Random points in the metric polytope

Gady Kozma (speaker), Tom Meyerovitch, Ron Peled and Wojciech Samotij

Random Combinatorial Structures and Statistical Mechanics, Venice, 2013

Definition

Let X be a metric space with n points.

Definition

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}\binom{n}{2}$.

Definition

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}^{\binom{n}{2}}$. The union of all such points in $\mathbb{R}^{\binom{n}{2}}$ for all finite metric spaces is a convex cone (defined by the equations $d_{i j} \leq d_{i k}+d_{j k}$). This cone is called the metric cone.

Definition

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}^{\binom{n}{2}}$. The union of all such points in $\mathbb{R}^{\binom{n}{2}}$ for all finite metric spaces is a convex cone (defined by the equations $d_{i j} \leq d_{i k}+d_{j k}$). This cone is called the metric cone.

Since one cannot take a random point in an infinite set, we need to cut it somehow, and we restrict all distances to be ≤ 2 (in other words, we intersect with the cube $[0,2]\binom{n}{2}$.

Definition

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}^{\binom{n}{2}}$. The union of all such points in $\mathbb{R}^{\binom{n}{2}}$ for all finite metric spaces is a convex cone (defined by the equations $d_{i j} \leq d_{i k}+d_{j k}$). This cone is called the metric cone.

Since one cannot take a random point in an infinite set, we need to cut it somehow, and we restrict all distances to be ≤ 2 (in other words, we intersect with the cube $[0,2]^{\binom{n}{2}}$). We will call this set "the metric polytope" even though the standard definition is different.

Definition

Let X be a metric space with n points. We think about the distances as if they were a vector in $\mathbb{R}^{\binom{n}{2}}$. The union of all such points in $\mathbb{R}^{\binom{n}{2}}$ for all finite metric spaces is a convex cone (defined by the equations $d_{i j} \leq d_{i k}+d_{j k}$). This cone is called the metric cone.

Since one cannot take a random point in an infinite set, we need to cut it somehow, and we restrict all distances to be ≤ 2 (in other words, we intersect with the cube $[0,2]^{\binom{n}{2}}$). We will call this set "the metric polytope" even though the standard definition is different. How does a random point look like?

The box

We note that the box $[1,2] \begin{gathered}\binom{n}{2}\end{gathered}$ is completely contained in the metric polytope M_{n} : the triangle condition is always satisfied. Hence vol $M_{n} \geq 1$.

The box

We note that the box $\left.[1,2] \begin{array}{c}n \\ 2\end{array}\right)$ is completely contained in the metric polytope M_{n} : the triangle condition is always satisfied. Hence vol $M_{n} \geq 1$.
Of course, this holds for any box $[a, 2 a]\binom{n}{2}$, but the contribution of $a<1$ is negligible.

The box

We note that the box $[1,2] \begin{gathered}\binom{n}{2}\end{gathered}$ is completely contained in the metric polytope M_{n} : the triangle condition is always satisfied. Hence vol $M_{n} \geq 1$.
Of course, this holds for any box $[a, 2 a] \begin{gathered}\binom{n}{2}\end{gathered}$, but the contribution of $a<1$ is negligible.

Our main result is that a random point in the metric polytope looks like a random point in this cube.

Theorem

$$
1+\frac{c}{\sqrt{n}} \leq\left(\operatorname{vol} M_{n}\right)^{1 /\binom{n}{2}} \leq 1+\frac{C}{n^{c}} .
$$

Further,

$$
\mathbb{P}\left(d_{i j}>1-C n^{-c} \quad \forall 1 \leq i<j \leq n\right) \geq 1-C e^{-c n} .
$$

Theorem

$$
1+\frac{c}{\sqrt{n}} \leq\left(\operatorname{vol} M_{n}\right)^{1 /\binom{n}{2}} \leq 1+\frac{C}{n^{c}} .
$$

Further,

$$
\mathbb{P}\left(d_{i j}>1-C n^{-c} \quad \forall 1 \leq i<j \leq n\right) \geq 1-C e^{-c n}
$$

- In other words, this is useless as a model for a random metric space: the result is too boring.

