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Motivations

Anomalous diffusions

Anomalous diffusions are stochastic processes X(t) ∈ R
d such that

E(X
2
(t)) = ct

δ
, δ 6= 1

This behavior of superdiffusive processes (δ > 1) characterizes many different natural
systems and is mainly connected to
motion in disorder media:

• light particle in an optical lattice;

• tracer in a turbolent flow;

• efficient routing in network;

• predator hunting for food
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Motivations

Main features

• long ballistic “flights“, where particle moves at constant velocity

• short disorder motion

Figure 1: Typical Levy flight
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Related Models and results

Models for anomalous diffusions

LEVY FLIGHTS

Schlesinger, Klafter[’85] , Blumen, Klafter, Schlesinger, Zumofen [’90] ,

Random walk (X(n))n∈N on R
d with lenght steps given by a sequence of i.i.d. Levy

α-stable distribution with α ∈ (0, 2):

heavy-tailed distribution P(Z > x) ∼ x−α for x → +∞

−→ Var(Z) = +∞ ; E(Z)

{

< ∞ if α ∈ (1, 2)
= ∞ if α ∈ (0, 1]

Formally:

Given (ξk)k∈N, i.i.d. U[0; 2π], independent of (Zk)k∈N, i.i.d Levy α-stable

X(0) = 0 , X(n) = X(n − 1) + Znξn, n ≥ 0
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Related Models and results

LEVY WALKS

Stochastic process (X(t))t∈R+ on R
d defined similarly to Levy flights but with jumps

covered at constant velocity v0.

Formally:
Given (ξk)k∈N, i.i.d. U[0; 2π], independent of (Zk)k∈N, i.i.d Levy α-stable

X(0) = 0 , X(t) = X(
Zk−1
v0

) + ξkv0t , for t ∈ (
Zk−1
v0

,
Zk
v0
]

Notice: in both processes increments are independent, −→
scatterers are removed after each collision event.
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Related Models and results

Annealed results on the second moments

Levy flights and walks give rise to superdiffusive anomalous motion and in particular

E(X
2
(t)) ∼

{

t3−α if α ∈ (0, 1]
t2 if α ∈ (1, 2)

for t → ∞

This suggests to model the transport in inhomogeneous material with the motion of a

particle in a ”Levy randon environment”.

LEVY-LORENTZ GAS
Barkai, Fleurov,Klafter[’00]

Motion of a particle in a fixed array of scatterers arranged randomly in such a way that
the interdistances between them are i.i.d. α-stable Levy random variables.
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Model for a Lorentz-Levy gas

MODEL

1D random walk in a Levy Random environment

• Let (Zk)k∈Z i.i.d. random variables taking value on N
+ and with law P s.t.

P (Z > k) ∼ k−α
fork ≪ 1 (heavy tails)

• Construct a (non-equilibrium) Renewal Point Process on Z, denoted by
PP(Z) = {. . . Y−1 < Y0 < Y1 < . . .}, s.t.
1. Y0 = 0

2. |Yk − Yk−1| = Zk

so that Yk = sgn(k)
∑|k|

j=1 Zsgn(k)j , k 6= 0

Levy Random environment≡PPZ , i.e., scatterers are placed at points Yk.
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Model for a Lorentz-Levy gas

• Let (ξk)k∈Z i.i.d. symmetric random variables taking value on {−1,+1} with law Q.

Definition 1. X(t), t ∈ N is the process on Z such that

X(0) = 0
X(t + 1) = X(t) + ξn(t), for t > 0

with n(t) = |{s ≤ t : X(s) ≤ PP(Z)}| = number of collisions up to t.

For a given realization z ∈ (N+)Z of the variables (Zk)k∈Z, let P and Pz denote
respectively the annealed and quenched law of X(t), t ∈ N, so that

P = P × Pz

NOTE: Scatterers are now fixed by the environment and the increments have no trivial
correlation.

Goal: Study of the quenched behavior of X(t), t ∈ N.
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Model for a Lorentz-Levy gas

Previous results

Barkay, Fleurer, Klafter [’00] provide upper bounds on the (annealed) second moment

THM 1. For α ∈ (1, 2)

(i) E(X2(t)) ≥ c(α)t2−α for non-equilibrium PP(Z)
(ii) E(X2(t)) ≥ c(α)t3−α for equilibrium PP(Z)

where in equilibrium PP(Z), P (Y1 = ℓ) = ℓP(Z=ℓ)
E(Z)

Main tools: Laplace trasform and Tauberiam theorem.

