Mn := Sn∧T is a bounded martingale and
Theorem 3.13 states that for x ∈ {0, 1, . . . , N},

x = Ex[M0] = Ex[MT ] = NPx(ST = N ) .

Therefore,
Px(ST = N ) =

x

N
.

Define the function F : {0, 1, . . . , N}[0, 1], F (x) = P (ST = N |S0 = x). This function
clearly satisfies the following iteration and boundary conditions,

F (x) =
1

2
F (x+ 1) +

1

2
F (x− 1) , x ∈ {1, . . . , N − 1} ,

F (0) = 0, F (N ) = 1 .
(3.14)

Then the only function F solving (3.14) with the boundary condition F (0) = a, F (N ) =
b, a, b ∈ R instead of F (0) = 0, F (N ) = 1 is the linear function

F (x) = a+
x(b− a)
N

.

♣

Lemma 3.17 Let Λ ⊂ Zd be a finite set and τ := inf{j ∈ N : Sj /∈ Λ}. Then there exist
C ∈ (0,∞ and % ∈ (0, 1) (depending on Λ) such that for each x ∈ Λ,

Px(τ ≥ n) ≤ C%n , n ∈ N .

Proof. Let R = sup{|x| : x ∈ Λ}. Then for each x ∈ Λ, there is a path of length R + 1
starting at x and ending outside of Λ, hence

Px(τ ≤ R + 1) ≥
( 1

2d

)R+1

.
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By the Markov property,

Px(τ > k(R + 1)) = Px(τ > (k − 1)(R + 1))Px(τ > k(R + 1)|τ > (k − 1)(R + 1))

≤ Px(τ > (k − 1)(R + 1))(1− (2d)
−(R+1)

) ,

and hence
Px(τ > k(R + 1)) ≤ %k(R+1) ,

where % = (1 − (2d)−(R+1))1/(R+1). Write n = k(R + 1) + j with j ∈ {1, . . . , R + 1}.
Then

Px(τ ≥ n) ≤ Px(τ > k(R + 1)) ≤ %k(R+1) ≤ %−(R+1)%n ,

and conclude with C = C(R) = %−(R+1). 2

Proposition 3.18 Suppose f is a bounded function, harmonic on Λ ⊂ Zd, and τ =
inf{j ∈ N0 : Sj /∈ Λ}. Then Mn := f (Sn∧τ ) is a martingale with respect to (Fn)n∈N0 .

Proof. Assume that S0 = x. By the Markov property,

Ex[f(Sn+1)|Fn] = ESn [f(S1)] = f (Sn) + ∆f (Sn) .

Let Bn := {τ > n}, then Mn+1 = Mn on Bc
n, and

E[Mn+1|Fn] = E[Mn+11lBn|Fn] + E[Mn+11lBc
n
|Fn]

= E[f (Sn+1)1lBn|Fn] + E[Mn1lBc
n
|Fn]

= 1lBnE[f (Sn+1)|Fn] +Mn1Bc
n

= 1lBn(f (Sn) + ∆f (Sn)) +Mn1lBc
n

= 1lBnf (Sn) +Mn1lBc
n

= Mn ,

where we used that ∆f (Sn) = 0 on Bn in the last equation. 2

For Λ ⊂ Zd denotes its boundary ∂Λ := {x ∈ Λc : |x− y| = 1 for some y ∈ Λ}, and its
closure by Λ = Λ ∪ ∂Λ.

Theorem 3.19 (Discrete Dirichlet boundary value problem) Let Λ ⊂ Zd be finite and
F : ∂Λ→ R be given. The unique function f : Λ→ R satisfying

(a) ∆f (x) = 0 for all x ∈ Λ,

(b) f (x) = F (x) for x ∈ ∂Λ,

is given as
f (x) := Ex[F (Sτ )] , τ := inf{j ∈ N0 : Sj 6∈ Λ} . (3.15)

Proof. It is straightforward to see that f defined by (3.15) satisfies (a) and (b). To show
uniqueness assume that f satisfies (a) and (b) and let x ∈ Λ. Then Mn := f (Sn∧τ ) is a
bounded martingale and by the optional stopping theorem, Theorem 3.13,

f (x) = Ex[M0] = Ex[Mτ ] = Ex[F (Sτ )] .
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2

The Green function of the SRW is defined is the number of visits up to time n to y ∈ Zd
when starting in x ∈ Zd,

Gn(x, y) := Ex
[ n∑
j=0

1l{Sj = y}
]

=
n∑
j=0

pj(x, y) =
n∑
j=0

pj(y − x) , (3.16)

or, for all dimensions d ≥ 3, one can obtain the limit n → ∞ (total number of visits to
y),

G(x, y) = G∞(x, y) =
∞∑
j=0

pj(x, y) . (3.17)

Let G(x) := G(0, x) and note

∆G(x) = Ex
[ ∞∑
j=1

1l{Sj = y}
]
− Ex

[ ∞∑
j=0

1l{Sj = y}
]

= E[− 1l{S0 = x}] = −δ(x, 0) .

(3.18)
With the help of the LCLT, Theorem 3.4, some computation and estimates, one may

derive that for d ≥ 3, as |x| → ∞,

G(x) ∼ ad |x|2−d , ad =
d

2
Γ(d/2− 1)π−d/2 . (3.19)

3.4 Discrete Heat Equation and its scaling limit
Suppose ti ∈ N0, i ∈ N0, are ordered times of the SRW, i.e., ti ≤ ti+1. For any x0, x1 ∈
Zd denote P (x1, t1;x0, t0) the (transition) probability that the SRW is at x1 at time t1
when he was at x0 at time t0 ≤ t1. In the following we write x ∼ y when |x − y| = 1,
i.e., when x.y ∈ Zd are nearest-neighbours. The transition probabilities depend only on
the differences t1 − t0 and X1 − x0 and satisfy the following properties:

P (x1, t0;x0, t0) = δ(x1, x0) . (3.20)∑
x1∈Zd

P (x1, t1;x0, t0) = 1 , for any t1 ≥ t0 . (3.21)

P (x, t+ 1;x0, t0) =
1

2d

∑
x′∈Zd : x′∼x

P (x′, t;x0, t0) , for t ≥ t0, t ∈ N0 (3.22)

or rewrite using the definition of the discrete Laplacian to obtain the following discrete
heat equation (DHE) discrete heat equation,

P (x, t+ 1;x0, t0)− P (x, t;x0, t0) = ∆P (x, t;x0, t0) . (3.23)

To solve the discrete heat equation (3.23) we shall use Fourier transform, that is,
characteristic functions. Let us briefly recall that for any function f : Zd → R, the Fourier
transfrom reads as

f̂ (k) =
∑
y∈Zd

f (y) e−i〈k,y〉 , k ∈ BZ := [−π, π]d . (3.24)
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Here BZ denotes the Brillouin Zone, and the function defined in (3.24) is 2π - periodic.
Furthermore, the Fourier transformation is defined only for functions which are `1(Zd)
respectively `2(Zd), for details see [Spi01]. Using

1

(2π)d

∫
BZ

ei〈k,x−y〉 dk = δ(x, y) , (3.25)

it is easy to see that

f (x) =
1

(2π)d

∫
BZ

f̂ (k) ei〈k,x〉 dk . (3.26)

Returning to our problem solving the discrete heat equation we see that

P (x, t;x0, t0) =
1

(2π)d

∫
BZ

P̂ (k, t) ei〈k,x〉 dk , (3.27)

where P̂ (k, t) is the Fourier transform of P (x, t;x0, t0).
From (3.23) we deduce that

P̂ (k, t+ 1) =
1

d

d∑
j=1

cos(kj)P̂ (k, t) (3.28)

with
P̂ (k, t0) = e−i〈k,x0〉

as follows from (3.20). Using (3.27) and (3.28) one obtains the solution

P (x1, t1;x0, t0) =
1

(2π)d

∫
BZ

ei〈k,x1−x0〉
(1

d

d∑
j=1

cos(kj)
)t1−t0

. (3.29)

After solving the discrete heat equation we now aim to analyse the scaling limit when
we scale both the lattice by ε > 0 and the time by τ > 0, that is, we replace the lattice Zd
by εZd and the unit time step by τ . Note that the left hand side of (3.29) is only a function
of x1− x0 and t1− t0. Perfomrming the substitutions t→ t/τ and x→ x/ε and k → εk,
equation (3.29) becomes

P (x1, t1;x0, t0) =
εd

(2π)d

∫
BZε

ei〈k,x1−x0〉
(1

d

d∑
j=1

cos(εkj)
)(t1−t0)/τ

, (3.30)

where BZε = [−π/ε, π/ε]d. we now take the limit as ε and τ go to zero, keeping distances
and time intervals fixed. We consider a volume ∆x around x which is large with respect
to the elementary lattice volume εd, but which is also sufficiently small to ensure that
the transition probability remains nearly constant within ∆x; this last requirement is also
fulfilled if (t1 − t0)/τ is also large. This finally permits a so-called transition probability
density p = P/εd to be defined as

p(x1, t1;x0, t0)∆x1 =
∑

x′1∈∆x1

P (x′1, t1;x0, t0) ≈ ∆x1

εd
P (x1, t1;x0, t0) , (3.31)
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and thus

p(x1, t1;x0, t0) = lim
ε,τ→0

1

(2π)d

∫
BZε

ei〈k,x1−x0〉
(1

d

d∑
j=1

cos(εkj)
)(t1−t0)/τ

. (3.32)

This limit is nontrivial only when ε and τ vanish in such a way that the ratio τ/ε2 is kept
fixed. One can show this by the expansion of the cosine(1

d

d∑
j=1

cos(εkj)
)(t1−t0)/τ

=
(

1− ε2

2d
k2 + · · ·

)(t1−t0)/τ
→ e−(t1−t0)k2

in which the time scale has been fixed using

τ =
1

2d
ε2 .

Hence

p(x1, t1;x0, t0) =
1

(2π)d

∫
Rd

exp (− (t1 − t0)k2 + i〈x1 − x0, k〉) dk

=
1

(4π(t1 − t0)d/2
exp

(
− (x1 − x0)2

4(t1 − t0)

)
.

(3.33)

This is the well-known kernel of the diffusion equation in continuous space Rd. It is
positive, symmetric, and satisfies∫

Rd
p(x, t;x0, t0) dx = 1 . (3.34)

lim
t1→t0

p(x, t1;x0, t0) = δ(x1 − x0) . (3.35)

( ∂
∂t
−∆

)
p(x, t;x0, t0) = 0 . (3.36)∫

Rd
p(x2, t2;x1, t1)p(x1, t1;x0, t0) dx1 = p(x2, t2;x0, t0) . (3.37)

Condition (3.34) is the conservation law for the probabilities and is the continuous
counterpart of (3.21), while (3.35) describes the initial condition. Equation (3.37) is the
diffusion equation or heat equation . Finally, (3.37) expresses the obvious fact that the
walker was certainly somewhere at an intermediate time t1. This last relation, charac-
teristic of a Markov process, is compatible with the convolution properties of Gaussian
integrals.

Remark 3.20 (a) Note that we have considered above only the so-called forward deriva-
tive in time. We can repeat all our arguments for the backward differences to obtain
convergence to the continuous equation (3.37). The continuous diffusion law/heat
equation (3.37) is isotropic and translationally invariant (in Rd), whereas the discrete
version only presents the cubic symmetries.
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(b) In our limiting procedure above we have fixed the time intervals t1−t0 and the spatial
distances x1 − x0 and considered the case where the spatial and the time steps ε and
τ vanished, with the ratio τ/ε2 kept fixed. To be precise, note that t1 − t0 and the
components of x1 − x0 should be multiples of τ and ε respectively.

(c) Alternatively, we could have taken x1 − x0 and t1 − t0 large with respects to the
spacings. Our approach here is comparable to the so-called ultraviolet limit in field
theory, where a cutoff parameter (here 1/ε being a natural scale for the momenta k)
tends to infinity, whereas physical (measurable) quantities are kept fixed. The cutoff
for frequencies is τ−1 with τ−1 ∼ ε−2. When a (Brownian) curve is followed at
constant speed ε/τ , the typical distance behaves as

|x1 − x0| ∼ |t1 − t0|
1
2 .

(d) Defining an characteristic exponent or critical exponent ν of the end-to-start distance
by

|x1 − x0| ∼ |t1 − t0|ν ,
we see that Brownian motion (to be discussed in detail in Section 3.5 below) has
critical exponent ν = 1

2
.

(e) A bond in Zd is an unordered pair {x, y} with x 6= y ∈ Zd. A nearest-neighbour bond
is a bond {x, y} with |x− y| = 1. An oriented pair (x, y) is called a step of the walk
with initial site x and terminal site y. A walk (path) ω in the lattice Zd is a sequence
of sites ω(0), ω(1), . . . , ω(N ), we call |ω| := N the length of the walk.

P (x1, t1;x0, t0) =
#{paths joining x0 to x1 with t1 − t0 steps}

#{paths originating from x0 with t1 − t0 steps}

=
∑

ω,∂ω={x0,x1}
|ω|=t1−t0

( 1

2d

)|ω|
,

where ∂ω denotes the boundary of the path ω, i.e., ∂ω = {x0, x1}.
�

3.5 Brownian motion
In the last section we have seen that

p(x, y; t) =
1

(4πt)d/2
exp

(
− |y − x|

4t

)
solves the heat equation

∂u(x, t)
∂t

= ∆u(x, t) , t ≥ 0, x ∈ Rd .

In probability theory we typically write

∂u(x, t)
∂t

=
1

2
∆u(x, t) , t ≥ 0, x ∈ Rd , (3.38)
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and we thus re-define

p(x, y; t) =
1

(2πt)d/2
exp

(
− |y − x|

2t

)
. (3.39)

The ultimate aim to to introduce Brownian motion as the scaling limit of the SRW as
indicated in the previous section. First of all, a stochastic process (for continuous time)
is a family (Xt)t≥0 of random variables Xt in some state space. There are actually var-
ious ways how to proceed when we consider the state space Rd and our findings. One
way is to characterise the transition probabilities via the transition probability density
p(x, y; t), x, y ∈ Rd, t ≥ 0, that is,

(i) p(x, ·; t) is a probability density function for all t ≥ 0, x ∈ Rd.

(ii) p(x,B; t) :=
∫
B
p(x, y; y) dy is the transition probability that Xt ∈ B when x0 = x,

B ∈ B(Rd).

(iii) For all t, s ≥ 0, B ∈ B(Rd),

p(x,B; t+ s) =

∫
Rd

p(x, dy; t)p(y,B; s) .

The idea is then to define a semigroup of transition probabilities, i.e., for any bounded
measurable function f ,

Ptf (x) :=

∫
Rd

p(x, dy; t) f (y) , x ∈ R2 ,

such that the process is fully characterised by this semigroup so that

Px(Xt ∈ B) := p(x,B; t) for B ∈ B(Rd) .

This is the general theory of Markov processes and an interested reader might consult
[Kal02] or reference in there.
An alternative way is to define all finite-dimensional distributions of the process (Xt)t≥0.
First, suppose that x0 = x ∈ Rd, that is , the initial site of the process is fixed, one easily
generalises this to any initial probability distribution µ ∈M1(Rd).

A finite-dimensional distribution is defined for any finite time vector t = (t1, . . . , tn) ∈
Rn

+ with 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, B ∈ B(Rdn). The finite-dimensional distributions
of the process (Xt)t≥0 are the probabilities of the vector (Xt1 , . . . , Xtn) of the process
evaluated at the given times, i.e., for all B ∈ B(Rdn),

Px({(Xt1 , . . . , Xtn) ∈ B}) :=

∫
B

n∏
i=1

p(yi−1, yi; ti − ti−1) dy1 · · · dyn , y0 := x .

(3.40)

Suppose we have defined all finite-dimensional distributions as of (3.40), the question is
then whether that determines uniquely the process (Xt)t≥0. We review standard measure
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theory material where this is the case for certain classes of finite-dimensional distribu-
tions. Our process(Xt)t≥0 takes values in the path space

Ω := R[0,∞) = {ω : [0,∞)→ Rd} ,

and we shall define a probability measure on Ω which is compatible with the finite-
dimensional distributions. Measurable sets of the form

C ={ω ∈ Ω: (ω(t1), . . . , ω(tn) ∈ A} ,
n ∈ N, A ∈ B(Rn), ti ∈ [0,∞), i = 1, . . . , n ,

(3.41)

are called cylinder sets or cylinder events . We denote by C the collection of all cylinder
sets and by F = σ(C) the smallest σ-algebra on Ω containing all cylinder events.

Definition 3.21 Denote T the set of all finite sequences t = (t1, . . . , tn), ti ≥ 0, and
write |t| = n for its length. Then (Qt)t∈T is a family of finite-dimensional distributions
if Qt ∈M1(Rd|t|). The set (Qt)t∈T is said to be a consistent family of finite-dimensional
distributions if

(i) If s = (ti1 , . . . , tin) ∈ T is a permutation of t ∈ T, then for every Ai ∈ B(Rd), i =
1, . . . , |t| = n,

Qt(A1 × · · · × An) = Qs(Ai1 × · · · × Ain) .

(ii) For every t = (t1, . . . , tn) ∈ T and s = (t1, . . . , tn−1) ∈ T, n ∈ N,

Qt(A× R) = Qs(A) A ∈ B(Rn−1) .