Theorem

$$
1+\frac{c}{\sqrt{n}} \leq\left(\operatorname{vol} M_{n}\right)^{1 /\binom{n}{2}} \leq 1+\frac{C}{n^{c}}
$$

Further,

$$
\mathbb{P}\left(d_{i j}>1-C n^{-c} \quad \forall 1 \leq i<j \leq n\right) \geq 1-C e^{-c n}
$$

- In other words, this is useless as a model for a random metric space: the result is too boring.
- We will concentrate on the upper bound for the volume, where entropy techniques appear.

Theorem

$$
1+\frac{c}{\sqrt{n}} \leq\left(\operatorname{vol} M_{n}\right)^{1 /\binom{n}{2}} \leq 1+\frac{C}{n^{c}}
$$

Further,

$$
\mathbb{P}\left(d_{i j}>1-C n^{-c} \quad \forall 1 \leq i<j \leq n\right) \geq 1-C e^{-c n}
$$

- In other words, this is useless as a model for a random metric space: the result is too boring.
- We will concentrate on the upper bound for the volume, where entropy techniques appear. One can get

$$
\mathbb{P}\left(d_{i j}>\frac{1}{32} \forall i, j\right)>1-C e^{-c n}
$$

without going through volume estimates or using entropy (but not trivially).

Graphic design: Ori Kozma

I am sure you all know this, but...

For a variable X taking values in \mathbb{R}^{m} with density p

$$
H(X)=-\int p(x) \log p(x) d x
$$

(where we define $0 \log 0=0$). For two variables X and Y,

$$
H(X \mid Y)=\mathbb{E}_{y}(H(X \mid Y=y))=H(X, Y)-H(Y)
$$

- Like in the discrete case, for a given support the entropy is maximized on the uniform measure.
- Unlike in the discrete case, the entropy can be negative.

Shearer's inequality

Theorem

Let A_{1}, \ldots, A_{k} be sets of indices (i.e. each $\left.A_{i} \subset\{1, \ldots, m\}\right)$ and suppose they r-cover $\{1, \ldots, m\}$ i.e.

$$
\left|\left\{i: j \in A_{i}\right\}\right| \geq r \quad \forall j \in\{1, \ldots, m\}
$$

Shearer's inequality

Theorem

Let A_{1}, \ldots, A_{k} be sets of indices (i.e. each $A_{i} \subset\{1, \ldots, m\}$) and suppose they r-cover $\{1, \ldots, m\}$ ie.

$$
\left|\left\{i: j \in A_{i}\right\}\right| \geq r \quad \forall j \in\{1, \ldots, m\}
$$

Let X_{1}, \ldots, X_{m} be (dependent) random variables.

Shearer's inequality

Theorem

Let A_{1}, \ldots, A_{k} be sets of indices (i.e. each $\left.A_{i} \subset\{1, \ldots, m\}\right)$ and suppose they r-cover $\{1, \ldots, m\}$ i.e.

$$
\left|\left\{i: j \in A_{i}\right\}\right| \geq r \quad \forall j \in\{1, \ldots, m\}
$$

Let X_{1}, \ldots, X_{m} be (dependent) random variables. Then

$$
H\left(X_{1}, \ldots, X_{m}\right) \leq \frac{1}{r} \sum_{i=1}^{k} H\left(\left\{X_{a}\right\}_{a \in A_{i}}\right)
$$

(if you prefer: an inequality concerning a measure on \mathbb{R}^{m} and a collection of its projections)

Shearer's inequality - an application

$$
H\left(X_{1}, \ldots, X_{m}\right) \leq \frac{1}{r} \sum_{i=1}^{k} H\left(\left\{x_{a}\right\}_{a \in A_{i}}\right)
$$

Recall that $m=\binom{n}{2}$ so we think about the indices as couples (a, b) with $1 \leq a<b \leq n$.

