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Definition

Let X be a metric space with n points.

We think about the
distances as if they were a vector in R(

n
2). The union of all such

points in R(
n
2) for all finite metric spaces is a convex cone

(defined by the equations dij ≤ dik + djk). This cone is called
the metric cone.

Since one cannot take a random point in an infinite set, we need
to cut it somehow, and we restrict all distances to be ≤ 2 (in
other words, we intersect with the cube [0, 2](

n
2)). We will call

this set “the metric polytope” even though the standard
definition is different. How does a random point look like?
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The box

We note that the box [1, 2](
n
2) is completely contained in the

metric polytope Mn: the triangle condition is always satisfied.
Hence volMn ≥ 1.

Of course, this holds for any box [a, 2a](
n
2), but the contribution

of a < 1 is negligible.

Our main result is that a random point in the metric polytope
looks like a random point in this cube.
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Theorem

1 +
c√
n
≤ (volMn)

1/(n2) ≤ 1 +
C

nc
.

Further,

P(dij > 1− Cn−c ∀1 ≤ i < j ≤ n) ≥ 1− Ce−cn.

In other words, this is useless as a model for a random
metric space: the result is too boring.
We will concentrate on the upper bound for the volume,
where entropy techniques appear. One can get

P(dij > 1
32 ∀i, j) > 1− Ce−cn

without going through volume estimates or using entropy
(but not trivially).
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I am sure you all know this, but...

For a variable X taking values in Rm with density p

H(X) = −
∫

p(x) log p(x) dx

(where we define 0 log 0 = 0). For two variables X and Y ,

H(X |Y ) = Ey(H(X|Y = y)) = H(X,Y )−H(Y ).

Like in the discrete case, for a given support the entropy is
maximized on the uniform measure.
Unlike in the discrete case, the entropy can be negative.



Shearer’s inequality

Theorem
Let A1, . . . , Ak be sets of indices (i.e. each Ai ⊂ {1, . . . ,m}) and
suppose they r-cover {1, . . . ,m} i.e.

|{i : j ∈ Ai}| ≥ r ∀j ∈ {1, . . . ,m}

Let X1, . . . , Xm be (dependent) random variables. Then

H(X1, . . . , Xm) ≤ 1

r

k∑
i=1

H({Xa}a∈Ai).

(if you prefer: an inequality concerning a measure on Rm and a
collection of its projections)
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Shearer’s inequality — an application

H(X1, . . . , Xm) ≤ 1

r

k∑
i=1

H({xa}a∈Ai).

Recall that m =
(
n
2

)
so we think about the indices as couples

(a, b) with 1 ≤ a < b ≤ n.

Let the sets Ai correspond to
removing one vertex (which removes n edges):

Ai = {(a, b) : a 6= i and b 6= i}

Our r is now n− 2 because each edge appears in exactly n− 2
sets Ai namely those that do not correspond to either end
vertex. So

log volMn = H({dij}) ≤
1

n− 2

n∑
k=1

H({dij}i,j 6=k)

=
n

n− 2
H({dij}i,j 6=n)
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=
n
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≤ n

n− 2
log volMn−1

But {dij}i,j 6=n is supported on Mn−1 and thus has entropy
smaller than the uniform measure on Mn−1. Rearranging gives:

1(
n
2

) log volMn ≤
1(
n
2

) n

n− 2
log volMn−1 =

1(
n−1
2

) log volMn−1.

So vol(Mn)
1/(n2) is decreasing.
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Take home message

Entropy is useful for understanding
projections.



Proof
Examine the conditioned entropy

f(k) = H
(
d12
∣∣ dij ∀1 ≤ i < j ≤ k, (i, j) 6= (1, 2)

)
.

f(k) is decreasing (a general property of entropy).
f(1) and f(

√
n) are both ≈ 1 (not difficult).

Hence there exists some k ≤
√
n such that

f(k − 1)− f(k) ≤ C√
n
.

Sandwich between f(k − 1) and f(k) the following

f ′ := H
(
d12
∣∣ dij {1 ≤ i < j ≤ k} \ {(1, 2), (1, k), (2, k)}

)
and get f ′ − f(k) ≤ C/

√
n.
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Proof II

H
(
d12 | di,j {1 ≤ i < j ≤ k} \ {(1, 2), (1, k), (2, k)}

)
−

H
(
d12 | di,j {1 ≤ i < j ≤ k} \ {(1, 2)}

)
≤ C/

√
n

But “k” is just a label: we can label this vertex “3”. So

H
(
d12 | di,j {1 ≤ i < j ≤ k} \ {(1, 2), (1, 3), (2, 3)}

)
−

H
(
d12 | di,j {1 ≤ i < j ≤ k} \ {(1, 2)}

)
≤ C/

√
n

This means that when you condition on “typical” values of dij
for all (i, j) 6= (1, 2), (1, 3), (2, 3) you get

H(d12)−H(d12 | d13, d23) ≤ C/
√
n.
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Csiszár’s inequality
For any two variables X and Y , H(X,Y ) ≤ H(X) +H(Y ), with
equality if and only if X and Y are independent.

