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Motivation: The Riemann zeta function

The Riemann zeta function is of fundamental importance in number
theory.

Understand the distribution of prime numbers.
Prototypical L-function (Dirichlet, elliptic curve, modular form, etc).
An interesting and challenging function to understand in its own
right.
Universality (approximates any holomorphic function arbitrarily
well).
Can be used as a “experimental” test-bed for certain physical
systems.
One of the most important open problems in modern mathematics
concerns it.
It’s popular!

Christopher Hughes (University of York) Extreme Behaviour Venice, 9 May 2013 2 / 24



The Riemann zeta function
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A real version of the Riemann zeta function,
plotted for 104 ≤ t ≤ 104 + 10
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The Riemann zeta function
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A real version of the Riemann zeta function,
plotted for 1010 ≤ t ≤ 1010 + 10
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Extreme values of zeta

Conjecture (Farmer, Gonek, Hughes)

max
t∈[0,T ]

|ζ(1
2 + it)| = exp

(( 1√
2

+ o(1)
)√

log T log log T
)
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Bounds on extreme values of zeta

Theorem (Littlewood; Ramachandra and Sankaranarayanan;
Soundararajan; Chandee and Soundararajan)
Under RH, there exists a C such that

max
t∈[0,T ]

|ζ(1
2 + it)| = O

(
exp

(
C

log T
log log T

))

Theorem (Montgomery; Balasubramanian and Ramachandra;
Balasubramanian; Soundararajan)
There exists a C′ such that

max
t∈[0,T ]

|ζ(1
2 + it)| = Ω

(
exp

(
C′
√

log T
log log T

))
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Characteristic polynomials

Keating and Snaith modelled the Riemann zeta function with

ZUN (θ) := det(IN − UNe−iθ)

=
N∏

n=1

(1− ei(θn−θ))

where UN is an N × N unitary matrix chosen with Haar measure.

The matrix size N is connected to the height up the critical line T via

N = log
T
2π
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Characteristic polynomials
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Graph of the value distribution of log |ζ( 1
2 + it)| around the 1020th zero (red),

against the probability density of log |ZUN (0)| with N = 42 (green).
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An Euler-Hadamard hybrid

Theorem (Gonek, Hughes, Keating)
A simplified form of our theorem is:

ζ(1
2 + it) = P(t ; X )Z (t ; X ) + errors

where

P(t ; X ) =
∏
p≤X

(
1− 1

p
1
2+it

)−1

and

Z (t ; X ) = exp

(∑
γn

Ci(|t − γn| log X )

)
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An Euler-Hadamard hybrid: Primes only

Graph of |P(t + t0; X )|, with t0 = γ1012+40,
with X = log t0 ≈ 26 (red) and X = 1000 (green).
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An Euler-Hadamard hybrid: Zeros only

Graph of |Z (t + t0; X )|, with t0 = γ1012+40,
with X = log t0 ≈ 26 (red) and X = 1000 (green).
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An Euler-Hadamard hybrid: Primes and zeros

Graph of |ζ( 1
2 + i(t + t0))| (black) and |P(t + t0; X )Z (t + t0; X )|,

with t0 = γ1012+40, with X = log t0 ≈ 26 (red) and X = 1000 (green).
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RMT model for extreme values of zeta

Simply taking the largest value of a characteristic polynomial doesn’t
work.

Split the interval [0,T ] up into

M =
T log T

N

blocks, each containing approximately N zeros.
Model each block with the characteristic polynomial of an N × N
random unitary matrix.
Find the smallest K = K (M,N) such that choosing M independent
characteristic polynomials of size N, almost certainly none of them will
be bigger than K .
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RMT model for extreme values of zeta

Note that

P
{

max
1≤j≤M

max
θ
|Z

U(j)
N

(θ)| ≤ K
}

= P
{

max
θ
|ZUN (θ)| ≤ K

}M

Theorem
Let 0 < β < 2. If M = exp(Nβ), and if

K = exp
(√(

1− 1
2β + ε

)
log M log N

)
then

P
{

max
1≤j≤M

max
θ
|Z

U(j)
N

(θ)| ≤ K
}
→ 1

as N →∞ for all ε > 0, but for no ε < 0.
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RMT model for extreme values of zeta