Shearer's inequality - an application

$$
H\left(X_{1}, \ldots, X_{m}\right) \leq \frac{1}{r} \sum_{i=1}^{k} H\left(\left\{x_{a}\right\}_{a \in A_{i}}\right)
$$

Recall that $m=\binom{n}{2}$ so we think about the indices as couples (a, b) with $1 \leq a<b \leq n$. Let the sets A_{i} correspond to removing one vertex (which removes n edges):

$$
A_{i}=\{(a, b): a \neq i \text { and } b \neq i\}
$$

Shearer's inequality - an application

$$
H\left(X_{1}, \ldots, X_{m}\right) \leq \frac{1}{r} \sum_{i=1}^{k} H\left(\left\{x_{a}\right\}_{a \in A_{i}}\right)
$$

Recall that $m=\binom{n}{2}$ so we think about the indices as couples (a, b) with $1 \leq a<b \leq n$. Let the sets A_{i} correspond to removing one vertex (which removes n edges):

$$
A_{i}=\{(a, b): a \neq i \text { and } b \neq i\}
$$

Our r is now $n-2$ because each edge appears in exactly $n-2$ sets A_{i} namely those that do not correspond to either end vertex.

Shearer's inequality - an application

$$
H\left(X_{1}, \ldots, X_{m}\right) \leq \frac{1}{r} \sum_{i=1}^{k} H\left(\left\{x_{a}\right\}_{a \in A_{i}}\right)
$$

Recall that $m=\binom{n}{2}$ so we think about the indices as couples (a, b) with $1 \leq a<b \leq n$. Let the sets A_{i} correspond to removing one vertex (which removes n edges):

$$
A_{i}=\{(a, b): a \neq i \text { and } b \neq i\}
$$

Our r is now $n-2$ because each edge appears in exactly $n-2$ sets A_{i} namely those that do not correspond to either end vertex. So

$$
\begin{aligned}
\log \operatorname{vol} M_{n} & =H\left(\left\{d_{i j}\right\}\right) \leq \frac{1}{n-2} \sum_{k=1}^{n} H\left(\left\{d_{i j}\right\}_{i, j \neq k}\right) \\
& =\frac{n}{n-2} H\left(\left\{d_{i j}\right\}_{i, j \neq n}\right)
\end{aligned}
$$

Shearer's inequality - an application

$$
\begin{aligned}
\log \operatorname{vol} M_{n} & =H\left(\left\{d_{i j}\right\}\right) \leq \frac{1}{n-2} \sum_{k=1}^{n} H\left(\left\{d_{i j}\right\}_{i, j \neq k}\right) \\
& =\frac{n}{n-2} H\left(\left\{d_{i j}\right\}_{i, j \neq n}\right)
\end{aligned}
$$

Shearer's inequality - an application

$$
\begin{aligned}
\log \operatorname{vol} M_{n} & =H\left(\left\{d_{i j}\right\}\right) \leq \frac{1}{n-2} \sum_{k=1}^{n} H\left(\left\{d_{i j}\right\}_{i, j \neq k}\right) \\
& =\frac{n}{n-2} H\left(\left\{d_{i j}\right\}_{i, j \neq n}\right)
\end{aligned}
$$

But $\left\{d_{i j}\right\}_{i, j \neq n}$ is supported on M_{n-1} and thus has entropy smaller than the uniform measure on M_{n-1}.

Shearer's inequality - an application

$$
\begin{aligned}
\log \operatorname{vol} M_{n} & =H\left(\left\{d_{i j}\right\}\right) \leq \frac{1}{n-2} \sum_{k=1}^{n} H\left(\left\{d_{i j}\right\}_{i, j \neq k}\right) \\
& =\frac{n}{n-2} H\left(\left\{d_{i j}\right\}_{i, j \neq n}\right) \leq \frac{n}{n-2} \log \operatorname{vol} M_{n-1}
\end{aligned}
$$

But $\left\{d_{i j}\right\}_{i, j \neq n}$ is supported on M_{n-1} and thus has entropy smaller than the uniform measure on M_{n-1}.

Shearer's inequality - an application

$$
\begin{aligned}
\log \operatorname{vol} M_{n} & =H\left(\left\{d_{i j}\right\}\right) \leq \frac{1}{n-2} \sum_{k=1}^{n} H\left(\left\{d_{i j}\right\}_{i, j \neq k}\right) \\
& =\frac{n}{n-2} H\left(\left\{d_{i j}\right\}_{i, j \neq n}\right) \leq \frac{n}{n-2} \log \operatorname{vol} M_{n-1}
\end{aligned}
$$

But $\left\{d_{i j}\right\}_{i, j \neq n}$ is supported on M_{n-1} and thus has entropy smaller than the uniform measure on M_{n-1}. Rearranging gives:

$$
\frac{1}{\binom{n}{2}} \log \operatorname{vol} M_{n} \leq \frac{1}{\binom{n}{2}} \frac{n}{n-2} \log \operatorname{vol} M_{n-1}=\frac{1}{\binom{n-1}{2}} \log \operatorname{vol} M_{n-1}
$$

So $\operatorname{vol}\left(M_{n}\right)^{1 /\binom{n}{2}}$ is decreasing.

