MA4L3 Large Deviation Theory Example Sheet 1

Students should hand in solutions to the questions by noon 12 pm Thursday week 3 (26.01.2023) online via the moodle page.

Exercise 1: [Cramér's theorem] In the setting of Cramér's theorem from the lecture the logarithmic moment generating function is $\Lambda(\lambda) := \log \mathbb{E}[e^{\lambda X_1}], \lambda \in \mathbb{R}$, and the rate function is $I(x) = \sup_{\lambda \in \mathbb{R}} \{\lambda x - \Lambda(\lambda)\}, x \in \mathbb{R}$.

- (a) [5 points] Assume that $\mathbb{P}(X_1 = a) = 1$. Check that I(a) = 0 and $I(z) = \infty$ for $z \neq a$.
- (b) [10 points] Compute the rate function in Cramér's theorem when $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = 2) = \mathbb{P}(X_1 = 3) = \frac{1}{5}$ and $\mathbb{P}(X_1 = 4) = \frac{2}{5}$.
- (c) [15 points] Compute the rate function I for the following distributions: Poisson and Exponential.

Exercise 2: [Logarithmic moment generating function]

Suppose that $(X_i)_{i \in \mathbb{N}}$ is an i.i.d. sequence of \mathbb{R} -valued random variables with law $P \in \mathcal{M}_1(\mathbb{R})$ such that $\Phi(\lambda) := \mathbb{E}[e^{\lambda X_1}] < \infty$ for all $\lambda \in \mathbb{R}$. The logarithmic moment generating function for the law P is

$$\Lambda(\lambda) := \log \mathbb{E}[\mathrm{e}^{\lambda X_1}] = \int_{\mathbb{R}} \, \mathrm{e}^{\lambda x} \, P(\mathrm{d}x) \,, \quad \lambda \in \mathbb{R} \,,$$

and its domain is $\mathcal{D}_{\Lambda} := \{\lambda \in \mathbb{R} : \Lambda(\lambda) < \infty\}$. We say Λ is steep at $\partial \mathcal{D}_{\Lambda}$ (or simply steep) if

$$\lim_{\lambda \to \partial \mathcal{D}_{\Lambda}, \, \lambda \in \mathcal{D}_{\Lambda}} |\Lambda'(\lambda)| = \infty \, .$$

- (a) [10 points] Use Hölder's inequality and Fatou's lemma to show that $\lambda \mapsto \log \mathbb{E}[e^{\lambda X_1}]$ is convex and lower-semicontinuous on \mathbb{R} .
- (b) [10 points] Show that the steepness of Λ implies that $\mathcal{D}_I = \mathbb{R}$, where I is the rate function in Cramér's theorem,

$$I(x) = \sup_{\lambda \in \mathbb{R}} \{\lambda x - \Lambda(\lambda)\}.$$

Exercise 3: [Sanov's theorem and pair empirical measures]

(a) [15 points] Let Ω be a finite set and $\nu \in \mathcal{M}_1(\Omega)$ be a probability measure. Show that the relative entropy

$$H(\cdot|\nu): \mathcal{M}_1(\Omega) \to [0,\infty], \mu \mapsto H(\mu|\nu) =: I_{\nu}(\mu)$$

has the following properties:

(i) I_{ν} is finite, continuous and strictly convex on $\mathcal{M}_1(\Omega)$.

- (ii) $I_{\nu}(\mu) \ge 0$ with equality if and only if $\mu = \nu$.
- (b) [15 points] Let Ω be a finite set and $\nu \in \mathcal{M}_1(\Omega)$. Show with the help of the SLLN (Strong law of large numbers) that

$$d(L_n^{(2)}, \nu \otimes \nu) \to 0 \text{ as } n \to \infty \qquad \mathbb{P}-\text{a.s.}$$

where $L_n^{(2)} = \frac{1}{n} \sum_{i=1}^n \delta_{(X_i, X_{i+1})}$ is the pair empirical measure with periodic boundary condition $X_{n+1} = X_1$ and d is the total variation distance.

Exercise 4: [General theory] [20 points] Prove the following statement: A sequence of probability measures $(\mu_n)_{n \in \mathbb{N}}$ on a Polish space can have at most one rate function associated with its large deviation principle (LDP).

Sheet	Week	Date submission	Discussion in Support class/lecture
1	3	26.01.2023 at noon 12 pm	Week 4, Wednesday 01.02.2023
2	5	09.02.2023 at noon 12 pm	Week 6, Wednesday 15.02.2023
3	8	02.03.2023 at noon 12 pm	Week 9, Wednesday 08.03.2023
4	10	16.03.2023 at noon 12 pm	Week 10, Friday 17.03.2023

Hand-in times (submission on moodle page) – assignment sheets: