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Erdős-Rényi random graph model in supercritical regime

Gn= complete graph with n vertices

Bond percolation with parameter

p(n) ∼ c/n with c > 1.

There is a unique giant component with size ∼ θ(c)n

The second, third, etc. largest clusters are almost microscopic (size
of order ln n).
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Percolation on trees much simpler than on general graphs or
lattices because unique path between two vertices.

E.g. percolation on the infinite regular k-tree
∼ branching process with Bin(k,p) reproduction law.

Exist infinite clusters if and only if kp > 1.
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Here, we consider percolation on a finite tree Tn with size n� 1

Percolation parameter p(n) depends on n.

Two questions:

1) What are the supercritical regimes (existence of a giant
component) ?

2) Estimate the sizes of the 2nd, 3rd, ..., largest clusters.
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Characterization of supercritical regimes

Rooted tree structure Tn with vertices {0, 1, . . . , n}.

Bernoulli bond percolation on Tn with parameter p(n).

C 0
p(n) = size of cluster contains root.

C 0
p(n) is giant if n−1C 0

p(n) =⇒ G 6≡ 0.
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` : N→ R+ with limn→∞ `(n) =∞, and c ≥ 0.

Consider the regime

p(n) = 1− c

`(n)
+ o(1/`(n)). (Rc)

V1,V2, . . . a sequence of i.i.d. uniform vertices.

Lk,n = length of the tree reduced to V1, . . . ,Vk and the root 0

1

`(n)
Lk,n =⇒ Lk . (Hk)
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Theorem

(i) If (Hk) holds for all k, then in the regime (Rc)

n−1C 0
p(n) ⇒ G (c) , (1)

where
E(G (c)k) = E(e−cLk ). (2)

(ii) If (1) holds in the regime (Rc) for all c > 0 with
limc→0+ G (c) = 1,
then (Hk) is fulfilled for all k and (2) holds.

Jean Bertoin Almost giant clusters for percolation on large trees



Introduction
Supercritical regimes

Recursive trees
Scale free trees

Sketch of proof :

E
((

(n + 1)−1C 0
p(n)

)k
)

= E
(

p(n)Lk,n
)
.

In the regime (Rc), p(n) ∼ exp(−c/`(n)) and (Hk) yields

lim
n→∞

E
(

exp

(
− c

`(n)
Lk,n

))
= E(e−cLk ) .
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(Hk) is known to hold for a number of families of (random) trees:

- Cayley trees (Aldous) with `(n) =
√

n and Lk ∼ Chi(2k).

- d-regular trees with `(n) = ln n and Lk = k/ ln d

- random recursive trees, binary search trees, ... with `(n) = ln n
and Lk = k.
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Recursive trees

A tree on {0, 1, . . . , n} is called recursive if the sequence of vertices
along any branch from the root 0 to a leaf is increasing.

There are n! such recursive trees, we pick one of them uniformly at
random, denote it by Tn.
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Simple algorithm to construct Tn:

For i = 1, 2, . . ., create an edge between i and U(i) randomly
chosen in {0, . . . , i − 1}, independently of the U(j) for j 6= i .
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(Hk) holds with `(n) = n and then

C 0
p(n) ∼ e−cn ,

in the regime

p(n) = 1− c

ln n
+ o(1/ ln n)

Denote by
C1(n) ≥ C2(n), . . .

the sequence of the sizes of the other clusters ranked in the
decreasing order.
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Almost giant clusters

Theorem

For every fixed j ≥ 1,(
ln n

n
C1, . . . ,

ln n

n
Cj

)
⇒ (x1, . . . , xj)

where x1 > x2 > . . . denotes the sequence of the atoms of a
Poisson random measure on (0,∞) with intensity

ce−cx−2dx .
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Some remarks

The 2nd, 3rd, ... clusters are almost giant (only fail to be
giant by a logarithmic factor).

1/x1, 1/x2 − 1/x1, . . . , 1/xj − 1/xj−1 are i.i.d. exponential
variables with parameter ce−c .
In particular 1/xj has the gamma distribution with parameter
(j , ce−c).

