Random points in the metric polytope

Gady Kozma (speaker), Tom Meyerovitch, Ron Peled and Wojciech Samotij

Random Combinatorial Structures and Statistical Mechanics, Venice, 2013

Let X be a metric space with n points.

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}^{\binom{n}{2}}$.

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}^{\binom{n}{2}}$. The union of all such points in $\mathbb{R}^{\binom{n}{2}}$ for all finite metric spaces is a *convex cone* (defined by the equations $d_{ij} \leq d_{ik} + d_{jk}$). This cone is called the *metric cone*.

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}^{\binom{n}{2}}$. The union of all such points in $\mathbb{R}^{\binom{n}{2}}$ for all finite metric spaces is a *convex cone* (defined by the equations $d_{ij} \leq d_{ik} + d_{jk}$). This cone is called the *metric cone*.

Since one cannot take a random point in an infinite set, we need to cut it somehow, and we restrict all distances to be ≤ 2 (in other words, we intersect with the cube $[0, 2]^{\binom{n}{2}}$).

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}^{\binom{n}{2}}$. The union of all such points in $\mathbb{R}^{\binom{n}{2}}$ for all finite metric spaces is a *convex cone* (defined by the equations $d_{ij} \leq d_{ik} + d_{jk}$). This cone is called the *metric cone*.

Since one cannot take a random point in an infinite set, we need to cut it somehow, and we restrict all distances to be ≤ 2 (in other words, we intersect with the cube $[0,2]^{\binom{n}{2}}$). We will call this set "the metric polytope" even though the standard definition is different.

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}^{\binom{n}{2}}$. The union of all such points in $\mathbb{R}^{\binom{n}{2}}$ for all finite metric spaces is a *convex cone* (defined by the equations $d_{ij} \leq d_{ik} + d_{jk}$). This cone is called the *metric cone*.

Since one cannot take a random point in an infinite set, we need to cut it somehow, and we restrict all distances to be ≤ 2 (in other words, we intersect with the cube $[0,2]^{\binom{n}{2}}$). We will call this set "the metric polytope" even though the standard definition is different. How does a random point look like?

The box

We note that the box $[1,2]^{\binom{n}{2}}$ is completely contained in the metric polytope M_n : the triangle condition is always satisfied. Hence vol $M_n \ge 1$.

The box

We note that the box $[1,2]^{\binom{n}{2}}$ is completely contained in the metric polytope M_n : the triangle condition is always satisfied. Hence vol $M_n \ge 1$.

Of course, this holds for any box $[a, 2a]^{\binom{n}{2}}$, but the contribution of a < 1 is negligible.

The box

We note that the box $[1,2]^{\binom{n}{2}}$ is completely contained in the metric polytope M_n : the triangle condition is always satisfied. Hence vol $M_n \ge 1$.

Of course, this holds for any box $[a, 2a]^{\binom{n}{2}}$, but the contribution of a < 1 is negligible.

Our main result is that a random point in the metric polytope looks like a random point in this cube.

$$1 + \frac{c}{\sqrt{n}} \le (\operatorname{vol} M_n)^{1/\binom{n}{2}} \le 1 + \frac{C}{n^c}.$$

~.

Further,

$$\mathbb{P}(d_{ij} > 1 - Cn^{-c} \quad \forall 1 \le i < j \le n) \ge 1 - Ce^{-cn}.$$

$$1 + \frac{c}{\sqrt{n}} \le (\operatorname{vol} M_n)^{1/\binom{n}{2}} \le 1 + \frac{C}{n^c}.$$

Further,

$$\mathbb{P}(d_{ij} > 1 - Cn^{-c} \quad \forall 1 \le i < j \le n) \ge 1 - Ce^{-cn}.$$

• In other words, this is useless as a model for a random metric space: the result is too boring.

$$1 + \frac{c}{\sqrt{n}} \le (\operatorname{vol} M_n)^{1/\binom{n}{2}} \le 1 + \frac{C}{n^c}.$$

Further,

$$\mathbb{P}(d_{ij} > 1 - Cn^{-c} \quad \forall 1 \le i < j \le n) \ge 1 - Ce^{-cn}.$$

- In other words, this is useless as a model for a random metric space: the result is too boring.
- We will concentrate on the upper bound for the volume, where **entropy** techniques appear.

