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Spatial random permutations: the model

I Λ ⊂ Rd , finite volmue V .
x = {x1, . . . , xN} ⊂ Λ ⊂ Rd

I SN = set of permutations on
π : {1, . . . , N} → {1, . . . , N}.

I Typical example for a measure
on SN :

Px({π}) =
1

Z(x)
exp

(
−β

N∑
i=1

|xi − xπ(i)|2
)
.

I Penalization parameter β determines expected jump length.

I Aim: Study the infinite volume limit at density ρ = 1:

V,N →∞, N
V = 1

I Periodic boundary conditions.
I Question: Existence, distribution, geometry and evolution

(under Glauber dynamics) of long cycles.
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Three (or more) dimensions: phase transition

Px({π}) =
1

Z(x)
exp

(
−β

N∑
i=1

|xi − xπ(i)|2
)
.

I Conjecture: For d > 3 there exists βcrit > 0 such that for
β < βcrit there are macroscopic cycles:

P
(

(length of cycle containing x1) > εN
)
> c(β, ε) > 0

for some ε > 0, uniformly in N .

I Proved for the annealed model [B.-Ueltschi, 2009-2011]:
I Phase transition - connections with the free Bose gas
I Poisson-Dirichlet distribution of long cycles.
I No mesoscopic cycles.

I MCMC for the cubic lattice: [Grosskinsky-Lovisolo-Ueltschi 2012]

I Numerical support for all the above statements in the lattice
case. See also [Gandolfo-Ruiz-Ueltschi 2007]

I Geometry: points in long cycles are equidistributed.
I Dynamics: split-merge process.
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Kosterlitz-Thouless phase transition
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Two dimensions: Kosterlitz-Thouless transition

I Standard example for a KT-transition:
XY-model with nearest neighbour
interaction.

I X := Λ ∩ Z2 Spins (Sj)j∈X with
Sj ∈ R2, |Sj | = 1.

I Hamiltonian H = −
∑

xi∼xj Si · Sj .
Inverse Temperature β.

I KT-transition:
∣∣E(S0)

∣∣ = 0 for all β, but decay of correlations
goes from exponential to algebraic. [Fröhlich, Spencer 1981]

I Reason: formation of vertices.

I Analogue in spatial random permutations: bubbles.
[see also Sütö 1993]
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SRP for parameter β = 1.3
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SRP for parameter β = 1.2

V. Betz (Darmstadt) Planar random permutations



SRP for parameter β = 1.1
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SRP for parameter β = 1.0
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SRP for parameter β = 0.9
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SRP for parameter β = 0.8
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SRP for parameter β = 0.75
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SRP for parameter β = 0.7
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KT phase transition in SRP

I Qunatity to observe: P(xi ∼ xj) as a function of |xi − xj |.
I xi ∼ xj means that they are in the same cycle.

I Let `(xi) denote the length of the cycle containing xi.

I For large β: High temperature estimate leads to

P(|xi−xj | > n) 6 P(`(xi) > cn) 6 exp(−αn) (c, α > 0).

I Reasonable assumption: For all β > 0 there exist C > 0 such
that whenever |xi = xj | = n

P(`(xi) > cn) > P(xi ∼ xj) > P(`(xi) > Cn2).

I P(`(xi) > c) = the fraction of points in cycles longer than c
and thus numerically easy to observe.
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KT phase transition: numerics

I Clear power law decay of
P(`(xi) > c) for β = 0.5.

I Numerical evidence suggests
0.7 < βc < 0.75.

I Determining βc precisely is very
difficult due to large
flucutuations in cycle lengths
over time.

Log-log-plot of P(`(xi) > c)

for n = 10002, 20002, 40002.

Logplot of P(`(xi) > c) for n = 1000
and different β. Time series of longest cycle length at n = 1000 with

10 full sweeps between each measurement.
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Curve shortening flow
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Curve shortening flow

I Start with one circular cycle.

I Run Glauber dynamics with
β � 1.

I At zero temperature:
Connection to zero temperature
Ising model.

I Adapting techniques from
[Sphon 93], [Lacoin, Simenhaus, Toninelli 2012]:

I Map to a SSEP with ’range-2-blocking’ lattice points. Study
hydrodynamic limit. (Joint project with Stefan Walter, Darmstadt).

I Added flexibility: More hope of doing the β <∞ case, or
different point configurations.
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Fractal dimension
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SRP for parameter β = 0.6
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SRP for parameter β = 0.5
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SRP for parameter β = 0.4
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SRP for parameter β = 0.3
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Fractal dimension

I Compute the box-counting dimension:

dbox = lim
ε→0

ln(# of ε-boxes needed to cover longest cycle)

ln(1/ε)

I Sample with 2000× 2000 points in Λ = [0, 1]2, with
1/1000 6 ε 6 1/10:

I Linear fitting gives dbox(β) ≈ 2− 7
10β.

Loglog plot of the number of boxes needed

to cover the longest cycle vs the box side

length

Box counting dimension as function of the

temperature
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Fractal dimension and (possibly) SLE
I It seems that

dbox(β) ≈ 2− 7
10β.

I The same result can be obtained
for the triangular lattice.

I For an SLE(κ)-curve it is known
that almost surely

dH(κ) = min
(

2, 1− κ
8

)
[Rohde and Schramm 2005, Beffara 2008]

I Assuming that SRP cycles are SLE curves, we get

κ(β) = 8(dH − 1) = 8(1− 7
10β) = 8− 28

5 β;

for κ = 4 (transition from simple to non-simple curves) we
find β = 5

7 ≈ 0.71. This fits well with the KT-Transition!
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Double dimer model, SLE and SRP
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Double dimer model, conformal invariance, SLE

I Double dimer model [Kenyon and Wilson, 2010]: SRP where each jump
has to be of length one.

I The double dimer model is known to be conformally invariant
[Kenyon 2011].

I Other evidence / reason for hope: SRP are like a collection of
self-avoiding, interacting random walks with Gaussian step
distribution.

I So with some good reason we can conjecture that the long
cycles of SRP are SLE curves.

I With slightly less good reason we conjecture that κ = 8− 28
5 β.
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Thank you for your attention!
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