				YOUWANT ENTROPY	YOUWANT ENTROPY	YOUWANT ENTROPY		YOUWANT ENTROPY	

Take home message
Entropy is useful for understanding projections.

Proof

Examine the conditioned entropy

$$
f(k)=H\left(d_{12} \mid d_{i j} \forall 1 \leq i<j \leq k,(i, j) \neq(1,2)\right) .
$$

Proof

Examine the conditioned entropy

$$
f(k)=H\left(d_{12} \mid d_{i j} \forall 1 \leq i<j \leq k,(i, j) \neq(1,2)\right) .
$$

- $f(k)$ is decreasing (a general property of entropy).

Proof

Examine the conditioned entropy

$$
f(k)=H\left(d_{12} \mid d_{i j} \forall 1 \leq i<j \leq k,(i, j) \neq(1,2)\right) .
$$

- $f(k)$ is decreasing (a general property of entropy).
- $f(1)$ and $f(\sqrt{n})$ are both ≈ 1 (not difficult).

Proof

Examine the conditioned entropy

$$
f(k)=H\left(d_{12} \mid d_{i j} \forall 1 \leq i<j \leq k,(i, j) \neq(1,2)\right) .
$$

- $f(k)$ is decreasing (a general property of entropy).
- $f(1)$ and $f(\sqrt{n})$ are both ≈ 1 (not difficult).

Hence there exists some $k \leq \sqrt{n}$ such that

$$
f(k-1)-f(k) \leq \frac{C}{\sqrt{n}}
$$

Proof

Examine the conditioned entropy

$$
f(k)=H\left(d_{12} \mid d_{i j} \forall 1 \leq i<j \leq k,(i, j) \neq(1,2)\right) .
$$

- $f(k)$ is decreasing (a general property of entropy).
- $f(1)$ and $f(\sqrt{n})$ are both ≈ 1 (not difficult).

Hence there exists some $k \leq \sqrt{n}$ such that

$$
f(k-1)-f(k) \leq \frac{C}{\sqrt{n}}
$$

Sandwich between $f(k-1)$ and $f(k)$ the following

$$
f^{\prime}:=H\left(d_{12} \mid d_{i j}\{1 \leq i<j \leq k\} \backslash\{(1,2),(1, k),(2, k)\}\right)
$$

and get $f^{\prime}-f(k) \leq C / \sqrt{n}$.

Proof II

$$
\begin{aligned}
& H\left(d_{12} \mid d_{i, j}\{1 \leq i<j \leq k\} \backslash\{(1,2),(1, k),(2, k)\}\right)- \\
& H\left(d_{12} \mid d_{i, j}\{1 \leq i<j \leq k\} \backslash\{(1,2)\}\right) \leq C / \sqrt{n}
\end{aligned}
$$

Proof II

$$
\begin{aligned}
& H\left(d_{12} \mid d_{i, j}\{1 \leq i<j \leq k\} \backslash\{(1,2),(1, k),(2, k)\}\right)- \\
& H\left(d_{12} \mid d_{i, j}\{1 \leq i<j \leq k\} \backslash\{(1,2)\}\right) \leq C / \sqrt{n}
\end{aligned}
$$

But " k " is just a label: we can label this vertex "3". So

$$
\begin{aligned}
& H\left(d_{12} \mid d_{i, j}\{1 \leq i<j \leq k\} \backslash\{(1,2),(1,3),(2,3)\}\right)- \\
& H\left(d_{12} \mid d_{i, j}\right.\{1 \leq i<j \leq k\} \backslash\{(1,2)\}) \leq C / \sqrt{n}
\end{aligned}
$$

Proof II

$$
\begin{aligned}
H\left(d_{12} \mid d_{i, j}\{1 \leq i<j \leq k\} \backslash\{(1,2),(1, k),(2, k)\}\right)- \\
H\left(d_{12} \mid d_{i, j}\{1 \leq i<j \leq k\} \backslash\{(1,2)\}\right) \leq C / \sqrt{n}
\end{aligned}
$$