$$1 + \frac{c}{\sqrt{n}} \le (\operatorname{vol} M_n)^{1/\binom{n}{2}} \le 1 + \frac{C}{n^c}.$$

Further,

$$\mathbb{P}(d_{ij} > 1 - Cn^{-c} \quad \forall 1 \le i < j \le n) \ge 1 - Ce^{-cn}.$$

- In other words, this is useless as a model for a random metric space: the result is too boring.
- We will concentrate on the upper bound for the volume, where **entropy** techniques appear. One can get

$$\mathbb{P}(d_{ij} > \frac{1}{32} \ \forall i, j) > 1 - Ce^{-cn}$$

without going through volume estimates or using entropy (but not trivially).

Graphic design: Ori Kozma

I am sure you all know this, but...

For a variable X taking values in \mathbb{R}^m with density p

$$H(X) = -\int p(x)\log p(x) \, dx$$

(where we define $0 \log 0 = 0$). For two variables X and Y,

$$H(X \mid Y) = \mathbb{E}_y(H(X \mid Y = y)) = H(X, Y) - H(Y).$$

- Like in the discrete case, for a given support the entropy is maximized on the uniform measure.
- Unlike in the discrete case, the entropy can be negative.

Shearer's inequality

Theorem

Let A_1, \ldots, A_k be sets of indices (i.e. each $A_i \subset \{1, \ldots, m\}$) and suppose they r-cover $\{1, \ldots, m\}$ i.e.

 $|\{i: j \in A_i\}| \ge r \qquad \forall j \in \{1, \dots, m\}$

Shearer's inequality

Theorem

Let A_1, \ldots, A_k be sets of indices (i.e. each $A_i \subset \{1, \ldots, m\}$) and suppose they r-cover $\{1, \ldots, m\}$ i.e.

 $|\{i: j \in A_i\}| \ge r \qquad \forall j \in \{1, \dots, m\}$

Let X_1, \ldots, X_m be (dependent) random variables.

Shearer's inequality

Theorem

Let A_1, \ldots, A_k be sets of indices (i.e. each $A_i \subset \{1, \ldots, m\}$) and suppose they r-cover $\{1, \ldots, m\}$ i.e.

 $|\{i: j \in A_i\}| \ge r \qquad \forall j \in \{1, \dots, m\}$

Let X_1, \ldots, X_m be (dependent) random variables. Then

$$H(X_1, \dots, X_m) \le \frac{1}{r} \sum_{i=1}^k H(\{X_a\}_{a \in A_i}).$$

(if you prefer: an inequality concerning a measure on \mathbb{R}^m and a collection of its projections)

$$H(X_1, \dots, X_m) \le \frac{1}{r} \sum_{i=1}^k H(\{x_a\}_{a \in A_i}).$$

Recall that $m = \binom{n}{2}$ so we think about the indices as couples (a, b) with $1 \le a < b \le n$.

$$H(X_1, \dots, X_m) \le \frac{1}{r} \sum_{i=1}^k H(\{x_a\}_{a \in A_i}).$$

Recall that $m = \binom{n}{2}$ so we think about the indices as couples (a, b) with $1 \le a < b \le n$. Let the sets A_i correspond to removing one *vertex* (which removes *n* edges):

$$A_i = \{(a, b) : a \neq i \text{ and } b \neq i\}$$

$$H(X_1, \dots, X_m) \le \frac{1}{r} \sum_{i=1}^k H(\{x_a\}_{a \in A_i}).$$

Recall that $m = \binom{n}{2}$ so we think about the indices as couples (a, b) with $1 \le a < b \le n$. Let the sets A_i correspond to removing one *vertex* (which removes *n* edges):

$$A_i = \{(a, b) : a \neq i \text{ and } b \neq i\}$$

Our r is now n-2 because each *edge* appears in exactly n-2 sets A_i namely those that do not correspond to either end vertex.