Now it is readily clear that given a probability measure P ∈ M1(Ω,F) on the path
space, then one obtains a consistent family of finite-dimensional distributions via

Qt(A) := P ((ω(t1), . . . , ω(tn)) ∈ A) , , t ∈ T, |t| = n,A ∈ B(Rdn) . (3.42)

Theorem 3.22 (Daniell 1018; Kolmogorov 1933) Let be a consistent family of finite-
dimensional distributions. Then there exists a probability measure ∈M1(Ω,F) such that
(3.42) holds.

Proof. See standard measure theory and probability books, [BB01, Kal02, Dur19]. 2

The idea is then to define a measure via (3.40) and identify the process (Xt)t≥0 we called
earlier Brownian motion with the corresponding path measure. Before we do that, let
us check the fundamental properties of the process obtain from our probability transition
density.

Exercise 3.23 Using (3.40), show that the increments {Xti −Xti−1
; 1 ≤ i ≤ n}, n ∈ N,

are independent and normally distributed, i.e., increment Xti −Xii−1
has law

p(0, ·; ti − ti−1) = N(0, ti − ti−1) .

KK
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Definition 3.24 (Brownian motion) A process (Bt)t≥0 of R-valued random variables
is called standard (or one-dimensional) Brownian motion with start at x ∈ R if the
following holds.

(a) B0 = x.

(b) For all 0 ≤ t1 ≤ · · · ≤ tn, n ∈ N, the increments Btn − Btn−1 , . . . , Bt2 − Bt1 are
independent R -valued random variables.

(c) For t ≥ 0 for all h > 0, the increments Bt+h −Bt are N(0, h) distributed.

(d) Almost surely, the function t 7→ Bt is continuous.

A process (Bt)t≥0 of Rd-valued random variables is called d-dimensional Brownian mo-
tion with start in x ∈ Rd if all coordinate processes (B (i)

t )t≥0 are standard Brownian
motion with start in xi ∈ R, i = 1, . . . , d.

Note that the σ-algebra F generated by all cylinder doe snot include events that the whole
Brownian motion path is continuous. Thus, in order to proceed in line with our defini-
tion of Brownian motion, we need to obtain continuous version of the process defined by
the probability measure on the path space. This can be down but we skip these details
here and refer the interested reader to the book [KS98]. Furthermore, there is an elegant
construction of Brownian motions which immediately provides continuity of the random
paths, the so-called Lévy construction, see for example [MP10]. We finally briefly discuss
another way to construct Brownian motion, namely by directly studying the scaling limit
of the corresponding random walk using our techniques and methods from the CLT, The-
orem 2.20. The key idea is to scale a discrete time random walk with linear extrapolation
to continuous time and where the scale refers to the number terms in the sum. This way
one obtain a sequence (X (n))νN of processes X (n) = (X (n)

t )t≥0, and one can make use of
the following fundamental result. A continuous process is a process with almost surely
continuous paths.

Theorem 3.25 Let (X (n))n∈N be a tight sequence of continuous processesX (n) = (X (n)
t )t≥0

with the following property that, whenever 0 ≤ t1 ≤ · · · ≤ tm <∞,m ∈ N, then

(X (n)
t1
, . . . , X (n)

tm)
d−→

n→∞
(Wt1 , . . . ,Wtm) , (3.43)

for some process (Wt)t≥0. Let Pn ∈ M1(C([0,∞;R),F) be induced by the process X (n).
Then

Pn
P−→

n→∞
P ,

under which the coordinate mapping process Wt(ω) = ω(t) satisfies (3.43).

Remark 3.26 The crucial step is to show tightness for the sequence of processes. For
continuous processes one needs a version of the Arzela-Ascoli theorem to construct com-
pact sets in the space of all continuous paths. Details can be found in [KS98].

�
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We define now the sequence of scaled R-valued processes. Suppose that (ξj)j ∈ N is a
sequence of independent, identically distributed R-valued random variables with mean
zero and variance σ2 ∈ (0,∞). Define the discrete time random walk (Sk)k∈N0 by

S0 := 0 Sk :=
k∑
j=1

ξj , k ∈ N .

A continuous time process Y = (Yt)t≥0 can be obtained from (Sk)k∈N0 by linear interpo-
lation,

Yt = Sbtc + (t− btc)ξbtc+1 , t ≥ 0 ,

where btc is the greatest integer ≤ t. We scale time by n and space by
√
n and obtain a

sequence (X (n))n∈N of piecewise continuous processes (X (n)
t )t≥0,

X (n)
t :=

1

σ
√
n
Ynt , t ≥ 0 . (3.44)

Pick s = k
n

and t = k+1
n
, k ∈ N, then

x(n)
t −X (s)

s =
1

σ
√
n
ξk+1

is independent of σ(ξ1, . . . , ξk). Furthermore, X (n)
t − X (n)

s has zero mean and variance
t− s. Thus X (n) is approximately Brownian motion.

Theorem 3.27 For all 0 ≤ t1 < t2 < · · · < tm,m ∈ N,

(X (n)
t1
, . . . , X (n)

tm)
d−→

n→∞
(Bt1 , . . . , Btm) ,

where (Bt)t≥0 is standard Brownian motion.

Proof. The proof is a straightforward application of the CLT, and is therefore left as
an exercise. It suffices to show the proof for m = 2. The shortest route is by using
characteristic functions exploiting the independence of the given sequence.

2

Theorem 3.28 (The Invariance Principle of Donsker (1951)) Suppose that (ξj)j ∈ N is
a sequence of independent, identically distributed R-valued random variables with mean
zero and variance σ2 ∈ (0,∞). Define the continuous process X (n) as in (3.44) above,
and let Pn ∈ M1(C([0,∞)) be induced by X (n). Then PN converges weakly (as proba-
bility measures) to a measure P ∗ ∈ M1(C([0,∞)) under which the coordinate mapping
process

Wt : C([0,∞))→ R, (ω) 7→ Wt(ω) = ω(t)

on C([0,∞)) is a standard, one-dimensional Brownian motion, i.e.,Wt = Bt, andB0 = 0.
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To prove this theorem we need a couple of notations and results. The proof is below.
We need a characterisation of tightness in the space C([0,∞);R) of continuous paths

with horizon [0,∞) and state space R. For any path ω ∈ C([0,∞);R), T > 0, and δ > 0,
the modulus of continuity on [0, T ] is

mT (ω, δ) := max
|s−t|≤δ,s,t∈[0,T ]

{|ω(s)− ω(t)|} .

We need the following version of the Arzelà-Ascoli theorem adapted to C([0,∞);R).

Proposition 3.29 A ⊂ C([0,∞);R) has a compact closure (i.e., A is compact) if and
only if

(i) sup
ω∈A
{|ω(0)|} <∞ and (ii) lim

δ↓0
sup
ω∈A
{mT (ω, δ)} = 0 , ∀T > 0 .

Proof. This technical result is proved in [KS98, MP10, Kal02]. 2

A sequence (X (n))n∈N of continuous processes X (n) = (X (n)
t )t≥0 is tight when the

sequence of probability measures Pn ∈ M1(C([0,∞);R)) is tight, where Pn is induced
by X (n).

Theorem 3.30 A sequence (Pn)∈N of probability measures Pn ∈M1(C([0,∞)) is tight if
and only if the following two conditions hold.

lim
λ→∞

sup
n∈N

Pn(|ω(0)| > λ) = 0 . (3.45)

lim
δ↓0

sup
n∈N

Pn(mT (ω, δ) > ε) = 0 ∀T > 0,∀ε > 0 . (3.46)

Proof. Suppose (Pn)n∈N is tight. Pick η > 0. Then there exists a compact set K with
Pn(K) ≥ 1 − η for all n ∈ N, and thus Pn(Kc) ≤ η. For λ > 0 sufficiently large it
follows that |ω(0)| ≤ λ for ω ∈ K, see Proposition 3.29. For given T > 0 and ε > 0,
there exists a δ0 > 0 such that mT (ω, δ) ≤ ε for all 0 < δ < δ0 and for every ω ∈ K.
Thus one obtains (3.45) and (3.46).
Now suppose that (3.45) and (3.46) hold. Given T ∈ N and η > 0, we choose λ > 0 in
such a way that

sup
n∈N

Pn(|ω(0)| > λ) ≤ η

2T+1
.

Furthermore, we choose δk > 0 such that

sup
n∈N

Pn

(
mT (ω, δk) >

1

k

)
≤ η

2T+k+1
.

AT := {ω ∈ C([0,∞)) : |ω(0)| ≤ λ;mT (ω, δk) ≤ 1/k, k ∈ N} ,

and

A :=
∞⋂
T=1

AT .
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Then, according to Proposition 3.29, A is compact and

Pn(AT ) ≥ 1−
∞∑
k=0

η

2T+k+1
= 1− η

2T
and Pn(A) ≥ 1− η .

Thus (Pn)n∈N is tight. 2

Proof of Theorem 3.28. In light of Theorem 3.25 and Theorem 3.27 we only need to
show that (X (n))n∈N is tight. We shall use Theorem 3.30 adapted to the specific setting
of our scaled processes. Namely, one can show (see [KS98]) via CLT estimates and tail
normal estimate, that

∀ε > 0, lim
δ↓0

lim sup
n→∞

1

δ
P
(

max
1≤j≤bnδc+1

{|Sj|} > εσ
√
n
)

= 0 ,

∀T > 0, lim
δ↓0

lim sup
n→∞

P
(

max
1≤j≤bnδc+1
0≤k≤bnTc+1

{|Sj+k − Sk|} > εσ
√
n
)

= 0 .

Then it follows that these two estimates imply (3.45) and (3.46) in Theorem 3.30. 2

Definition 3.31 The (unique) measure P ∗ ∈ M1(C([0,∞)) in Theorem 3.28, under
which the coordinate mapping process is a standard, one-dimensional Brownian mo-
tion, is called Wiener measure. We denote Px the Wiener measure for one-dimensional
Brownian motion with deterministic start in x ∈ R (i.e., B0 = x), and denote Pµ the
Wiener measure for one-dimensional Brownian motion with initial probability distribu-
tion µ ∈M1(R).

4 Large Deviation Theory

4.1 Introduction and Definition
We start with an easy example before motivating the theory and coming up with defini-
tions.

Example 4.1 Let (Xi)i∈N be a sequence of independent, identically distributed random
variables with P (Xi = 0) = P (Xi = 1) = 1

2
. Denote Sn =

∑n
i=1Xi the number of

successes (e.g., coin tossing), then for every a > 1, we have that

lim
n→∞

1

n
logP (Sn ≥ an) = −I(a) ,

where

I(z) =

{
log 2 + z log z + (1− z) log(1− z) if z ∈ [0, 1],
∞ otherwise

.

This we justify as follows. Claim for a > 1 is trivial. For a ∈ (1
2
, 1] we observe that

P (Sn ≥ an) = 2−n
∑

k≥an
(
n
k

)
, which yields the estimate

2−nQn(a) ≤ P (Sn ≥ an) ≤ (n+ 1)2−nQn(a),
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where Qn(a) = maxk≥an
(
n
k

)
. Maximum is attained at k = [an], the smallest integer

≥ an. Stirling’s formula gives therefore

lim
n→∞

1

n
logQn(a) = −a log a− (1− a) log(1− a).

Upper and lower bound merge on an exponential scale as n → ∞, and henceforth we
arrive at the desired statement. Since E(X1) = 1

2
and a > 1

2
the statement deals with large

deviations in the upward direction. From the symmetry it is clear that the same holds for
P (Sn ≤ an) with a < 1

2
. This is seen by I(1− z) = I(z).

♣

The zero of the function I in Example 4.1 corresponds the SLLN, Theorem 2.10, as it
implies that ∑

n∈N

P
(∣∣∣ 1
n
Sn − 1/2

∣∣∣ > δ
)
<∞

for every δ > 0. Furthermore, I ′(1/2) = 0 and I ′′(1/2) = 4 = 1/σ2 with σ2 = Var(X1) =
1
4
. Recall that an application of Chebychev’s inequality gives an estimate

P (| 1
n
Sn −

1

2
| > δ) ≤ 1

δ2n
,

but this estimate is of order 1
n

and therefore not summable for an application of Borel-
Cantelli Lemma. It is therefore desirable to find out exactly how fast the large deviation
probabilities P (|1/nSn − 1/2| > δ) decay. In this chapter we are studying deviations
of the order n, so well beyond what is described by the CLT. Derivations of this size are
called ’large’. Suppose (Xi)i∈N are i.i.d. random variables with mean µ. A large deviation
event {Sn =

∑n
i=1Xi ≥ (µ+ a)n}, a > 0, (or, {Sn =

∑n
i=1 Xi ≤ (µ+ a)n}, a < 0 ) has

a probability which goes to zero as n → ∞. Under certain conditions of the tail of the
distribution of X1, the decay is exponential in n as we have seen in Example 4.1 above:

lim
n→∞

1

n
logP (Sn ≥ (µ+ a)n) = −I(a) <∞ , I ≥ 0 .

The large deviation principle (LDP) which we define below characterises the limiting
behaviour, as n → ∞, of a family of probability measures (µn)n∈N on some measurable
space (E,B) in terms of a rate function. This characterisation is via asymptotic upper
and lower exponential bounds on the value that µn assigns to measurable subsets of E.
Throughout, E is a topological space so that open and closed subsets of E are well-
defined. The simplest situation is when B is the Borel-σ-algebra B(E).

Definition 4.2 (Rate function) A rate function I is a lower semicontinuous mapping
I : E → [0,∞], that is, for all α ∈ [0,∞), the level set LI(α) := {x ∈ E : I(x) ≤ α}
is a closed subset of E. A good rate function I is a rate function for which all the level
sets LI(α) are compact subsets of E. The domain of I is D(I) = {x ∈ E : I(x) <∞}.
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Definition 4.3 (Large deviation principle) (a) A sequence (µn)n∈N of probability
measures µn ∈ M1(E,B) satisfies the large deviation principle (LDP) with rate
(speed) n and rate function I if, for all M ∈ B,

− inf
x∈int(M )

I(x) ≤ lim inf
n→∞

1

n
logµn(M ) ≤ lim sup

n→∞

1

n
logµn(M ) ≤ − inf

x∈M
I(x) .

(4.1)

(b) When B(E) ⊂ B, the LDP is equivalent to the following bounds:

lim sup
n→∞

1

n
logµn(K) ≤ − inf

x∈F
I(x) , for all closed F ⊂ E ,

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G
I(x) , for all open G ⊂ E .

(4.2)

(c) A set M ∈ B is called I-continuity set if

inf
x∈int(M )

I(x) = inf
x∈M

I(x) =: IM ,

in which case
lim
n→∞

1

n
logµn(M ) = −IM .

Remark 4.4 (a) If we are dealing with non-atomic measures we have that µn({x}) = 0
for every x ∈ E. Thus, if the lower bound in (4.1) was to hold with the infimum over
M instead of its interior int(M ), we would conclude that I ≡ ∞, contradiction the
upper bound of (4.1) because µn(E) = 1 for all n.

(b) Since µn(E) = 1 for all n, it is necessary that infx∈E I(x) = 0 for the upper bound
to hold. When I is a good rate function, this means that there exists at least one
point x for which I(x) = 0. Furthermore, the upper bound trivially holds whenever
infx∈M I(x) = 0, while the lower bound trivially holds whenever

inf
x∈int(M )

I(x) =∞ .

(c) Suppose that I is a rate function. Then (4.1) is equivalent to the following two bounds:

(i) Upper bound: For every α ∈ (0,∞) and every measurable set M with M ⊂
LI(α)c,

lim sup
n→∞

1

n
logµn(M ) ≤ −α . (4.3)

(ii) Lower bound: For any x ∈ D(I) and any measurable M with x ∈∈ int(M ),

lim inf
n→∞

1

n
logµn(M ) ≥ −I(x) . (4.4)
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(d) The rate (speed or scale) of a large deviation principle can be any sequence (an)n∈N
with an →∞ as n→∞, and the obtain our upper and lower bounds replacing 1

n
by

1
an

.

(e) The CLT tells us by how much the partial sum normally exceeds its average, namely
by an order of

√
n. More precisely,

P (Sn − nµ ≥
√
nx)→ 1− Φ(x/σ) , as n→∞ ,

where Φ is the distribution function of the standard normal law. Thus, for any se-
quence (an)n∈N with

√
n� an � n, we still have

P (Sn − µn ≥ an)→ 0 , as n→∞ ,

and neither the CLT nor the large deviation principle tell us how fast this convergence
is. This question is in the remit of the moderate deviation principle.

�

The following lemma states roughly that the rate of growth for a finite sum of se-
quences equals the maximal rate of growth of the summands.

Lemma 4.5 (Laplace Principle) For a sequence (an)n∈N with an → ∞ as n → ∞ and
a finite number N of nonnegative sequences (b(1)

n )n∈N, . . . , (b(N )
n )n∈N, the following holds.

lim sup
n→∞

1

an
log

N∑
i=1

b(i)
n = max

1≤i≤N
lim sup
n→∞

1

an
log b(i)

n .

Proof. Observe that

0 ≤ log
( N∑
i=1

b(i)
n

)
− max

1≤i≤N
log b(i)

n ≤ logN ,

and conclude with the statement dividing by an and taking the limes superior. Suppose
b(1)
n = max1≤i≤N log b(i)

n , then

log
( N∑
i=1

b(i)
n

)
= log b(1)

n + log
(

1 +
N∑
i=2

b(i)
n

b(1)
n

)
.