But " k " is just a label: we can label this vertex " 3 ". So

$$
\begin{aligned}
H\left(d_{12} \mid d_{i, j}\{1 \leq i<j \leq k\} \backslash\{(1,2),(1,3),(2,3)\}\right)- \\
H\left(d_{12} \mid d_{i, j}\{1 \leq i<j \leq k\} \backslash\{(1,2)\}\right) \leq C / \sqrt{n}
\end{aligned}
$$

This means that when you condition on "typical" values of $d_{i j}$ for all $(i, j) \neq(1,2),(1,3),(2,3)$ you get

$$
H\left(d_{12}\right)-H\left(d_{12} \mid d_{13}, d_{23}\right) \leq C / \sqrt{n}
$$

Csiszár's inequality

For any two variables X and $Y, H(X, Y) \leq H(X)+H(Y)$, with equality if and only if X and Y are independent.

Csiszár's inequality

For any two variables X and $Y, H(X, Y) \leq H(X)+H(Y)$, with equality if and only if X and Y are independent. Csiszár inequality is a quantitative version. It states that

$$
\mathbb{E}_{y}\left(d_{T V}(X,\{X \mid Y=y\})^{2}\right) \leq H(X)-H(X \mid Y)
$$

where $d_{T V}$ is the total variation distance.

Csiszár's inequality

For any two variables X and $Y, H(X, Y) \leq H(X)+H(Y)$, with equality if and only if X and Y are independent. Csiszár inequality is a quantitative version. It states that

$$
\mathbb{E}_{y}\left(d_{T V}(X,\{X \mid Y=y\})^{2}\right) \leq H(X)-H(X \mid Y)
$$

where $d_{T V}$ is the total variation distance. We now return to the metric polytope. Recall that we showed that, for typical values of $d_{i j},(i, j) \neq(1,2)$, we have that

$$
H\left(d_{12}\right)-H\left(d_{12} \mid d_{13}, d_{23}\right) \leq C / \sqrt{n}
$$

Csiszár's inequality

For any two variables X and $Y, H(X, Y) \leq H(X)+H(Y)$, with equality if and only if X and Y are independent. Csiszár inequality is a quantitative version. It states that

$$
\mathbb{E}_{y}\left(d_{T V}(X,\{X \mid Y=y\})^{2}\right) \leq H(X)-H(X \mid Y)
$$

where $d_{T V}$ is the total variation distance. We now return to the metric polytope. Recall that we showed that, for typical values of $d_{i j},(i, j) \neq(1,2)$, we have that

$$
H\left(d_{12}\right)-H\left(d_{12} \mid d_{13}, d_{23}\right) \leq C / \sqrt{n}
$$

By Csiszár's inequality, the total variation distance between d_{12} and $d_{12} \mid d_{13}, d_{23}$ is $\leq C n^{-1 / 4}$.

In other words: d_{12} is almost independent of d_{13}, d_{23} !

Csiszár's inequality

For any two variables X and $Y, H(X, Y) \leq H(X)+H(Y)$, with equality if and only if X and Y are independent. Csiszár inequality is a quantitative version. It states that

$$
\mathbb{E}_{y}\left(d_{T V}(X,\{X \mid Y=y\})^{2}\right) \leq H(X)-H(X \mid Y)
$$

where $d_{T V}$ is the total variation distance. We now return to the metric polytope. Recall that we showed that, for typical values of $d_{i j},(i, j) \neq(1,2)$, we have that

$$
H\left(d_{12}\right)-H\left(d_{12} \mid d_{13}, d_{23}\right) \leq C / \sqrt{n}
$$

By Csiszár's inequality, the total variation distance between d_{12} and $d_{12} \mid d_{13}, d_{23}$ is $\leq C n^{-1 / 4}$.

In other words: d_{12} is almost independent of d_{13}, d_{23} !
Since " 1 ", " 2 " and " 3 " are just labels, we get that all three of d_{12}, d_{13} and d_{23} are almost independent (still conditioning on other $d_{i j}$ lower than $\left.k\right)$.
YOI WANT ENTROPY

Take home message
Entropy is useful for analyzing complicated dependency issues. Its monotonicty is crucial.