$$H(X_1, \dots, X_m) \le \frac{1}{r} \sum_{i=1}^k H(\{x_a\}_{a \in A_i}).$$

Recall that $m = \binom{n}{2}$ so we think about the indices as couples (a, b) with $1 \le a < b \le n$. Let the sets A_i correspond to removing one *vertex* (which removes *n* edges):

$$A_i = \{(a, b) : a \neq i \text{ and } b \neq i\}$$

Our r is now n-2 because each *edge* appears in exactly n-2 sets A_i namely those that do not correspond to either end vertex. So

$$\log \operatorname{vol} M_n = H(\{d_{ij}\}) \le \frac{1}{n-2} \sum_{k=1}^n H(\{d_{ij}\}_{i,j \neq k})$$
$$= \frac{n}{n-2} H(\{d_{ij}\}_{i,j \neq n})$$

$$\log \operatorname{vol} M_n = H(\{d_{ij}\}) \le \frac{1}{n-2} \sum_{k=1}^n H(\{d_{ij}\}_{i,j \ne k})$$
$$= \frac{n}{n-2} H(\{d_{ij}\}_{i,j \ne n})$$

$$\log \operatorname{vol} M_n = H(\{d_{ij}\}) \le \frac{1}{n-2} \sum_{k=1}^n H(\{d_{ij}\}_{i,j \neq k})$$
$$= \frac{n}{n-2} H(\{d_{ij}\}_{i,j \neq n})$$

But $\{d_{ij}\}_{i,j\neq n}$ is supported on M_{n-1} and thus has entropy smaller than the uniform measure on M_{n-1} .

$$\log \operatorname{vol} M_n = H(\{d_{ij}\}) \le \frac{1}{n-2} \sum_{k=1}^n H(\{d_{ij}\}_{i,j \neq k})$$
$$= \frac{n}{n-2} H(\{d_{ij}\}_{i,j \neq n}) \le \frac{n}{n-2} \log \operatorname{vol} M_{n-1}$$

But $\{d_{ij}\}_{i,j\neq n}$ is supported on M_{n-1} and thus has entropy smaller than the uniform measure on M_{n-1} .

$$\log \operatorname{vol} M_n = H(\{d_{ij}\}) \le \frac{1}{n-2} \sum_{k=1}^n H(\{d_{ij}\}_{i,j \neq k})$$
$$= \frac{n}{n-2} H(\{d_{ij}\}_{i,j \neq n}) \le \frac{n}{n-2} \log \operatorname{vol} M_{n-1}$$

But $\{d_{ij}\}_{i,j\neq n}$ is supported on M_{n-1} and thus has entropy smaller than the uniform measure on M_{n-1} . Rearranging gives:

$$\frac{1}{\binom{n}{2}}\log\operatorname{vol} M_n \le \frac{1}{\binom{n}{2}}\frac{n}{n-2}\log\operatorname{vol} M_{n-1} = \frac{1}{\binom{n-1}{2}}\log\operatorname{vol} M_{n-1}.$$

So $\operatorname{vol}(M_n)^{1/\binom{n}{2}}$ is decreasing.

Take home message

Entropy is useful for understanding projections.

Proof

Examine the conditioned entropy

$$f(k) = H(d_{12} \mid d_{ij} \forall 1 \le i < j \le k, (i, j) \ne (1, 2)).$$

Proof

Examine the conditioned entropy

$$f(k) = H(d_{12} \mid d_{ij} \; \forall 1 \le i < j \le k, (i, j) \ne (1, 2)).$$

• f(k) is decreasing (a general property of entropy).

Proof

Examine the conditioned entropy

$$f(k) = H(d_{12} \mid d_{ij} \forall 1 \le i < j \le k, (i, j) \ne (1, 2)).$$

- f(k) is decreasing (a general property of entropy).
- f(1) and $f(\sqrt{n})$ are both ≈ 1 (not difficult).

Proof

Examine the conditioned entropy

$$f(k) = H(d_{12} \mid d_{ij} \forall 1 \le i < j \le k, (i, j) \ne (1, 2)).$$

• f(k) is decreasing (a general property of entropy).

• f(1) and $f(\sqrt{n})$ are both ≈ 1 (not difficult).

Hence there exists some $k \leq \sqrt{n}$ such that

$$f(k-1) - f(k) \le \frac{C}{\sqrt{n}}.$$

Proof

Examine the conditioned entropy

$$f(k) = H(d_{12} \mid d_{ij} \forall 1 \le i < j \le k, (i, j) \ne (1, 2)).$$

• f(k) is decreasing (a general property of entropy).

• f(1) and $f(\sqrt{n})$ are both ≈ 1 (not difficult).