2

Definition 4.6 (Weak Large deviation principle) Suppose that all compact subsets of
E belong to B. A sequence (µn)n∈N of probability measures is said to satisfy the weak
large deviation principle if the upper bound in (4.3) holds for every α and all compact
subsets of LI(α)c, and the lower bound (4.4) holds for all measurable subsets.
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4.2 Combinatorial Techniques for finite sample spaces
In this section we consider only a finite sample spaceE and write |E| for the number of el-
ements ofE. Before we prove the first large deviation principle we briefly discuss the role
of the entropy as a measure of uncertainty. As is well-known, it was Ludwig Boltzmann
who first gave a probabilistic interpretation of the thermodynamic entropy. He coined the
formula S = kB logW which is engraved on his tombstone in Vienna: the entropy S of
an observed state is nothing else than the logarithmic probability for its occurrence, up to
some scalar factor kB (the Boltzmann constant kB = 1.3806× 10−23m2kgs−2K−1) which
is physically significant but can be ignored from a mathematical point of view. The set E
represents in Boltzmann’s picture the possible energy levels for a system of particles, and
µ ∈ M1(E) corresponds to a specific histogram of energies describing some macro state
of the system. Assume for a moment that each µ(x), x ∈ E, is a multiple of 1

n
, i.e., µ is

a histogram for n trials or, equivalently, a macro state for a system of n particles. On the
microscopic level, the system is then described by a sequence ω ∈ En, the micro state ,
associating to each particle its energy level. Boltzmann’s idea is now the following:

The entropy of a macro state µ corresponds to the degree of uncertainty about the
actual micro stateω when only µ is known, and can thus be measured by log|Tn(µ)|, the
logarithmic number of micro states leading to µ.

Recall, for a given micro state ω ∈ En, that

Lωn :=
1

n

n∑
i=1

δωi

is the associated macro state describing how the particles are distributed over the energy
levels, and

Tn(ν) := {ω ∈ En : Lωn = ν} (4.5)

is the set of all ω ∈ En of type µ.

Definition 4.7 Denote Ln the set of all possible types of sequences of length in E, i.e.,

Ln := {ν ∈M1(E) : ν = Lωn for some ω ∈ En} .

The type class Tn(ν) of ν ∈M1(E) ∩ Ln is the set Tn(ν) := {ω ∈ En : Lωn = ν}.

Note that a type class consists of all permutations of a given vector in this set. We are
using throughout the following convention,

0 log 0
M
= 0 and 0 log(0/0) M

= 0 .

Proposition 4.8 (Entropy as degree of ignorance) Let µn, µ ∈ M1(E) be probability
measures such that µn → µ as n→∞ and nµ(x) ∈ N0 for all x ∈ E. Then,

lim
n→∞

1

n
log|Tn(µn)| = −

∑
x∈E

µ(x) logµ(x) . (4.6)
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Proof. This can be achieved easily with Stirling’s formula and the weak convergence
of the sequence of probability measures. Detailed error analysis and proof in [CK81]. 2

Definition 4.9 (Shannon Entropy) Suppose E is finite and µ ∈ M1(E). The (Shan-
non) entropy of µ is defined as

H(µ) := −
∑
x∈E

µ(x) logµ(x) .

Definition 4.10 (Relative entropy)
Suppose E is finite and µ, ν ∈M1(E). For µ ∈M1(E) denote

Eµ := {x ∈ E : µ(x) > 0}

its support. The relative entropy of ν with respect to µ is

H(ν|µ) :=

{∑
x∈E ν(x) log ν(x)

µ(x) if Eν ⊂ Eµ ,

+∞ otherwise .
(4.7)

Exercise 4.11 (Properties of relative entropy) Show that H(·|µ) is (i) nonnegative and
convex, (ii) H(·|µ) is finite on {ν ∈ M1(E) : Eν ⊂ Eµ}, (iii) H(·|µ) is a good rate
function.

KK

Suppose (Xi)i∈N is an E-valued sequence, then the empirical measure is the random
variable

Ln =
1

n

n∑
i=1

δXi

taking values inM1(E). As E is finite, we endowM1(E) with the metric inherited from
the embedding into R|E| given by the mapping µ 7→ (µ(x))x∈E . The probability simplex

SimE := {ν = (ν(x))x∈E ∈ [0, 1]|E| :
∑
x∈E

ν(x) = 1} ⊂ R|E|

can be identified withM1(E). We endow the simplex with the total variation distance

d(µ, ν) :=
1

2

∑
x∈E

|µ(x)− ν(x)| , (4.8)

which turns (M1(E), d) into a Polish space.

Exercise 4.12 Show that, according to the SLLN, Theorem 2.10,

d(Ln, µ) −→
n→∞

0 a.s. .

KK
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In the following theorem we derive the large deviation statement for Ln away from µ.

Theorem 4.13 (Sanov’s theorem for finite spaces) Let (Xi)i∈N be an independent, iden-
tically distributed sequence of E-valued random variables with law µ ∈M1(E). Denote
µn the distribution of Ln under µ⊗n. Then (µn)n∈N satisfies the LDP onM1(E) with rate
n and rate function

Iµ(ν) = H(ν|µ) .

For the proof we shall need the following two lemmas.

Lemma 4.14 If x ∈ Tn(ν), ν ∈ Ln, then

P ((X1, . . . , Xn) = x) = exp (− n(H(ν) + H(ν|µ))) . (4.9)

Proof.
H(ν) + H(ν|µ) = −

∑
x∈E

ν(x) logµ(x) .

Then, using independence, for x = (x1, . . . , xn) ∈ Tn(ν) ⊂ En,

P ((X1, . . . , Xn) = x) =
n∏
i=1

µ(xi) =
∏
y∈E

µ(y)nν(y) = exp (n
∑
y∈E

ν(x) logµ(x)) .

2

Lemma 4.15 (a) |Ln| ≤ (n+ 1)|E|.

(b) There exist polynomials p1, p2 with positive coefficients such that for every ν ∈ Ln,

1

p1(n)
enH(ν) ≤ |Tn(ν)| ≤ p2(n) enH(ν) .

Proof. (a) For any y ∈ E, the number Lωn(y) belongs to the set {0, 1
n
, . . . , n−1

n
, 1} (fre-

quency of y in ω ∈ En), whose cardinality is (n+ 1).
(b) Tn(ν) is in bijection to the number of ways one can arrange the objects from a collec-
tion containing the object x ∈ E exactly nν(x) times. Hence |Tn(ν)| is multinomial,

|Tn(ν)| = n!∏
x∈E (nν(x))!

.

Stirling’s formula tell us that for suitable constants c1, c2 > 0 we have for all n ∈ N,

n log
n

e
≤ logn! ≤ n log

n

e
+ c1 logn+ c2 .

Now,

log|Tn(ν)| ≤ logn!−
∑
x∈E

log (nν(x))! ≤ n log
n

e
−
∑
x∈E

nν(x) log
nν(x)

e
+ c1 logn+ c2

= nH(ν) + c1 logn+ c2 ,
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which yields the desired upper bound with p2(n) = c2n
c1 . The proof of the lower bound

is analogous. 2

Proof of Theorem 4.13. Pick a Borel set A ⊂M1(E). Then, using the upper bound in
Lemma 4.15,

P (Ln ∈ A) =
∑

ν∈Ln∩A

P (Ln = ν) =
∑

ν∈Ln∩A

∑
x∈Tn(ν)

P (X = (X1, . . . , Xn) = x)

≤
∑

ν∈Ln∩A

p2(n)enH(ν) e−n(H(ν)+H(ν|µ))

≤ (n+ 1)|E|p2(n) e−n infν∈A∩Ln H(ν|µ) .

The lower bound reads

P (Ln ∈ A) =
∑

ν∈Ln∩A

P (Ln = ν) ≥
∑

ν∈Ln∩A

1

p1(n)
enH(ν|µ)

≥ 1

p1(n)
e−n infν∈A∩Ln H(ν|µ) .

Since

lim
n→∞

1

n
log(n+ 1)|E| = lim

n→∞

1

n→∞
log p2(n) = lim

n→∞

1

n
log

1

p1(n)
= 0 ,

we obtain
lim sup
n→∞

1

n
logP (Ln ∈ A) = − lim inf

n→∞
{ inf
ν∈A∩Ln

H(ν|µ)}

lim inf
n→∞

1

n
logP (Ln ∈ A) = − lim sup

n→∞
{ inf
ν∈A∩Ln

H(ν|µ)} .

The desired upper bound of the large deviation principle in Theorem 4.13 follows, since
A ∩ Ln ⊂ A for all n.
For the large deviation lower bound we pick ν ∈ int(A) from the interior of A such that
Eν ⊂ Eµ. We then find δ > 0 small enough such that the ball

{ν ′ ∈M(E) : d(ν ′, ν) < δ}

is contained in A. Observe that Ln contains all probability measures taking values in
{0, 1

n
, . . . , 1}. Thus, for each ν ∈ M1(E) there is a ν ′ ∈ Ln such that for all x ∈ E:

|ν(x)−ν ′(x)| ≤ C/n for some C > 0. Thus there exist a sequence νn ∈ A∩Ln such that
νn → ν as n→∞. Moreover, without loss of generality, we may assume that Eνn ⊂ Eµ,
and hence

− lim sup
n→∞

{ inf
ν′∈A∩Ln

H(ν ′|µ)} ≥ − lim
n→∞

H(νn|µ) = −H(ν|µ) .

Recall that H(ν|µ) =∞ whenever, for some x ∈ E, ν(x) > 0 while µ(x) = 0. Therefore,
by the preceding inequality, optimising over ν ∈ int(A),

− lim sup
n→∞

{ inf
ν′∈A∩Ln

H(ν ′|µ)} ≥ − inf
ν∈intA

H(ν|µ) .

2
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Exercise 4.16 Prove that for every open set A ⊂M1(E),

− lim
n→∞

{ inf
ν∈A∩Ln

H(ν|µ)} = lim
n→∞

1

n
logP (Ln ∈ A) = − inf

ν∈A
H(ν|µ) .

K

4.3 Cramér Theorem, Varadhan Lemma, and basic principles

We now let E = Rd and let (Xi)i∈N be a sequence of independent, identically distributed
Rd-valued random variables with law µ ∈M1(Rd). Recall the partial sum Sn =

∑n
i=1 Xi.

The empirical mean is

Ŝn =
1

n

n∑
i=1

Xi . (4.10)

Definition 4.17 (Logarithmic moment generating function) Let µ ∈ M1(Rd). The
logarithmic moment generating function associated with µ is defined as

Λ(λ) := logE
[
e〈λ,X1〉

]
, λ ∈ Rd , (4.11)

where the expectation is with respect to µ. Sometimes Λ is also called the cumulant
generating function.

Note that Λ(0) = 0, and while Λ(λ) > −∞ for all λ, it is possible to have Λ(λ) =∞. We
denote µn the law of the empirical mean Ŝn under µ⊗n. From the WLLN, Theorem2.2,
we know that for m := E[X1] =

∫
Rd xµ(dx),

Ŝn
P−→

n→∞
m.

Hence, µn(F ) →
n→∞

0 for any closed set F such that m 6∈ F . The logarithmic rate of this
convergence is given by the following function.

Definition 4.18 (Fenchel-Legendre transform) The Fenchel-Legendre transform of Λ
is

Λ∗(x) := sup
λ∈Rd
{〈λ, x〉 − Λ(λ)} , x ∈ Rd . (4.12)

Cramér’s theorem characterises the logarithmic rate of the above convergence with
rate function Λ∗. To ease notation and understanding we first study the case d = 1, and
provide later arguments for the general case d ≥ 1.

Theorem 4.19 (Cramér Theorem in R) Let (Xi)i∈N be a sequence of independent, iden-
tically distributed R-valued random variables with law µ ∈ M1(R) and denote µn the
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law of the empirical mean Ŝn under µ⊗n. Then (µn)n∈N satisfies the LDP on R with rate
n and rate function Λ∗,i.e.,

lim sup
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
Λ∗(x) , for all closed F ⊂ R ,

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G
Λ∗(x) , for all openG ⊂ R .

(4.13)

The following lemma states the properties of Λ and Λ∗ that are needed for proving
Theorem 4.19.

Lemma 4.20 Let µ ∈M1(R) and m :=
∫
R xµ(dx).

(a) Λ is a convex function and Λ∗ is a convex rate function.

(b) If D(Λ) = {0}, then Λ∗ ≡ 0. If Λ(λ) < ∞ for some λ > 0, then m < ∞ (possibly
m = −∞), and

Λ∗(x) = sup
λ≥0

{λx− Λ(x)} , for all x ≥ m, (4.14)

is, for all x > m, a nondecreasing function. Likewise, if Λ(λ) < ∞ for some λ < 0,
then m > −∞ (possibly m =∞), and

Λ∗(x) = sup
λ≤0

{λx− Λ(x)} , for all x ≤ m, (4.15)

is, for all x < m, a nondecreasing function. When m ∈ R, then Λ∗(m) = 0, and
always,

inf
x∈R
{Λ∗(x)} = 0 .

(c) Λ is differentiable in int(D(Λ)) with

Λ′(η) =
1

E[eλX1]
E[X1eηX1 ] , (4.16)

and
Λ′(η) = y ⇒ Λ∗(y) = ηy − Λ(η) .

Proof.
(a) By Hölder’s inequality, for any α ∈ [0, 1],

Λ(αλ1 + (1− α)λ2) = logE[(eλ1X1)
α
(eλ2X1)

1−α
] ≤ log

(
E[eλ1X1 ]

αE[eλ2X1 ]
1−α
)

= αΛ(λ1) + (1− α)Λ(λ2) ,

implying convexity for Λ.

αΛ∗(x1) + (1− α)Λ∗(x2) = sup
λ∈R
{αλx1 − αΛ(λ)}+ sup

λ∈R
{(1− α)λx2 − (1− α)Λ(λ)}

≥ sup
λ∈R
{(αx1 + (1− α)x2)λ− αΛ(λ)} = Λ∗(αx1 + (1− α)x2) .
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Furthermore, Λ(0) = 0, and so Λ∗(x) ≥ 0x−Λ(0) = 0. Suppose that xn → x as n→∞.
Then, lower semicontinuity of Λ∗ follows since

lim inf
n→∞

Λ∗(xn) ≥ lim inf
n→∞

(λxn − Λ(λ)) = λx− Λ(λ) .

Hence, Λ∗ is a convex rate function.
(b) Clearly, D(Λ) = {0} implies Λ∗(x) = Λ(0) = 0 for all x ∈ R. For all λ ∈ R, by
Jensen’s inequality,

Λ(λ) = logE[eλX1] ≥ E[log eλX1] = λm ,

and thus if Λ(λ) < ∞ we get that m < ∞. If m = −∞, then Λ(λ) = ∞ for λ negative,
and (4.14) trivially holds. In case m ∈ R, we obtain with the precious estimate that
λm − Λ(λ) ≤ 0 for all λ ∈ R, and thus Λ∗(m) = 0. We also have that for x ≥ m and
λ < 0,

λx− Λ(λ) ≤ λm− Λ(λ) ≤ Λ∗(m) = 0 ,

and therefore (4.14) follows. The monotonicity of Λ∗ on [m,∞) (nondecreasing) follows
from (4.14), since for every λ ≥ 0, the function λa−Λ(λ) is nondecreasing as a function
of x. The complementary case that Λ(λ) < ∞ for some negative λ < 0 follows by
considering the logarithmic moment generating function of −X1. We are finally left
to show that infx∈R Λ∗(x) = 0. This is immediate from our reasoning above, as for
D(Λ) = {0} we have Λ∗ ≡ 0 and for m ∈ R we have Λ∗(m) = 0. We shall now consider
the case m = −∞ while Λ(λ) < ∞ for some positive λ > 0. Then, by Chebychev’s
inequality and (4.14),

logP (X1 ≥ x) = logµ([x,∞)) ≤ inf
λ≥0

logE[e(X1−x)] = − sup
λ≥0

{λx− Λ(λ)} = −Λ∗(x) .

Hnece,
lim

x→−∞
Λ∗(x) ≤ lim

x→−∞
(− logµ([x,∞))) = 0 ,

and infx∈R Λ∗(x) = 0 follows. The only case left to discuss is that of m = ∞ while
Λ(λ) < ∞ for some negative λ < 0. This is again settled by considering the logarithmic
moment generating functions of −X1.
(c) The identity (4.16) follows by interchanging the order of differentiation and integration
which we justify by the dominated convergence theorem as follows:

fε(x) = (e(η+ε)x − eηx)/ε

converges pointwise to xeηx as ε→ 0, and, for δ > 0 small enough,

|fε(x)| ≤ eηx(eδ|η| − 1)/δ =: h(x) , ε ∈ (−δ, δ) ,

and E|h(X1)|] <∞. Let Λ′(η) = y and define g(λ) := λy−Λ(λ). Note that g is concave
and g′(η) = 0, and thus it follows that g(η) = supλ∈R g(λ) = Λ∗(y).

