Dynamical Processes on Complex Networks

Lecture 1:
• Introduction to Networks:
 o Applications, examples of dynamical processes on networks.
• Basic Concepts:
 o Representation of networks: matrices, lists, and sparse matrices.
 o Degree-related measures: degree, average nearest neighborhood degree, concentric degree.
 o Degree distribution, statistical moments of degree distribution.
 o Special cases: Power law distribution and Poisson distribution.

Lecture 2:
• Measure for network characterization
 o Distance: the Dijkstra algorithm
 o Clustering coefficient.
 o Hierarchical networks.
 o Shannon entropy of degree distribution, complexity measure.

Lecture 3:
• Network Centrality
 o Degree centrality, betweenness centrality, closeness centrality, k-core, random walk accessibility, PageRank, eigenvector centrality.
 o Localization: nonbacktracking matrix.
 o Applications.

Lecture 4:
• Correlation in networks
 o Assortative mixing.
 o Degree-degree correlation.
• Community detection
 o Modularity
 o Methods: Based on betweenness centrality, Walktrap, eigenvector of matrices, Fast greedy.

Lecture 5:
• Models of network formation I:
 o Random graphs
 o Small-world networks
 o Barabási-Albert model

Lecture 6:
• Models of network formation:
 o Nonlinear BA model
 o Spatial models
 o Other models
Lecture 7:
• Percolation and resilience on networks
 o Percolation.
 o Random failures and attacks.
 o Cascade failure.
 o Applications.

Lecture 8:
• Epidemic spreading on networks
 o SIR and SIS on homogeneous networks.
 o Epidemics on scale-free networks
 o Heterogeneous mean-field approximation.
 o Monte Carlo simulation.
 o Continuous time simulation.
 o Rumor spreading on networks.

Lecture 9:
• Synchronization of coupled oscillators.
 o Collective behavior and phase transition.
 o The Kuramoto model on homogeneous networks.
 o Mean-field approximation.
 o The Kuramoto model on complex networks.
 o Mathematical analysis and simulation.
 o Explosive synchronization.

Lecture 10:
• Additional topics:
 o Epidemic spreading with awareness.
 o Multilayer networks.
 o Temporal networks.