Hence there exists some $k \leq \sqrt{n}$ such that

$$f(k-1) - f(k) \le \frac{C}{\sqrt{n}}$$

Sandwich between f(k-1) and f(k) the following

 $f' := H(d_{12} \mid d_{ij} \{ 1 \le i < j \le k \} \setminus \{(1, 2), (1, k), (2, k)\})$ and get $f' - f(k) \le C/\sqrt{n}$.

Proof II

$$\begin{split} H \big(d_{12} \, | \, d_{i,j} \, \left\{ 1 \leq i < j \leq k \right\} \setminus \{ (1,2), (1,k), (2,k) \} \big) - \\ H \big(d_{12} \, | \, d_{i,j} \, \left\{ 1 \leq i < j \leq k \right\} \setminus \{ (1,2) \} \big) \leq C / \sqrt{n} \end{split}$$

Proof II

$$H(d_{12} | d_{i,j} \{ 1 \le i < j \le k \} \setminus \{(1,2), (1,k), (2,k) \}) - \\ H(d_{12} | d_{i,j} \{ 1 \le i < j \le k \} \setminus \{(1,2) \}) \le C/\sqrt{n}$$

But "k" is just a label: we can label this vertex "3". So

$$H(d_{12} | d_{i,j} \{ 1 \le i < j \le k \} \setminus \{(1,2), (1,3), (2,3) \}) - \\ H(d_{12} | d_{i,j} \{ 1 \le i < j \le k \} \setminus \{(1,2) \}) \le C/\sqrt{n}$$

Proof II

$$H(d_{12} | d_{i,j} \{ 1 \le i < j \le k \} \setminus \{(1,2), (1,k), (2,k) \}) - \\ H(d_{12} | d_{i,j} \{ 1 \le i < j \le k \} \setminus \{(1,2) \}) \le C/\sqrt{n}$$

But "k" is just a label: we can label this vertex "3". So

$$H(d_{12} | d_{i,j} \{ 1 \le i < j \le k \} \setminus \{(1,2), (1,3), (2,3) \}) - H(d_{12} | d_{i,j} \{ 1 \le i < j \le k \} \setminus \{(1,2) \}) \le C/\sqrt{n}$$

This means that when you condition on "typical" values of d_{ij} for all $(i, j) \neq (1, 2), (1, 3), (2, 3)$ you get

$$H(d_{12}) - H(d_{12} | d_{13}, d_{23}) \le C/\sqrt{n}.$$

For any two variables X and Y, $H(X, Y) \leq H(X) + H(Y)$, with equality if and only if X and Y are independent.

For any two variables X and Y, $H(X, Y) \leq H(X) + H(Y)$, with equality if and only if X and Y are independent. Csiszár inequality is a quantitative version. It states that

$$\mathbb{E}_{y}(d_{TV}(X, \{X|Y=y\})^{2}) \le H(X) - H(X|Y).$$

where d_{TV} is the total variation distance.

For any two variables X and Y, $H(X, Y) \leq H(X) + H(Y)$, with equality if and only if X and Y are independent. Csiszár inequality is a quantitative version. It states that

$$\mathbb{E}_y(d_{TV}(X, \{X|Y=y\})^2) \le H(X) - H(X|Y).$$

where d_{TV} is the total variation distance. We now return to the metric polytope. Recall that we showed that, for typical values of d_{ij} , $(i, j) \neq (1, 2)$, we have that

 $H(d_{12}) - H(d_{12} | d_{13}, d_{23}) \le C/\sqrt{n}.$

For any two variables X and Y, $H(X, Y) \leq H(X) + H(Y)$, with equality if and only if X and Y are independent. Csiszár inequality is a quantitative version. It states that

$$\mathbb{E}_y(d_{TV}(X, \{X|Y=y\})^2) \le H(X) - H(X|Y).$$

where d_{TV} is the total variation distance. We now return to the metric polytope. Recall that we showed that, for typical values of d_{ij} , $(i, j) \neq (1, 2)$, we have that

$$H(d_{12}) - H(d_{12} | d_{13}, d_{23}) \le C/\sqrt{n}.$$

By Csiszár's inequality, the total variation distance between d_{12} and $d_{12} | d_{13}, d_{23}$ is $\leq Cn^{-1/4}$.

In other words: d_{12} is almost independent of d_{13}, d_{23} !