2

Proof of Theorem 4.19. Proof of the upper bound in (4.13): Let ∅ 6= F ⊂ R closed.
The upper bound certainly trivially holds when IF := infx∈F Λ∗(x) = 0. Thus assume
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that IF > 0. By part (b) of Lemma 4.20 it follows that m exists (possibly as extended real
number). For all x and λ ≥ 0, an application of the (exponential with function eλx, λ ≥ 0)
Chebychev inequality yields

µn([x,∞)) = P (Ŝn ≥ x) ≤ E[en(Ŝn−x)] = e−nλx
m∏
i=1

E[eλXi] = e−n(λx−Λ(λ)) .

Now, if the mean m <∞, then by (4.14) in Lemma 4.20, for every x > m, we obtain an
upper by optimising over all λ ∈ R, i.e.,

µn([x,∞)) ≤ e−nΛ∗(x) for every x > m . (4.17)

This follows from the proof of (4.14). Equivalently, if m > −∞ and x < m, we can use
an estimate via the exponential Chebychev inequality for λ > 0,

P (− Ŝn ≥ −x) ≤ E[ exp (− n(λ(−Ŝn)− Λ̃(λ)))] ,

where Λ̃ is the logarithmic moment generating function for −X1. Note that Λ̃(−λ) =
Λ(λ). Hence,

P (− Ŝn ≥ −x) ≤ exp (− n sup
λ≤0

{λx− Λ(λ)}) = exp (− nΛ∗(x)) ,

as for λ > 0, due to x < m we have

λx− Λ(λ) ≤ λm− Λ(λ) ≤ Λ∗(m) = 0 ,

and thus optimising for positive λ is not changing the supremum over λ ≤ 0 as long as
x < m. Therefore,

µn((−∞, x]) ≤ e−nΛ∗(x) , for every x < m . (4.18)

After this preparation we handle the three cases (i) m ∈ R, (ii) m = −∞ and (iii)
m = +∞ separately.

(i) Suppose m ∈ R. Then, as seen in Lemma 4.20, Λ∗(m) = 0, and as IF > 0, the mean
mmust be contained in the open set F c. Denote (x−, x+) the union of all open intervals in
F c containing m. Clearly, x− < x+ and either x− ∈ R or x+ ∈ R since F is nonempty. If
x− ∈ R, then x− ∈ F , and consequently Λ∗(x−) ≥ IF . Likewise, Λ∗(x+) ≥ IF whenever
x+ ∈ R. Now we apply (4.17) for x = x+ and (4.18) for x = x− such that the union of
events bounds ensures that

µn(F ) ≤ µ((−∞, x−]) + µn([x=,∞)) ≤ 2e−nIF ,

and the upper bound in (4.13) follows as n→∞.

(ii) Suppose now m = −∞. As Λ∗ is nondecreasing, it follows from infx∈R Λ∗(x) = 0
that limx→−∞ Λ∗(x) = 0, and hence x∗ = inf{x ∈ R : x ∈ F} is finite for otherwise
IF = 0. As F is closed, x∗ ∈ F , and thus Λ∗(x∗) ≥ IF . Noting that F ⊂ [x∗,∞) and
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using (4.17) for x = x∗, we obtain the large deviations upper bound in (4.13). The third
case (iii) m = +∞ follows analogously to the second case.

Proof of the lower bound in (4.13): The key idea is to prove that for every δ > 0 and every
probability measure µ ∈M1(R),

lim inf
n→∞

1

n
logµn((−δ, δ)) ≥ inf

λ∈R
{Λ(λ)} = −Λ∗(0) , (4.19)

where µn is the law of Ŝn under µ⊗n. The proof of (4.19) will keep us busy below, it is
actually the major part of the work. Suppose now that (4.19) holds. We can then quickly
see that the lower bound in (4.13) holds. First recall that we write Λ for the logarithmic
moment generating function for a real-valued random variable X , if we consider the ran-
dom variable Y = X − x, x ∈ R, we write ΛY for the logarithmic moment generating
function. It is easy to see that then ΛY (λ) = Λ(λ)−λx, and hence with Λ∗Y (y) = Λ∗(y+x)
for all y ∈ R, it follows from (4.19) that for every x ∈ R and every δ > 0,

lim inf
n→∞

µn((x− δ, x+ δ)) ≥ −Λ∗(x) . (4.20)

For any open set G ⊂ R, any element x ∈ G, and any δ > 0 small enough one has
(x− δ, x+ δ) ⊂ G. Thus we obtain

lim inf
n→∞

1

n
logµn(G) ≥ lim inf

n→∞

1

n
logµn((x− δ, x+ δ)) ≥ −Λ∗(x) ,

and we can optimise the right hand site of (4.20) over all x′ ∈ G to obtain the large devi-
ation lower bound in (4.13).

Proof of (4.19): We split the proof according to the support of the measure µ ∈ R.

1.) Suppose µ((−∞, 0)) > 0, µ(0,∞)) > 0, and that supp(µ) ⊂ R is a bounded subset.
These assumptions ensure that Λ(λ) → ∞ when |λ| → ∞ and that Λ is finite every-
where, i.e., D(Λ) = R. Then, according to part (c) of Lemma 4.20, Λ is a continuous,
differentiable function, and hence there exists η ∈ R such that

Λ(η) = inf
λ∈R
{Λ(λ)} and Λ′(η) = 0 .

We define now a new probability measure µ̃ ∈ M1(R) by tilting the measure µ, that is,
we define the Radon-Nikodym density to be

dµ̃
dµ

(x) = eηx−Λ(η) , (4.21)

and quickly check that this indeed defines a probability measure by computing writing

M (η) := eΛ(η) = E[eηX1 ] ,∫
R
µ̃(dx) =

1

M (η)

∫
R

eηx dx = 1 .
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We now denote µ̃n the law of Ŝn under µ̃⊗n, and we observe that for every ε > 0 we
obtain the estimate

µn((−ε, ε)) =

∫
{x∈Rn : |

∑n
i=1 xi|<nε}

µ(dx1) · · ·µ(dxn)

≥ e−nε|η|
∫
{x∈Rn : |

∑n
i=1 xi|<nε}

exp
(
η

n∑
i=1

xi

)
µ(dx1) · · ·µ(dxn)

= e−nε|η| enΛ(λ) µ̃n((−ε, ε)) .

By (4.16) and our choice of η,

Eµ̃[X1] =
1

M (η)

∫
R
xeηx µ(dx) = Λ′(η) = 0 .

Thus the expectation is zero under the new measure µ̃, and hence, by the law of large
numbers,

lim
n→∞

µ̃((−ε, ε)) = 1 . (4.22)

Our estimate above now gives, for every 0 < ε < δ,

lim inf
n→∞

1

n
logµn((−δ, δ)) ≥ lim inf

n→∞

1

n
logµn((−ε, ε)) ≥ Λ(η)− ε|η| ,

and (4.19) follows by taking the limit ε→ 0 and using

Λ(η) ≥ − sup
λ∈R
{−Λ(λ)} = −Λ∗(0) .

2.) Suppose that supp(µ) is unbounded, while both µ((−∞, 0)) > 0 and µ((0,∞)) > 0.
Fix a cutoff parameterM > 0 large enough so that µ([−M, 0)) > 0 as well as µ((0,M ]) >
0, and define

ΛM (λ) := log
∫ M

−M
eλx µ(dx) .

Denote ν the law of X1 conditioned on the event {|X1| ≤ M}, and let νn the law of Ŝn
conditioned on {|Xi| ≤M ; i = 1, . . . , n}. Then for every δ > 0 and for all n ∈ N,

µn((−δ, δ)) ≥ ν((−δ, δ))µ([−M,M ])n .

It is easy to see that (4.19) holds for νn. The logarithmic moment generating function for
ν is

Λν(λ) = log
(E[eλX11l{|X1| ≤M}]

µ([−m,M ])

)
= ΛM (λ)− logµ([−M,M ]) ,

Thus

lim inf
n→∞

1

n
logµn((−δ, δ)) ≤ logµ([−M,M ]) + lim inf

n→∞

1

n
log νn((−δ, δ)) ≥ inf

λ∈R
{ΛM (λ)} .
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Let IM := − infλ∈R{ΛM (λ)} and I∗ = lim supM→∞ IM . Then

lim inf
n→∞

1

n
logµn((−δ, δ)) ≥ −I∗ , (4.23)

and we shall show that infλ∈R{Λ(λ)} ≤ −I∗ to conclude with (4.19). Note that ΛM and
thus −IM is denote decreasing in M , and

−IM ≤ ΛM (0) ≤ Λ(0) ,

which shows that −I∗ ≤ 0. We see now that −I∗ > −∞ as −IM is finite for sufficiently
large M . Thus the level sets LΛM (−I∗) are non-empty, compact sets and are nested with
respect to M , and henceforth there is a point λ0 in their intersection. By Lebesgue’s
monotone convergence theorem,

Λ(λ0) = lim
M→∞

ΛM (λ0) ≤ −I∗ ,

and thus our bound (4.23) yields (4.19).

3.) Suppose now that either µ((−∞, 0)) = 0 or µ((0,∞)) = 0, then Λ is a monotone
function with infλ∈R{Λ(λ)} = logµ({0}). Hence, in this case, (4.19) follows from

µn((−δ, δ)) ≥ µn({0}) = µ({0})n .

2

Remark 4.21 (a) The pivotal step in proving the large deviation upper bound is to op-
timise over exponential Chebychev inequalities for λ ≥ 0 considering the function
eλx. Then consideration of the mean m and the argument x of Λ∗ one extend the
optimisation over all λ ∈ R to obtain the Legendre-Fenchel transform.

(b) The crucial step in the proof of the lower bound was an exponential change of mea-
sure, sometimes also called tilting of the measure.

�

Exercise 4.22 Prove by an application of Fatou’s lemma that Λ is lower semicontinuous.
K

Exercise 4.23 Compute Λ∗ for the following distrbutions:

(a) X ∼ Poi(λ), Poisson distribution with parameter λ > 0.

(b) X ∼ Ber(p), p ∈ [0, 1], Bernoulli distributed with success probability p.

(c) X ∼ Exp(λ), exponentially distributed with parameter λ > 0.

(d) X ∼ N(µ, σ2).

KK
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Exercise 4.24 Prove that Λ is C∞ in the interior int(DΛ) and that Λ∗ is strictly convex,
and C∞ in the interior of the set F := {Λ′(λ) : λ ∈ int(DΛ)}

KKK

We now want to obtain the Cramér Theorem in Rd. Some of the techniques for the
R - version are not available in Rd. Suppose that (Xi)i∈N is a sequence of independent,
identically distributed random vectors in Rd with law µ ∈M1(Rd).

Theorem 4.25 (Cramér Theorem in Rd) Let (Xi)i∈N be a sequence of independent, iden-
tically distributed Rd-valued random variables with law µ ∈ M1(Rd) and denote µn the
law of the empirical mean Ŝn under µ⊗n. Assume thatD(Λ) = Rd. Then (µn)n∈N satisfies
the LDP on Rd with rate n and good rate function Λ∗.

Before we are discussing the proof of the Rd version of Cramér’s Theorem, we show
that actually Sanov’s theorem, Theorem 4.13, can be deduced as a consequence of Cramér’s
theorem in Rd. Note that the empirical mean of the random vectors

Xi := (1la1(Yi), . . . , 1la|E|(Yi)) , i = 1, . . . , n, Yi ∈ E independent, identically distributed

with law µ ∈M1(E) equal LYn , i.e.,

Ŝn =
1

n

n∑
i=1

Xi = LYn , Y = (Y1, . . . , Yn) .

Moreover, as the Xi are bounded, we have D(Λ) = R|E|, and thus the following
corollary of Cramér’s theorem is obtained.

Corollary 4.26 For any set Γ ⊂M1(R|E|),

− inf
ν∈int(Γ)

{Λ∗(ν)} ≤ lim inf
n→∞

1

n
logP (LYn ∈ Γ)

≤ lim sup
n→∞

1

n
logP (LYn ∈ Γ) ≤ − inf

ν∈Γ
{Λ∗(ν)} ,

where Λ∗ is the Legendre-Fenchel transform of the logarithmic moment generating func-
tion

Λ(λ) = log
|E|∑
i=1

eλiµ(ai)

with λ = (λ1, . . . , λ|E|) ∈ R|E|.

Proof. The large deviation bounds follow from the ones in Theorem 4.25 and from the
fact that P (LYN ∈ Γ) = P (ŜN ∈ Γ). 2

Exercise 4.27 Show that in the setting of Corollary 4.26,

Λ∗(x) = H(x|µ) .

KK
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Solution. As
Λ∗(ν) = sup

λ∈R|E|
{〈λ, ν〉 − Λ(λ)} ,

we obtain maximiser for

νx =
eλxµx∑
y∈E eλyµy

,

and thus we see that this holds only if
∑

x∈E νx = 1, that is D(Λ∗) = SimE = M1(E).
Now Jensen’s inequality implies that

Λ(λ) ≥
∑
x∈E

ν(x) log
µ(x)
ν(x)

eλx = 〈λ, ν〉 − H(ν|µ) ,

and thus
H(ν|µ) ≤ Λ∗(ν) .

By choosing λx = log (ν(x)/µ(x)) for any x ∈ E with ν(x) > 0 and λx → ∞ for any
x ∈ E with ν(x) = 0, we obtain equality. We also obtain that

H(ν|µ) = Λ∗(ν) = +∞

whenever there are x ∈ E with ν(x) > 0 but µ(x) = 0. ©

We now want to compare Cramér’s Theorem for finite sets E with Sanov’s Theo-
rem, Theorem 4.13 for finite sets E. Suppose that (Yi)i∈N is a sequence of independent,
identically distributed E-valued random variables with law µ ∈ M1(E) having support
Eµ = E. We shall study the empirical mean Ŝn := 1

n

∑n
i=1Xi, where Xi = f (Yi) for

some function f : E → R.Without loss of generality, we assume further that Eµ = E

and that f (a1) < f (a2) < · · · < f (a|E|). Then Ŝn ∈ [f (a1), f (a|E|)] =: K, and writing
Y = (Y1, . . . , Yn) and F := (f (a1), . . . , f (a|E|)) ∈ R|E|, we see that

Ŝn =

|E|∑
i=1

f (ai)LYn (ai) =: 〈f, LYn 〉 ,

where 〈f, ν〉 =
∑

x∈E f (x)ν(x) is the expectation of f with respect to ν ∈ M1(E). Thus
for every set A ⊂ R and every n ∈ N,

Ŝn ∈ A⇐⇒ LYn ∈ {ν ∈M1(E) : 〈f, ν〉 ∈ A} =: Γ . (4.24)

Theorem 4.28 (Cramér’s theorem for subsets of R) For any A ⊂ R,

− inf
x∈int(A)

{I(x)} ≤ lim inf
n→∞

1

n
logPµ(Ŝn ∈ A)

≤ lim sup
n→∞

1

n
logPµ(Ŝn ∈ A) ≤ − inf

x∈A
{I(x)} ,

where
I(x) = inf

ν∈M1(E) : 〈f,ν〉=x
{H(ν|µ)} .
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The rate function I is continuous on the compact set K and satisfies on K,

I(x) = sup
λ∈R
{λx− Λ(λ)} , (4.25)

where

Λ(λ) = log
|E|∑
i=1

eλf (ai)µ(ai) .

Proof. Suppose that f : E → R is constant, i.e., f (x) = c ∈ R for all x ∈ E. Then
Xi = c, Ŝn = c, and hence Γ = M1(E) in (4.24). Note that when x 6= c there is no
ν ∈ M1(E) with 〈f, ν〉 = c, and thus the infimum in the definition of I is over an empty
set and therefore infinity. Hence,

I(x) = inf
ν : 〈f,ν〉=x

{H(ν|µ)} =

{
0 if x = c ,

+∞ if x 6= c .

The logarithmic moment generating function for Ŝn is

lim
n∞

1

n
logE[enλŜn ] = Λ(λ) = log eλc = λc ,

and thus

sup
λ∈R
{λx− Λ(λ)} =

{
0 if x = c ,

+∞ if x 6= c .

Suppose now that f is not constant. As ν 7→ 〈f, ν〉 is continuous, we know that when
A ⊂ R is open then so is Γ ⊂M1(E) defined in (4.24). Then the lower and upper bounds
follow from Sanov’s theorem, Theorem 4.13. Furthermore, due to (4.24),

inf
ν∈int(Γ)

{H(ν|µ)} = inf
x∈int(A)

{ inf
ν : 〈f,ν〉=x

{H(ν|µ)}} .

Jensen’s inequality yields

Λ(λ) = log
∑
x∈E

µ(x)eλf (x) ≥
∑

x∈E∩Eν

ν(x) log
(µ(x) eλf (x)

ν(x)

)
= λ〈f, ν〉 − H(ν|µ) ,

with equality for νλ ∈M1(E) defined as

νλ(x) = µ(x)eλf (x)−Λ(λ) , x ∈ E .

Thus
λx− Λ(λ) ≤ inf

ν : 〈f,ν〉=x
{H(ν|µ)} = I(x)

with equality when x = 〈f, νλ〉. The function Λ is differentiable with

Λ′(λ) = 〈f, νλ〉 = Eνλ[f ] ,
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and therefore (4.25) holds for all x ∈ {Λ′(λ) : λ ∈ R}. An easy computation shows that

Λ′′(λ) = Eνλ[f 2] = (Eνλ[f ])2
= Varνλ(f ) > 0

as f is not a constant. Thus Λ′′(λ) > 0 for all λ ∈ R, Λ strictly convex and Λ′ strictly
increasing. Moreover,

f (a1) = inf
λ∈R
{Λ′(λ)} and f (a|E|) = sup

λ∈R
{Λ′(λ)} .

