MA4L3 Large Deviation Theory Example Sheet 4

Students should hand in solutions to the questions by noon 12 pm Thursday week 10 (16.03.2023) online via the moodle page.

Exercise 13: [Finite state Markov chains] Let E be finite set and $\mathbf{P}=(p(x, x))_{x, y \in E}$ be a stochastic matrix. Recall that the empirical measure of the Markov chain $\left(Y_{k}\right)_{k \in \mathbb{N}}$ associated with P satisfies the large deviation principle with rate function given by the Perron-Frobenius eigenvalue, i.e., $I(q)=\sup _{\lambda \in \mathbb{R}^{|E|}}\left\{\langle\lambda, q\rangle-\log \rho\left(\mathrm{P}_{\lambda}\right)\right\}$. Recall that this rate function equals the function \mathcal{J} in the lecture, that is,

$$
\mathcal{J}(q)= \begin{cases}\sup _{u \gg 0}\left\{\sum_{x \in E} q_{x} \log \frac{u_{x}}{(u)_{x}}\right\} & , \quad q \in \mathcal{M}_{1}(E) \\ +\infty & , \quad q \notin \mathcal{M}_{1}(E)\end{cases}
$$

where $u \gg 0$ means that the supremum runs over all $u: E \rightarrow(0, \infty)$.
(a) [10 points] Find a maximiser of the variational problem defining \mathcal{J}.
(b) [15 points] Show that the function \mathcal{J} is a rate function and that \mathcal{J} is strictly convex and continuous on $\mathcal{M}_{1}(E)$.

Exercise 14: [Computation - Finite state Markov chains]

[25 points] Let the stochastic matrix

$$
\mathrm{P}=\left(\begin{array}{cc}
p & 1-p \\
1-p & p
\end{array}\right)
$$

be given. Compute $\mathcal{J}(\mu)$ for $\mu \in \mathcal{M}_{1}(E)$.

Exercise 15: [Mogulskii's theorem - concentration bound] In the setting of Mogulskii's theorem consider an i.i.d. sequence $\left(X_{i}\right)_{i \in \mathbb{N}}$ of \mathbb{R}^{d}-valued random variables X_{i} with law $\mu \in \mathcal{M}_{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\Lambda(\lambda)=\log \mathbb{E}_{\mu}\left[\mathrm{e}^{\left\langle\lambda, X_{1}\right\rangle}\right]<\infty, \quad \text { for all } \lambda \in \mathbb{R}^{d} .
$$

(a) [15 points] Show that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{P}\left(|X|_{1} \geq N\right)=-\infty
$$

(b) [5 points] Decide if (a) holds when $\Lambda(\lambda)=\infty$ for some $\lambda \in \mathbb{R}^{d}$.
(c) [10 points] Show that (a) fails in $d=1$ for independent, exponentially distributed numbers, $X_{1} \sim \operatorname{Exp}(\alpha)$.

Exercise 16: [Mogulskii's theorem]

[20 points] Show that Mogulskii's theorem from the lecture can be extended to the laws $\nu_{\varepsilon}, \varepsilon>0$, of

$$
Y_{\varepsilon}(t):=\varepsilon \sum_{i=1}^{\left\lfloor\frac{t}{\varepsilon}\right\rfloor} X_{i}, \quad 0 \leq t \leq 1,
$$

where the law μ_{N} (and $\left.Z_{N}(t)\right)$ in the lecture correspond to the special case of $\varepsilon=N^{-1}$. The rate of the corresponding large deviation principle for the family $\left(\nu_{\varepsilon}\right)_{\varepsilon>0}$ is $\varepsilon \rightarrow 0$.

Hand-in times (submission on moodle page) - assignment sheets:

Sheet	Week	Date submission	Discussion in Support class/lecture
1	3	26.01 .2023 at noon 12 pm	Week 4, Wednesday 01.02.2023
2	5	09.02 .2023 at noon 12 pm	Week 6, Wednesday 15.02.2023
3	8	02.03 .2023 at noon 12 pm	Week 9, Wednesday 08.03.2023
4	10	16.03 .2023 at noon 12 pm	Week 10, Friday 17.03.2023