For any two variables X and Y, $H(X, Y) \leq H(X) + H(Y)$, with equality if and only if X and Y are independent. Csiszár inequality is a quantitative version. It states that

$$\mathbb{E}_{y}(d_{TV}(X, \{X|Y=y\})^{2}) \le H(X) - H(X|Y).$$

where d_{TV} is the total variation distance. We now return to the metric polytope. Recall that we showed that, for typical values of d_{ij} , $(i, j) \neq (1, 2)$, we have that

$$H(d_{12}) - H(d_{12} | d_{13}, d_{23}) \le C/\sqrt{n}.$$

By Csiszár's inequality, the total variation distance between d_{12} and $d_{12} | d_{13}, d_{23}$ is $\leq Cn^{-1/4}$.

In other words: d_{12} is almost independent of d_{13}, d_{23} !

Since "1", "2" and "3" are just labels, we get that all three of d_{12} , d_{13} and d_{23} are almost independent (still conditioning on other d_{ij} lower than k).

Take home message

Entropy is useful for analyzing complicated dependency issues. Its monotonicty is crucial.

Back to metric spaces

Assume d_{12} , d_{13} and d_{23} are truly independent. Then, because *every* possible choice must satisfy the triangle inequality this implies conditions on the *supports*:

```
\operatorname{essmin} d_{12} + \operatorname{essmin} d_{23} \ge \operatorname{essmax} d_{13}
```

and its cousins.

Back to metric spaces

Assume d_{12} , d_{13} and d_{23} are truly independent. Then, because every possible choice must satisfy the triangle inequality this implies conditions on the *supports*:

 $\operatorname{essmin} d_{12} + \operatorname{essmin} d_{23} \ge \operatorname{essmax} d_{13}$

and its cousins.

Hence

$$H(d_{12}, d_{13}, d_{23}) \le \max \log(\underbrace{|I_{12}| \cdot |I_{13}| \cdot |I_{23}|}_{\text{the volume of the cube}})$$

where the maximum is taken over all triples I_{12} , I_{13} , $I_{23} \subset [0, 2]$ which satisfy the conditions on their minima and maxima.

Back to metric spaces

Assume d_{12} , d_{13} and d_{23} are truly independent. Then, because *every* possible choice must satisfy the triangle inequality this implies conditions on the *supports*:

 $\operatorname{essmin} d_{12} + \operatorname{essmin} d_{23} \ge \operatorname{essmax} d_{13}$

and its cousins.

Hence

$$H(d_{12}, d_{13}, d_{23}) \le \max \log(\underbrace{|I_{12}| \cdot |I_{13}| \cdot |I_{23}|}_{\text{the volume of the cube}})$$

where the maximum is taken over all triples I_{12} , I_{13} , $I_{23} \subset [0, 2]$ which satisfy the conditions on their minima and maxima. A little calculation (which we will not do) shows that the maximum is achieved when $I_{12} = I_{13} = I_{23} = [1, 2]$.

Since d_{12} , d_{13} and d_{23} are not truly independent but only conditionally almost independent, we get

 $H(d_{12}, d_{13}, d_{23} \mid d_{i,j} \forall 1 \le i < j \le k, 4 \le j) \le Cn^{-c}.$

Since d_{12} , d_{13} and d_{23} are not truly independent but only conditionally almost independent, we get

 $H(d_{12}, d_{13}, d_{23} \mid d_{i,j} \forall 1 \le i < j \le k, 4 \le j) \le Cn^{-c}.$

Let $A = \{(i, j) : i < j, i \le k - 3\}$, which we think about as the core (all edges between $\{1, \ldots, k - 3\}$) and spikes.

Since d_{12} , d_{13} and d_{23} are not truly independent but only conditionally almost independent, we get

$$H(d_{12}, d_{13}, d_{23} \mid d_{i,j} \forall 1 \le i < j \le k, 4 \le j) \le Cn^{-c}.$$

Let $A = \{(i, j) : i < j, i \le k - 3\}$, which we think about as the core (all edges between $\{1, \ldots, k - 3\}$) and spikes. For any a, b, c > k we have

$$H(d_{ab}, d_{bc}, d_{ac} \mid A) \le \\ \le H(d_{ab}, d_{bc}, d_{ac} \mid d_{ij} \; \forall i \le k-3, j \in \{1, \dots, k-3, a, b, c\})$$

because of conditional entropy monotonicity.