Hence, (4.25) holds for all x ∈ int(K). Consider the left endpoint x = f (a1) of the
compact interval K, and let ν∗(a1) = 1 yielding 〈f, ν∗〉 = x. Then

− logµ(a1) = H(ν∗|µ) ≥ I(x) ≥ sup
λ∈R
{λx− Λ(λ)} ≥ lim

λ→−∞
(λx− Λ(λ)) = − logµ(a1) .

The proof for the right endpoint of K is similar. The continuity of I follows from the
continuity of the relative entropy.

2

We now turn to showing how one can prove Cramér’s theorem in Rd.
Proof of Cramér’s Theorem in Rd, Theorem 4.25. A detailed proof can be found in
[DZ98]. It combines Lemma 4.29 with elements of the proof of Theorem 4.43 below. It
is actually a special case of Theorem 4.43 as the space Rd is a self dual vector space. 2

The following lemma summarises the properties of Λ and Λ∗ needed to prove Theo-
rem 4.25. This is almost like Lemma 4.20 but without the monotonicity statement.

Lemma 4.29 (a) Λ is convex and differentiable everywhere, and Λ∗ is a good convex
rate function.

(b)
y = ∇Λ(η) =⇒ Λ∗(y) = 〈η, y〉 − Λ(η) .

Proof. Exercise. 2

We will later prove a more sophisticated version of the theorem, here let us just men-
tion that we shall obtain the upper bound first for compact sets which can be suitably
covered by balls. A large deviation principle is called weak when the upper bound holds
only for compact sets. hence we need to know how to left the upper bound for compact
sets to general closed sets. Recall the Definition 4.6. To strengthen the weal LDP to a
full LDP requires a way of showing that most of the probability mass (at least on an ex-
ponential scale) is concentrated on compact sets. Here, we assume that E is a topological
Hausdorff space.

Definition 4.30 (Exponential tightness) Suppose that all compact subsets of E belong
to the σ-algebra B. A sequence (µn)n∈N of probability measures µn ∈ M1(E,B), is
exponentially tight if for every α <∞, there exists a compact set Kα ⊂ E such that

lim sup
n→∞

1

n
logµn(Kc

α) < −α .
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We now show that one can lift a weak LDP to a standard LDP for exponentially tight
sequences.

Proposition 4.31 (Exponential tightness) Let (µn)n∈N be exponentially tight.

(a) If the upper bound (4.3) holds for some α < ∞ and all compact subsets of the
complement LI(α)c, then it holds for all measurable sets M with M ⊂ LI(α)c. If
B(E) ⊂ B and the upper bound (4.3) holds for all compact sets, then it also holds
for all closed sets.

(b) If the lower bound (4.4) holds (the lower bound in (4.2) when B(E) ⊂ B) holds for
all measurable sets (all open sets), then I is a good rate function.

Proof. (a) Pick M ∈ B and α <∞ such that M ⊂ LI(α)c, and let Kα be the compact
set in the definition for exponential tightness. Then M ∩Kα ∈ B and Kc

α ∈ B.

µn(M ) ≤ µn(M ∩Kα) + µn(Kc
α) . (4.26)

As M ∩Kα ⊂ LI(α)c we have that

inf
x∈M∩Kα

{I(x)} ≥ α .

Thus

lim sup
n→∞

1

n
log R.H.S. of (4.26) = lim sup

n→∞

1

n
logµn(M ∩Kα) ∧ lim sup

n→∞

1

n
logµn(Kc

α) ,

and therefore
lim sup
n→∞

1

n
logµn(M ) ≤ −α .

(b) We apply the lower bound (4.4) to the open set Kc
α, and obtain

lim inf
n→∞

1

n
logµn(Kc

α) ≥ − inf
x∈Kc

α

{I(x)} ,

and thus (noting that Kα is the compact set from the definition of exponential tightness)
infx∈Kc

α
{I(x)} > α. Therefore,

LI(α) ⊂ Kα

showing that the level set LI(α) is compact.Hence, the rate function I is good rate func-
tion. 2

If a set E is given the coarse topology {∅, E}, the only information implied by the
LDP is that infx∈E I(x) = 0, and our rate functions satisfy this requirement. We must
therefore put some constraint on the topology of the set E. Recall that a topological
space E is Hausdorff if, for every pair of distinct points x and y, there are exist disjoint
neighbourhoods of x and y. We often need a further requirement, called regular.
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Definition 4.32 (a) A function f : E → R, E Hausdorff space, is called lower semi-
continuous (l.s.c.) (upper semicontinuous (u.s.c.)) if its level sets Lf (α) = {x ∈
E : f (x) ≤ α} are closed (respectively {x ∈ E : f (x) ≥ α} are closed).

(b) A topological Hausdorff space E is called regular if, for any closed set F ⊂ E and
any point x /∈ F , there exist disjoint open sets G1 and G1 such that F ⊂ G1 and
x ∈ G2.

(c) A topological Hausdorff space E is called completely regular topological space if
E is a Hausdorff space such that for any closed set F ⊂ E and any point x /∈ F ,
there exists a continuous function f : E → R such that f (x) = 1 and f (y) = 0 for
all y ∈ F . Such a space

Remark 4.33 (Regular spaces) (a) Note that f : E → R is continuous if and only if f is
lower semicontinuous and upper semicontinuous. The indicator/characteristic func-
tion 1lA is lower semicontinuous for every open setA, and 1lF is upper semicontinuous
for any closed F .

(b) For any neighbourhood G 3 x, x ∈ E, there exists a neighbourhood A 3 x such that
A ⊂ G.

(c) Every metric space is regular. If a topological vector space is Hausdorff, then it is
regular.

(d) A lower semicontinuous function f satisfies, at every point x,

f (x) = sup
G3x

neighbourhood

inf
y∈G
{f (y)} , x ∈ E . (4.27)

(e) Because of (4.27), for any x ∈ E and any δ > 0, there is a neighbourhood G =
G(x, δ) 3 x, such that

inf
y∈G
{f (y)} ≥ (f (x)− δ) ∧ 1/δ .

Let A = A(x, δ) be a neighbourhood of x such that A ⊂ G. Then

inf
y∈A
{f (y)} ≥ inf

y∈G
{f (y)} ≥ (f (x)− δ) ∧ 1/δ . (4.28)

�

Proposition 4.34 (Uniqueness of the rate function) A sequence (µn)n∈N of probability
measures µn ∈ M1(E) on a regular space E can have at most one rate function associ-
ated with its LDP.
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Proof. Suppose there are two rate functions I and J for the LDP associated with
(µn)n∈N. Without loss of generality, as I 6≡ J , assume that for x0 ∈ E, I(x0) > J(x0).
Fix δ > 0 and consider the open set A 3 x0 with

inf
y∈A
{I(y)} ≥ (I(x0)− δ) ∧ 1/δ .

Such as an open set exists due to (4.28). By the LDP it follows that

− inf
y∈A
{I(y)} ≥ lim sup

n→∞

1

n
logµn(A) ≥ lim inf

n→∞

1

n
logµn(A) ≥ − inf

y∈A
{J(y)} .

Therefore,
J(x0) ≥ inf

y∈A
{J(y)} ≥ inf

y∈A
{I(x)} ≥ (I(x0)− δ) ∧ 1/δ .

Since δ > 0 is arbitrary, this contradicts the assumption that I(x0) > J(x0). 2

Theorem 4.35 (Contraction principle) Let E and Y be Hausdorff spaces and f : E →
Y be continuous. Suppose I : E → [0,∞) is a good rate function.

(a) For each y ∈ Y , define
J(y) := inf

x∈E : f (x)=y
{I(x)} . (4.29)

Then J is a good rate function on Y , where as usual the infimum over the empty set
is taken as∞.

(b) If (µn)n∈N, µn ∈M1(E), satisfies the LDP on E with rate n and rate function I , then
(νn)n∈N with νn := µn ◦ f−1 ∈ M1(Y ) satisfies the LDP on Y with rate n and rate
function J .

Proof. (a) J is nonnegative by definition. Since I is a good rate function, for all
y ∈ f (E) the infimum in the definition of J is obtained at some point of E (lower semi-
continuous functions attain their minimum on compact sets). Thus, we obtained for the
level set LJ (α),

LJ (α) ⊂ {f (x) : I(x) ≤ α} = f (LI(α)) .

As the level sets LI(α) are compact, so are the level sets LJ (α) ⊂ Y .

(b) For every A ⊂ Y ,

inf
y∈A
{J(y)} = inf

y∈A
inf

x∈E : f (x)=y
{I(x)} = inf

x∈f−1(A)
{I(x)} . (4.30)

Since f is continuous, the set f−1(A) is an open (closed) subset ofE for any open (closed)
A ⊂ E. Therefore, the LDP for (νn)n∈N follows as a consequence of the LDP for (µn)n∈N
and (4.30). 2

We assume that E is a regular topological Hausdorff space.
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Theorem 4.36 (Varadhan’s Lemma) Suppose that (µn)n∈N satisfies the LDP with a good
rate function I : E → [0,∞], and let H : E → R be a continuous function. Assume that
either the tail-condition

lim
M→∞

lim sup
n→∞

1

n
logEµn [enH1l{H ≥M}] = −∞ , (4.31)

or the moment condition for γ > 1,

lim sup
n→∞

1

n
logE[eγnH ] <∞ , (4.32)

hold. Then
lim
n→∞

1

n
logEµn [enH ] = sup

x∈E
{H(x)− I(x)} .

Remark 4.37 (a) This theorem is the natural extension of Laplace’s method of comput-
ing parameter integrals in finite-dimensional spaces to infinite dimensional spaces.

(b) It is clear that any continuous function bounded from above satisfies the tail condition
(4.31). The moment condition (4.32) implies the tail condition (4.31) as we see using
Hölder’s inequality,∫

{H≥M}
enH(x) µn(dx) ≤

(∫
eγnH(x) µn(dx)

)1/γ

(µn(H ≥M))
1− 1

γ

≤
(∫

eγnH(x) µn(dx)
)1/γ(

e−γMn

∫
eγnH(x) µn(dx)

)1− 1
γ

= exp ((1− γ)Mn)
(∫

eγnH(x) µn(dx)
)
.

�

Proof of Theorem 4.36. The proof is an immediate consequences of the following two
lemmas and Remark 4.37. 2

Lemma 4.38 IfH : E → R is lower semicontinuous and the large deviation lower bound
holds with I : E → [0,∞], then

lim inf
n→∞

1

n
logE[enH ] ≥ sup

x∈E
{H(x)− I(x)} .

Proof. Pick x ∈ and δ > 0. Since F is lower semicontinuous, there exists an open
neighbourhood G 3 x such that infy∈G{H(y)} ≥ H(x)− δ. By the large deviation lower
bound and the choice of G,

lim inf
n→∞

1

n
logE[enH ] ≥ lim inf

n→∞

1

n
logE[enH1lG] ≥ inf

y∈G
{H(y)}+ lim inf

n→∞

1

n
logµn(G)

≥ inf
y∈G
{H(y)} − inf

y∈G
{I(y)} ≥ H(x)− I(x)− δ .

The statement now follows, since δ > 0 and x ∈ E are arbitrary. 2
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Lemma 4.39 If H : E → R is an upper semicontinuous for which the tail condition
(4.31) holds, and if the large deviation upper bound holds with the good rate function
I : E → [0,∞], then

lim sup
n→∞

1

n
logE[enH ] ≤ sup

x∈E
{H(x)− I(x)} .

Proof. First consider a function H which is bounded above, i.e.

sup
x∈E
{H(x)} ≤M <∞ .

Clearly, this function satisfies the tail condition (4.31). For α <∞ consider the compact
level set LI(α). For x ∈ LI(α) there exists a neighbourhood Ax of x such that

inf
y∈Ax
{I(y)} ≥ I(x)− δ , sup

y∈Ax
{H(y)} ≤ H(x) + δ ,

where the first inequality follows as I is lower semicontinuous and the second one is due
to upper semicontinuity of H . From the open cover with the neighbourhoods Ax we can
extract a finite cover of the level set LI(α) ⊂

⋃N
i+1Axi . Therefore,

E[enH ] ≤
N∑
i=1

E[enH1lAxi ] + enMµn((
N⋃
i=1

Axi)
c
)

≤
N∑
i=1

en(H(xi)+δ)µn(Axi) + enMµn((
N⋃
i=1

Axi)
c
) .

We apply now the large deviation upper bound to the sets Axi and use the fact that
(
⋃N
i=1Axi)

c ⊂ LI(α)c and arrive at

lim sup
n→∞

1

n
logE[enH ]

≤ max
{

max
1≤i≤N

{H(xi) + δ − inf
y∈Axi

{I(y)}},M − inf
y∈(⋃N

i=1 Axi)
c
{I(y)}

}
≤ max

{
max

1≤i≤N
{H(xi)− I(xi) + 2δ},M − α

}
≤ max

{
sup
x∈E
{H(x)− I(x)},M − α

}
+ 2δ .

Thus, forH bounded as above, the lemma follows by taking the limits δ → 0 and α→∞.
To treat the general case, we use a cutoff parameter M > 0 and define HM (x) := H(x) ∧
M ≤ H(x), and use our arguments above for HM to obtain

lim sup
n→∞

1

n
logE[enH ]

≤ sup
x∈E
{H(x)− I(x)} ∨ lim sup

n→∞

1

n
logE[enH1l{H ≥M}] .
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Now the tail condition (4.31) completes the proof by taking the limit M →∞. 2

With Varadhan’s Lemma we can obtained new LDPs for families of probability mea-
sures defined by Radon-Nikodym densities. In application they key is to include depen-
dencies among random variables via densities which cannot be written as the product of
single densities.

Theorem 4.40 (Tilted LDP) Let (E, d) be a Polish space. Suppose that (µn)n∈N satisfies
the LDP with a good rate function I : E → [0,∞], and let H : E → R be a continuous
function that is bounded from above. Then define

Zn(H) :=

∫
E

enH(x) µn(dx) ,

and the probability measure µHn ∈M1(E) via the Radon-Nikodym density

dµHn
dµn

(x) =
enH(x)

Zn(H)
, x ∈ E .

Then the sequence (µHn )n∈N satisfies the LDP on E with rate n and rate function

IH(x) = I(x)−H(x) + sup
y∈E
{H(y)− I(y)} , x ∈ E . (4.33)

Proof. From Theorem 4.36 we know that

lim
n→∞

1

n
logZn(H) = sup

y∈E
{H(y)− I(y)} .

Then we obtain the large deviation bounds by simply repeating the above arguments in
the proof of Theorem 4.36, For example, let K ⊂ E be closed, then

lim sup
n→∞

1

n
logµHn (K) = lim sup

n→∞

1

n
log
∫
K

enH(x) µn(dx)− lim sup
n→∞

1

n
logZn(H)

≤ sup
y∈K
{H(x)− I(x)} − sup

y∈E
{H(y)− I(y)} = − inf

y∈K
{IH(y)} ,

as IH(x) = I(x)−H(x)− infy∈E{I(y)−H(y)} and

− sup
y∈E
{H(y)− I(y)} = inf

y∈E
{I(y)−H(y)} .

The corresponding lower bound follows similalry. 2

From our study of Cramér’s theorem in both R and Rd, Theorem 4.19 and Theo-
rem 4.25, we have seen that when the space E is a vector space then the logarithmic mo-
ment generating function plays a vital role, in summary, exponential moments of linear
function suffice. As we just learned from Varadhan’s lemma, Theorem 4.36, the function
H can nonlinear. we now briefly study the possibility to invert Varadhan’s Lemma for
nonlinear functions.
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Definition 4.41 Let E be a completely regular topological space. For each Borel-
measurable function f : E → R and sequence (µn)n∈N of probability measures µn ∈
M1(E), define

Λf := lim
n→∞

1

n
log
(∫

E

enf (x) µn(dx)
)
, (4.34)

provided the limit exists.

Remark 4.42 When E is a vector space, then the functionals Λf for continuous linear
functions f ∈ E∗ (elements of the dual E∗, e.g., in Rd, f (x) = 〈λ, x〉, λ ∈ Rd) are just
the values of the logarithmic moment generating function. �

Theorem 4.43 (Bryc) Let E be a completely regular topological space. Suppose that the
sequence (µn)n∈N, µn ∈ M1(E), is exponentially tight and that the limit Λf in (4.34)
exists for every f ∈ Cb(E). Then (µn)n∈N satisfies the LDP with good rate function

I(x) = sup
f∈Cb(E)

{f (x)− Λf} . (4.35)

Furthermore, for every f ∈ Cb(E),

Λf = sup
x∈E
{f (x)− I(x)} . (4.36)

Proof of Bryc’s Theorem. If f ≡ 0 then Λ0 = 0 and I ≥ 0. The function I as a supre-
mum of continuous functions is lower semicontinuous, and have that I is a rate function.
It suffices therefore to show the weal LDP as the sequence (µn)n∈N is exponentially tight.
By Varadhan’s Lemma 4.36, we see that

Λf = sup
x∈E
{f (x)− I(x)} .

The statement follows by showing the lower and upper bound in Lemma 4.44 and Lemma 4.45.
2

Lemma 4.44 (Lower bound) If Λf exists for each f ∈ Cb(E), then, for every open G ⊂
E and x ∈ G,

lim inf
n→∞

1

n
logµn(G) ≥ −I(x) .

