Functionals of random partitions and the generalised Erdős-Turán laws for permutations

Alexander Gnedin (QMUL, London) Alexander Iksanov (Kiev University) Alexander Marynych (Kiev University)

Order of permutation

$$\sigma = (1 \ 9 \ 6 \ 2)(3 \ 7 \ 5)(4 \ 8), \qquad \sigma^{12} = id$$

l.c.m.(4, 3, 2) = 12

 For permutation of [n] := {1, 2, ..., n} K_{n,r} := # cycles of length r, (K_{n,r}; r ∈ [n]) cycle partition
 O_n := l.c.m.{r : K_{n,r} > 0}. Erdős-Turán (1967):
 For uniformly random permutation of [n]

$$\frac{\log O_n - \frac{1}{2}\log^2 n}{\sqrt{\frac{1}{3}\log^3 n}} \stackrel{d}{\to} \mathcal{N}(0, 1)$$

Ewens' permutations

Ewens' distribution on permutations of [n]

$$P(\sigma) = \frac{\theta^{K_n}}{\theta(\theta+1)\dots(\theta+n-1)}, \quad \theta > 0$$
$$K_n := \sum_r K_{n,r} \quad \# \text{ of cycles}$$

The distribution of $(K_{n,r}; r \in [n])$ is the Ewens sampling formula.

Arratia and Tavaré 1992: For Ewens' permutation of [n]

$$\frac{\log O_n - \frac{\theta}{2} \log^2 n}{\sqrt{\frac{\theta}{3} \log^3 n}} \xrightarrow{d} \mathcal{N}(0, 1)$$

- ► log O_n approximable by log $T_n = \sum_r \log r K_{n,r}$
- $K_{n,r}$'s asymptotically independent, $Poisson(\theta/r)$

Poisson-Dirichlet/GEM connection

$$W \stackrel{d}{=} Beta(\theta, 1), \quad \mathbb{P}(W \in dx) = \theta x^{\theta-1} dx, \quad x \in (0, 1)$$

 W_1, W_2, \dots i.i.d. copies of W

- ▶ PD/GEM random discrete distribution $P_j = W_1 \cdots W_{j-1}(1 - W_j), \quad j \in \mathbb{N}$
- For sample of size n from (P_j), K_{n,r} is the number of values j ∈ N represented r times (so ∑_r rK_{n,r} = n)
- From random partition to permutation: conditionally on the cycle partition (K_{n,r}; r ∈ [n]) the permutation is uniformly distributed.
- LLN: P_j's are asymptotic frequencies of 'big' components of the partition

General stick-breaking factor W

- ▶ $P_j = W_1 \cdots W_{j-1}(1 W_j), \quad j \in \mathbb{N}$, with i.i.d. $W_j \stackrel{d}{=} W$, where W is a 'stick-breaking factor' with general distribution on [0, 1]
- ▶ generate partition/permutation of [n] by sampling n elements from (P_j) and letting K_{n,r} to be the number of integer values represented r times in the sample.
- Problem: What is the limit distribution of

$$\frac{\log O_n - b_n}{a_n}$$

for suitable centering/scaling constants b_n, a_n ?

Permutations with distribution of the Gibbs form

$$p(\lambda_1,\ldots,\lambda_k) = c_{n,k} \prod_{i=1}^k \theta_{\lambda_i}$$

(Betz/Ueltschi/Velenik, Nikeghbali/Zeindler, ...) are not permutations derived by the stick-breaking, unless they belong to Ewens's family.

 Regenerative property: the collection of cycle-sizes coincides with the set of jumps of a decreasing Markov chain with transition matrix

$$q(n,m) = {n \choose m} rac{\mathbb{E}[W^{n-m}(1-W)^m]}{1-\mathbb{E}W^n}, \quad 0 \le m \le n-1.$$

starting state n and absorbing state 0.

Example: for Ewens' permutations

$$q(n,m) = \binom{n}{m} \frac{(\theta)_m (n-m)!}{n (\theta+1)_{n-1}}.$$

For Ewens' permutations, general separable (additive) functionals

$$\sum_{r} h(r) K_{n,r}$$

have been studied by Babu and Manstavicius (2002, 2009) for unbounded functions h (we need $h(r) = \log r$).