Since d_{12} , d_{13} and d_{23} are not truly independent but only conditionally almost independent, we get

$$H(d_{12}, d_{13}, d_{23} \mid d_{i,j} \forall 1 \le i < j \le k, 4 \le j) \le Cn^{-c}.$$

Let $A = \{(i, j) : i < j, i \le k - 3\}$, which we think about as the core (all edges between $\{1, \ldots, k - 3\}$) and spikes. For any a, b, c > k we have

$$H(d_{ab}, d_{bc}, d_{ac} \mid A) \le \\ \le H(d_{ab}, d_{bc}, d_{ac} \mid d_{ij} \; \forall i \le k-3, j \in \{1, \dots, k-3, a, b, c\}) \\ \le Cn^{-c}$$

because of conditional entropy monotonicity. Relabeling a, b and c to 1, 2 and 3, and $\{1, \ldots, k-3\}$ to $\{4, \ldots, k\}$ we are back in what we know.

$$A = \{(i, j) : i < j, i \le k - 3\} \qquad H(d_{ab}, d_{bc}, d_{ac} \mid A) \le Cn^{-c}$$

We use this for all a, b and c > k - 3 and Shearer's inequality¹ to get

$$H(\{d_{ab}\}_{a,b\geq k-3} \,|\, A) \leq Cn^{2-c}.$$

¹Alternatively one can choose a Steiner system of triangles and avoid Shearer's inequality

$$A = \{(i, j) : i < j, i \le k - 3\} \qquad H(d_{ab}, d_{bc}, d_{ac} \mid A) \le Cn^{-c}$$

We use this for all a, b and c > k - 3 and Shearer's inequality¹ to get

$$H(\{d_{ab}\}_{a,b\geq k-3} | A) \leq Cn^{2-c}.$$

Adding the entropy of the distances in A is not a problem as they are bounded by $C|A| < Cnk \leq Cn^{3/2}$. So the total entropy of the metric polytope is $\leq Cn^{2-c}$.

¹Alternatively one can choose a Steiner system of triangles and avoid Shearer's inequality

The proof in a nutshell

- Use the monotonicity of conditional entropy and Csiszár's inequality to show that it is enough to condition on a small $(\leq \sqrt{n})$ number of vertices to get that three fixed distances are almost independent.
- Find the optimal solution under the combined conditions of metricity and independence.
- Condition on $n^{3/2}$ edges to get almost independence for all triples, and use Shearer's inequality for the conditioned measure. Get that the total entropy is $\leq n^{3/2} + n^{2-c}$.

• The vertices of the metric polytope are *exchangeable*. This gave us the first big tip that one should expect conditional independence.

• The vertices of the metric polytope are *exchangeable*. This gave us the first big tip that one should expect conditional independence. Using *weak exchangeability* (a.k.a. joint exchangeability for arrays) one can prove that vol $M_n = e^{o(n^2)}$ but the *o* is completely unexplicit.

- The vertices of the metric polytope are *exchangeable*. This gave us the first big tip that one should expect conditional independence. Using *weak exchangeability* (a.k.a. joint exchangeability for arrays) one can prove that vol $M_n = e^{o(n^2)}$ but the *o* is completely unexplicit.
- The Szemerédi regularity lemma gives another way to prove conditional independence.

- The vertices of the metric polytope are *exchangeable*. This gave us the first big tip that one should expect conditional independence. Using *weak exchangeability* (a.k.a. joint exchangeability for arrays) one can prove that vol $M_n = e^{o(n^2)}$ but the *o* is completely unexplicit.
- The Szemerédi regularity lemma gives another way to prove conditional independence. Using this approach one can give an explicit *o*, but it involves inverse super-tower functions.

- The vertices of the metric polytope are *exchangeable*. This gave us the first big tip that one should expect conditional independence. Using *weak exchangeability* (a.k.a. joint exchangeability for arrays) one can prove that vol $M_n = e^{o(n^2)}$ but the *o* is completely unexplicit.
- The Szemerédi regularity lemma gives another way to prove conditional independence. Using this approach one can give an explicit *o*, but it involves inverse super-tower functions.
- We also have a proof based on the Kővári-Sós-Turán theorem that gives vol $M_n \leq C \exp(Cn^2/\log^c n)$.

Thank you