Proof. Pick x ∈ E and a neighbourhood G 3 x. Since E is completely regular, there
exists a continuous function f : E → [0, 1] such that f (x) = 1 and f (y) = 0 for all
y ∈ Gc. Define fm := m(f − 1),m ∈ N. Then fm ∈ Cb(E). Thus∫

E

enfm(x) µn(dx) ≤ e−nmµn(Gc) + µn(G) ≤ e−nm + µn(G)

and

max { lim inf
n→∞

1

n
logµn(G);−m} ≥ lim inf

n→∞

1

n
log
∫
E

enfm(x) µn(dx) = Λfm =

− = (fm(x)− Λfm ≥ − sup
f∈Cb(E)

{f (x)− Λf} = −I(x) .

2
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Lemma 4.45 (Upper bound) f Λf exists for each f ∈ Cb(E), then, for every compact set
K ⊂ E,

lim sup
n→∞

1

n
logµn(K) ≤ − inf

x∈K
{I(x)} .

Proof. Fix a compact setK ⊂ E and δ > 0, and define Iδ = min{I(x)−δ; 1/δ}. Then,
for any x ∈ K, there exists g = gx ∈ Cb(E) such that

g(x)− Λg ≥ Iδ(x) . (4.37)

There exists furthermore a neighbourhood Ax 3 x such that

inf
y∈Ax
{g(y)− g(x)} ≥ −δ .

We use Chebyshev’s inequality for the function ψ(y) = exp(ng(y)− ng(x) with

inf
y∈Ax
{ψ(y)} = exp( inf

y∈Ax
{ng(y)− ng(x)})

to arrive at
µn(Ax) ≤ Eµn

[
eng−ng(x)

]
exp(− inf

y∈Ax
{ng(y)− ng(x)}) ,

yielding
1

n
logµn(Ax) ≤ δ −

(
g(x)− 1

n
log
∫
E

eng(y) µn(dy)
)
.

We can now extract a finite cover
⋃N
i=1Axi ⊃ K from the open cover of the compact set

K, and by the union of events bound,

1

n
logµn(K) ≤ 1

n
logN + δ − min

1≤i≤N

{
gi(xi)−

1

n
log
∫
E

eng
i(y) µn(dy)

}
,

where gi is the function g as above for xi ∈ K. Thus,

lim sup
n→∞

1

n
logµn(K) ≤ δ − min

1≤i≤N
{g9(xi)− Λgi} ≤ δ − min

1≤i≤N
{Iδ(xi)} ,

and therefore
lim sup
n→∞

1

n
logµn(K) ≤ δ − inf

x∈K
{Iδ(x)} .

We conclude by noting that

lim
δ→0

inf
x∈K
{Iδ(x)} = inf

x∈K
{I(x)} ,

and taking the limit δ → 0. 2

We finish our basic introduction to the theory of large deviations with considering
Hausdorff topological vector space E, and recall that such spaces are regular. The dual of
E, denoted E∗, is the space of all continuous linear functionals. Suppose that Xn)n∈N is



80 LARGE DEVIATION THEORY

a sequence of E-valued random variables such that Xn ha slaw µn ∈ M1(E). We define
the logarithmic moment generating function for µn as

Λµn(λ) := logE[e〈λ,Xn〉] = log
∫
E

eλ(x) µn(dx) , λ ∈ E∗ , (4.38)

where for x ∈ E and λ ∈ E∗, 〈λ, x〉 = λ(x) denotes the value λ(x) ∈ R. Furthermore,
define

Λ(λ) := lim sup
n→∞

1

n
log Λµn(nλ) , (4.39)

and use the notation Λ(λ) when the limit exists. In our current setup, the Fenchel-
Legendre transform of a function f : E∗ → [−∞,∞] is defined as

f ∗(x) := sup
λ∈E∗
{〈λ, x〉 − f (λ)} , x ∈ E . (4.40)

In the following we denote Λ
∗

the Legendre-Fenchel transform of Λ, and Λ∗ denotes
that of Λ when the latter exists for all λ ∈ E∗.

Theorem 4.46 (A General Upper bound) Let (µn)n∈N be a sequence of probability mea-
sures. Then the following holds.

(a) Λ of (4.39) is convex on E∗ and Λ
∗

is a convex rate function.

(b) For any compact set K ⊂ E,

lim sup
n→∞

1

n
logµn(K) ≤ − inf

x∈K
{Λ∗(x)} . (4.41)

Proof. (a) Using the linearity of elements in the dual space and applying Hölder’s in-
equality, one can show that the functions Λµn(nλ) are convex. Thus

Λ(·) := lim sup
n→∞

1

n
log Λµn(n·)

is also convex function. As Λµn(0) = 0 for all n ∈ N, we have that Λ(0) = 0 and thus
Λ
∗ ≥ 0. Note that g(λ) := 〈λ, x〉 − Λ(λ) is continuous for every λ ∈ E∗. Then the lower

semicontinuity of Λ
∗

follows from the fact that the supremum over continuous functions
is lower semicontinuous. The convexity is shown as in Lemma 4.20.
(b) The upper bound follows exactly the steps in the proof of the upper bound in Lemma 4.45
to prove Theorem 4.43. Actually, the proof here is easier as it uses the continuous linear
functions and the logarithmic moment generating function. Details are left for the reader.
2

We conclude our introduction to basic large deviation theory by giving a few results con-
cerning the case when the random variables involved are not necessarily independent our
identically distributed. What we just learned is that the crucial steps for LDPs will be
the proof of the lower bound. In Theorem 4.19, Theorem 4.13, and Theorem 4.25, the
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independence allows to use law of large numbers to tilt our measures towards a measure
which turns a rare events into an event with probability almost one. We first give an ab-
stract version of the corresponding theorems and will then sketch how the proof of the
lower bound is performed in the case E = Rd, a variant of Theorem 4.25, called the
Gärtner-Ellis theorem.

Suppose that E is a Hausdorff topological vector space with dual E∗. A point x ∈ E
is called an exposed point of λ

∗
if there exists an exposing hyperplane λ ∈ E∗ such that

〈λ, x〉 − Λ
∗
(x) > 〈λ, z〉 − Λ

∗
(z) , for all z 6= x . (4.42)

Theorem 4.47 (Abstract Gärtner-Ellis Theorem) Let (µn)n∈N be an exponentially tight
sequence of probability measures on the Hausdorff topological space E.

(a) For every closed set F ⊂ E,

lim sup
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
{Λ∗(x)} .

(b) Let E be the set of exposed points of Λ∗ with an exposing hyperplane λ ∈ int(D(Λ))
for which

Λ(λ) = lim
n→∞

1

n
Λµn(nλ) exists and Λ(γλ) <∞ for some γ > 1 .

Then, for every open set G ⊂ Rd,

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G∩E
{Λ∗(x)} .

(c) If for every open set G ⊂ E,

inf
x∈G∩E

{Λ∗(x)} = inf
x∈G
{Λ∗(x)} ,

then (µn)n∈N satisfies the LDP with good rate function Λ
∗
.

We are not proving this theorem, see [DZ98] for details. The crucial point is to show
that (c) holds, and the following statement for Banach spaces summarises frequent ap-
proaches to proving large deviation principles. Recall that a function f : E∗ → R is
Gâteaux differentiable if, for every λ, θ ∈ E∗, the function f (λ+ tθ) is differentiable with
respect to t at t = 0.

Corollary 4.48 Let (µn)n∈N be an exponentially tight sequence of probability measures
on a Banach space E. Suppose that the function Λ(·) = limn→∞

1
n

log Λµn(n·) is finite
valued, Gâteaux differentiable, and lower semi continuous inE∗ with respect to the weak∗
topology. Then (µn)n∈N satisfies the LDP with the good rate function Λ∗.
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Proof. The crucial point is to show that (c) in Theorem 4.47 follows under the given
assumptions. This is an intricate and delicate proof using a fair amount of variational
analysis techniques, and we therefore skip the details here which can be found in [dH00]
or [DZ98].

2

To demonstrate the role of the exposed points we show the lower bound for the Gärtner-
Ellis Theorem in Rd.

Theorem 4.49 (Gärtner-Ellis Theorem in Rd) Suppose that (Xn)n∈N is a sequence of
Rd-valued vectors Xn and that µn ∈M1(Rd) is the law of Xn. Assume that the following
holds:

Λ(λ) := lim
n→∞

1

n
log Λµn(nλ) exists as an extended real number for all λ ∈ Rd ,

(4.43)
and 0 ∈ D(Λ). Then the following holds.

(a) For every closed set F ⊂ Rd,

lim sup
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
{Λ∗(x)} .

(b) Let E be the set of exposed points of Λ∗ with an exposing hyperplane λ ∈ int(D(Λ)).
Then, for every open set G ⊂ Rd,

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G∩E
{Λ∗(x)} .

(c) If Λ is an essentially smooth, lower semi continuous function, then (µn)n∈N satisfies
the LDP with good rate function Λ∗.

Remark 4.50 A convex function Λ: Rd → (−∞,∞] is essentially smooth if

(a) int(D(Λ)) 6= ∅.

(b) Λ is differentiable in int(D(Λ)).

(c) Λ is steep, that is, limn→∞|∇Λ(λn)| = ∞ whenever (λn)n∈N sequence in int(D(Λ))
converging to a point in the boundary ∂D(Λ)) of D(Λ).

In particular, when D(Λ) = Rd, then Λ is essentially smooth and the LDP holds. �

Proof. The upper bound is proved similar to the upper bound in Theorem 4.43, for
details see Chapter 2.3 in [DZ98], or better Chapter V in [dH00].
Lower bound (b): We need to show that for y ∈ E,

lim
δ→0

lim inf
n→∞

1

n
logµn(Bδ(y)) ≥ −Λ∗(y) . (4.44)
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Fix y ∈ E and let η ∈ int(D(Λ)) denote the exposing hyperplane for y. For n sufficiently
large we have that Λµn(nη) <∞ and we can define the new measures µ̃n via the density,

dµ̃n
dµn

(z) = exp (n〈η, z〉 − Λµn(nη)) . (4.45)

Then we get with some calculation for the change of measure,

1

n
logµn(Bδ(y)) =

1

n
Λµn(nη)− 〈η, y〉+

1

n

∫
Bδ(y)

en〈η,y−z〉 µ̃n(dz)

≥ 1

n
Λµn(nη)− 〈η, y〉 − |η|δ +

1

n
log µ̃n(Bδ(y)) .

Therefore,

lim inf
n→∞

1

n
logµn(Bδ(y)) ≥ Λ(η)− 〈η, y〉+ lim inf

n→∞

1

n
log µ̃n(Bδ(y))

≥ −Λ∗(y) + lim inf
n→∞

1

n
log µ̃n(Bδ(y))

The obstacle comes from the missing independence, since the weak law of large numbers
no longer applies. The strategy is to utilise the upper bound in (a). For that we analyse
the logarithmic moment generating function for µ̃n. One can easily show that

1

n
Λ̃µ̃n(nλ) −→

n→∞
Λ̃(λ) = Λ(λ+ η)− Λ(η) ,

where the limiting moment generating function Λ̃ satisfies assumption (4.43) as clearly
Λ̃(0) = 0 and λ̃ <∞ for |λ| small enough. Define

Λ̃∗(x) := sup
λ∈Rd
{〈λ, x〉 − Λ̃(λ)} = Λ∗(x)− 〈η, x〉+ Λ(η) .

Since (µ̃n)n∈N satisfies the assumptions (4.43), we can apply Lemma 4.29 and part
(a) above to show that (µ̃)n∈N satisfies a large deviation upper bound with the good rate
function Λ̃∗. Thus, for the closed set Bδ(y)c,

lim sup
n→∞

1

n
log µ̃n(Bδ(y)c) ≤ − inf

x∈Bδ(y)c
{Λ̃∗(x)} = Λ̃∗(x0)

for some point x0 6= y. This follows from the compact level sets as a lower semicontinu-
ous function attains its minimum over a compact set. We are left to show that Λ̃∗(x0) > 0.
At this point we use the property that y is an exposed point for Λ∗ with exposing hyper-
plane η. First,

Λ∗(y) ≥ 〈η, y〉 − Λ(η) ,

and thus Λ(η) ≥ 〈η, y〉 − Λ∗(y). Then

Λ̃∗(x0) = Λ∗(x0)− 〈η, x0〉+ Λ(η) ≥ Λ∗(x0)− 〈η, x0〉+ 〈η, y〉 − Λ∗(y) > 0 .
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Thus, for every δ > 0,

lim sup
n→∞

1

n
log µ̃n(Bδ(y)c) < 0 .

This implies that µ̃n(Bδ(y)c) → 0 as n → ∞ and hence µ̃n(Bδ(y)) → 1 as n → ∞, and
in particular,

lim inf
n→∞

1

n
log µ̃n(Bδ(y)) = 0 .

2
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5 Random Fields

5.1 Setting and definitions
A random field ϕ = (ϕx)x∈Zd over Zd is the family of random variables ϕx ∈ R.

5.2 The discrete Gaussian Free Field (DGFF)
We first revised some basic facts on Gaussian random variables and measures. We say
ϕΛ = (ϕx)x∈Λ,Λ ⊂ Zd finite, is a Gaussian vector or Gaussian random variable or
simply Gaussian if, for all tΛ = (tx)x∈Λ ∈ RΛ, the real-valued random variable

〈tλ, ϕΛ〉 :=
∑
x∈Λ

txϕx

is a Gaussian random variable or a normal random variable (possibly degenerate when
the variance vanishes), that is, it is normally distributed. Recall that a real-valued random
variable X is a Gaussian random variable or a normal random variable if

E[eitX ] = exp
(

itE[X]− 1

2
t2Var(X)

)
for all t ∈ R .

If ΦΛ is a Gaussian random variable with law/distribution µΛ ∈ M1(RΛ), we call µΛ

a finite-volume Gaussian measure or simply a Gaussian measure. Suppose that ϕΛ is a
Gaussian random variable with law/distribution µΛ ∈ M1(RΛ). Then it is easy to show
via direct computation that the following holds.

EµΛ
[〈tΛ, ϕΛ〉] = 〈tΛ, µΛ〉 , mΛ = (mx)x∈Λ , tx = EµΛ

[ϕx] ,
VarµΛ

(〈tΛ, ϕΛ〉) = 〈tΛ, CΛtΛ〉 , CΛ = (C(x, y))x,y∈Λ , C(x, y) = CovµΛ
(ϕx, ϕy) ,

E[ei〈tΛ,ϕΛ〉] = exp
(

i〈tΛ,mΛ〉 −
1

2
〈tΛ, CΛtΛ〉

)
.

We also write ϕΛ ∼ N(mΛ, CΛ), and ϕΛ is centred ifmΛ = 0. The matrixCΛ is symmetric
and nonnegative definite. When CΛ is positive definite, then the matrix is invertible and
there exist a density with respect to the Lebesgue measure, that is, ϕΛ ∼ N(mΛ, CΛ) with
CΛ positive definite, has law

µΛ(dϕΛ) =
1

(2π)|Λ|/2
√

det(CΛ)
e−

1
2
〈ϕΛ−mΛ,AΛ(ϕΛ−mΛ)〉

∏
x∈

dϕx , ϕΛ ∈ RΛ ,

and AΛ = C−1
Λ . The Laplace transform for J ∈ CΛ is∫

RΛ

e−1/2〈ϕ,AΛϕ〉
∏
x∈Λ

dϕx = det(2πCΛ)1/2 e
1
2
〈J,CΛJ〉 , J ∈ CΛ , (5.1)

which follows by direct calculation (completing the square in the exponent).

Definition 5.1 Let Λ ⊂ Zd and ∆ ⊂ Λ a finite subset and µΛ ∈ M1(RΛ), µ∆ ∈
M1(R∆). Then the probability measure µ∆ is said be compatible with µΛ if

µ∆(A) = µΛ(A× RΛ\∆) whenever A ∈ B(R∆) .
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Proposition 5.2 Let Λ,∆ ⊂ be finite and ∆ ⊂ Λ. Then the following holds.

(a) If µΛ is a Gaussian measure and µ∆ ∈ M1(R∆) is compatible with µΛ then µ∆ is a
Gaussian measure.

(b) Suppose µ∆ and µΛ are Gaussian measures. Then µ∆ is compatible with µΛ if and
only if C∆ is a submatrix of CΛ.

Proof. This follows directly from the characteristic function and the Laplace transform
(5.1). The details are left as an exercise in Gaussian calculus.

2

Definition 5.3 A measure µ ∈M1(RZd) is said to be a Gaussian measure or an infinite-
volume Gaussian measure if the compatible measure on RΛ is Gaussian for all finite
Λ ⊂ Zd. The family ϕ = (ϕx)x∈Zd of real-valued random variables ϕx ∈ R is called a
Gaussian field if ϕΛ = (ϕx)x∈Λ is a Gaussian vector for all finite Λ ⊂ Zd.

Definition 5.4 The matrixC = (C(x, y))x,y∈Zd is positive definite if the submatrixCΛ =
(C(x, y))x,y∈Λ is positive definite for all finite Λ ⊂ Zd.