Back to metric spaces

Assume d_{12}, d_{13} and d_{23} are truly independent. Then, because every possible choice must satisfy the triangle inequality this implies conditions on the supports:

$$
\operatorname{essmin} d_{12}+\operatorname{essmin} d_{23} \geq \operatorname{essmax} d_{13}
$$

and its cousins.

Back to metric spaces

Assume d_{12}, d_{13} and d_{23} are truly independent. Then, because every possible choice must satisfy the triangle inequality this implies conditions on the supports:

$$
\operatorname{essmin} d_{12}+\operatorname{essmin} d_{23} \geq \operatorname{essmax} d_{13}
$$

and its cousins.
Hence

$$
H\left(d_{12}, d_{13}, d_{23}\right) \leq \max \log (\underbrace{\left|I_{12}\right| \cdot\left|I_{13}\right| \cdot\left|I_{23}\right|}_{\text {the volume of the cube }})
$$

where the maximum is taken over all triples $I_{12}, I_{13}, I_{23} \subset[0,2]$ which satisfy the conditions on their minima and maxima.

Back to metric spaces

Assume d_{12}, d_{13} and d_{23} are truly independent. Then, because every possible choice must satisfy the triangle inequality this implies conditions on the supports:

$$
\operatorname{essmin} d_{12}+\operatorname{essmin} d_{23} \geq \operatorname{essmax} d_{13}
$$

and its cousins.
Hence

$$
H\left(d_{12}, d_{13}, d_{23}\right) \leq \max \log (\underbrace{\left|I_{12}\right| \cdot\left|I_{13}\right| \cdot\left|I_{23}\right|}_{\text {the volume of the cube }})
$$

where the maximum is taken over all triples $I_{12}, I_{13}, I_{23} \subset[0,2]$ which satisfy the conditions on their minima and maxima. A little calculation (which we will not do) shows that the maximum is achieved when $I_{12}=I_{13}=I_{23}=[1,2]$.

Metric spaces II

Since d_{12}, d_{13} and d_{23} are not truly independent but only conditionally almost independent, we get

$$
H\left(d_{12}, d_{13}, d_{23} \mid d_{i, j} \forall 1 \leq i<j \leq k, 4 \leq j\right) \leq C n^{-c} .
$$

Metric spaces II

Since d_{12}, d_{13} and d_{23} are not truly independent but only conditionally almost independent, we get

$$
H\left(d_{12}, d_{13}, d_{23} \mid d_{i, j} \forall 1 \leq i<j \leq k, 4 \leq j\right) \leq C n^{-c} .
$$

Let $A=\{(i, j): i<j, i \leq k-3\}$, which we think about as the core (all edges between $\{1, \ldots, k-3\}$) and spikes.

Metric spaces II

Since d_{12}, d_{13} and d_{23} are not truly independent but only conditionally almost independent, we get

$$
H\left(d_{12}, d_{13}, d_{23} \mid d_{i, j} \forall 1 \leq i<j \leq k, 4 \leq j\right) \leq C n^{-c} .
$$

Let $A=\{(i, j): i<j, i \leq k-3\}$, which we think about as the core (all edges between $\{1, \ldots, k-3\}$) and spikes. For any $a, b, c>k$ we have

$$
\begin{aligned}
& H\left(d_{a b}, d_{b c}, d_{a c} \mid A\right) \leq \\
& \quad \leq H\left(d_{a b}, d_{b c}, d_{a c} \mid d_{i j} \forall i \leq k-3, j \in\{1, \ldots, k-3, a, b, c\}\right)
\end{aligned}
$$

because of conditional entropy monotonicity.