The results is compatible with a Levy flight scheme but not much informative in the

non-equilibrium scheme. Nothing is known about the quenched process.
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Model for a Lorentz-Levy gas

Process at collision times

For n ∈ N, let t(n) =time of the nth collision

and set
X̃(n) ≡ X(t(n)) , n ∈ N

• X̃(n) is a SSRW on PP(Z).
• Letting Sn =

∑n
k=1 ξk the coupled SSRW on Z, it holds

X̃(n) = YSn

that is, X̃(n) is the position of scatter label by Sn.
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Results and proofs ideas

Quenched law of X̃(n)

Proposition 1. For α ∈ (1, 2) and a non-equilbrium PP(Z), it holds

Pz

(

X̃(n)

µ
√
n

)

n→∞−−−→
∫ +∞

x

e−t2/2

√
2π

dt P -a.s.

where µ = E(Zk).

Proof idea: From X̃(n) = YSn , we used

• CLT for Sn

• LLN for Yk
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Results and proofs ideas

Quenched law of X(t)

THM 2. For α ∈ (1, 2) and a non-equilbrium PP(Z), it holds

Pz

(

X(t)
√
µt

)

t→∞−−−→
∫ +∞

x

e−t2/2

√
2π

dt P -a.s.

Proof idea: Write X(t)√
µt

= X(t)−X̃(n(t))√
µt

+ X̃(n(t))

µ
√

n(t)

√

µn(t)
t

• Ez

(

|X(t)−X̃(n(t))√
µt

|
)

t→∞−−−→ 0 , P − a.s

• By the ergodicity of the annealed process for the PVP

n(t)

t

t→∞−−−→ 1

µ
, P − a.s
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Results and proofs ideas

Quenched Moments of X̃(n)

Proposition 2. For α ∈ (1, 2) and a non-equilbrium PP(Z), it holds

Ez

(

X̃m(n)

n
m
2

)

n→∞−−−→
{

0 for m = 2k − 1

µm(m − 1)!! for m = 2k
, P -a.s.

i.e., to the moments of N(0, µ2).

Proof idea: From X̃(n) = YSn , we used

• Moments convergence for Sn

• LLN for Yk
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Results and proofs ideas

Quenched Moments of X(t)

THM 3. For α ∈ (1, 2) and a non-equilbrium PP(Z), it holds

Ez

(

Xm(t)

t
m
2

)

n→∞−−−→
{

0 for m = 2k − 1

µ
m
2 (m − 1)!! for m = 2k

, P -a.s.

i.e., to the moments of N(0, µ).
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Results and proofs ideas

Proof idea: Write
Xm(t)

t
m
2

=
Xm(t)−X̃m(n(t))

t
m
2

+
X̃m(n(t))

n(t)
m
2

(

n(t)
t

)
m
2

• Define the event E =
{

|X(t)| ∨ |X̃(n(t))| < tγ
}

with Pz(E
c) ≤ e−tγ P -a.s

Then

• Ez

(

|X
m(t)−X̃m(n(t))

t
m
2

|
∣

∣

∣

∣

Ec

)

Pz(E
c) ≤ 2t

m
2 e−tγ

• Ez

(

|X
m(t)−X̃m(n(t))

t
m
2

|
∣

∣

∣

∣

E

)

Pz(E)

≤ Ez (|X(t) − X(n(t))||E) · mtγ(m−1)−m
2

Choosing 1
2 < γ < m

2(m−1) and from Ez (|X(t) − X(n(t))|) t→∞−−−→ µ
we conclude.
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Results and proofs ideas

Corollary 1. For α ∈ (1, 2) and a non-equilbrium PP(Z), it holds

E

(

X2
(t)
)

≥ t , for t ≪ 1

This improves the annealed bound on the second moment given by BFK[’00].
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Results and proofs ideas

Conclusion, work in progress, open problems

• The quenched behavior of the 1 D Levy Lorentz gas with non-equilibrium initial condition
do not displays anomalous diffusive behavior.

• Under the equilibrium initial condition, we expect to find a similar behavior (work in
progress)

• Improved bound on the annealed second moment. Its exact behavior has still to be

determined (work in progress).

• Provide a similar construction for a 2 D Levy Lorentz gas (open problem), where we

expect a quenched anomalous diffusive behavior.
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Thank you for your attention!
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