Remark 5.5 Given a positive definite matrix C = (C(x.y))x,y∈Zd , for each finite Λ ⊂ Zd
there exists a unique Gaussian measure µΛ with covariance CΛ. Whenever Λ ⊂ Λ′, µΛ

is compatible with µΛ′ . By Kolmogorov’s theorem there exists a probability measure
µ ∈ M1(RZd) such that µΛ is compatible with µ for every finite Λ ⊂ Zd. By our last
definition µ is a Gaussian measure (Gaussian field) and it has covariance C. It is uniqiue
if we choose the σalgebra generated by all cylinder events. �

Proposition 5.6 Suppose Cj, j = 1, . . . , n, are positive definite Λ× Λ matrices. If ϕj ∼
N(0, Cj) and the (ϕj)j=1,...,n are independent then the sum is Gaussian, i.e.,

n∑
j=1

ϕj ∼ N(0,
n∑
j=1

Cj) .

The proof is left as am exercise.

Exercise 5.7 Prove the statement in Proposition 5.6 using the Laplace transform respec-
tively the characteristic function. KK

Proposition 5.8 (Gaussian moments) Let µ ∈M1(RZd) be a Gaussian measure, then

Eµ[ϕx1 · · ·ϕx2n ] =
∑
P

∑
{x,y}∈P

Eµ[ϕxϕy] , (5.2)

where P is the set of all partitions of {1, 2, . . . , 2n} into subsets which each have two
elements.
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Proof. We just give a rough sketch, details are left as an exercise to the reader. First
pick a sufficiently large set Λ ⊂ Zd and compute the logarithmic generating function

Λ(tΛ) = logEµΛ

[
e〈tΛ,ϕΛ〉

]
, tΛ ∈ RΛ ,

Then one obtains the moments by taking partial derivatives,

∂2nΛ(tΛ)
∂ti1 · · · ∂ti2n

∣∣∣
tΛ=0

.

2

Remark 5.9 If P is a polynomial in ϕΛ, then one can show that

∫
RΛ

P (ϕλ)µ(dϕ) = exp
(1

2

∑
x,y∈Λ

C(x, y)
∂

∂ϕ(x)
∂

∂ϕ(y)

)∣∣∣
ϕΛ=0

P ,

where the exponential is defined by expanding it as a power series. �

After this general introduction to Gaussian measure, we are now considering the dis-
crete Gaussian Free Field (GFF). We start defining finite-volume distributions. We denote
the space of infinite-volume configurations by Ω := RZd , and for a finite Λ ⊂ Zd we write
ΩΛ = RΛ. We write ϕΛ = (ϕx)x∈Λ and also denote the projection Ω→ ΩΛ by ϕΛ.

The σ-algebra generated by all cylinder events is denoted F . Recall that a cylinder
event is any event of the form

{ω ∈ Ω: ϕ∆(ω) ∈ A} , for some finite ∆ ⊂ Zd and A ∈ B(R∆) .

The random field is defined in terms of an energy function, called Hamiltonian or
Hamilton function . This function allows to specify the finite-volume distributions in
Λ ⊂ Zd finite with arbitrary boundary conditions.
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Definition 5.10 (Hamiltonian and finite-volume distributions (GFF)) Let Λ ⊂ Zd
be finite, β > 0,m ≥ 0.

(a) The Hamiltonian in Λ with inverse temperature β and mass m is defined as

HΛ,m(ϕ) :=
β

4d

∑
{x,y}∩Λ 6=∅
|x−y|=1

(ϕx − ϕy)2
+
m2

2

∑
x∈Λ

ϕ2
x , (5.3)

and we call the Hamiltonian massless when m = 0 and massive when m 6= 0.

(b) Let η ∈ Ω be a configuration. The finite-volume distribution (also called Gibbs
distribution) in Λ with boundary condition η is the probability measure γηΛ,m ∈
M1(Ω,F) defined by

γηΛ,m(A) =
1

ZΛ,m(η)

∫
1lA(ϕ) e−HΛ,m(ϕ)

∏
x∈Λ

dϕx
∏
x∈Λc

δηx(dϕx) (5.4)

with normalisation, called partition function,

ZΛ,m(η) =

∫
e−HΛ,m(ϕ)

∏
x∈Λ

dϕx
∏
x∈Λc

δηx(dϕx) . (5.5)

Remark 5.11 (a) The finite-volume distributions are also called Gibbs distributions. A
Gibbs measure on Ω is a probability measure µ ∈ M1(Ω,F) whose conditional
expectations are given by the Gibbs distribution, that is, for every finite Λ ⊂ Zd, η ∈
Ω, and events A ∈ F ,

µ(A|FΛc)(η) = γηΛ,m(A) ,

where FΛc is the σ-algebra of events outside of Λ.

(b) Suppose we would take empty boundary conditions, formally η = ∅, that is, there
is no boundary to Λ. Then ZΛ,m(∅) = ∞. To see that suppose for simplicity that
Z ⊃ Λ = {x, y, z}, x ∼ y ∼ z (nearest neighbours), d = 1, and β/4d = 1. Then∫

exp (− ϕ2
x − (ϕx − ϕy)2 − (ϕz − ϕz)2 − ϕ2

z) dϕxdϕydϕz

=
√
π/2

∫
exp (− ϕ2

y/2 + 2ϕyϕz − 2ϕ2
z) dϕydϕz

= π/2

∫
exp(−ϕ2

y/2 + 4ϕ2
y/8) dϕy =∞ .

�

The next step is to rewrite the Hamiltonian into a quadratic form to obtain the Gaussian
structure and the corresponding covariance matrix. This is essentially the discrete version
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of integration by parts, i.e., summation by parts. This require a couple of new notations
and definitions. First recall that

x ∼ y ⇔ |x− y| = 1 .

We denote the set nearest neighbour bonds touching a finite Λ ⊂ Zd by

EΛ := {{x, y} : x, y ∈ Zd, {x, y} ∩ Λ 6= ∅, x ∼ y} .

For each bond {x, y} ∈ EΛ, define the discrete gradient across this bond as

(∇ϕ)xy := ϕ(y)− ϕ(x) ,

and the graph Laplacian

(Lϕ)(x) :=
∑
y∼x

(∇ϕ)xy =
d∑
j=1

(ϕ(x± ej)− ϕ(x)) = 2d∆ϕ(x) .

We define on the whole lattice Zd the matrix

L(x, y) :=


−2d if x = y ,

1 if x ∼ y ,

0 otherwise ,
(5.6)

and write
(Lϕ)(x) =

∑
y∈Zd

L(x, y)ϕ(y) .

We use ϕx ≡ ϕ(x) whenever it is convenient.

Lemma 5.12 (Discrete Green identities) Let Λ ⊂ Zd be finite and ϕ, η, ψ ∈ Ω. Then
the following holds.

(a) ∑
{x,y}∈EΛ

(∇ψ)xy(∇ϕ)xy = −
∑
x∈Λ

ψ(x)(Lϕ)(x) +
∑

x∈Λ,y∈Λc
x∼y

ψ(y)(∇ϕ)xy .

(b) ∑
x∈Λ

(
ϕ(x)(Lψ)(x)− ψ(x)(Lϕ)(x)

)
=

∑
x∈Λ,y∈Λ
x∼y

(
ϕ(y)(∇ψ)xy − ψ(y)(∇ϕ)xy

)
.

Proof. (a) For bonds in Λ we get using the symmetry between x and y (in all sums
below x and y are nearest neighbours)∑
{x,y}∈EΛ∩Λ

(∇ψxy(∇ϕ)xy =
∑

{x,y}∈EΛ∩Λ

ψ(y)(ϕ(y)− ϕ(x))−
∑

{x,y}∈EΛ∩Λ

ψ(x)(ϕ(y)− ϕ(x))

= −
∑
x∈Λ

ψ(x)
∑

y∈Λ: y∼x

(ϕ(y)− ϕ(x))

= −
∑
x∈Λ

ψ(x)(Lϕ)(x) +
∑
x∈Λ

ψ(x)
∑

y∈Λc : y∼x

(ϕ(y)− ϕ(x))
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We now add the nearest neighbour bonds that touch both Λ and Λc.∑
{x,y}∈EΛ

(∇ψ)xy(∇ϕ)xy =
∑

{x,y}∈EΛ∩Λ

(∇ψ)xy(∇ϕ)xy +
∑

x∈Λ,y∈Λc
x∼y

(∇ψ)xy(∇ϕ)xy

= −
∑
x∈Λ

ψ(x)(Lϕ)(x) +
∑

x∈Λ,y∈Λc
x∼y

ψ(y)(ϕ(y)− ϕ(x)) .

(b) To prove (b) use (a) twice, interchanging the roles of ϕ and ψ.
2

For Λ ⊂ Zd finite the restriction LΛ of the graph Laplacian L is

LΛ = (L(x, y))x,y∈Λ . (5.7)

Suppose that x ∈ Λ. It is important to note that (Lϕ)(x) depends on some variables ϕ(y)
located outside of Λ whereas

(LΛϕ)(x) =
∑
y∈Λ

L(x, y)ϕ(y)

involves only field variables ϕ(y) inside Λ. Note that

〈ϕ,LΛϕ〉 :=
∑
x,y∈Λ

ϕ(x)L(x, y)ϕ(y) and 〈ϕ,LΛϕ〉 = 〈LΛϕ, ϕ〉 .

Our aim is now to rewrite the Hamiltonian (5.3) with m = 0. Suppose η ∈ Ω fixed and
ϕ ≡ η of Λ, i.e., ϕ(x) = η(x) for all x ∈ Zd \ Λ. Using Lemma 5.12 we get∑

{x,y}∈EΛ

(ϕ(x)− ϕ(y))2 = −
∑
x∈Λ

ϕ(x)(Lϕ)(x) +
∑
x∈Λ

∑
y∈Λc : y∼x

η(y)(∇ϕ)xy

= −〈ϕ,LΛϕ〉 − 2
∑
x∈Λ

∑
y∈Λc : y∼x

ϕ(x)η(y) +BΛ(η) ,
(5.8)

where
BΛ(η) =

∑
x∈Λ

∑
y∈Λc : y∼x

η(y)2

is a boundary term depending solely on η. Can we write the right hand side of (5.8) as a
quadratic form −〈ϕ− u,LΛ(ϕ− u)〉 for some u ∈ Ω? We have

〈ϕ− u,LΛ(ϕ− u)〉 = 〈ϕ,LΛϕ〉 − 2
∑
x∈Λ

ϕ(x)(LΛu)(x) + 〈u,LΛu〉

= 〈ϕ,LΛϕ〉 − 2
∑
x∈Λ

ϕ(x)(Lu)(x) + 2
∑
x∈Λ

∑
y∈Λc : y∼x

ϕ(x)u(y) + B̃Λ(u) ,

where
B̃Λ(u) = 〈u,Lu〉 .
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Now comparing this last expression with (5.8) we obtain∑
{x,y}∈EΛ

(ϕ(x)− ϕ(y))2 = −〈ϕ− u,LΛ(ϕ− u)〉 − 2
∑
x∈Λ

∑
y∈Λc : y∼x

ϕ(x)(u(y)− ϕ(y)) + B̂Λ ,

(5.9)
where B̂Λ depends only on η and u outside of Λ. We have the desired quadratic form as
soon as the following two conditions are met:

(i) u is harmonic in Λ, i.e., (Lu)(x) = 0 for all x ∈ Λ.

(ii) u = η off Λ, i.e., u(y) = η(y) for all y ∈ Λc.

Lemma 5.13 Suppose ϕ ≡ η off Λ ⊂ Zd finite. Assume that u ∈ Ω solves the Dirichlet
problem (DP) in Λ with boundary condition η,{

u is harmonic in Λ, i.e., (Lu)(x) = 0, x ∈ Λ ,

u(x) = η(x) for all x ∈ Λc .

Then ∑
{x,y}∈EΛ

(ϕ(x)− ϕ(y))2 = −〈ϕ− u,LΛ(ϕ− u)〉+ B̂Λ .

The Hamiltonian is given as

HΛ(ϕ) =
1

2
〈ϕ− u, (− 1

2d
LΛ)(ϕ− u)〉 ,

and
− 1

2d
LΛ = −∆Λ = 1lΛ − PΛ

with matrix PΛ defined as

PΛ(x, y) =

{
1
2d

x ∼ y, x, y ∈ Λ ,

0 otherwise .

Thus PΛ is just the restriction of the transition matrix P of the SRW on Zd, see (3.2).
We have now the Hamiltonian as a quadratic form, and to obtain the covariance matrix
we need to simply get the inverse matrix of 1lΛ − PΛ. We can improved the estimate on
the stopping time τΛc = inf{k ∈ N : Sk 6∈ Λ} in Lemma 3.17 such there is a constant
c = c(Λ) > 0 such that

Px(τΛc > n) ≤ e−cn . (5.10)

Using this, we can prove the following statement.

Proposition 5.14 For Λ ⊂ Zd finite the matrix 1Λ − PΛ is invertible and

(1lΛ − PΛ)
−1

=: GΛ

is the Green function of the SRW in Λ with killing upon leaving Λ,

GΛ(x, y) = Ex
[ τΛc−1∑

k=0

1l{Sk = y}
]
. (5.11)



92 RANDOM FIELDS

Proof.
(1lΛ − PΛ)(1lΛ + PΛ + P|L

2 + · · ·+ P n
Λ ) = (1lΛ − P n+1

Λ ) .

For each n ∈ N,

P n
Λ (x, y) =

∑
x1,...,xn−1∈Λ

P (x, x1)P (x1, x2) · · ·P (xn−1, y) = Px(Sn = y, τΛc > n)

≤ Px(τΛc > n) ≤ e−cn ,

where we used (5.10). Thus the series GΛ = 1lΛ + PΛ + P 2
Λ + · · · converges and

(1lΛ − PΛ)GΛ = 1lΛ .

By symmetry, GΛ(1lΛ − PΛ) = 1lΛ. Furthermore, as the random walk is killed upon
leaving Λ, noting that

Ex[1l{Sk = y}] = P k
Λ(x, y) ,

GΛ(x, y) = Ex
[ τΛc−1∑

k=0

1l{Sk = y}
]
.

2

Proposition 5.15 Let Λ ⊂ Zd be finite and η ∈ Ω. The solution u ∈ Ω to the Dirchlet
problem is given by

u(x) := Ex[η(SτΛc )] , x ∈ Zd . (5.12)

Proof. Suppose y ∈ Λc, then Py(τΛc = 0) = 1, and thus

u(y) = Ey[η(S0)] = η(y) .

Now let x ∈ Λ. Using the Markov property of the SRW we obtain

u(x) = Ex[η(SτΛc )] =
∑
y : y∼x

Ex[η(SτΛc ), S1 = y] =
∑
y : y∼x

Px(S1 = y)Ex[η(SτΛc )|S1 = y]

=
1

2d

∑
y : y∼x

u(y) ,

which implies that (∆u)(x) = 0 for all x ∈ Λ. Thus u is harmonic in Λ and u ≡ η off Λ.
2

Theorem 5.16 Under γηΛ (notem ≡ 0) (ϕ(x))x∈Λ is a Gaussian random vector with mean
uΛ = (u(x))x∈Λ,

u(x) = Ex[η(SτΛc )] ,

and covariance matrix GΛ = (GΛ(x, y))x,y∈Λ.
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Proof. The proof follows the steps outlined above. The normalisation (partition func-
tion) of the finite-volume distribution is the Gaussian integral

ZΛ(η) =

∫
e−

1
2
〈ϕ−u,(−∆Λ)(ϕ−u)〉

∏
x∈Λ

dϕ(x)
∏
x∈Λc

δη(x)(dϕ(x)) = (2π)
|Λ|/2

( det (−∆Λ))
−1/2

.

2

In the following, consider sequence of centred boxes ΛN := [−N,N ]d ∩ Zd. Note
that the finite-volume distribution γηΛN depends on the boundary condition η ∈ Ω only
through its mean. The covariance is only sensitive to the choice of the box ΛN ,

GΛN (x, y) = Ex
[ τΛc

N
−1∑

k=0

1l{Sk = y}
]
.

Note that this is the Green of the SRW with killing upon leaving the box ΛN . Indeed, this
is similar to the Green function of the SRW in Zd, see (3.16),(3.17),(3.18),(3.19). If we
increase the box ΛN , i.e., consider N → ∞, then we shall obtain the Green function of
the SRW in Zd, see (3.18) and (3.19). For the centred boxes ΛN we may ask about the
fluctuations of the field variable ϕ0, that is, what is the limit N →∞ of

VarγηΛN (ϕ0) = GΛN (0, 0) .

By monotone convergence,

lim
N→∞

GΛN (0, 0) = E0

[ ∞∑
k=0

1l{Sk = 0}
]

is just the expected number if visits of the SRW at the origin. We have learnt earlier that
the variance (number of visits) diverges if the SRW is recurrent (d = 1, 2). Asymptoti-
cally, as N →∞,

GΛN (0, 0) ∼

{
N if d = 1 ,

logN if d = 2 .