Csiszár
inequality is a quantitative version. It states that

Ey

(
dTV (X, {X|Y = y})2

)
≤ H(X)−H(X|Y ).

where dTV is the total variation distance. We now return to the
metric polytope. Recall that we showed that, for typical values
of dij , (i, j) 6= (1, 2), we have that

H(d12)−H(d12 | d13, d23) ≤ C/
√
n.

By Csiszár’s inequality, the total variation distance between d12
and d12 | d13, d23 is ≤ Cn−1/4.

In other words: d12 is almost independent of d13, d23!

Since “1”, “2” and “3” are just labels, we get that all three of d12,
d13 and d23 are almost independent (still conditioning on other
dij lower than k).
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Take home message

Entropy is useful for analyzing
complicated dependency issues. Its
monotonicty is crucial.



Back to metric spaces

Assume d12, d13 and d23 are truly independent. Then, because
every possible choice must satisfy the triangle inequality this
implies conditions on the supports:

essmin d12 + essmin d23 ≥ essmax d13

and its cousins.

Hence

H(d12, d13, d23) ≤ max log( |I12| · |I13| · |I23|︸ ︷︷ ︸
the volume of the cube

)

where the maximum is taken over all triples I12, I13, I23 ⊂ [0, 2]
which satisfy the conditions on their minima and maxima. A
little calculation (which we will not do) shows that the
maximum is achieved when I12 = I13 = I23 = [1, 2].
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A
little calculation (which we will not do) shows that the
maximum is achieved when I12 = I13 = I23 = [1, 2].
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Metric spaces II
Since d12, d13 and d23 are not truly independent but only
conditionally almost independent, we get

H(d12, d13, d23 | di,j ∀1 ≤ i < j ≤ k, 4 ≤ j) ≤ Cn−c.

Let A = {(i, j) : i < j, i ≤ k − 3}, which we think about as the
core (all edges between {1, . . . , k − 3}) and spikes.
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Metric spaces II
Since d12, d13 and d23 are not truly independent but only
conditionally almost independent, we get

H(d12, d13, d23 | di,j ∀1 ≤ i < j ≤ k, 4 ≤ j) ≤ Cn−c.

Let A = {(i, j) : i < j, i ≤ k − 3}, which we think about as the
core (all edges between {1, . . . , k − 3}) and spikes. For any
a, b, c > k we have

H(dab, dbc, dac |A) ≤
≤ H(dab, dbc, dac | dij ∀i ≤ k − 3, j ∈ {1, . . . , k − 3, a, b, c})

≤ Cn−c

because of conditional entropy monotonicity.

Relabeling a, b
and c to 1, 2 and 3, and {1, . . . , k − 3} to {4, . . . , k} we are back
in what we know.
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Metric spaces III
A = {(i, j) : i < j, i ≤ k − 3} H(dab, dbc, dac |A) ≤ Cn−c

We use this for all a, b and c > k − 3 and Shearer’s inequality1

to get
H({dab}a,b≥k−3 |A) ≤ Cn2−c.

Adding the entropy of the distances in A is not a problem as
they are bounded by C|A| < Cnk ≤ Cn3/2. So the total entropy
of the metric polytope is ≤ Cn2−c.

1Alternatively one can choose a Steiner system of triangles and avoid
Shearer’s inequality
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The proof in a nutshell

Use the monotonicity of conditional entropy and Csiszár’s
inequality to show that it is enough to condition on a small
(≤
√
n) number of vertices to get that three fixed distances

are almost independent.
Find the optimal solution under the combined conditions of
metricity and independence.
Condition on n3/2 edges to get almost independence for all
triples, and use Shearer’s inequality for the conditioned
measure. Get that the total entropy is ≤ n3/2 + n2−c.



Miscellanea

The vertices of the metric polytope are exchangeable. This
gave us the first big tip that one should expect conditional
independence.

Using weak exchangeability (a.k.a. joint
exchangeablity for arrays) one can prove that
volMn = eo(n

2) but the o is completely unexplicit.
The Szemerédi regularity lemma gives another way to prove
conditional independence. Using this approach one can give
an explicit o, but it involves inverse super-tower functions.
We also have a proof based on the Kővári-Sós-Turán
theorem that gives volMn ≤ C exp(Cn2/ logc n).
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Thank you