Recall
ζ(1

2 + it) = P(t ; X )Z (t ; X ) + errors

We showed that Z (t ; X ) can be modelled by characteristic polynomials
of size

N =
log T

eγ log X

Therefore the previous theorem suggests

Conjecture
If X = log T , then

max
t∈[0,T ]

|Z (t ; X )| = exp
(( 1√

2
+ o(1)

)√
log T log log T

)
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RMT model for extreme values of zeta

Theorem
By the PNT, if X = log T then for any t ∈ [0,T ],

P(t ; X ) = O

(
exp

(
C

√
log T

log log T

))

Thus one is led to the max values conjecture

Conjecture

max
t∈[0,T ]

|ζ(1
2 + it)| = exp

(( 1√
2

+ o(1)
)√

log T log log T
)
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Distribution of the max of characteristic polynomials

Fyodorov, Hiary and Keating have recently studied the distribution of
the maximum of a characteristic polynomial of a random unitary matrix
via freezing transitions in certain disordered landscapes with
logarithmic correlations. This mixture of rigorous and heuristic
calculation led to:

Conjecture (Fyodorov, Hiary and Keating)
For large N,

log max
θ
|ZUN (θ)| ∼ log N − 3

4
log log N + Y

where Y has the density P {Y ∈ dy} = 4e−2yK0(2e−y )dy

Christopher Hughes (University of York) Extreme Behaviour Venice, 9 May 2013 16 / 24



Distribution of the max of characteristic polynomials
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Distribution of the max of characteristic polynomials

This led them to conjecture that

max
T≤t≤T+2π

|ζ(1
2 + it)| ∼ exp

(
log log

(
T
2π

)
− 3

4
log log log

(
T
2π

)
+ Y

)
with Y having (approximately) the same distribution as before.

This conjecture was backed up by a different argument of Harper,
using random Euler products.
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Distribution of the max of characteristic polynomials

Distribution of −2 log maxt∈[T ,T+2π] |ζ( 1
2 + it)| (after rescaling to get the

empirical variance to agree) based on 2.5× 108 zeros near T = 1028. Graph
by Ghaith Hiary, taken from Fyodorov-Keating.
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Distribution of the max of characteristic polynomials

Note that
P {Y ≥ K} ≈ 2Ke−2K

for large K .

However, one can show that if K/ log N →∞ but K � Nε then

P
{

max
θ

log |ZUN (θ)| ≥ K
}

= exp
(
− K 2

log N
(1 + o(1))

)
Thus there must be a critical K (of the order log N) where the
probability that maxθ |ZU(θ)| ≈ K changes from looking like linear
exponential decay to quadratic exponential decay.
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Moments of the local maxima

Theorem (Conrey and Ghosh)
As T →∞

1
N(T )

∑
tn≤T

∣∣ζ(1
2 + itn)

∣∣2 ∼ e2 − 5
2

log T

where tn are the points of local maxima of |ζ(1
2 + it)|.

This should be compared with Hardy and Littlewood’s result

1
T

∫ T

0
|ζ(1

2 + it)|2dt ∼ log T
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Moments of the local maxima

Recently Winn succeeding in proving a random matrix version of this
result (in disguised form)

Theorem (Winn)
As N →∞

E

[
1
N

N∑
n=1

∣∣ZUN (φn)
∣∣2k

]
∼ C(k)E

[∣∣ZUN (0)
∣∣2k
]

where φn are the points of local maxima of
∣∣ZUN (θ)

∣∣, and where C(k)
can be given explicitly as a combinatorial sum involving Pochhammer
symbols on partitions.

In particular,

E

[
1
N

N∑
n=1

∣∣ZUN (φn)
∣∣2] ∼ e2 − 5

2
N
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Summary

We looked at the rate of growth of the Riemann zeta function on
the critical line.
The Riemann zeta function can be written in terms of a product of
its zeros times a product over all primes.
The product over zeros can be modelled by ZUN (θ).
One argument required knowing the large deviations of
maxθ |ZUN (θ)|.
The distribution of maxθ |ZUN (θ)| is now known.
Its moderate deviations are still under study.
The moments of the local maxima are not much bigger than
ordinary moments.
Extreme behaviour is rare!
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