We therefore call the (Gaussian) random field delocalised if the variance of ϕ0 grows
unboundedly with the volume, i.e., in dimension d = 1, 2. For dimensions d ≥ 3, the
variance remains bounded, and we therefore expect the filed to remain localised close to
its mean value in the limit N →∞, i.e.,

G(x, y) = lim
N→∞

GΛN (x, y) = Ex
[ ∞∑
k=0

1l{Sk = y}
]

is finite. Thus, for d ≥ 3 and m = 0, given any harmonic function η on Zd, there exists
a Gaussian measure µη ∈ M1(Ω) with mean η and covariance matrix G. The asymptotic
behaviour of the Green functions is derive din (3.19) via the LCLT.
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Proposition 5.17 d ≥ 3,m = 0, and η ∈ Ω harmonic. Then, for x, y ∈ Zd, in the limit
|x− y| → ∞,

Covµη (ϕx, ϕy) =
ad

|x− y|d−2
(1 + o(1)) ,

where ad is the dimension dependent constant from (3.19).

We highlight the connection between SRW and Gaussian random field again by re-
visiting Section 3.4. Recall the transition probability P (x1, t;x0, t0) of the SRW as the
probability that the walker is at x1 at time t when he was at x0 at time t0. Without loss of
generality let t0 = 0, x0 = 0 and x1 = x and write

P (x, t; 0, 0) =
1

(2π)d

∫
BZ

P̂ (k, t) ei〈k,x〉 dk =
1

(2π)d

∫
BZ

(1

d

d∑
j=1

cos(kj)
)t

ei〈k,x〉 dk .

(5.13)
Thus the Green function is

G(x) =
∞∑
t=0

P (x, t; 0, 0) =
1

(2π)d

∫
BZ

( ∞∑
t=0

(1

d

d∑
j=1

cos(kj)
)t)

ei〈k,x〉 dk

=
1

(2π)d

∫
BZ

( 1

1− p̂(k)

)
ei〈k,x〉 dk ,

(5.14)

where

p̂(k) =
∑
x∈Zd

p(0, x) ei〈k,x〉 =
1

d

d∑
j=1

cos(kj)

with P = (p(x, y))x,y∈Zd being transition matrix of the SRW. For this one needs to justify
interchanging summation with integration and the use of the geometric series. We are
leave this technical details for the reader, alternatively, they can be found in [Spi01] or
[Law96, LL10].

5.3 Scaling limits
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Appendices

A Modes of Convergence

We shall review in this chapter the basic modes of convergence of random variables. Let
(Xn)n∈N be a sequence of random variables taking values in some metric space (E, d), that
is, eachXn : Ω→ E is a measurable map between a given probability space (Ω,F,P) and
the range or target space (E, d) where one equips the metric spaceE with its Borel-σ-field
(algebra) B(E). Let X be a random variable taking values in (E, d).

Definition A.1 (always surely or almost everywhere or with probability 1 or strongly)
The sequence (Xn)n∈N converges almost surely or almost everywhere or with probability
1 or strongly towards X if

P( lim
n→∞

Xn = X) = P({ω ∈ Ω: lim
n→∞

Xn(ω) = X(ω)}) = 1.

This means that the values of Xn approach the value of X , in the sense that events for
which Xn does not converge to X have probability 0. We write Xn

a.s.−→ X for almost
sure convergence.

Definition A.2 (Convergence in probability) The sequence (Xn)n∈N converges in prob-
ability to X if

lim
n→∞

P(d(Xn, X) > ε) = 0, for all ε > 0.

We write Xn
P−→ X for convergence in probability.

Proposition A.3 (Markov’s inequality) Let Y be a real-valued random variable and
f : [0,∞)→ [0,∞) an increasing function. Then, for all ε > 0 with f (ε) > 0,

P(|Y | ≥ ε) ≤ E[f ◦ |Y |]
f (ε)

.

Corollary A.4 (Chebyshev’s inequality, 1867) For all Y ∈ L2 and ε > 0,

P(|Y − E[Y ]| ≥ ε) ≤ Var(Y )
ε2

.

By Chebyshev’s inequality the convergence in probability is equivalent to E[d(Xn, X)∧
1]→ 0 as n→∞. This is related to the almost sure convergence as follows.

Lemma A.5 (Subsequence criterion) Let X,X1, X2, . . . be random variables in (E, d).
Then (Xn)n∈N converges to X in probability if and only if every subsequence N ′ ⊂ N has
a further subsequenceN ′′ ⊂ N′ such thatXn → X almost surely alongN ′′. In particular,
Xn

a.s.−→ X implies that (Xn)n∈N converges to X in probability.

Definition A.6 (Convergence in distribution) We say that Xn converges in distribution
to X , if, for every bounded continuous function f : E → R,

lim
n→∞

E[f (Xn)] = E[f ].

We write Xn
d−→ X for convergence in distribution.
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Remark A.7 (a) Xn
d−→ X is equivalent to weak convergence of the distributions.

(b) if Xn
d−→ X and g : E → R continuous, then g(Xn) d−→ g(X). But note that,

if E = R and Xn
d−→ X , this does not imply that E[Xn] converges to E[X], as

g(x) = x is not a bounded function on R.

(c) Suppose E = {1, . . . ,m} is finite and d(x, y) = 1− 1lx=y. Then Xn
d−→ X if and

only if limn→∞ P(Xn = k) = P(X = k) for all k ∈ E.

(d) LetE = [0, 1] andXn = 1/n almost surely. ThenXn
d−→ X , whereX = 0 almost

surely. However, note that limn→∞ P(Xn = 0) = 0 6= P(X = 0).
�

B Law of large numbers and the central limit theorem

Definition B.1 (Variance and covariance) Let X, Y ∈ L2 be real-valued random vari-
ables.

(a)
Var(X) := E[(X − E[X])2

] = E[X2]− E[X]2

is called the variance, and
√

Var(X) the standard deviation of X with respect to
P.

(b)
Cov(X, Y ) := E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

is called the covariance of X and Y . It exists since |XY | ≤ X2 + Y 2.

(c) If Cov(X, Y ) = 0, then X and Y are called uncorrelated.

Theorem B.2 (Weak law of large numbers, L2-version) Let (Xn)n∈N be a sequence of
uncorrelated (e.g. independent) real-valued random variables in L2 with bounded vari-
ance, in that v := supn∈N Var(Xn) <∞. Then for all ε > 0

P
(∣∣∣ 1
n

n∑
i=1

(Xi − E[Xi])
∣∣∣ ≥ ε

)
≤ v

nε2
−→
n→∞

0,

and thus 1/n
∑n

i=1(Xi − E[Xi])
P−→ 0. In particular, if E[Xi] = E[X1] for all i ∈ N,

then
1

n

n∑
i=1

Xi
P−→ E[X1].

We now present a second version of the weak law of large numbers, which does not
require the existence of the variance. To compensate we must assume that the random
variables, instead of being pairwise uncorrelated, are even pairwise independent and iden-
tically distributed.
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Theorem B.3 (Weak law of large numbers, L1-version) Let (Xn)n∈N be a sequence of
pairwise independent, identically distributed real-valued random variables in L1. Then

1

n

n∑
i=1

Xi
P−→ E[X1].

Theorem B.4 (Strong law of large numbers) If (Xn)n∈N is a sequence of pairwise un-
correlated real-valued random variables in L2 with v := supn∈N Var(Xn) <∞, then

1

n

n∑
i=1

(Xi − E[Xi])→ 0 almost surely as n→∞.

Theorem B.5 (Central limit theorem; A.M. Lyapunov 1901, J.W. Lindeberg 1922,P. Leévy 1922)
Let (Xn)n∈N be a sequence of independent, identically distributed real-valued random
variables in L2 with E[Xi] = m and Var(Xi) = v > 0. Then,

S∗n :=
1√
n

n∑
i=1

Xi −m√
v

d−→ N(0, 1).

The normal distribution is defined in the following section.

C Normal distribution

A real-valued random variable X is normally distributed with mean µ and variance σ2 >
0 if

P(X > x) =
1√

2πσ2

∫ ∞
x

e−
(u−µ)2

2σ2 du, for all x ∈ R.

We write X ∼ N(µ, σ2). We say that X is standard normal distributed if X ∼ N(0, 1).

A random vectorX = (X1, . . . , Xn) is called a Gaussian random vector if there exits an
n×mmatrixA, and an n-dimensional vector b ∈ Rn such thatXT = AY +b, where Y is
an m-dimensional vector with independent standard normal entries, i.e. Yi ∼ N(0, 1) for
i = 1, . . . ,m. Likewise, a random variable Y = (Y1, . . . , Ym) with values in Rm has the
m-dimensional standard Gaussian distribution if the m coordinates are standard normally
distributed and independent. The covariance matrix of X = AY + b is then given by

Cov(Y ) = E[(Y − E[Y ])(Y − E[Y ])T ] = AAT .

Lemma C.1 IfA is an orthogonal n×n matrix, i.e. AAT = 1l, andX is a n-dimensional
standard Gaussian vector, then AX is also a n-dimensional standard Gaussian vector.

Lemma C.2 LetX1 andX2 be independent and normally distributed with zero mean and
variance σ2 > 0. Then X1 +X2 and X1 −X2 are independent and normally distributed
with mean 0 and variance 2σ2.

Proposition C.3 If X and Y are n-dimensional Gaussian vectors with E[X] = E[Y ] and
Cov(X) = Cov(Y ), then X and Y have the same distribution.
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Corollary C.4 A Gaussian random vector X has independent entries if and only if its
covariance matrix is diagonal. In other words, the entries in a Gaussian vector are un-
correlated if and only if they are independent.

Lemma C.5 (Inequalities) Let X ∼ N(0, 1). Then for all x > 0,

x

x2 + 1

1√
2π

e−x
2/2 ≤ P(X > x) ≤ 1

x

1√
2π

e−x
2/2 .

D Gaussian integration formulae

For any a > 0, ∫ ∞
−∞

e−ax
2

dx =
√
π/a.

For b ∈ C and a > 0,

I(b) =

∫ ∞
−∞

e−a/2x
2+bx dx = eb

2/2a
√

2π/a .

Let A ∈ Rn×n, A = AT > 0 (i.e. all eigenvalues of A are positive), and define C = A−1

and write 〈ϕ, ψ〉 for the scalar product of ϕ, ψ ∈ Rn.∫
Rn

e−
1
2
〈ϕ,Aϕ〉

n∏
i=1

dϕi = (2π)n/2 det(A−
1
2 ) = det(2πC)

1
2 .

For any J ∈ Cn we obtain∫
Rn

e−
1
2
〈ϕ,Aϕ〉+〈J,ϕ〉

n∏
i=1

dϕi = det(2πC)
1
2 e

1
2
〈J,CJ〉 .

Let C ∈ Rn×n be invertible matrix and C > 0. The probability measure µC ∈ M1(Rn)
defined by

µC(dϕ) =
1√

det(2πC)
e−1/2〈ϕ,C−1ϕ〉

n∏
i=1

dϕi,

is called the Gaussian measure on Rn with mean zero and covariance matrix C.

The covariance splitting formula. Let Ci = CT
i , i = 1, 2, be positive invertible matrices.

Define C = C1 + C2. Then for all F ∈ L(µC),∫
Rn

F (ϕ)µC(dϕ) =

∫
Rn

µC1(dϕ1)
∫
Rn

µC2(dϕ2)F (ϕ1 + ϕ2)

=

∫
Rn

µC1(dϕ)
∫
Rn

µC2(d(ϕ− ϕ1))F (ϕ).
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In other words, if C = C1 + C2, the Gaussian random variable ϕ is the sum of two
independent (see above) Gaussian random variables, ϕ = ϕ1 + ϕ2, and the Gaussian
measure factors, i.e. µC = µC1 ⊗ µC2 .

The characteristic function of a Gaussian vector X = (X1, . . . , Xn) with mean µ ∈ Rn

and covariance matrix C reads as

ϕX(t) = E
[
ei〈t,µ〉−

1
2
〈t,Ct〉

]
, t ∈ Rn.

An Rn-valued stochastic process X = {Xt : t ≥ 0} is called Gaussian if, for any integer
k ≥ 1 and real numbers 0 ≤ t1 < t2 < · · · < tk < ∞, the random vector (Xt1 , . . . , Xtk)
has a joint normal distribution. If the distribution of (Xt+t1 , . . . , Xt+tn) does not depend
on t, we say that the process is stationary. The finite-dimensional distributions of a Gaus-
sian process X are determined by its expectation vector m(t) := E[X(t)], t ≥ 0, and its
covariance matrix

%(s, t) := E[(Xs −m(s))(Xt −m(t))T ], s, t ≥ 0.

If m(t) = 0 for all t ≥ 0, we say that X is a zero-mean Gaussian process.

Corollary D.1 One-dimensional BM is a zero-mean Gaussian process with covariance
formula

%(s, t) = s ∧ t, s, t ≥ 0.

E Some useful properties of the weak topology of probability mea-
sures

A probability measure µ ∈ M1(E) on a metric space (E, d) is tight if for each ε > 0
there exists a compact set Kε ⊂ E such that µ(Kc

ε) < ε. A family (µn)n∈I of probability
measures on the metric space (E, d) is called a tight family if the set Kε may be chosen
independently of n ∈ I , that is, for all ε > 0 there exists a compact set Kε ⊂ E and
n0 ∈ I such that µn(Kc

ε) < ε for all n ≥ n0.

Definition E.1 (Weak convergence of probability measures) A sequence (µn)n∈N of prob-
ability measures on a metric space (E, d) converges weakly to µ ∈ M1(E) as n → ∞
if ∫

E

f (x)µn(dx)→
∫
E

f (x)µ(dx) for all f ∈ Cb(E) as n→∞.

Lemma E.2 A sequence (µn)n∈N of probability measures on a metric space (E, d) con-
verges weakly to µ ∈M1(E) as n→∞ if

lim sup
n→∞

µn(C) ≤ µ(C) for all closed C ⊂ E,

lim inf
n→∞

µn(O) ≥ µ(O) for all open O ⊂ E.
(E.1)



100SOME USEFUL PROPERTIES OF THE WEAK TOPOLOGY OF PROBABILITY MEASURES

The set of probability measuresM1(E) on a Polish space (E, d) is itself a Polish space.
Note thatM1(E) ⊂ M(E) is a closed convex subset of the (vector) - space of all finite
signed measures on E. We equipM(E) with the topology generated by sets{

β ∈M(E) : |
∫
E

f (x) d(β(x)− α(x))| < r
}
,

where α ∈M(E), f ∈ Cb(E), and r > 0. The norm onM(E) is the total variation norm

‖α‖var := sup {
∫
E

f (x)α(dx) : f ∈ Cb(E) with ‖f‖∞ ≤ 1}, α ∈M(E).

The norm ‖·‖var is lower semi-continuous onM(E) and therefore certainly measurable on
M(E); and clearly, ‖·‖var is bounded onM1(E). The Lévy metric onM1(E) is a complte
separable metric, which is consistent (inherited from) with the restriction of the topology
onM(E) to the closed and convex subsetM1(E). Following Lévy and Prohorov, define
the Lévy metric as

d(α, ν) := inf
{
δ > 0: α(F ) ≤ ν(F (δ))+δ and ν(F ) ≤ α(F (δ))+δ for all closed F ⊂ E

}
,

α, ν ∈ M1(E), where F (δ) is defined relative to a complete metric on E, that is, F (δ)

is the open δ-hull of F . Since it is clear that d(α, ν) ≤ ‖α − ν‖var, all that remains to
show is that the Lévy metric d is compatible with the weak topology in Definition E.1 and
Lemma E.2 and that (M1(E), d) is a Polish space. To show this one uses the tightness
criterion, Lemma E.2 (the upper bound), and the following: Suppose that F ⊂ Cb(E) is a
set of uniformly bounded test functions which is equicontinuous on every compact subset
of E. Then the weak convergence αn ⇒ ν implies that

sup {|
∫

f (x)αn(dx)−
∫

f (x) ν(dx)| : f ∈ F} → 0 as n→∞.

This is the content of the following lemma which is proved in the book by Billingsley on
Convergence of probability measures.

Lemma E.3 (Lévy & Prohorov) The Lévy metric d (defined above) is compatible with
the weak topology onM1(E), and (M1(E), d) is a Polish space.

We will frequently use the following dual space for M(E) (note that M1(E) is not a
vector space).

Lemma E.4 The duality relation

(f, ν) ∈ Cb(E)×M(E) 7→
∫
E

f (x) ν(dx)

determines a representation ofM∗ as Cb(E).

Theorem E.5 (Prohorov) Let (E, d) be a Polish space, and let Γ ⊂ M1(E). The Γ is
compact iff Γ is tight.
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We shall need some version for the path space E := C([0, 1];R).

Proposition E.6 Let (µn)n∈N be a sequence of probability measures on C([0, 1];R) which
converges weakly to µ. Let A be a Borel set in C([0, 1];R) with µ(∂A) = 0. Then
µn(A)→ µ(A) as ν →∞.

We need an adaptation of Prohorov’s theorem suited to the path space C([0, 1];R),

Theorem E.7 Let (µn)n∈N be a sequence of Borel probability measures on C([0, 1];R)
with the following two properties:

(a) The finite dimensional distributions converge. That is, for any 0 ≤ t1 < t2 < · · · <
tm ≤ 1, m ∈ N, there is a measure µt(m) ∈M1(Rm) so that, as n→∞,∫

f (ω(t1), . . . , ω(tm))µn(dω)→
∫

f (x1, . . . , xm)µt(m)(dx) for all f ∈ Cb(Rm).

(b) (µn)n∈N is tight.

Then, there is a probability measure µ on C([0, 1];R) so that µn → µ weakly as n→∞,
and the finite dimensional distributions of µ are the µt(m) .
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Markov’s inequality, 13
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