For the permutations derived from stick-breaking:

- ► *K_{n,r}*'s are not asymptotically independent,
- *K_{n,r}*'s converge (if E| log *W*| < ∞) to some multivariate discrete distribution, which is intractable (G.,Iksanov and Roesler 2008)

- Density assumption $\mathbb{P}(W \in dx) = f(x)dx, x \in (0,1)$,
- Define

 $\mu := \mathbb{E}|\log W|, \ \sigma^2 := \operatorname{Var}(\log W), \ \nu := \mathbb{E}|\log(1 - W)|;$ we shall assume $\mu < \infty, \ \sigma^2 \le \infty, \ \nu \le \infty.$

Normal limit I

Suppose

(I):
$$\sup_{x\in[0,1]}x^{\beta}(1-x)^{\beta}f(x) < \infty \text{ for some } \beta \in [0,1).$$

Then

$$\frac{\log O_n - b_n}{a_n} \stackrel{d}{\to} \mathcal{N}(0, 1),$$

with constants

$$b_n = \frac{\log^2 n}{2\mu}$$
$$a_n = \sqrt{\frac{\sigma^2 \log^3 n}{3\mu^3}}$$

Example: $f = \text{Beta}(\theta, \zeta)$; $\theta, \zeta > 0$.

Normal limit IIa

If $\sigma^2 < \infty$ then

(II) : Suppose (for some small δ) f is nonincreasing in $[0, \delta]$, nondecreasing in $[1 - \delta, 1]$ and bounded on $[\delta, 1 - \delta]$.

$$rac{\log O_n - b_n}{a_n} \stackrel{d}{
ightarrow} \mathcal{N}(0,1),$$

for

$$b_n = \frac{1}{\mu} \left[\frac{\log^2 n}{2} - \int_0^{\log^2 n} \int_0^z \mathbb{P}(\log|1 - W| > x) dx dz \right]$$
$$a_n = \sqrt{\frac{\sigma^2 \log^3 n}{3\mu^3}}.$$

Normal limit IIb

If
$$\sigma^2 = \infty$$
 and $\int_0^x y^2 \mathbb{P}(|\log W| \in dy) \sim \ell(x)$

for function ℓ of slow variation at $\infty,$ then the normal limit holds with

$$a_n = \sqrt{\frac{C\lfloor \log n \rfloor \log n}{3\mu^3}},$$

where c_n is any sequence satisfying

$$\frac{n\ell(c_n)}{c_n^2}\to 1.$$

Stable limit IIc

If for some $lpha \in (1,2)$ and ℓ of slow variation at ∞

$$\mathbb{P}(|\log W| > x) \sim x^{-lpha}\ell(x),$$

then the limit is α -stable with characteristic function

$$u \mapsto \exp\left[-|u|^{\alpha}\Gamma(1-\alpha)\left(\cos\frac{\pi\alpha}{2}+i\sin\frac{\pi\alpha}{2}\right)\,\mathrm{sgn}u\right].$$

The centering b_n is as in IIa and scaling

$$a_n = rac{c_{\lfloor \log n
flog} \log n}{\left((lpha+1) \mu^{lpha+1}
ight)^{1/lpha}}$$

Reduction to T_n

For
$$T_n = \prod_{r=1}^n r^{K_{n,r}}$$

 $\mathbb{E}|\log O_n - \log T_n| = O(\log n \log \log n),$
under any of the assumptions I, IIa, IIb, IIc.

Perturbed random walk

 $\xi > 0, \eta \ge 0$ any dependent random variables, (ξ_j, η_j) i.i.d. copies of (ξ, η)

$$S_k = \xi_1 + \dots + \xi_k$$

- Perturbed random walk $\widetilde{S}_k = S_{k-1} + \eta_k$
- For ξ = − log W, η = − log(1 − W), the log-frequencies (log P_k, k ≥ 1) is a perturbed RW
- Number of 'renewals'

$$\mathcal{N}(x) := \#\{k \ge 0 : S_k \le x\}, \quad \widetilde{\mathcal{N}}(x) := \#\{k \ge 1 : \widetilde{S}_k \le x\}$$

$$\varphi(x) := \int_0^x \mathbb{P}(\eta > y) dy$$

Assume that $\mu = \mathbb{E}\xi < \infty$ and for some c(x)

$$rac{N(x)-rac{x}{\mu}}{c(x)} \stackrel{d}{
ightarrow} Z, \quad ext{as } x
ightarrow \infty.$$

Then Z is a stable random variable (Bingham 1973), and

$$\frac{\int_0^x \left(N(y) - \frac{y - \varphi(y)}{\mu} \right) dy}{xc(x)} \stackrel{d}{\to} \int_0^1 Z(y) dy, \quad \text{as } x \to \infty,$$

where $(Z(t), t \ge 0)$ is a stable Lévy process corresponding to $Z \stackrel{d}{=} Z(1)$.