The parameter c only appears through a constant factor in
the intensity measure. Maximal intensity for c = 1.
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Percolation and isolation of the root

Basic ideas for the proof:

• relate percolation to an algorithm in combinatorics for isolating
the root in a tree,

• use a coupling with a certain random walk which was pointed at
by Iksanov and Möhle.
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Meir and Moon (1970+) introduced the following random
algorithm on rooted trees.
See also Janson, Panholzer, Holmgren, Iksanov and Möhle, ...

Pick an edge uniformly at random in the tree, remove it and then
discard the entire subtree generated by that edge.

Iterate until the root has been isolated.
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We will use a dynamical version of percolation which yields a
natural coupling with the preceding algorithm.

To distinguish between the two structures, we use the term clusters
(respectively components) for the connected subsets of vertices
which arise from percolation (respectively from the root-isolation
algorithm).
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Attach to each edge e of Tn an independent exponential variable
with parameter 1/ ln n, say ε(e).

If we remove e at time ε(e), then we observe at time

t(n) = − ln n × ln p(n)

a Bernoulli bond-percolation on Tn with parameter p(n).

The choice of parametrization is such that t(n)→ t.
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Now modify this dynamical percolation by instantaneously freezing
clusters that do not contain the root (i.e. edges are only removed
when they belong to the cluster that contains the root).

We obtain a continuous time version of the algorithm for isolating
the root.

Conversely, we can recover percolation from the root-isolation
algorithm by performing additional percolation on components
which have been frozen:
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In short, the largest percolation clusters can be recovered from the
largest components in the isolation of the root algorithm, together
with the times at which they appear.

Information on the latter can be derived from a coupling with a
certain random walk (Iksanov and Möhle).
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Coupling with a random walk

The coupling relies on a couple of basic properties of random
recursive trees.

Fractal property of Tn :
removing any given edge disconnects Tn into two subtrees which,
conditionally on their sizes, are independent random recursive trees.
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Second, remove from Tn an edge uniformly at random.
Let T̃ = subtree 63 0. Then

P(|T̃ | = `) = P(ξ = ` | ξ ≤ n) , ` = 1, . . . , n ,

where

P(ξ = `) =
1

`(`+ 1)
.
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This incites us to introduce

Sj = ξ1 + . . .+ ξj , j ∈ N

with ξi i.i.d. copies of ξ, and first passage time

N(n) = min{j ≥ 1 : Sj > n} .
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Lemma

[Iksanov and Möhle]
One can couple S and the isolation of the root algorithm such that:
For every k < N(n),

(|V1|, . . . , |Vk |, |V ′k |) = (ξ1, . . . , ξk , n + 1− Sk) ,

where |Vi | denotes the size of the component removed at the i-th
step, and |V ′k | the size of the root-component after k steps.
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This coupling enables us to reduce the study of the component
sizes in the isolation of the root algorithm to extreme values theory
for large sequences of i.i.d. variables.
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Scale free trees

Scale-free random trees grow via preferential attachment algorithm
(Barabási-Albert).

Fix β > −1 and suppose that T
(β)
n has been constructed.

Denote by dn(i) the degree of the vertex i in T
(β)
n .

Then incorporate n + 1 with an edge linking to a random vertex
vn ∈ {0, . . . , n} with law

P(vn = i) =
dn(i) + β

2n + β(n + 1)
, i ∈ {0, . . . , n}.

Jean Bertoin Almost giant clusters for percolation on large trees



Introduction
Supercritical regimes

Recursive trees
Scale free trees

One checks that C 0
p(n) ∼ e−c(1+β)/(2+β)n and

Theorem

For every fixed j ≥ 1,(
ln n

n
C 1
p(n), . . . ,

ln n

n
C j
p(n)

)
⇒ (x1, . . . , xj)

where x1 > x2 > . . . denotes the sequence of the atoms of a
Poisson random measure on (0,∞) with intensity

ce−c(1+β)/(2+β)x−2dx .
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