Metric spaces II

Since d_{12}, d_{13} and d_{23} are not truly independent but only conditionally almost independent, we get

$$
H\left(d_{12}, d_{13}, d_{23} \mid d_{i, j} \forall 1 \leq i<j \leq k, 4 \leq j\right) \leq C n^{-c} .
$$

Let $A=\{(i, j): i<j, i \leq k-3\}$, which we think about as the core (all edges between $\{1, \ldots, k-3\}$) and spikes. For any $a, b, c>k$ we have

$$
\begin{aligned}
& H\left(d_{a b}, d_{b c}, d_{a c} \mid A\right) \leq \\
& \quad \leq H\left(d_{a b}, d_{b c}, d_{a c} \mid d_{i j} \forall i \leq k-3, j \in\{1, \ldots, k-3, a, b, c\}\right) \\
& \quad \leq C n^{-c}
\end{aligned}
$$

because of conditional entropy monotonicity. Relabeling a, b and c to 1,2 and 3 , and $\{1, \ldots, k-3\}$ to $\{4, \ldots, k\}$ we are back in what we know.

Metric spaces III

$A=\{(i, j): i<j, i \leq k-3\} \quad H\left(d_{a b}, d_{b c}, d_{a c} \mid A\right) \leq C n^{-c}$
We use this for all a, b and $c>k-3$ and Shearer's inequality ${ }^{1}$ to get

$$
H\left(\left\{d_{a b}\right\}_{a, b \geq k-3} \mid A\right) \leq C n^{2-c} .
$$

${ }^{1}$ Alternatively one can choose a Steiner system of triangles and avoid Shearer's inequality

Metric spaces III

$A=\{(i, j): i<j, i \leq k-3\} \quad H\left(d_{a b}, d_{b c}, d_{a c} \mid A\right) \leq C n^{-c}$
We use this for all a, b and $c>k-3$ and Shearer's inequality ${ }^{1}$ to get

$$
H\left(\left\{d_{a b}\right\}_{a, b \geq k-3} \mid A\right) \leq C n^{2-c} .
$$

Adding the entropy of the distances in A is not a problem as they are bounded by $C|A|<C n k \leq C n^{3 / 2}$. So the total entropy of the metric polytope is $\leq C n^{2-c}$.
${ }^{1}$ Alternatively one can choose a Steiner system of triangles and avoid Shearer's inequality

The proof in a nutshell

- Use the monotonicity of conditional entropy and Csiszár's inequality to show that it is enough to condition on a small $(\leq \sqrt{n})$ number of vertices to get that three fixed distances are almost independent.
- Find the optimal solution under the combined conditions of metricity and independence.
- Condition on $n^{3 / 2}$ edges to get almost independence for all triples, and use Shearer's inequality for the conditioned measure. Get that the total entropy is $\leq n^{3 / 2}+n^{2-c}$.

Miscellanea

- The vertices of the metric polytope are exchangeable. This gave us the first big tip that one should expect conditional independence.

Miscellanea

- The vertices of the metric polytope are exchangeable. This gave us the first big tip that one should expect conditional independence. Using weak exchangeability (a.k.a. joint exchangeablity for arrays) one can prove that $\operatorname{vol} M_{n}=e^{o\left(n^{2}\right)}$ but the o is completely unexplicit.

Miscellanea

- The vertices of the metric polytope are exchangeable. This gave us the first big tip that one should expect conditional independence. Using weak exchangeability (a.k.a. joint exchangeablity for arrays) one can prove that $\operatorname{vol} M_{n}=e^{o\left(n^{2}\right)}$ but the o is completely unexplicit.
- The Szemerédi regularity lemma gives another way to prove conditional independence.

Miscellanea

- The vertices of the metric polytope are exchangeable. This gave us the first big tip that one should expect conditional independence. Using weak exchangeability (a.k.a. joint exchangeablity for arrays) one can prove that $\operatorname{vol} M_{n}=e^{o\left(n^{2}\right)}$ but the o is completely unexplicit.
- The Szemerédi regularity lemma gives another way to prove conditional independence. Using this approach one can give an explicit o, but it involves inverse super-tower functions.

Miscellanea

- The vertices of the metric polytope are exchangeable. This gave us the first big tip that one should expect conditional independence. Using weak exchangeability (a.k.a. joint exchangeablity for arrays) one can prove that $\operatorname{vol} M_{n}=e^{o\left(n^{2}\right)}$ but the o is completely unexplicit.
- The Szemerédi regularity lemma gives another way to prove conditional independence. Using this approach one can give an explicit o, but it involves inverse super-tower functions.
- We also have a proof based on the Kôvári-Sós-Turán theorem that gives vol $M_{n} \leq C \exp \left(C n^{2} / \log ^{c} n\right)$.

Thank you

