MA4L3 Large Deviation Theory Example Sheet 4

2023, term 2 Stefan Adams

Students should hand in solutions to the questions by noon 12 pm Thursday week 10 (16.03.2023) online via the moodle page.

Exercise 13: [Finite state Markov chains] Let *E* be finite set and $\mathsf{P} = (p(x, x))_{x,y \in E}$ be a stochastic matrix. Recall that the empirical measure of the Markov chain $(Y_k)_{k \in \mathbb{N}}$ associated with P satisfies the large deviation principle with rate function given by the Perron-Frobenius eigenvalue, i.e., $I(q) = \sup_{\lambda \in \mathbb{R}^{|E|}} \{ \langle \lambda, q \rangle - \log \rho(\mathsf{P}_{\lambda}) \}$. Recall that this rate function equals the function \mathcal{J} in the lecture, that is,

$$\mathcal{J}(q) = \begin{cases} \sup_{u \gg 0} \left\{ \sum_{x \in E} q_x \log \frac{u_x}{(u\mathsf{P})_x} \right\} &, \quad q \in \mathcal{M}_1(E), \\ +\infty &, \quad q \notin \mathcal{M}_1(E), \end{cases}$$

where $u \gg 0$ means that the supremum runs over all $u: E \to (0, \infty)$.

- (a) [10 points] Find a maximiser of the variational problem defining \mathcal{J} .
- (b) [15 points] Show that the function \mathcal{J} is a rate function and that \mathcal{J} is strictly convex and continuous on $\mathcal{M}_1(E)$.

Exercise 14: [Computation - Finite state Markov chains]

[25 points] Let the stochastic matrix

$$\mathsf{P} = \begin{pmatrix} p & 1-p \\ 1-p & p \end{pmatrix}$$

be given. Compute $\mathcal{J}(\mu)$ for $\mu \in \mathcal{M}_1(E)$.

Exercise 15: [Mogulskii's theorem - concentration bound] In the setting of Mogulskii's theorem consider an i.i.d. sequence $(X_i)_{i \in \mathbb{N}}$ of \mathbb{R}^d -valued random variables X_i with law $\mu \in \mathcal{M}_1(\mathbb{R}^d)$ such that

$$\Lambda(\lambda) = \log \mathbb{E}_{\mu} \left[e^{\langle \lambda, X_1 \rangle} \right] < \infty \,, \quad \text{ for all } \lambda \in \mathbb{R}^d \,.$$

(a) [15 points] Show that

$$\lim_{N\to\infty}\frac{1}{N}\log\mathbb{P}\big(|X|_1\geq N\big)=-\infty\,.$$

- (b) [5 points] Decide if (a) holds when $\Lambda(\lambda) = \infty$ for some $\lambda \in \mathbb{R}^d$.
- (c) [10 points] Show that (a) fails in d = 1 for independent, exponentially distributed numbers, $X_1 \sim \mathsf{Exp}(\alpha)$.

Exercise 16: [Mogulskii's theorem]

[20 points] Show that Mogulskii's theorem from the lecture can be extended to the laws $\nu_{\varepsilon}, \varepsilon > 0$, of

$$Y_{\varepsilon}(t) := \varepsilon \sum_{i=1}^{\lfloor \frac{t}{\varepsilon} \rfloor} X_i, \quad 0 \le t \le 1,$$

where the law μ_N (and $Z_N(t)$) in the lecture correspond to the special case of $\varepsilon = N^{-1}$. The rate of the corresponding large deviation principle for the family $(\nu_{\varepsilon})_{\varepsilon>0}$ is $\varepsilon \to 0$.

Sheet	Week	Date submission	Discussion in Support class/lecture
1	3	26.01.2023 at noon 12 pm	Week 4, Wednesday 01.02.2023
2	5	09.02.2023 at noon 12 pm	Week 6, Wednesday 15.02.2023
3	8	02.03.2023 at noon 12 pm	Week 9, Wednesday 08.03.2023
4	10	16.03.2023 at noon 12 pm	Week 10, Friday 17.03.2023

Hand-in times (submission on moodle page) – assignment sheets: